
Chapter 1

Limits of tangents, Whitney
stratifications and a Plücker type formula

Lê Dũng Tráng and Bernard Teissier

Abstract Let X denote a purely d-dimensional reduced complex analytic
space. If it has singularities, it has no tangent bundle, which makes many
classical and fundamental constructions impossible directly. However, there
is a unique proper map νX : N X Ñ X which has the property that it is an
isomorphism over the non-singular part X0 of X and the tangent bundle TX0

lifted to N X by this isomorphism extends uniquely to a vector bundle on
N X . For x P X , the set-theoretical fiber |ν´1

X pxq| is the set of limit directions
of tangent spaces to X0 at points approaching x. The space N X is reduced
and equidimensional, but in general singular. If X is a closed analytic sub-
space of an open set U of CN , the space N X is a closed analytic subspace
of X ˆ Gpd, Nq, where Gpd, Nq denotes the Grassmannian of d-dimensional
vector subspaces of CN . The rich geometry of the Grassmannian makes it
complicated to study the geometry of the map νX using intersection the-
ory. There is an analogous construction where tangent spaces are replaced
by tangent hyperplanes, and the map νX is replaced by the conormal map
κX : CpXq Ñ X , where CpXq denotes the conormal space, which is a subspace
of Xˆ P̌N´1, where P̌N´1 is the space of hyperplanes of PN , the dual projec-
tive space, so that the intersection theory is simpler. This paper is devoted
to these two constructions, their applications to stratification theory in the
sense of Whitney and to a Plücker type formula for projective varieties.

Introduction

Let X denote a purely d-dimensional reduced subspace of an affine space CN

defined in an open subset by algebraic or analytic equations with coefficients
in C. The singular locus of X is usually defined as a point where “there is no
tangent space” in the sense that the linear equations derived from the original
equations of X do not define a unique linear subspace of dimension d. The
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direction of the tangent space at a non-singular point x P X is represented
by a point in the Grassmannian Gpd, Nq of d-dimensional vector subspaces
of CN . Thus, there is a map γ : X0 Ñ Gpd, Nq, where X0 denotes the non-
singular part of X , which is dense in X since X is reduced. This map is easily
seen to be holomorphic, and algebraic if X is. It is called the Gauss map
because a similar map was used by Gauss in his study of the curvature of
differentiable surfaces, published in 1828.

Around the same time as Gauss, Poncelet, Bobillier, Plücker and others
were studying the duality of plane projective curves. Here the motivations
did not come from geodesy but rather from the problem of understanding
how many tangents can be drawn to a curve C of degree d from a general
point in the plane. The plane projective duality which transforms a point in
the projective plane P2 with homogeneous coordinates px : y : zq into a line in
the dual plane simply by exchanging the roles of coefficients and variables in
the equation ax`by`cz “ 0 of lines going through the point px : y : zq shows
that the number of tangents to C from a general point is the degree of the dual
curve Č Ă P̌2 consisting of the points of P̌2 representing the lines tangent to
C. This degree is dpd´1q. Thus if Č was non-singular its dual could not be C
as the geometry insists it should be, since dpd ´ 1qppdpd ´ 1q ´ 1q ‰ dpd ´ 1q
unless d “ 2: this is the Poncelet paradox. Thus Č has singularities and some
points of C must represent limits of tangents to Č at non-singular points of
Č tending to a singular point. This is perhaps one of the first occurences of
limits of tangent spaces.

Singular curves and surfaces were studied throughout the XIX-th century
mostly1 with the goal of generalizing Riemann’s work, understanding “con-
ditions of adjunction” and more generally the behavior of differential forms
and their integrals. It is perhaps not so surprising that it is only in 1954 that
Semple introduced in [45] the space of limit directions of tangent spaces to an
algebraic variety, which he called the first derivate in [45, §8]. It is the closure
N X in X ˆGpd, Nq of the graph N X0 Ă X0 ˆGpd, Nq of the Gauss map. As
a subspace of X ˆGpd, Nq it is endowed with a projection ν : N X Ñ X which
is proper (since Gpd, Nq is compact) and is an isomorphism over X0. The
set-theoretic fiber |ν´1pxq Ă Gpd, Nq above a point x P X is the set of limit
directions at x of tangent spaces at points of X0 tending to x.
Semple also asked, in the last paragraph of his paper, whether iterating this
construction would eventually resolve the singularities of X .

About ten years after Semple, John Nash rediscovered the construction
and the question and for a time the construction was called the Nash blowing-
up, which exp lains the notation N X . Semple’s paper is difficult to read and
it is only after Monique Lejeune-Jalabert discovered his contribution that the
map νX : N X Ñ X came to be called the Semple-Nash modification.

1 There are exceptions, for example in work of Cayley, Halphen, M. Noether, Salmon,
H.J.S. Smith, often connected with generalizations of the Plücker formulas for curves
and the study of linear systems and projective embeddings.
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Also about ten years after Semple, and after important preliminary work
in the differentiable case by Whitney himself in 1957 and Thom in 1960
(see [58]), in 1965, Hassler Whitney published a study of possible definitions
of limits of secants and tangents at a singular point of a complex analytic
space, in which he introduced the fundamental notion of regular stratifica-
tion, nowadays called Whitney stratifications. It is a locally finite partition
of a complex analytic space into locally closed non-singular “strata” where
each stratum has a “regular” behavior along the strata of its boundary. The
definition of “regular” involves both limits of secants and limits of tangents
for points tending to the boundary stratum. The definitions extend read-
ily beyond the complex analytic case and in the hands of Thom, Mather,
and others it became a most important conceptual and technical tool in the
study of singularities of differentiable mappings, in particular when applied
to infinite dimensional spaces such as jet spaces and function spaces.

Stratification theory in the large is the subject of David Trotman’s contri-
bution (see [58]) to the first volume of this Handbook. In this text we shall
concentrate on the complex analytic case for both limits of tangent spaces
and stratifications. We consider reduced equidimensional complex spaces and
whenever we take the intersection of such a space with a non-singular sub-
space of some ambiant non-singular space, we endow it with its reduced
structure.

Although it can be read independently, this paper is in some ways a continua-
tion of the paper [29] of Lê and Snoussi in Volume II of this Handbook. Also,
a version of the content of section 1.1 appears in [51, §3.9] under the name
of Nash blowing up (which is more traditional) and a version of the content
of section 1.4 appears in [51, §3.3] in Volume I of this Handbook. Some of
the topics exposed here can be found exposed in greater detail in [14] from
which, with the permission of its authors and of the editors, we have copied
some parts of this text.

1.1 Limits of tangent spaces: the Semple-Nash
modification

Let X be a reduced and equidimensional closed subspace of an open set
U Ă CN . We denote by X0 the set of non-singular points of X , which is open
and dense in X , by d the dimension of X , and by Gpd, Nq the grassmannian
of d-dimensional vector subspaces of CN . The Gauss map

γX0 : X0 Ñ Gpd, Nq, x ÞÑ rTX0,xs P Gpd, Nq

associates to every point of X0 the direction of the tangent space to X at this
point. Let us consider the graph N X0 Ă X0 ˆGpd, Nq of γ. It is a purely d-
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dimensional analytic subset of X0ˆGpd, Nq since it is isomorphic to X0. The
space of limits of (directions of) tangent spaces at points of X0, the Semple-
Nash modification of X , is the closure N X in XˆGpd, Nq of N X0. So we have
to prove that it is a closed analytic subspace of X ˆ Gpd, Nq. The singular
locus SingX “ XzX0 is a closed complex subspace of X , of dimension ď d´1.
However, we cannot apply the Remmert-Stein theorem (see [32, Chap. IV, §6]
or [1, Theorem 6]) to prove that N X is analytic because we have to extend
N X0 Ă U ˆ Gpd, Nq through SingX ˆ Gpd, Nq which is of dimension ą d.
The proofs in [60, Theorem 16.4] and [40, Theorem 1] build, using jacobian
determinants, a system of equations for the closure N X Ă U ˆGpd, Nq, thus
proving its analyticity.

One has then to verify that the map N X Ñ X is unique up to a unique
X-isomorphism, independent of the immersion of X in an open set of an affine
space.
Then for any reduced equidimensional complex space X the local Semple-
Nash modifications will glue up into a unique proper map, the Semple-Nash
modification νX : N X Ñ X (sometimes simplified to ν).
We note that the pull-back by the second projection γX : N X Ñ Gpd, Nq of
the tautological bundle on the grassmannian is a vector bundle on N X which
extends the tangent bundle of N X0 » X0.

There is another approach, based on Grothendieck’s Grassmannian of a
coherent module (see [17]) which shows directly the canonicity of the Semple-
Nash modification.
Let X be a reduced equidimensional complex space and Ω1

X its coherent
module of differentials, which is locally free on X0. It comes with a morphism
of OX -modules dX : OX Ñ Ω1

X , the differential, which cannot be confused
with the dimension. Since the OX -module Ω1

X is coherent, the symmetric
algebra SymOX

Ω1
X of the OX -module Ω1

X is a graded OX -algebra locally of
finite presentation and generated in degree one, and so corresponds to an
analytic space SpecanXSymOX

Ω1
X over X .The fibers of the natural map

t : SpecanXSymOX
Ω

1
X Ñ X

are the Zariski tangent spaces t´1pxq “ SpecSymCpmX,x{m2
X,xq

_, where _
denotes the dual vector space over C.
Since Ω1

X is a coherent sheaf of OX -modules, SpecanXSymOX
Ω1

X is a complex
analytic space. The sections B : X Ñ SpecanXSymOX

Ω1
X of the projection t

correspond to elements of HomOX
pΩ1

X,OX q, that is, derivations from OX to
OX . If X is non-singular SpecanXSymOX

Ω1
X is the tangent bundle to X and

the sections B are holomorphic vector fields on X .
Now Grothendieck has shown that for Ω1

X , as indeed for any coherent OX -
module, just as t : SpecanXSymOX

Ω1
X Ñ X is a relative vector space in the

sense that its fibers are vector spaces, there is a relative grassmannian

g : GdpΩ
1
X q Ñ X



1 Limits of tangents, Whitney stratifications and a Plücker type formula 5

whose fiber at x P X is the grassmannian of d-dimensional subspaces of the
vector space t´1pxq.

The defining property of the map g is that for any holomorphic map
h : W Ñ X it is equivalent to give, up to isomorphism, a locally free quo-
tient of rank d of the OW -module h˚Ω1

X and to give, up to isomorphism, a
factorization of h through g.

Now a rank d locally free quotient of h˚Ω1
X corresponds to a vector bundle

over W with d-dimensional fibers which is contained in SpecanXSymOT h˚Ω1
X .

That is exactly a family of analytically varying d-dimensional subspaces of
the Zariski tangent spaces t´1phpwqq for w P W .
In particular, the sheaf g˚Ω1

X on GdpΩ
1
X q has a locally free quotient of rank

d, which corresponds to the pull back of the tautological bundle on the grass-
mannian.
If one remembers that in analytic geometry limits can be obtained by moving
along analytic arcs (curve selection lemma), we see that since any limit di-
rection T of tangent spaces at a point x P X is a limit along germs of analytic
arcs h : pD, 0q Ñ pX, xq, it is the fiber over 0 of a locally free quotient of h˚Ω1

X

and so the arc lifts as h̃ : pD, 0q Ñ pGdpΩ
1
X q,Tq, which (with a little work)

defines a map N X Ñ GdpΩ
1
X q which one shows (with a little more work) to

be an X-isomorphism.
The equivalence of this grassmannian construction with the Gauss map

construction shows directly that the closure of the graph of the Gauss map
is analytic, and that the result of the construction is unique up to a unique
isomorphism.
Since the grassmannians embed into projective spaces, the map N X Ñ X is
locally projective and since it is locally bimeromorphic, it is locally on X the
blowing-up (see section 1.4 below for the definition) of a sheaf of ideals, a
result proved explicitly by Nobile in [40, Theorem 1].

Examples

1. Let X Ă C4 be the union of two planes meeting at the origin. Then
N X Ñ X maps the disjoint union of two 2-planes to X , each plane map-
ping isomorphically onto its image. It is a finite bimeromorphic map, and
thus a resolution of singularities. If one follows the classical resolution
algorithm, one blows up the intersection point. This again separates the
two planes, but now the projection restricted to each of the separated
planes is the blowing-up of a point, and is not finite.

2. Let f pz1, . . . , zN q “ 0 be an equation for a germ at the origin of a reduced
hypersurface. The Semple-Nash modification is the blowing-up in X of
the ideal generated by the partial derivatives of f . More generally, if X
is a reduced complete intersection of dimension d in affine space AN pCq,
then the blowing-up in X of the ideal generated by the pN ´ dqˆ pN ´ dq
minors of the jacobian matrix of the equations is isomorphic to N X . For
the general case, see [40].
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The Semple-Nash modification has been used in the definition of charac-
teristic classes for singular spaces (see [37] and Chapters 5-7 of Volune III
of this Handbook), but we shall not go into this here. Much work has been
devoted to understanding how the singularities of N X differ from those of X ,
and in particular to answer the question posed by Semple at the end of his
paper and reiterated by Nash a decade later:

Does iterating the Semple-Nash modification resolve the singularities of X in
finitely many steps?

In other words, given X as above, is there an integer k0 such that Nk X is
non-singular for k ě k0?
It follows from the definition that if X is non-singular, we have N X “ X .
Nobile proved the converse in [40, Theorem 2]:

Theorem 1.1.1 (Nobile)The Semple-Nash modification νX : N X Ñ X is an
isomorphism if and only if X is non-singular.

Nobile’s original proof of this theorem is somewhat involved and relies on
local parametric descriptions of a singular space and results of [60]. A different
proof was proposed in [53, §2], based on the second construction of N X .
By definition, if N X “ X , the module of differentials of X has a locally
free quotient. The property of non-singularity being local we may assume
after restricting to an open set U X X of X that we have a surjection
Ω1
UXX Ñ Od

UXX Ñ 0. Taking germs at x P U X X , there is an element

h P OX,x such that the differential dX h P Ω1
X,x maps to p1, 0 . . . , 0q P Od

X,x ,
and thus a derivation D of OX,x into itself such that Dh “ 1. Since D is zero
on C Ă OX,x , we may assume that h P mX,x . Geometrically, the derivation
D corresponds to a holomorphic vector field on X not vanishing at x. Its
integration (see [53, §2] for details) gives the germ pX, xq a product structure
pX, xq » pX1 ˆ C, xq, where X1 Ă X is the reduced equidimensional space
defined by the ideal hOX,x and satisfies N X1 “ X1. The result follows by
induction on the dimension.

This theorem has the important consequence that in order to prove Sem-
ple’s conjecture, it suffices to prove that the sequence of the Nk X eventually
becomes stationary.
As already noted by Nobile, it implies immediately that if X is of dimension
one Nk X is non-singular for large k. Since a curve has finitely many limit
tangent lines at any point, the Semple-Nash modification of a curve is a
finite bimeromorphic map, and thus dominated by the normalization. Since
the normalization OX,x , which is a resolution of singularities, is a finitely
generated and thus a noetherian OX,x -module, there cannot be an infinite
strictly increasing sequence of subalgebras finite over OX,x .

Apart from some special cases, Semple’s conjecture is still open in dimen-
sions ě 2. The best result is due to Spivakosky in [50], where he proves that
iterating the operation of Semple-Nash modification followed by normaliza-
tion eventually resolves the singularities of a surface. Spivakovsky’s proof
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sheds light on the change of the dual graph of a minimal resolution when one
passes from X to N X .

There are a number of other significant results for surfaces. For example
Snoussi in [48] relates the planar components of the tangent cone to a surface
to the singularities of its Semple-Nash transform and D. Duarte in [9] shows
that interating the Semple-Nash modification for toric surfaces has to stop
in some charts.

In dimension ě 3 very little is known in general. The resolution problem
is open even in the case of toric varieties, where in characteristic zero the
Semple-Nash modification is the blowing up of a deceptively simple monomial
ideal (see [15, §10]).

Indeed, apart from results of Vaquié in [59] concerning numerical invari-
ants, and precise results for quasi-ordinary singularities (see [4] and [2]), there
is no satisfactory description in general of the relation between the geometry
of N X and that of X .

However there is another aspect of limits of tangent spaces which is rather
well understood: as we shall see below, given pX, 0q Ă pCN , 0q, a hyperplane
in CN is said to be tangent to X0 at a point if it contains the tangent space to
X0 at that point and a hyperplane through 0 is a limit of tangent hyperplanes
at points of X0 if and only if it contains a limit of tangent spaces to X0.
When X is a hypersurface with isolated singularity it was shown in [52, Chap.
II, §1, 1.6] that a hyperplane H through the singular point is not a limit of
tangent hyperplanes if and only if the Milnor number µpX X Hq is minimal
among the Milnor numbers of all intersections X X H 1. Then it was shown in
[54, Appendice] that the family of all sections XXH where H is not a limit of
tangent hyperplanes is equisingular in the sense of Whitney conditions (which
we shall see below). These results were generalized, for normal surfaces by
Snoussi in [46], for arbitrary reduced equidimensional germs by Gaffney in
[12, Theorem 2.1, Corollary 2.4] and in a more topological framework by
Tibăr in [57].
The result for isolated hypersurface singularities was used as part of a method
to compute limits of tangent spaces in this case. See [39], and [41] for more
methods of computation.

In the case where our singular germ pX, 0q is the cone over a projective variety,
there is an algebraic approach to the study of the Gauss map in [49]. and
a geometric one in [28]. We shall come back to this in the paragraph on
projective duality.

Given a flat map π : X Ñ S where X is again reduced and equidimensional
and say S is non-singular and the open set X0 of points of X where the
map π is smooth is dense in X , with dim. X{S “ d, one can define a relative
Semple-Nash modification as SpecanSymXΩ

1
X{S

where Ω1
X{S

is the sheaf of

relative differentials. In a local presentation of π as the map induced by the
first projection in an embedding X Ă SˆCN it is the closure of the graph of
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the relative Gauss map γX0{S : X0 Ñ Gpd, Nq sending a point x P X0 to the
direction of the tangent space to the fiber of π through x.

This construction is of course useful in the study of families of singularities
but the geometry of grassmannians being much more complicated than the
geometry of projective spaces, it is time to move to the study of tangent
hyperplanes.

1.2 Limits of tangent hyperplanes: The conormal space

Whenever our reduced equidimensional singular space X is not locally a hy-
persurface in some CN , the tangent spaces belong to grassmannians instead
of projective spaces, and the description of the Semple-Nash modification be-
comes more complicated, according to the complexity of describing algebraic
subvarieties of grassmannians.

It is therefore natural to consider tangent hyperplanes instead of tangent
spaces: a tangent hyperplane at a point of X0 Ă CN is a (direction of)
hyperplane containing the tangent space to X0 at that point. This is also
the approach which allows the connection with duality of projective vari-
eties, in the case where our singular germ pX, 0q is the cone over a projective
variety. Most importantly the spaces of limits of tangent hyperplanes to a
singular subspace of a non-singular complex variety can be characterized by
Lagrangian (or Legendrian) type conditions, a fact which has no direct equiv-
alent for N X 2. One must emphasize that, in contrast to the Semple-Nash
modification, this constructions depends on a local or global embedding of
our space X in a non-singular complex analytic variety M.

Let us begin with the case of a local embedding X Ă CN , where the
directions of hyperplanes in CN are parametrized by the projective space
P̌N´1. At a non-singular point x P X0, by definition a tangent hyperplane is
a hyperplane in the tangent space to CN at x which contains the tangent space
TX0,x . Tangent hyperplanes at a point x P X0 constitute a PN´d´1 Ă PN´1.

Thus we obtain a subspace CpX0q Ă X ˆ P̌N´1 whose points are pairs px, Hq
such that H is a tangent hyperplane at x. The conormal space CpXq of
X Ă CN is the closure of CpX0q in X ˆ P̌N´1. By definition it is the set of
pairs px, Hq such that H is a limit at x of tangent hyperplanes at points of
X0.
The natural map induced by the first projection is denoted by κX : CpXq Ñ X .

Again we have to show that this closure is a closed analytic subspace of
XˆP̌N´1. Following [14, Section 3.3], we use a diagram relating the conormal
space of pX, 0q Ă pCN , 0q and its Semple-Nash modification.
It is convenient here to use the notation of projective duality of linear spaces.

2 See, however, [16, Theorem 3.14] and [28, Theorem 14].
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Given a vector subspace T Ă CN we denote by PT its projectivization,
i.e., the image of Tzt0u by the projection CN zt0u Ñ PN´1 and by Ť Ă P̌N´1

the projective dual of PT Ă PN´1, which is a PN´d´1 Ă P̌N´1, the set of all
hyperplanes H of PN´1 containing PT .

We denote by Ξ̌ Ă Gpd, Nqˆ P̌N´1 the cotautological PN´d´1-bundle over
Gpd, Nq, that is Ξ̌ “ tpT, Hq | T P Gpd, Nq, H P Ť Ă P̌N´1u, and consider the
intersection

E :“ pX ˆ Ξ̌q X pN X ˆ P̌N´1q
� � //

p2

**
p1

��

X ˆGpd, Nq ˆ P̌N´1

��
N X X ˆ P̌N´1

and the morphism p2 induced on E by the projection onto X ˆ P̌N´1. We
then have the following:

Proposition 1.2.1 The set-theoretical image p2pEq of the morphism p2 co-
incides with the conormal space of X in CN

p2pEq “ CpXq Ă X ˆ P̌N´1.

It is a closed analytic subspace of dimension N ´ 1.

Proof If we define E0 “ tpx,TX,x, Hq P E | x P X0, H P ŤX,xu, then by con-
struction E0 “ p´1

1 pν´1
X pX0qq, and p2pE0q “ CpX0q. Since the morphism p2

is proper it is closed, which finishes the proof since E is a closed analytic
subspace of X ˆGpd, Nq ˆ P̌N´1 because Ξ̌ is a closed analytic (in fact alge-
braic) subspace of Gpd, Nq ˆ P̌N´1 and N X is a closed analytic subspace in
X ˆGpd, Nq. The dimension of CpXq is that of its open dense subset CpX0q,
which is N ´ 1 because it maps to X0 with fibers PN´d´1. ˝

Corollary 1.2.2 A hyperplane H P P̌N´1 is a limit of tangent hyperplanes
to X at 0, i.e., H P κ´1

X p0q, if and only if there exists a d-plane p0,Tq P ν´1
X p0q

such that T Ă H.

Proof Let p0,Tq P ν´1
X p0q be a limit of tangent spaces to X at 0. By con-

struction of E and Proposition 1.2.1, every hyperplane H containing T is in
the fiber κ´1

X p0q, and so is a limit at 0 of tangent hyperplanes to X0.

On the other hand, by construction, for any hyperplane H P κ´1
X p0q there is a

sequence of points tpxi, HiquiPN in κ´1
X pX

0q converging to p “ p0, Hq. Since the
map p2 is surjective, by definition of E, we have a sequence pxi,Ti, Hiq P E0

with Ti “ Txi X0 Ă Hi . By compactness of Grassmannians and projective
spaces, this sequence has to converge, up to taking a subsequence, to px,T, Hq
with T a limit at x of tangent spaces to X . Since inclusion is a closed condition,
we have T Ă H. ˝

Corollary 1.2.3 The morphism p1 : E Ñ N X is a locally analytically trivial
fiber bundle with fiber PN´d´1.
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Proof By definition of E, the fiber of the projection p1 over a point
px,Tq P N X is the set of all hyperplanes in PN´1 containing PT . In fact,
the tangent bundle TX0 , lifted to N X by the isomorphism N X0 » X0, ex-
tends to a fiber bundle over N X , called the Nash tangent bundle of X . It is
the pull-back by γX of the tautological bundle of Gpd, Nq, and E is the total
space of the PN´d´1-bundle of the projective duals of the projectivized fibers
of the Nash bundle. ˝

Consider the diagram extracted from the diagram we have seen above:

E
p2 //

p1

��

CpXq

κX

��
N X

νX // X

Proposition 1.2.4 The map p2 : E Ñ CpXq is isomorphic to the blowing up
in CpXq of the lift JOCpXq to CpXq by κX of an ideal J of OX whose blowing
up coincides with the map νX .

Proof By construction, E is a closed subspace of N XˆX CpXq. By definition
of E, the map p2 is an isomorphism over CpX0q since a tangent hyperplane at
a nonsingular point contains only the tangent space at that point. Therefore
the map p2 : E Ñ CpXq is locally bimeromorphic. The lift by νX ˝ p1 of the
ideal J is invertible on E. By the universal property of blowing up, any
map W Ñ CpXq such that the lift to W from CpXq of the ideal JOCpXq is
invertible on W has to factor uniquely through N X and therefore through the
fiber product N X ˆX CpXq. In particular the blowing-up of JOCpXq in CpXq
has to factor through a closed subspace of N X ˆX CpXq and has to coincide
with E since they coincide over X0.3

In general the fiber of p2 over a point px, Hq P CpXq is the set of limit
directions at x of tangent spaces to X that are contained in H. If X is a
hypersurface, the conormal map coincides with the Semple-Nash modifica-
tion. In general, the manner in which the geometric structure of the inclusion
κ´1
X pxq Ă P̌N´1 determines the set of limit positions of tangent spaces, i.e.,

the fiber ν´1
X pxq of the Semple-Nash modification, is not so simple: by Propo-

sition 1.2.1 and its corollary, the points of ν´1
X pxq correspond to some of the

projective subspaces PN´d´1 of P̌N´1 contained in κ´1
X pxq.

3 For the reader familiar with bimeromorphic geometry, as for example in [22], [3,
Chap. 1, 1.5] and [23, §2], the map p1 appears as the strict transform of the map
κ by the blowing-up ν. Since p1 is a PN´d´1-bundle by Corollary 1.2.3, the map ν
is also the flattening map of κ: every blowing-up t : T Ñ X of X such that the strict
transform of κ by t is flat must factor uniquely through ν. In this sense κ determines
ν.
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A linear subspace PN´d´1 Ă κ´1
X pxq Ă P̌N´1 is dual to a d-dimensional

vector subspace T Ă CN . If T is not a limit at x of tangent spaces, then
by corollary 1.2.2 any hyperplane in this PN´d´1 must contain a limit at
x of tangent spaces, but this limit cannot be constant. This provides a set-
theoretic characterization of those PN´d´1 Ă κ´1

X pxq which are dual to a limit
at x of tangent spaces, in terms of the diagram we have seen above: they are
those which are the image by p2 of a fiber of p1. In view of proposition 1.2.4
this gives a geometric characterization, but we would prefer one solely in
terms of the geometry of CpXq; see [14, Example 3.4].
Note also that given a limit of tangent spaces T at x P X and a general
linear projection p : CN Ñ Cd`1, the hyperplane ppTq is a limit hyperplane
at ppxq for the hypersurface ppXq Ă Cd`1. This follows from the fact that
given T P ν´1

X p0q we can find an analytic arc in N X ending at T and whose
image in X is outside of the inverse image by p of the singular locus of ppXq.

Definition 1.2.5 The map λX : CpXq Ñ P̌N´1 induced by the second pro-
jection X ˆ P̌N´1 Ñ P̌N´1 is called the tangent hyperplane map. It is the
analogue of the Gauss map. When there is no ambiguity it will be denoted
by λ.

1.3 Some symplectic Geometry

In order to describe this set of tangent hyperplanes, we are going to use the
language of symplectic geometry and Lagrangian submanifolds. Let us start
with a few definitions. This section is mostly taken from [14, Section 2.1].

Let M be any N-dimensional manifold, and let ω be a de Rham 2-form on
M, that is, for each x P M, the map

ωx : TM,x ˆ TM,x Ñ R

is skew-symmetric bilinear on the tangent space to M at x, and ωx varies
smoothly with x. We say that ω is symplectic if it is closed and ωx is
non-degenerate for all x P M. Non degeneracy means that the map which to
v P TM,x associates the homomorphism w ÞÑ ωpv,wq P R is an isomorphism
from TM,x to its dual. A symplectic manifold is a pair pM, ωq, where M
is a manifold and ω is a symplectic form. These definitions extend, replac-
ing R by C, to the case of a complex analytic manifold i.e., nonsingular space.

For any manifold M, its cotangent bundle T˚M has a canonical symplectic
structure as follows. Let

π : T˚M ÝÑ M

p “ px, ξq ÞÝÑ x,



12 Lê Dũng Tráng and Bernard Teissier

where ξ P T˚M,x , be the natural projection. The Liouville 1-form α on T˚M
may be defined pointwise by:

αppvq “ ξ
`

dπppvq
˘

, for v P TT˚M,p .

Note that dπp maps TT˚M,p to TM,x , so that α is well defined. The canonical
symplectic 2-form ω on T˚M is defined as

ω “ ´dα.

And it is not hard to see that if pU, x1, . . . , xN q is a coordinate chart for
M with associated cotangent coordinates pT˚U, x1, . . . , xN , ξ1, . . . , ξN q, then
locally:

ω “
N
ÿ

i“1

dxi ^ dξi .

Definition 1.3.1 Let pM, ωq be a 2n-dimensional symplectic manifold. A
submanifold Y of M is a Lagrangian submanifold if at each y P Y , TY,y is
a Lagrangian subspace of TM,y , i.e., ωy |TY ,y ” 0 and dim.TY,y “ 1

2dim.TM,y .
Equivalently, if i : Y ãÑ M is the inclusion map, then Y is Lagrangian if and
only if i˚ω “ 0 and dim.Y “ 1

2dim. M.
Let M be a nonsingular complex analytic space of even dimension equipped
with a closed non degenerate 2-form ω. If Y Ă M is a complex analytic
subspace, which may have singularities, we say that it is a Lagrangian
subspace of M if it is purely of dimension 1

2dim. M and there is a dense
nonsingular open subset of the corresponding reduced subspace which is a
Lagrangian submanifold in the sense that ω vanishes on all pairs of vectors
in the tangent space.

Example 1.3.2 The zero section of T˚M

X :“ tpx, ξq P T˚M|ξ “ 0 in T˚M,xu

is an n-dimensional Lagrangian submanifold of T˚M.

Exercise 1.3.3 Let f pz1, . . . , zN q be a holomorphic function on an open set
U Ă CN . Consider the differential df as a section df : U Ñ T˚U of the
cotangent bundle. Verify that the image of this section is a Lagrangian sub-
manifold of T˚U. Explain what it means. What is the image in U by the
natural projection T˚U Ñ U of the intersection of this image with the zero
section?
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1.3.1 The conormal space in general.

Let now M be a complex analytic manifold of dimension N and X Ă M be
a possibly singular complex subspace of pure dimension d, and let as before
X0 “ XzSingX be the nonsingular part of X , which is a submanifold of M.

Definition 1.3.4 Set

N˚
X0,x

“ tξ P T˚M,x |ξpvq “ 0, @v P TX0,xu;

this means that the hyperplane tξ “ 0u contains the tangent space to X0 at
the point x.
The conormal bundle of X0 is

T˚
X0 M “ tpx, ξq P T˚M|x P X0, ξ P N˚

X0,x
u.

Definition 1.3.5 A closed subvariety L of the cotangent space T˚M of
a manifold M is said to be conical if it is left globally invariant by the
homotheties on the fibers of the map T˚M Ñ M, described locally by
ρ.px, ξq “ px, ρξq, ρ P C.

Proposition 1.3.6 Let i : T˚
X0 M ãÑ T˚M be the inclusion and let α be the

Liouville 1-form in T˚M as before. Then i˚α “ 0. In particular the conormal
bundle T˚

X0 M is a conical Lagrangian submanifold of T˚M, and has dimension
N.

Proof
See [8, Proposition 3.6]. ˝

In the same context we can define the conormal space of X in M as the
closure T˚X M of T˚

X0 M in T˚M, with the conormal map κX : T˚X M Ñ X ,
induced by the natural projection π : T˚M Ñ M. The conormal space is of di-
mension N . It may be singular and by Proposition 1.3.6, α vanishes on every
tangent vector at a nonsingular point, so it is by construction a Lagrangian
subspace of T˚M.

The fiber κ´1
X pxq of the conormal map κX : T˚X M Ñ X above a point x P X

consists, if x P X0, of the vector space CN´d of all the equations of hyper-
planes tangent to X at x, in the sense that they contain the tangent space
TX0,x . If x is a singular point, the fiber consists of all equations of limits of
hyperplanes tangent at nonsingular points of X tending to x.
Moreover, we can characterize those subvarieties of the cotangent space which
are the conormal spaces of their images in M.

Proposition 1.3.7 (see [42, Chap. II, §10]) Let M be a nonsingular analytic
variety of dimension N and let L be a closed conical irreducible analytic sub-
variety of T˚M, also of dimension N. The following conditions are equivalent:
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1) The variety L is the conormal space of its image in M.
2) The Liouville 1-form α vanishes on all tangent vectors to L at every non-
singular point of L.
3) The symplectic 2-form ω “ ´dα vanishes on every pair of tangent vectors
to L at every nonsingular point of L.

Since conormal varieties are conical we may as well projectivize with re-
spect to vertical homotheties of T˚M and work in PT˚M. This means that
we consider hyperplanes and identify all linear equations defining the same
hyperplane. In PT˚M it still makes sense to be Lagrangian since α is homo-
geneous by definition4.

Going back to our original problem we have X Ă U where U is open in
CN , so T˚U “ Uˆ ČN and PT˚U “ Uˆ P̌N´1. So we have the (projective)
conormal space κX : CpXq Ñ X with CpXq Ă X ˆ P̌N´1, where CpXq
denotes the projectivization of the conormal space T˚X M. Note that we have
not changed the name of the map κX after projectivizing since there is no
ambiguity, and that the dimension of CpXq is N´1, which shows immediately
that it depends on the embedding of X in an affine space.
When there is no ambiguity we shall often omit the subscript in κX . We have
the following result showing that this projectivized conormal is the same as
that of section 1.2 :

Proposition 1.3.8 Given a reduced closed complex analytic subspace X of an
open set U Ă CN The (projective) conormal space CpXq is a closed, reduced,
complex analytic subspace of X ˆ P̌N´1 of dimension N ´ 1. For any x P X
the fiber |κ´1

X pxq| is the set of limit positions at x of tangent hyperplanes at
points of X0. Its dimension is at most N ´ 2.

Proof
These are classical facts. See [8, Chap. III] or [55, Chap. II, §4, Proposition
4.1, p. 379]. ˝

1.3.2 Conormal spaces and projective duality

Let us assume for a moment that V Ă PN´1 is a projective algebraic vari-
ety. In the spirit of last section, let us take M “ PN´1 with homogeneous
coordinates pz1 : . . . : zN q, and consider the dual projective space P̌N´1

with coordinates pξ1 : . . . : ξN q; its points are the hyperplanes of PN´1 with
equations

řN
i“1 ziξi “ 0.

Definition 1.3.9 Define the incidence variety I Ă PN´1 ˆ P̌N´1 as the
set of points satisfying:

4 In symplectic geometry it is called Legendrian with respect to the natural contact
structure on PT˚M .
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N
ÿ

i“1

ziξi “ 0,

where pz1 : . . . : zN ; ξ1 : . . . : ξN q P P
N´1 ˆ P̌N´1

Lemma 1.3.10 (Kleiman; see [25, §4])The projectivized cotangent bundle of
PN´1 is naturally isomorphic to I.

Proof
Let us first take a look at the cotangent bundle of PN´1:

π : T˚PN´1 ÝÑ PN´1.

Remember that the fiber π´1pxq over a point x in PN´1 is by definition
isomorphic to ČN´1, the vector space of linear forms on CN´1. Recall that
projectivizing the cotangent bundle means projectivizing the fibers, and so
we get a map:

Π : PT˚PN´1 ÝÑ PN´1

where the fiber is isomorphic to P̌N´2. So we can see a point of PT˚PN´1 as
a pair pz, ξq P PN´1 ˆ P̌N´2. On the other hand, if we fix a point z P PN´1,
the equation defining the incidence variety I tells us that the set of points
pz, ξq P I is the set of hyperplanes of PN´1 that go through the point z, which
we know is isomorphic to P̌N´2.

Now to explicitly define the map, take a chart CN´1ˆ
 

ČN´1zt0u
(

of the

manifold T˚PN´1ztzero sectionu, where the CN´1 corresponds to a usual
chart of PN´1 and ČN´1 to its associated cotangent chart. Define the map:

φi : CN´1
ˆ

!

ČN´1
zt0u

)

ÝÑ PN´2
ˆ P̌N´2

pz1, . . . , zN´1; ξ1, . . . , ξN´1q ÞÝÑ

¨

˝ϕipzq, pξ1 : . . . : ξi´1 : ´
N´1˚i
ÿ

j“1

z jξ j : ξi`1 : . . . : ξN´1q

˛

‚

where ϕipzq “ pz1 : . . . : zi´1 : 1 : zi`1 : . . . : zN´1q and the star means that
the index i is excluded from the sum.

An easy calculation shows that φi is injective, has its image in the incidence
variety I and is well defined on the projectivization CN´1 ˆ P̌N´2. It is also
clear, that varying i from 1 to N ´ 1 we can reach any point in I. Thus, all
we need to check now is that the φ j ’s paste together to define a map. For
this, the important thing is to remember that if ϕi and ϕ j are charts of a

manifold, and h :“ ϕ´1
j ϕi “ ph1, . . . , hN´1q then the change of coordinates in

the associated cotangent charts ϕ̃i and ϕ̃ j is given by:
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T˚M
ϕ̃ j
´1

((
CN´1 ˆ ČN´1

ϕ̃i

55

h
// CN´1 ˆ ČN´1

pz1, . . . , zN´1; ξ1, . . . , ξN´1q ÞÝÑ phpzq; pDh´1|zq
T pξqq

By Lemma 1.3.10 the incidence variety I inherits the Liouville 1-form α which
is

ř

ξidzi in local coordinates) from its isomorphism with PT˚PN´1. Ex-
changing PN´1 and P̌N´1, I is also isomorphic to PT˚P̌N´1 so it also inherits
the 1-form α̌p:“

ř

zidξi locally).

Lemma 1.3.11 (Kleiman; see [26, §4]) Let I be the incidence variety as
above. Then α ` α̌ “ 0 on I.

Proof
Note that if the polynomial

řN
i“1 ziξi defined a function on PN´1 ˆ P̌N´1,

we would obtain the result by differentiating it. The idea of the proof is
basically the same, it involves identifying the polynomial

řN
i“1 ziξi with a

section of the line bundle p˚OPN´1p1q b p̌˚OP̌N´1p1q over I, where p and p̌
are the natural projections of I to PN´1 and P̌N´1 respectively and OPN´1p1q
denotes the canonical line bundle, introducing the appropriate flat connection
on this bundle, and differentiating. ˝

In particular, this lemma tells us that if at some point z P I we have that
α “ 0, then α̌ “ 0 too. Thus, a closed conical irreducible analytic subvariety
of T˚PN´1 as in Proposition 1.3.7 is the conormal space of its image in PN´1

if and only if it is the conormal space of its image in P̌N´1. So we have
PT˚VP

N´1 Ă I Ă PN´1 ˆ P̌N´1 and the restriction of the two canonical
projections:

PT˚VP
N´1 Ă I

p

ww

p̌

''
V Ă PN´1 P̌N´1 Ą V̌

Definition 1.3.12 The dual variety V̌ of V Ă PN´1 is the image by the
map p̌ of PT˚VP

N´1 Ă I in P̌N´1. So by construction V̌ is the closure in P̌N´1

of the set of hyperplanes tangent to V0.

We immediately get by symmetry that ˇ̌V “ V . What is more, we see that
establishing a projective duality is equivalent to finding a Lagrangian subva-
riety in I; its images in PN´1 and P̌N´1 are necessarily dual.
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Lemma 1.3.13 Let us assume that pX, 0q Ă pCN , 0q is the cone over a pro-
jective algebraic variety V Ă PN´1. Let x P X0 be a nonsingular point of X .
Then the tangent space TX0,x , contains the line ` “ 0x joining x to the origin.
Moreover, the tangent map at x to the projection π : Xzt0u Ñ V induces an
isomorphism TX0,x{` » TV ,πpxq.

Proof
This is due to Euler’s identity for a homogeneous polynomial of degree m:

m. f “
N
ÿ

i“1

zi
B f
Bzi

and the fact that if t f1, . . . , fru is a set of homogeneous polynomials defining
X , then TX0,x is the kernel of the matrix:

¨

˚

˚

˝

df1
¨

¨

dfr

˛

‹

‹

‚

representing the differentials df i in the basis dz1, . . . , dzN . ˝

It is also important to note that the tangent space to X0 is constant along
all non-singular points x of X in the same generating line since the partial
derivatives are homogeneous as well, and contains the generating line. By
Lemma 1.3.13, the quotient of this tangent space by the generating line is
the tangent space to V at the point corresponding to the generating line.

So, PT˚XC
N has an image in P̌N´1 which is the projective dual of V.

PT˚
VPN´1

xx &&

PT˚
XCN Ă P̌N´1 ˆ CN

vv ((
V Ă PN´1 P̌N´1 Ą V̌ X Ă CN

The fiber over 0 of PT˚XC
N Ñ X is equal to V̌ as subvariety of P̌N´1: it is

the set of limit positions at 0 of hyperplanes tangent to X0.
For more information on projective duality, in addition to Kleiman’s papers
one can consult [56].

A relative version of the conormal space and of projective duality will play
an important role in these notes. Useful references are [19], [26], [55, Chap.
IV]. The relative conormal space is used in particular to define the relative
polar varieties.
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1.3.3 Polar varieties and the control of the dimension of the
fibers of κX : CpXq Ñ X .

The simplest measure of the complexity of the space of limits of tangent
hyperplanes at a point x P X is the dimension of the fiber κ´1

X pxq Ă P̌N´1.
This dimension is the difference between N´1 and the maximum codimension
of a linear subspace of P̌N´1 whose intersection with κ´1pxq is not empty. We
are thus led to consider the subspaces CpXqXpXˆ Ld´k q of CpXq, where 0 ď
k ď d “ dim. X and Ld´k is a linear subspace of P̌N´1 of dimension d´k, dual
to a vector subspace Dd´k`1 Ă CN of codimension d´ k`1 in the sense that
it is the space of directions of hyperplanes containing it. We remark that, with
the notations introduced above, we have CpXq X pX ˆ Ld´k q “ λ´1pLd´k q.

The next proposition provides the relation between the geometry of
κ´1
X pxq Ă P̌N´1 as read by linear subspaces and geometrically defined sub-

spaces of X , the local polar varieties of X Ă CN which are defined as the
closures in X of sets of critical points on X0 of projections X Ñ Cd´k`1

induced by general linear maps CN Ñ Cd´k`1. They were originally defined
in [33]. Recall the definition of the map λ in Definition 1.2.5.

Proposition 1.3.14 For a sufficiently general Dd´k`1, the image κpλ´1pLd´k qq

is the closure in X of the set of points of X0 which are critical for the pro-
jection π|X0 : X0 Ñ Cd´k`1 induced by the projection CN Ñ Cd´k`1 with
kernel Dd´k`1 “ pLd´k q̌.

Proof
Note that x P X0 is critical for π if and only if the tangent map
dxπ : TX0,x ÝÑ Cd´k`1 is not onto, which means dim. ker dxπ ě k since
dimTX0,x “ d, and kerdxπ “ Dd´k`1 X TX0,x .
Note that the conormal space CpX0q of the nonsingular part of X is equal to
κ´1pX0q so by definition:

λ´1pLd´k q X CpX0q “ tpx, Hq P CpXq|x P X0, H P Ld´k, TX0,x Ă Hu

equivalently:

λ´1pLd´k q X CpX0q “ tpx, Hq, P CpXq|x P X0, H P pDd´k`1q
ˇ, H P pTX0,xq

ˇ u

thus H P pDd´k`1q̌ X pTX0,x q̌, and from the equality pDd´k`1q̌ X pTX0,x q̌ “

pDd´k`1 ` TX0,x q̌ we deduce that the intersection is not empty if and only
if Dd´k`1 ` TX0,x ‰ CN , which implies that dim Dd´k`1 X TX0,x ě k, and
consequently κpHq “ x is a critical point.

According to [55, Chap. IV, 1.3], there exists an open dense set Uk in the
Grassmannian of pN ´ d` k ´ 1q-planes of CN such that if Dd´k`1 P Uk , the
intersection λ´1pLd´k qXCpX0q is dense in λ´1pLd´k q. So, for any Dd´k`1 P

Uk , since κ is a proper map and thus closed, we have that κpλ´1pLd´k qq “
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κ
´

λ´1pLd´k q X CpX0q

¯

“ κpλ´1pLd´k qq, which finishes the proof. See [55,

Chap. IV, 4.1.1] for a complete proof of a more general statement. ˝

Remark 1.3.15 It is important to have in mind the following easily verifiable
facts:

a) As we have seen before, the fiber κ´1pxq over a regular point x P X0 in the
(projectivized) conormal space CpXq is a PN´d´1, so by semicontinuity of
fiber dimension we have that dim κ´1p0q ě N ´ d ´ 1.

b) For a general Ld´k , the intersection CpXq X pX ˆ Ld´k q is of pure dimension
N ´ 1´ N ` d ´ k ` 1 “ d ´ k if it is not empty.
The proof of this is not immediate because we are working over an open
neighborhood of a point x P X , so we cannot assume that CpXq is com-
pact. However (see [55, Chap. IV]) we can take a Whitney stratification of
CpXq (these stratifications are explained below) such that the closed algebraic
subset κ´1p0q Ă P̌N´1, which is compact, is a union of strata. By general
transversality theorems in algebraic geometry (see [25]) a sufficiently general
Ld´k will be transversal to all the strata of κ´1p0q in P̌N´1 and then be-
cause of the Whitney conditions (see [58, section 4.9]) CN ˆ Ld´k will be
transversal in a neighborhood of κ´1p0q to all the strata of CpXq, which will
imply in particular the statement on the dimension. Since κ is proper, the
neighborhood of κ´1p0q can be taken to be the inverse image by κ of a neigh-
borhood of 0 in X . The meaning of “general” in Proposition 1.3.14 is that of
Kleiman’s transversality theorem. Moreover, since CpXq is a reduced equidi-
mensional analytic space, for a general Ld´k , the intersection of CpXq and
CN ˆ Ld´k in CN ˆ P̌N´1 is generically reduced and since according to our
general rule we remove embedded components when intersecting with linear
spaces, λ´1pLd´k q is a reduced equidimensional complex analytic space.
Note that the existence of Whitney stratifications does not depend on the
existence of polar varieties. In [55, Chap. III, Proposition 2.2.2] it is deduced
from the idealistic Bertini theorem.

c) The fact that λ´1pLd´k q X CpX0q is dense in λ´1pLd´k q means that if a
limit of tangent hyperplanes at points of X0 contains Dd´k`1, it is a limit of
tangent hyperplanes which also contain Dd´k`1. This equality holds because
transversal intersections preserve the frontier condition; see [58, Theorem
4.2.15] or [7, Lemme 2.2.2], [55, Remarque 4.2.3].

d) Note that for a fixed Ld´k , the germ pPk pX ; Ld´k q, 0q is empty if and only
if the intersection κ´1p0q X λ´1pLd´k q is empty. From a) we know that
dim κ´1p0q “ N ´ d ´ 1 ` r with r ě 0. Thus, by the same argument as
in b), this implies that the polar variety pPk pX ; Ld´k q, 0q is not empty if and
only if dimpκ´1p0q X λ´1pLd´k qq ě 0 and if and only if r ě k.

Definition 1.3.16 With the notation and hypotheses of Proposition 1.3.14,
define for 0 ď k ď d ´ 1 the local polar variety is defined as:

Pk pX ; Ld´k q “ κpλ´1pLd´k qq.
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A priori, we have just defined local polar varieties set-theoretically, but
since λ´1pLd´k q is empty or reduced and κ is a projective fibration over the
smooth part of X we have the following result, for which a proof can be found
in [55, Chap. IV, 1.3.2].

Proposition 1.3.17 For a general linear subspace Ld´k Ă P̌N´1 and 0 ď
k ď d the local polar variety Pk pX ; Ld´k q Ă X is a reduced closed analytic
subspace of X , either of pure codimension k in X or empty.

We have thus far defined a local polar variety that depends on both the choice
of the embedding pX, 0q Ă pCN , 0q and the choice of the general linear space
Dd´k`1. However, an important information we will extract from these polar
varieties is their multiplicities at 0, and these numbers are analytic invariants
provided the linear spaces used to define them are general enough.

Proposition 1.3.18 (Teissier, see [55, Chap. IV, §3])Let pX, 0q Ă pCN , 0q be
as before, then for every 0 ď k ď d´ 1 and a sufficiently general linear space
Dd´k`1 Ă CN the multiplicity of the polar variety Pk pX ; Ld´k q at 0 depends
only on the analytic type of pX, 0q.

Exercise 1.3.19 Let 0 P Y Ă X Ă CN where Y is one dimensional and
non-singular and X is d-dimensional. Show that the following conditions are
equivalent:

1. The germ of polar curve pPd´1pX ; Ld´k q, 0q is empty;
2. dim. κ´1p0q ă N ´ 2.

and imply:
A Zariski open and dense subset of the P̌N´2 Ă P̌N´1 consisting of hy-
perplanes containing TY,0 is not contained in κ´1p0q: a general hyperplane
containing TY,0 is not a limit of tangent hyperplanes to X0. Compare with
example 1.5.4 below.
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1.4 Limits of secants: the blowing-up

In this section we present the blowing up of a coherent sheaf of ideals in a
way which is adapted to the construction of the normal/conormal diagram
which is used in the study of Whitney conditions.

Let I be a coherent sheaf of ideals on X defining a closed analytic subspace
Y Ă X . Let U Ă X be an open set on which we have a presentation

O
q
U Ñ O

p
U Ñ I|U Ñ 0.

We have thus a set of global generators f1, . . . , f p for I|U. Consider the map
UzY Ñ Pp´1 defined by x ÞÑ p f1pxq : . . . : f ppxq, and its graph EY pUzY q Ă
pUzY qˆPp´1. The closure EYU of this graph in UˆPp´1 is a closed analytic
subspace which, up to a unique isomorphism, depends only on I|U.
To see this, consider the graded OX algebra

PpIq “
à

nPN

In,

which is locally finitely generated in degree one.
Because I is locally finitely presented, this algebra has also locally a finite
presentation by an exact sequence of finitely generated graded OU algebras
and modules (see [3, Chap. 1, 1.3]).

0 Ñ KU Ñ OU rT1, . . . ,Tps Ñ PpIq|U Ñ 0,

where each Tj is mapped to f j P I|U. The ideal KU is generated by finitely
many homogeneous polynomials in T1, . . . ,Tp which by definition generate all
the algebraic homogeneous relations beween f1, . . . f p . The vanishing of these
polynomials defines a closed subspace of U ˆ Pp´1 which, by construction,
is the closure EYU of the graph we have just seen. One verifies that this
subspace is independent of the choice of the generators f1, . . . , f p and so by
uniqueness the local constructions glue up into a space EY over X , say

eY : EY X Ñ X

which is called the blowing-up of I (or Y ) in X .
The construction we have just described is, when we give the subspace of

U ˆ Pp´1 its natural structure as a complex analytic space, the ProjanPpIq
of the locally finitely presented graded OX -algebra PpIq.
The inverse image e´1

Y pY q is the projan of the graded OY -algebra

PpIq bOX
OX{I “

à

nPN

In{In`1 “ OY ‘ I{I
2 ‘ I2{I3 ‘ ¨ ¨ ¨

Besides the fact that the blowing-up is locally the closure of a graph, its
essential feature is that e´1

Y pY q Ă EY X is locally on EY X defined by one
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equation which is not a zero divisor and is one of the generators of the pull-
back IOEY X of the ideal I. It is the exceptional divisor of the blowing-up.
Indeed, in each affine chart Vj defined by Tj ‰ 0 of Pp´1 the Ti{Tj are
coordinates, which implies that on the intersection of EY X with X ˆ Vj the
functions f i{ f j are regular and thus the ideal p f1 ˝ eY , . . . , f p ˝ eY q, which is
the restriction of IOEY X to the intersection of EY X with X ˆVj , is principal
and generated by f j ˝ eY .
The following universal property of blowing-up, which we state here in the
complex analytic framework, is due to Hironaka:

Theorem 1.4.1 A complex-analytic map π : T Ñ X such that π´1pY q is lo-
cally on T defined by a single equation which is not a zero divisor in the local
rings of T factors uniquely through eY . This property characterizes the map
eY .

In what follows we shall consider the case where Y Ă X Ă CN , where CN

is endowed with coordinates z1, . . . , zN and Y is non-singular of dimension
t. We may assume that the coordinates are adapted to Y in the sense that
it is defined by the vanishing of coordinates zt`1, . . . , zN on CN . The map
XzY Ñ PN´t´1 defined by pz1, . . . , zN q ÞÑ pzt`1 : . . . : zN q P PN´t´1 can
be deemed to associate to a point of XzY the direction of the secant line
joining this point to the point in Y with coordinates z1, . . . , zt . The closure in
X ˆPN´t´1 of the graph of this map is the blowing up in X of the subspace
Y . Although the secant lines clearly depend on the choice of coordinates, the
blowing up does not.
A point of EY X Ă X ˆ PN´t´1 is therefore a pair px, r`sq where if x P XzY ,
r`s is the direction of the secant line joining x to its linear projection on Y
according to the coordinate system, and if x P Y , the direction r`s is a limit
direction of such secant lines along a sequence of points of XzY tending to x.
Denoting by IY the coherent sheaf of ideals defining Y Ă X , and by grIYOX

the graded OY -algebra

grIYOX “
à

nPN

In
Y {I

n`1
Y ,

the space SpecanpgrIYOX q with its natural mapping SpecanpgrIYOX q Ñ Y
corresponding to the inclusion OY Ă grIYOX is called the normal cone of
Y in X and usually denoted by CX,Y Ñ Y . In the case where Y is a point,
say x P X , it is for historical reasons the tangent cone of X at x. If X is
non-singular these notions coincide with the normal bundle of Y in X and the
tangent space of X at y.

In the case where Y is a point x P X , Itxu corresponds to the maximal
ideal mx Ă OX,x which is generated by the local coordinates z1, . . . , zN . The
degree of the tangent cone is the multiplicity of X at the point x. It is also
the degree of the projective variety e´1

x pxq Ă PN´1 associated to the tangent
cone.
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Remark 1.4.2 One may ask for the interpretation of the fiber of eY : EY Ñ X
at a point y P Y . It is called the analytic spread of the ideal I at this point
and plays an important role in detecting equimultiplicity of X along Y .

1.5 The normal/conormal diagram

In this section we construct a space which, given a non-singular subspace
Y Ă X Ă CN and a local retraction r : CN Ñ Y does for limit positions of

pairs p`,Tq at a point x P X0zY of the direction of secant line xrpxq and a
direction of tangent hyperplane H Ą TX0 .x what the conormal space and the
blowing up of Y in X do separately.

With the help of the normal/conormal diagram and the polar varieties we
will be able to obtain information on the limits of tangent spaces to X at
0, assuming that pX, 0q is reduced and purely d-dimensional. This method is
based on Whitney’s lemma and the two results which follow it:

Lemma 1.5.1 (Whitney’s lemma for X0)

Let pX, 0q be a pure-dimensional germ of analytic subspace of CN , choose
a representative X and let txnu Ă X0 be a sequence of points tending to 0,
such that

lim
nÑ8

r0xns “ l and lim
nÑ8

Txn X “ T .

Then l Ă T .

A stronger form of this lemma originally appeared in [60, Theorem 22.1],
and you can also find a proof due to Hironaka in [31] and yet another below
in assertion a) of Theorem 1.5.2.

Given X Ă CN as above, consider the normal/conormal diagram

X ˆ PN´1 ˆ P̌N´1

K

��

Ą E0CpXq

ξ

��

κ1

��

ê0 // CpXq �
� //

κ

��

λ

%%

X ˆ P̌N´1

pr2

��
P̌N´1

X ˆ PN´1 Ą E0X
e0

// X

,

where e0 is the blowing up of the point 0 P X , ê0 is the blowing up of the
subspace κ´1p0q and κ1 is the map coming from the universal property of
blowing ups applied to the map ξ “ κ ˝ ê0.

Theorem 1.5.2 (Lê-Teissier, see [35, §2])
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In the normal/conormal diagram, consider the irreducible components D j of
the exceptional divisor D “ |ξ´1p0q|. Then we have:
I) The following hold

1. Each D j Ă PN´1 ˆ P̌N´1 is contained in the incidence variety I Ă PN´1 ˆ

P̌N´1.

2. Each D j is Lagrangian in I and therefore establishes a projective duality of
its images:

D j
//

��

W j Ă P̌N´1

Vj Ă PN´1

Note that, from commutativity of the diagram we obtain κ´1p0q “
Ť

j W j ,

and e´1
0 p0q “

Ť

α Vj . It is important to notice that these expressions are not

necessarily the irreducible decompositions of κ´1p0q and e´1
0 p0q respectively,

since there may be repetitions; it is the case for the surface of Example 1.5.4
below, where the dual of the tangent cone, a point in P̌2, is contained in the
projective line dual to the exceptional tangent. However, it is true that they
contain the respective irreducible decompositions.

In particular, note that if dim Vj0 “ d ´ 1, then the cone OpVj0q Ă CN

is an irreducible component of the tangent cone CX,0 and its projective dual
W j0 “ V̌j0 is contained in κ´1p0q. That is, any tangent hyperplane to the
tangent cone is a limit of tangent hyperplanes to X at 0. The converse is very
far from true and we shall see more about this below.

II) For any integer k, 0 ď k ď d ´ 1, and sufficiently general Ld´k Ă P̌N´1

the tangent cone CPk pX,Lq,0 of a non empty polar variety Pk pX, Lq at the
origin consists of:

‚ The union of the cones OpVjq which are of dimension d´ k (= dimPk pX, Lq).
‚ The polar varieties P`pOpVjq, Lq of dimension d ´ k, for the projection p

associated to L, of the cones OpVjq, for j such that dim OpVjq “ d´ k ` ` for
some 1 ď ` ď k.

Note that Pk pX, Lq is not unique, since it varies with L, but we are saying
that its tangent cone may have parts which do not vary with L. The Vα ’s are
fixed, so the first part is the fixed part of CPk pX,Lq,0 because it is independent
of L, the second part is the mobile part, since we are talking of polar varieties
of certain cones, which by definition move with L.
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Proof
The proof of I), which can be found in [35, §2], is essentially a strengthening
of Whitney’s lemma (Lemma 1.5.1) using the normal/conormal diagram and
the fact that the vanishing of a differential form (the symplectic form in our
case) is a closed condition.
The proof of II), a special case of [35, Proposition 2.2.1], is somewhat easier
to explain geometrically:
Using our normal/conormal diagram, remember that we can obtain the blow-
ing up E0pPk pX, Lqq of the polar variety Pk pX, Lq by taking its strict transform
under the morphism e0, and as such we will get the projectivized tangent cone
PCPk pX,Lq,0 as the fiber over the origin.

The first step is to prove that set-theoretically the projectivized tangent
cone can also be expressed as

|PCPk pX,Lq,0| “
ď

j

κ1pê´1
0 pλ´1pLq XW jqq “

ď

j

κ1pD j X pP
N´1 ˆ Lqq

Now recall that the intersection Pk pX, Lq X X0 is dense in Pk pX, Lq, so for
any point p0, rlsq P PCPk pX,Lq,0 there exists a sequence of points txnu Ă X0

such that the directions of the secants 0xn converge to it. So, by definition
of a polar variety, if Dd´k`1 “ Ľ and Tn “ Txn X0 then by Proposition
1.3.14 we know that dimTn X Dd´k`1 ě k which is a closed condition. In
particular if T is a limit of tangent spaces obtained from the sequence tTnu,
then T X Dd´k`1 ě k also. But if this is the case, since the dimension of
T is d, there exists a limit of tangent hyperplanes H P κ´1p0q such that
T `Dd´k`1 Ă H which is equivalent to H P κ´1p0qX λ´1pLq ‰ H. Therefore
the point p0, rls, Hq is in

Ť

j ê´1
0 pλ´1pLq XW jq, and so we have the inclusion:

|PCPk pX,Lq,0| Ă
ď

j

κ1pê´1
0 pλ´1pLq XW jqq.

For the other inclusion, recall that λ´1pLqzκ´1p0q is dense in λ´1pLq
and so ê´1

0 pλ´1pLqq is equal set theoretically to the closure in E0CpXq of

ê´1
0 pλ´1pLqzκ´1p0qq. Then for any point p0, rls, Hq P ê´1

0 pλ´1pLq X κ´1p0qq

there exists a sequence tpxn, rxns, Hnqu in ê´1
0 pλ´1pLqzκ´1p0qq converging

to it. Now by commutativity of the diagram, we get that the sequence
tpxn, Hnqu Ă λ´1pLq and as such the sequence of points txnu lies in the polar
variety Pk pX, Lq. This implies in particular, that the sequence tpxn, r0xnsqu
is contained in e´1

0 pPk pX, Lqzt0uq and the point p0, rlsq is in the projectivized
tangent cone |PCPk pX,Lq,0|.

The second and final step of the proof is to use that from a) and b) it
follows that each D j Ă I Ă PN´1 ˆ P̌N´1 is the conormal space of Vj in
PN´1, with the restriction of κ1 to D j being its conormal morphism.
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Note that D j is of dimension N ´ 2, and since all the maps involved are
just projections, we can take the cones over the Vj ’s and proceed as in Section
1.3.2. In this setting we get that since L is sufficiently general, by Proposition
1.3.14 and Definition 1.3.16:

‚ For the D j ’s corresponding to cones OpVjq of dimension d´k (= dim Pk pX, Lq),
the intersection D jXpP

N´1ˆLq is not empty and as such its image is a polar
variety P0pOpVjq, Lq “ OpVjq which is independent of L.

‚ For the D j ’s corresponding to cones OpVjq of dimension d ´ k ` ` for some
1 ď ` ď k, the intersection D j X pP

N´1 ˆ Lq is either empty or of dimension
d ´ k and as such its image is a polar variety of dimension d ´ k, which is
P`pOpVjq, Lq and varies with L if it is not empty.

You can find a detailed proof of these results in [35, §2], [55, Chap. IV]. ˝

So for any reduced and purely d-dimensional complex analytic germ pX, 0q, we
have a method to “compute” or rather describe, the set of limiting positions
of tangent hyperplanes. Between parentheses are the types of computations
involved:

1) For all integers k, 0 ď k ď d ´ 1, compute the “general” polar varieties
Pk pX, Lq, leaving in the computation the coefficients of the equations of
L as indeterminates. (Partial derivatives, Jacobian minors and residual
ideals with respect to the Jacobian ideal);

2) Compute the tangent cones CPk pX,Lq,0 (computation of a standard basis
with parameters);

3) Sort out those irreducible components of the tangent cone of each
Pk pX, Lq which are independent of L (decomposition into irreducible com-
ponents with parameters);

4) Take the projective duals of the corresponding projective varieties (Elim-
ination).

We have noticed, that among the Vj ’s, there are those which are irreducible
components of Proj CX,0 and those that are of lower dimension.

Definition 1.5.3 The cones OpVjq’s such that

dim.Vj ă dim.Proj CX,0

are called exceptional cones.

Example 1.5.4
Let X :“ y2 ´ x3 ´ t2x2 “ 0 Ă C3, so dim X “ 2, and thus k “ 0, 1. An easy
calculation shows that the singular locus of X is the t-axis, and m0pXq “ 2.

Note that for k “ 0, D3 is just the origin in C3, so the projection

π : X0 Ñ C3
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with kernel D3 is the restriction to X0 of the identity map, which is of rank
2 and we get that the whole X0 is the critical set of such a map. Thus,

P0pX, L2q “ X .

For k “ 1, D2 is of dimension 1. So let us take for instance D2 “ y-axis,
so we get the projection

π : X0 Ñ C2 px, y, tq ÞÑ px, tq,

and we obtain that the set of critical points of the projection is given by
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P1pX, L1q “

"

x “ ´t2

y “ 0

If we had taken for D2 the line t “ 0, αx` βy “ 0, we would have found that
the polar curve is a nonsingular component of the intersection of our surface
with the surface 2αy “ βxp3x ` 2t2q. For α ‰ 0 all these polar curves are
tangent to the t-axis. As we shall see in the next subsection, this means that
the t-axis is an “exceptional cone” in the tangent cone y2 “ 0 of our surface
at the origin, and therefore all the 2-planes containing it are limits at the
origin of tangent planes at nonsingular points of our surface.

Remark 1.5.5 1) We repeat the remark on p. 567 of [35] to the effect that
when pX, 0q is analytically isomorphic to the germ at the vertex of a cone
the polar varieties are themselves isomorphic to cones so that the families of
tangent cones of polar varieties have no fixed components except when k “ 0.
Therefore in this case pX, 0q has no exceptional cones.
2) The fact that the cone X over a nonsingular projective variety has no
exceptional cones is thus related to the fact that the critical locus P1pX, 0q
of the projection π : X Ñ Cd , which is purely of codimension one in X if it is
not empty, actually moves with the projection π; in the language of algebraic
geometry, the ramification divisor of the projection is ample (see [61, Chap.
I, cor. 2.14]) and even very ample (see [10]).
3) The dimension of κ´1p0q can be large for a singularity pX, 0q which has
no exceptional cones. This is the case for example if X is the cone over a
projective variety of dimension d ´ 1 ă N ´ 2 in PN´1 whose dual is a
hypersurface.

Let f : X Ñ S be a morphism of reduced analytic spaces, with purely d-
dimensional fibers and such that there exists a closed nowhere dense analytic
space such that the restriction to its complement X0 in X :

f |X0 : X0 ÝÑ S

has all its fibers smooth. They are manifolds of dimension d “ dim. X´dim. S.
Let us assume furthermore that the map f is induced, via a closed embedding
X Ă Z by a smooth map F : Z Ñ S. This means that locally on Z the map
F is analytically isomorphic to the first projection S ˆ CN Ñ S. Locally on
X , this is always the case because we can embed the graph of f , which lies
in X ˆ S, into CN ˆ S.
Let us denote by πF : T˚pZ{Sq Ñ Z the relative cotangent bundle of Z{S,
which is a fiber bundle whose fiber over a point z P Z is the dual T˚

Z{S,x
of

the tangent vector space at z to the fiber F´1pFpzqq. For x P X0, denote by
X0pxq the submanifold f´1p f pxqqX X0 of X0. Using this submanifold we will
build the conormal space of X relative to f , denoted by T˚

X{S
pZ{Sq, by

setting
N˚
X0pxq,x

“ tξ P T˚Z{S, x|ξpvq “ 0, @v P TX0pxq,xu
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and
T˚
X0{S

pZ{Sq “ tpx, ξq P T˚pZ{Sq| x P X0, ξ P N˚
X0pxq,x

u,

and finally taking the closure of T˚
X0{S

pZ{Sq in T˚pZ{Sq, which is a complex

analytic space T˚
X{S
pZ{Sq by an argument similar to the one we saw in Propo-

sition 1.2.1. Since X0 is dense in X , this closure maps onto X by the natural
projection πF : T˚pZ{Sq Ñ Z.

Now we can projectivize with respect to the homotheties on ξ, as in the
case where S is a point, which we have seen above. We obtain the (pro-
jectivized) relative conormal space Cf pXq Ă PT˚pZ{Sq (also denoted by
CpX{Sq), naturally endowed with a map

κ f : Cf pXq ÝÑ X .

We can assume that locally the map f is the restriction of the first projection
to X Ă SˆU, where U is open in Cn . Then we have T˚pSˆU{Sq “ SˆUˆČn

and PT˚pSˆU{Sq “ SˆUˆP̌N´1. This gives an inclusion Cf pXq Ă XˆP̌N´1

such that κ f is the restriction of the first projection, and a point of Cf pXq
is a pair px, Hq, where x is a point of X and H is a limit direction at x of
hyperplanes of CN tangent to the fibers of the map f at points of X0. By
taking for S a point we recover the classical case studied above.

Definition 1.5.6 Given a smooth morphism F : Z Ñ S as above, the projec-
tion to S of Z “ SˆU, with U open in Cn , we shall say that a reduced complex
subspace W Ă T˚pZ{Sq is F-Lagrangian (or S-Lagrangian if there is no
ambiguity on F) if the fibers of the composed map q :“ pπF˝Fq|W : W Ñ S are
purely of dimension n “ dim. Z´dim. S and the differential ωF of the relative
Liouville differential form αF on CN ˆ ČN vanishes on all pairs of tangent
vectors at smooth points of the fibers of the map q.

With this definition it is not difficult to verify that T˚
X{S
pZ{Sq is F-Lagrangian,

and by abuse of language we will say the same of Cf pXq. But we have more:

Proposition 1.5.7 (Lê-Teissier, see [35], proposition 1.2.6)Let F : Z Ñ S be
a smooth complex analytic map with fibers of dimension n. Assume that S is
reduced. Let W Ă T˚pZ{Sq be a reduced closed complex subspace and set as
above q “ πF ˝ F|W : W Ñ S. Assume that the dimension of the fibers of q
over points of dense open analytic subsets Ui of the irreducible components
Si of S is n.

1. If the Liouville form on T˚
F´1psq

“ pπF ˝ Fq´1psq vanishes on the tangent

vectors at smooth points of the fibers q´1psq for s P Ui and all the fibers of
q are of dimension n, then the Liouville form vanishes on tangent vectors at
smooth points of all fibers of q.

2. The following conditions are equivalent:

• The subspace W Ă T˚pZ{Sq is F-Lagrangian;



30 Lê Dũng Tráng and Bernard Teissier

• The fibers of q, once reduced, are all purely of dimension n and there exists
a dense open subset U of S such that for s P U the fiber q´1psq is reduced
and is a Lagrangian subvariety of pπF ˝ Fq´1psq;
If moreover W is homogeneous with respect to homotheties on T˚pZ{Sq,
these conditions are equivalent to:

• All fibers of q, once reduced, are purely of dimension n and each irreducible
component W j of W is equal to T˚

X j {S
pZ{Sq, where X j “ πFpW jq.

The essential content of this is that an equidimensional specialization of La-
grangian varieties is a union of irreducible Lagrangian varieties. For more
details see [35] or [13, Chap. I].

1.6 Whitney stratifications

1.6.1 Introduction

In this section we study Whitney stratifications!canonical minimal Whitney
stratification of complex analytic spaces using the tools introduced in the
preceding sections. For the history of the subject, including in real algebraic,
real analytic, differentiable and definable geometry, we refer the reader to
[58, §4.1] in Volume I of this Handbook. The complex analytic case has spe-
cific features which imply in particular that Whitney stratifications can be
characterized by algebraic equimultiplicity conditions as well as topological
equisingularity conditions, that they are also characterized by Lagrangian-
type conditions for certain subspaces in auxiliary spaces, and finally that a
complex analytic space has a canonical minimal Whitney stratification.

In his paper [60], Whitney gave a definition of a complex analytic stratifica-
tion of a reduced complex analytic space X (see §18 of loc.cit.). The idea is
to produce a locally finite decomposition X “

Ů

αPA Sα of a reduced complex
analytic space X into disjoint non-singular locally closed subspaces called
strata such that the ”local geometry” of X is the same at all points of the
same stratum. To achieve this he proposed two types of conditions:

• Topological/Analytic conditions: each stratum Sα Ă X is a non-singular
analytic space, its closure Sβ is a closed analytic subspace of X and the

frontier SβzSβ is a union of strata.
• Differential conditions: Consider a pair of strata pSα, Sβq such that Sα is

contained in the closure of Sβ :

Sα Ă Sβ

and consider a point x P Sα . We can assume that a neighborhood of x in X
is a closed subset of a open subset U of an affine space CN . Now, consider
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a sequence xn of points of Sβ XU which tends to x and a sequence yn of
points of Sα XU which also tends to x. By choosing good subsequences
of pxnq and pynq, we may suppose that the limit of secant lines xn yn is `
and the limit of the tangents Txn Sβ is T. Then one says the we have the
Whitney condition for pSα, Sβq at the point x P Sα , if for all sequences
pxnq, pynq, we have:

` Ă T.

This is the same as [58, Def. 4.2.1]. Note that the first condition is equiv-
alent to: Sα X Sβ ‰ H implies Sα Ă Sβ . This is known as the frontier
condition.

Definition 1.6.1 One says that a locally finite partition X “
Ů

αPA Sα is a
Whitney stratification if the topological/analytic conditions are satisfied by
the collection of strata and the differential condition is satisfied for all pairs
of strata pSα, Sβq such that Sα Ă Sβ and all points x P Sα .

Theorem 1.6.2 (Whitney) Any reduced complex analytic space admits Whit-
ney stratifications.

Proof For the original proof see [60, Theorem 19.2]. For a different proof see
[55, Chap. III, Proposition 2.2.2]. ˝

Remark 1.6.3 As we mentioned in Lemma 1.5.1, Whitney discovered (see [60,
Theorem 22.1]) that an analytic space is asymptotically conical near any of
its points. This means that given x P X , a sequence of points xn P X tending
to x, and a (limit of) tangent space(s) Tn at each xn (or a limit of limits at xn
of tangent spaces at points of X0 if the xn are singular points), up to taking a
subsequence, the limit ` of secant lines xxn is contained in the limit T of the
Tn . Dealing with the case where the xn are singular points necessitates the
existence of Whitney stratifications of X ; that is why the theorem appears at
the very end of Whitney’s paper.
A consequence of this is that if we take a sufficiently small sphere Sε , bound-
ary of a ball Bε around x in CN , since it is transversal to the secants xxn
it has to be transversal to X0 and in fact to all the strata Sα containing x
in their closure. From this one deduces that X X Bε is homeomorphic to the
(real) cone with vertex x over X X Sε . This is the local conicity theorem.

The differential part of the Whitney conditions extends this to the case
where the point x P X is extended to be the stratun Sα Ă Sβ , where, as we

may, we assune Sα to be a linear subspace of an ambient CN , so that Sβ is
asymptotically like a cone with vertex Sα . That is, the product of the (linear)
Sα by a cone. The intuition then is that if we take a sufficiently small tubular
neighborhood Tε of Sα in CN , then Sβ should be homeomorphic to the cone

with vertex Sα over the intersection of Sβ with the boundary of the tube. This

ensures that at least topologically the local geometry of the Sβ containing Sα
is constant along Sα , and therefore also that of X .
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This intuition turned out to be correct, and in fact more is true (see [43]),
but the precise proofs, due to Thom and Mather, are far from easy; see [58].

Remark 1.6.4 In addition to the applications to the study of the topology
of singular complex spaces, one must mention that complex Whitney strat-
ifications play a key role in the theory of D-modules (see [24, Chap. 6 and
Appendix 2]) and constructible sheaves on complex spaces (see [38, Section
10.3.3]) and also in the theory of characteristic classes for singular complex
varieties (see [5] and [6, Section 10]).

1.6.2 Whitney conditions and the normal/conormal diagram

In order to simplify notations we consider a pair of strata Y Ă X Ă CN in
the neighborhood of 0 P CN , with Y linear of dimension t. They represent
Sα Ă Sβ Ă CN with X0 “ Sβ . Since we have to consider limits of secants
stating in Y , we consider the following generalization of the normal/conormal
diagram:

X ˆ PN´t´1 ˆ P̌N´1

K

��

Ą EYCpXq

ξ

��

κ1

��

êY // CpXq �
� //

κ

��

λ

%%

X ˆ P̌N´1

pr2

��
P̌N´1

X ˆ PN´t´1 Ą EY X
eY

// X

where now eY denotes the blowing-up of Y in X , which, as we remember from

section 1.4, builds limits of directions of secant lines xρpxq for x P XzY and
some local retraction ρ : CN Ñ Y . Remember that EYCpXq is the blowing
up of the subspace κ´1pY q in CpXq, and κ1 is obtained from the universal
property of the blowing up, with respect to EY X and the map ξ. Just as in
the case where Y “ t0u, it is worth mentioning that EYCpXq lives inside the
fiber product CpXq ˆX EY X Ă X ˆ PN´t´1 ˆ P̌N´1 and can be described in
the following way: take the inverse image of EY Xze´1

Y pY q in CpXq ˆX EY X
and close it, thus obtaining κ1 as the restriction of the second projection to
this space.

Looking at the definitions, it is not difficult to prove that, if we consider
the divisor:

D “ |ξ´1pY q| Ă EYCpXq, D Ă Y ˆ PN´t´1 ˆ P̌N´1,

and denote by P̌N´t´1 Ă P̌N´1 the space of hyperplanes containing T0Y :
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‚ The pair pX0,Y q satisfies Whitney’s condition a) along Y if and only if
we have the set theoretical equality |CpXqXCpY q| “ |κ´1pY q|. It satisfies
Whitney’s condition a) at 0 if and only if |ξ´1p0q| Ă PN´t´1 ˆ P̌N´t´1.

Note that we have the inclusion CpXq X CpY q Ă κ´1pY q, so it all reduces
to having the inclusion |κ´1pY q| Ă CpY q, and since we have already seen
that every limit of tangent hyperplanes H contains a limit of tangent spaces
T , we are just saying that every limit of tangent hyperplanes to X at a
point y P Y , must be a tangent hyperplane to Y at y. Following this line
of thought, satisfying condition a) at 0 is then equivalent to the inclusion
|κ´1p0q| Ă t0u ˆ P̌N´t´1 which implies |ξ´1p0q| Ă PN´t´1 ˆ P̌N´t´1.

‚ The pair pX0,Y q satisfies Whitney’s condition b) at 0 if and only if
|ξ´1p0q| is contained in the incidence variety I Ă PN´t´1 ˆ P̌N´t´1.

This is immediate from the relation between limits of tangent hyperplanes
and limits of tangent spaces and the interpretation of EYCpXq as the closure
of the inverse image of EY Xze´1

Y pY q in CpXq ˆX EY X since we are basically
taking limits as x Ñ Y of couples pl, Hq where l is the direction in PN´t´1 of
a secant line yx with x P X0zY, y “ ρpxq P Y , where ρ is some local retrac-
tion of the ambient space to the nonsingular subspace Y , and H is a tangent
hyperplane to X at x. So, in order to verify the Whitney conditions, it is
important to control the geometry of the projection D Ñ Y of the divisor
D Ă EYCpXq.

Remark 1.6.5 Although it is beyond the scope of these notes, we point out
to the interested reader that there is an algebraic definition of the Whitney
conditions for X0 along Y Ă X solely in terms of the ideals defining CpXq X
CpY q and κ´1pY q in CpXq. Indeed, the inclusion CpXqXCpY q Ă κ´1pY q follows
from the fact that the sheaf of ideals JCpXqXCpY q defining CpXqXCpY q in CpXq
contains the sheaf of ideals Jκ´1pY q defining κ´1pY q, which is generated by
the pull-back by κ of the equations of Y in X . What was said above means
that condition a) is equivalent to the second inclusion in:

Jκ´1pY q Ď JCpXqXCpY q Ď

b

Jκ´1pY q.

It is proved in [35, Proposition 1.3.8] that having both Whitney conditions
is equivalent to having the second inclusion in:

Jκ´1pY q Ď JCpXqXCpY q Ď Jκ´1pY q ,

where the bar denotes the integral closure of the sheaf of ideals, which is
contained in the radical and is in general much closer to the ideal than the
radical. The second inclusion is an algebraic expression of the fact that locally
near every point of the common zero set the modules of local generators of
the ideal JCpXqXCpY q are bounded, up to a multiplicative constant depending
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only on the chosen neighborhood of the common zero set, by the supremum
of the modules of generators of Jκ´1pY q.
This result is used in [20] to produce an algorithm computing the Whitney
stratification of a projective variety.

In the case where Y is a point x, the ideal defining CpXqXCptxuq in CpXq
is just the pull-back by κ of the maximal ideal mX,x , so it coincides with
Jκ´1pxq and Whitney’s lemma for the smooth part X0 follows.

Definition 1.6.6 Let Y Ă X Ă CN as before. Then we say that the local
polar variety Pk pX ; Ld´k q is equimultiple along Y at a point x P Y if the map
y ÞÑ mypPk pX ; Ld´k qq is constant for y P Y in a neighborhood of x.
Note that this implies that if pPk pX ; Ld´k q, xq ‰ H, then Pk pX ; Ld´k q Ą Y in
a neighborhood of x since the emptiness of a germ is equivalent to multiplicity
zero.

We can now state the main theorem of this section, a complete proof of which
can be found in [55, Chap. V, Thm. 1.2, p. 455].

Theorem 1.6.7 (Teissier; see also [18] for another proof)Given 0 P Y Ă X as
before, the following conditions are equivalent, where ξ is the diagonal map
in the normal/conormal diagram above:

1) The pair pX0,Y q satisfies Whitney’s conditions at 0.
2) The local polar varieties Pk pX, Lq, 0 ď k ď d ´ 1, are equimultiple along Y

(at 0), for general L.
3) dim. ξ´1p0q “ N ´ t ´ 2.

Note that since dim. D “ N ´ 2, condition 3) is open and the theorem im-
plies that pX0,Y q satisfies Whitney’s conditions at 0 if and only if it satisfies
Whitney’s conditions in a neighborhood of 0.

Note also that by analytic semicontinuity of fiber dimension (see [11, Chap.
3, 3.6] or [30, §49]), condition 3) is satisfied outside of a closed analytic sub-
space of Y , which shows that Whitney’s conditions are a stratifying condition
in the sense of [55, Chap. III, Definition 1.4].

Moreover, since a blowing up does not lower dimension, the condition
dim. ξ´1p0q “ N´ t´2 implies dim. κ´1p0q ď N´ t´2. So that, in particular
κ´1p0q Č P̌N´t´1, where P̌N´t´1 denotes as before the space of hyperplanes
containing T0Y . This tells us that a general hyperplane containing T0Y is not
a limit of tangent hyperplanes to X . This fact is crucial in the proof that
Whitney conditions are equivalent to the equimultiplicity of polar varieties
since it allows the start of an inductive process. In the actual proof of [55], one
reduces to the case where dim.Y “ 1 and shows by a geometric argument
that the Whitney conditions imply that the polar curve has to be empty,
which gives a bound on the dimension of κ´1p0q. Conversely, the equimulti-
plicity condition on polar varieties gives bounds on the dimension of κ´1p0q
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by implying the emptiness of the polar curve and on the dimension of e´1
Y p0q

by Hironaka’s result, hence a bound on the dimension of ξ´1p0q.

It should be noted that Hironaka had proved in [21, Corollary 6.2] that
the Whitney conditions for X0 along Y imply equimultiplicity of X along Y .

Finally, a consequence of the theorem is that given a complex analytic
space X , there is a unique minimal (coarsest) Whitney stratification; any
other Whitney stratification of X is obtained by adding strata inside the
strata of the minimal one. A detailed explanation of how to construct this
“canonical” Whitney stratification using Theorem 1.6.7, and the proof that
this is in fact the coarsest one appears in [55, Chap. VI, §3]. The connected
components of the strata of the minimal Whitney stratification give a minimal
“Whitney stratification with connected strata”

1.6.3 The Whitney conditions are Lagrangian in nature

Consider the irreducible components D j Ă Y ˆPN´t´1ˆ P̌N´1 of the divisor
D “ |ξ´1pY q|, that is D “

Ť

j D j , and their images:

Vj “ κ1pD jq Ă Y ˆ PN´t´1,

W j “ êY pD jq Ă Y ˆ P̌N´1.

We have κ´1
X pY q “

Ť

j W j and e´1
Y pY q “

Ť

j Vj :

Theorem 1.6.8 (Lê-Teissier, see [35, Thm. 2.1.1]) The equivalent statements
of Theorem 1.6.7 are also equivalent to the following one.
For each j, the irreducible divisor D j is the relative conormal space of its
image Vj Ă ProjYCX,Y Ă YˆPN´t´1 under the first projection YˆPN´t´1 Ñ

Y restricted to Vj , and all the fibers of the restriction ξ|D j : D j Ñ Y have the
same dimension near 0.

In particular, Whitney’s conditions are equivalent to the equidimensional-
ity of the fibers of the map D j Ñ Y , plus the fact that each D j is contained
in Y ˆ I Ă Y ˆPN´t´1 ˆ P̌N´t´1, where P̌N´t´1 is the space of hyperplanes
containing the tangent space TY,0 and I is the incidence subvariety. The new
fact is that the contact form on I Ă PN´t´1ˆP̌N´t´1 vanishes on the smooth
points of D jpyq for y P Y . This means that each D j is Y -Lagrangian and is
equivalent to a relative (or fiberwise) duality:

D j
//

��

W j “ Y´dual of Vj Ă Y ˆ P̌N´t´1

Y ˆ PN´t´1 Ą Vj
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The proof uses that the Whitney conditions are stratifying in the sense
of [55, Chap. III, Definition 1.4 and Proposition 2.2.2], and that Theorem
1.6.7 and the result of Remark 1.6.5 imply5 that D j is the conormal of its
image over a dense open set of Y . The condition dim. ξ´1p0q “ N ´ t ´ 2
then gives exactly what is needed, in view of Proposition 1.5.7, for D j to be
Y -Lagrangian.

Remark 1.6.9 As we have seen in subsection 1.6.2, the original definition of
the Whitney conditions, translates as the fact that |ξ´1pY q| is in YˆPN´t´1ˆ

P̌N´t´1 and not just Y ˆ PN´t´1 ˆ P̌N´1 (condition a) and moreover lies
in the product Y ˆ I of Y with the incidence variety I Ă PN´t´1 ˆ P̌N´t´1

(condition b)). Theorem 1.6.8 shows that they are in fact of a Lagrangian,
or Legendrian, nature. This explains their stability by general sections (by
non singular subspaces containing Y ) as proved in [55, Chap. V] and linear
projections, as proved in [35, Théorème 2.2.4].

The condition dim. κ´1pyq ď N ´ t ´ 2 which follows from dim. ξ´1pyq “

N ´ t ´ 2 corresponds to the fact that a general hyperplane of CN contain-
ing TY,y is not a limit of tangent hyperplanes to X0, which is an important
consequence of the Whitney conditions as we have already noted.

1.7 The multiplicities of local polar varieties and a
Plücker type formula

In this section we relate the multiplicities of the local polar varieties of the
closures of strata, which are algebraic invariants of singularities which can be
computed by intersection theory in the normal/conormal diagram at a point,
with vanishing Euler characteristics associated to the strata of a Whitney
stratification.

As we shall see, when applied to the cone over a projective variety
Z Ă PN´1 this formula yields a general Plücker type formula expressing
the degree of the dual variety Ž Ă P̌N´1 of Z in terms of the Euler charac-
teristics of the strata of the minimal Whitney stratification pZαqαPA of Z and
their sections by general linear subspaces of all dimensions, and the vanishing
Euler-Poincaré characteristics associated to pairs of strata Zα Ă Zβ .

Proposition 1.7.1 (Lê-Teissier, see [36, §3])Let X “
Ů

α Xα be a Whitney
stratified complex analytic set of dimension d, with connected strata. Given
x P Xα, choose a local embedding pX, xq Ă pCN , 0q. Set dα “ dim. Xα. For
each integer i P rdα ` 1, ds there exists a Zariski open dense subset Wα, i in

5 The proof of this in [35] uses a lemma, p. 559, whose proof is incorrect, but easy
to correct. There is an unfortunate mixup in notation. One needs to prove that
řN

t`1 ξkdzk “ 0 and use the fact that the same vector remains tangent after the
homothety ξk ÞÑ λξk , t`1 ď k ď N . Since we want to prove that L1 is Y -Lagrangian,
we must take dyi “ 0.
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the Grassmannian GpN ´ i, Nq and for each Li P Wα, i a semi-analytic subset
ELi of the first quadrant of R2, of the form tpε, ηq|0 ă ε ă ε0, 0 ă η ă φpεqu
with φpεq a certain Puiseux series in ε, such that the homotopy type of the
intersection X X pLi ` tq XBp0, εq for t P CN is independent of Li P Wα, i and
pε, tq provided that pε, |t|q P ELi . Moreover, this homotopy type depends only
on the stratified set X and not on the choice of x P Xα or the local embedding.
In particular the Euler-Poincaré characteristics χipX, Xαq of these homotopy
types are invariants of the stratified analytic set X .

Definition 1.7.2 The Euler-Poincaré characteristics χipX, Xαq, for
i P rdα ` 1, ds are called the local vanishing Euler-Poincaré characteristics
of X along Xα .

The independence of the point x P Xα is a consequence of the local topolog-
ical triviality of the closures of the Whitney strata along the strata of their
boundaries (The Thom-Mather Theorem). We shall not go into this here.
See [58, Theorem 4.2.17]. The connection between the local vanishing Euler
characteristics and the multiplicities of polar varieties is expressed as follows:

Theorem 1.7.3 (Lê-Teissier, see [34, théorème 6.1.9], [36, 4.11]) With the
conventions just stated, and for any Whitney stratified complex analytic set
X “

Ů

α Xα Ă CN , we have for x P Xα the equality

χdα`1pX, Xαq ´ χdα`2pX, Xαq “
ÿ

dβądα

p´1qdβ´dα´1mxpPdβ´dα´1pXβ, xqqp1´ χdβ`1pX, Xβqq,

where it is understood that mxpPdβ´dα´1pXβ, xqq “ 0 if x R Pdβ´dα´1pXβ, xq.

It follows that given a Whitney stratified complex analytic set X “
Ů

α Xα
with connected strata, it is equivalent to give the collections of multiplic-
ities of the local polar varieties of the closures Xβ of strata at the points
of the strata Xα in their boundary and to give the collections of vanishing
Euler-Poincaré characteristics χipXβ, Xαq. There is an invertible linear rela-
tion berween the two sets.

Let us now consider the special case where X is the cone over a projective
variety Z, which we assume not to be contained in a hyperplane. The dual
variety Ž of Z was defined in Subsection 1.3.2. Remember that every complex
analytic space, and in particular Z, has a minimal Whitney stratification. We
shall use the following facts, with the notation of Proposition 1.7.1 and those
introduced after Proposition 1.3.8:

Proposition 1.7.4 (see [14, Section 8]) Let Z Ă PN´1 be a projective variety
of dimension d.

1. If Z “
Ů

α Zα is a Whitney stratification of Z, denoting by Xα Ă CN the cone
over Zα, we have that X “ t0uYp

Ů

α X˚α q, where X˚α “ Xαzt0u, is a Whitney



38 Lê Dũng Tráng and Bernard Teissier

stratification of X . It may be that pZαq is the minimal Whitney stratification
of V but t0u Y p

Ů

α X˚α q is not minimal, for example if Z is itself a cone.
2. If Li ` t is an i-codimensional affine space in CN it can be written as

Li´1 X pL1 ` tq with vector subspaces Li and for general directions of Li

we have, denoting by Bp0, εq the closed ball with center 0 and radius ε, for
small ε and 0 ă |t| ! ε :

χipX, t0uq :“ χpX X pLi ` tq X Bp0, εqq “ χpZ X Hi´1q ´ χpZ X Hi´1 X H1q,

where Hi “ PLi Ă PN´1.
3. For every stratum X˚α of X , we have the equalities χipX, X˚α q “ χipZ, Zαq.
4. If the dual Ž Ă P̌N´1 is a hypersurface, its degree is equal to m0pPdpX, 0qq,

which is the number of non singular critical points of the restriction to Z of
a general linear projection PN´1zL2 Ñ P1.

Note that we will apply statements 2) and 3) not only to the cone X over Z
but also to the cones Xβ over the closed strata Zβ .

If we now apply the theorem 1.7.3, we see that, using Proposition 1.7.4,
we can rewrite in this case the formula of Theorem 1.7.3 as a generalized
Plücker formula for any d-dimensional projective variety Z Ă PN´1 whose
dual is a hypersurface:

Proposition 1.7.5 (Teissier, see [55, §5]) Given the projective variety Z Ă
PN´1 equipped with a Whitney stratification Z “

Ů

αPA Zα, denote by dα the
dimension of Zα. We have, if the projective dual Ž is a hypersurface in P̌N´1:

p´1qddegŽ “ χpZq ´ 2χpZ X H1q ` χpZ X H2q

´
ÿ

dαăd

p´1qdαdegN´2Pdα pZαqp1´ χdα`1pZ, Zαqq ,

where H1, H2 denote general linear subspaces of PN´1 of codimension 1 and
2 respectively, degN´2Pdα pZαq is the number of nonsingular critical points

of a general linear projection Zα Ñ P1, which is the degree of
ˇZα if it is a

hypersurface and is set equal to zero otherwise. It is equal to 1 if dα “ 0.

Here we remark that if pZαqαPA is the minimal Whitney stratification of the
projective variety Z Ă PN´1, and L is a general linear subspace in PN´1, the
Zα X L that are not empty constitute the minimal Whitney stratification of
Z X L. See [55, Chap. III, Lemma 4.2.2] and use the fact that the minimal
Whitney stratification is defined by equimultiplicity of polar varieties (see
[55, Chap. VI, §3]) and that the multiplicity of polar varieties of dimension
ą 1 is preserved by general hyperplane sections as we saw before Theorem
1.7.3.

It is explained in [14, Section 8] that if the dual of Z is not a hypersurface,
the dual of the intersection of Z with a general linear space of PN´1 of codi-
mension δpZq “ codimP̌N´1 Ž ´ 1 is a hypersurface of the same degree as Ž.
Using this and an induction on the dimension by applying proposition 1.7.4,
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possibly after general linear sections, to compute the degrees of the
ˇZα , we

see that we have proved the existence of a general formula to compute the
degree of Ž from the Euler-Poincaré characteristics of the closed strata Zα
and their general linear sections, and the vanishing Euler-Poincaré charac-
teristics χipZβ, Zαq. We shall not write this formula explicitly, only remark
that it is linear in the Euler-Poincaré characteristics of the strata and their
general linear sections, and polynomial of degree bounded by the depth (the
integer d in [58, Definition 4.1.1]) of the stratification in the local vanishing
Euler-Poincaré characteristics. The degree of the variety Ž of all limit tangent
hyperplanes to a projective variety Z depends explicitly on basic topological
characters of its minimal Whitney stratification.

Remark 1.7.6 We note that as we compute the degree of the dual Ž, we also
compute the degrees of the duals of the closures of at least some of the
strata of the canonical Whitney stratification Z “

Ů

α Zα . This suggests the
definition of the total dual of the projective variety Z: it is the union of the
duals of the closures of the strata of its canonical Whitney stratification. For
example if Z is the dual of a general non singular projective plane curve
its total dual is the union of that curve, its bitangents and its tangents of
inflexion, corresponding respectively to the nodes and cusps of Z. The total
dual gives a tangentially exploded view of the singularities of Z.
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