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To the memory of Stanis law  Lojasiewicz

Summary1

 Lojasiewicz’s inequalities were born to solve a problem in analysis (see [ L] and
[Ma]) and, as deep mathematical ideas will, they resonate in other fields. I chose
among a very large number of possibilities to try to survey three such resonances
in commutative algebra and algebraic geometry. The first section summarizes the
interpretation of the best possible exponent θ for a local  Lojasiewicz inequality
of an holomorphic function g with respect to an ideal generated by holomorphic
functions (fk)1≤k≤r, written as |g(z)|θ ≤ Csupk|fk(z)|, as the inclination of an edge
of a Newton polygon associated to the ”dicritical” components of a log resolution
of the ideal. The second calls attention to recent results which show that some
rational numbers cannot be  Lojasiewicz exponents for the gradient inequality in
the plane, and the final one reports on a recent result of Moret-Bailly which opens
perspectives for a  Lojasiewicz inequality in infinite dimensional spaces. No new
result is presented here and I have left out a considerable body of significant results
directly related to the computation, interpretation or generalization of the idea of
a  Lojasiewicz inequality.

Stanis law  Lojasiewicz was a remarkable mathematician in many ways, and it is
a privilege to have shared a friendship with him from our meeting in Cargèse in
1972 to his death and to be able to honor his memory.

1.  Lojasiewicz exponents and Newton polygons

We consider the set of local Newton polygons in the first quadrant of R2. It
is the set of boundaries of the convex hulls of finite unions of subsets of the form
(a, b) +R2

+ where (a, b) ∈ R2
+. There is a natural commutative operation, the sum,

on Newton polygons. It is obtained by taking the boundary of the Minkowski sum
of the infinite convex regions which two polygons bound. It is commutative and
associative. Its unit element is the Newton polygon consisting of the union of the
two coordinate half-lines.

The following notation, introduced in [T1], will be convenient for us: given two

positive numbers, which for us will be integers, denote by

{
`

h

}
the elementary

Newton polygon which is the boundary of the convex hull of the subset ((0, h) +
R2

+)
⋃

((`, 0) + R2
+) of R2.

If we add to these finite elementary Newton polygons the two elementary poly-
gons corresponding to the case where h or ` (but not both) may be taken to be
infinite, we obtain a set of generators for the monoid of all Newton polygons. Every
Newton polygon may be written as

N =

s∑
i=1

{
`i

hi

}
,
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and if we require that the inclinations `i
hi

be all different, this decomposition is

unique. The unit element can be written as

{
0

0

}
. See [T1] or [L-T], Complément

2, for details.

Z
Z
Z
ZZ

h

`

=

{
`

h

}

`′

=

{
`′

∞

}

{
`

h

}
+

{
`′

∞

}
=

h
Z

Z
Z

ZZ
`+ `′`′

Let now (X,OX) be a reduced equidimensional complex analytic space, and I a
sheaf of ideals defining a nowhere dense analytic subspace Y ⊂ X. The normalized
blowing up π : NBIX → X of I is a proper and bimeromorphic analytic map,
where the space NBIX is normal and the ideal IONBIX is invertible.

Given a point x ∈ X let us consider the finitely many irreducible components
(Di)1≤i≤t of the exceptional divisor of π which meet the compact fiber π−1(x). For
each component we may consider the general fiber of the map π : |Di| → |π(Di)|
and the underlying reduced general fiber. Its degree with respect to the π-ample
sheaf IONBIX/I2ONBIX will be denoted by degπ|Di|.
Now to any germ of analytic function g ∈ OX,x we can associate the order vDi(g◦π)
of vanishing along |Di| of the composition with π of a representative of g at a general
point of |Di|. We may replace g by an ideal J if we define the order of vanishing
vDi

(J ◦ π) as the infimum of the orders of vanishing of the (compositions with π
of) elements of J , which is attained by some generators of the ideal.
We can now define the Newton polygon of g with respect to I at x as

NI,x(g) =

t∑
i=1

degπ|Di|
{
vDi

(I)

vDi
(g)

}
,

provided that we have g ∈
√
Ix, which ensures that none of the vDi

(g) is zero, and
the Newton polygon of J with respect to I as

NI,x(J) =

t∑
i=1

degπ|Di|
{
vDi

(I)

vDi
(J)

}
,

provided that we have J ⊂
√
Ix.

Remarks 1.1. 1) Each element g ∈
√
Ix determines a pre-ordering on the set of

Di, by reading from left to right the compact faces of NI,x(g). It would be interesting
to determine, for a given I and x, which pre-orderings are realizable in this manner.
For example, if the germ Ix is a primary ideal for the maximal ideal mx, the trivial
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pre-ordering, where all elements are equal, is realizable by a superficial element g
for Ix (see [L-T], Complément 2).
2) The strict transforms of the components Di in a log-resolution of the pair (X,Y )
may be called the dicritical components at x of the exceptional divisor of the resolu-
tion. In the special case where I is a primary ideal for the maximal ideal of a point
on a normal surface X, the normalized blowing up of I is equal to the normalized
blowing-up of the ideal generated by two general elements (f, g) of I and the strict
transforms of the Di are exactly the components of the resolution where the quotient
f̃
g̃ of the strict transforms of f and g is not constant. The computation of normal-

ized blowing-ups is difficult in dimension > 2, although there exist algorithms to
compute the normalization.
A method of computation of the  Lojasewicz exponent in the case of an ideal primary
for the maximal ideal of OX,x, through an explicit log resolution is explained in
[BA-E].
3) In the case where the ideal Ix is primary for the maximal ideal of OX,x, so that
all the components Di map to x, the valuations vDi are called the Rees valuations
associated to that ideal (see [R1]).

What we call ”the”  Lojasiewicz exponent is of course the smallest real number
for which the inequality holds in some neighborhood of a given point.

Proposition 1.1. (see [L-T], Théorème 4.6). Given a set of generators f1, . . . , fs
for the germ Ix ∈ OX,x and g ∈ OX,x, the smallest real number θ such that there
exist a neighborhood U of x in X and a constant C > 0 such that the inequality

|g(z)|θ ≤ Csupsk=1|fk(z)|

holds for all z ∈ U , is equal to

θ = maxti=1

vDi
(I)

vDi
(g)

.

It is therefore a rational number. If g /∈
√
Ix, set θ = +∞.

For the rationality of the  Lojasiewivz exponent in the real-analytic case see
Risler’s appendix in [L-T], [B-R], and [Fe].

Given g ∈
√
Ix, denote by νIx(g) the largest integer n such that g ∈ Inx . In [L-T],

we prove that the limit νIx(g) = limk→∞
νIx (gk)

k exists and is equal to minti=1
vDi

(g)

vDi
(I) .

Thus, the best  Lojasiewicz exponent, which is the largest inclination of the compact
edges of NI,x(g), can be understood as the inverse of this limit. We also give some
indications on the history of these results.

Again, one can extend the definition of ν to an ideal, by defining νIx(J) to be
the largest integer such that J ⊂ Inx and proceeding as above.

The fact that the  Lojasiewicz exponents appears as (the inverse of) the inclina-
tion of a compact edge of a Newton polygon2 is interesting in particular because
other features of the same polygon have, at least in special cases, algebro-geometric
interpretations:
• If the ideal Ix is primary for the maximal ideal, the length of the horizontal
projection of NIx(g) is equal to the Samuel multiplicity e(Ix) of the primary ideal
Ix in OX,x.
• The length of the vertical projection is equal to the degree function of g with
respect to Ix, studied by David Rees and which is the Samuel multiplicity of the

2There are at least two other such constructions for νI(g): one appears in [L-T], appendice au
§4, and the other in [Hi3].
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image of Ix in the quotient OX,x/gOX,x. In particular if g is a general element of

another primary ideal J , it is the mixed multiplicity e(I [d−1]
x , J [1]).

• As an immediate consequence of the convexity of the Newton polygon, setting

d = dimX, we have the inequality νIx(J) ≤ e(I[d−1]
x ,J [1])
e(Ix) .

1.1.  Lojasiewicz exponent and plane sections. In the paper [Hi3], Hickel has
shown that given a primary ideal I in a regular local ring (O,m) of dimension d
and equal characteristic zero, if we study the νI(m), the νIO

H(i)
(mOH(i)) is well

defined for a quotient OH(i) of O by the ideal generated by d − i ”general” linear
forms. This suggests the following:

Problem: Let O be a Cohen-Macaulay excellent equicharacteristic normal local
ring of dimension d and let I and J be two primary ideals. Given a family g =
(g1, . . . , gd−i) of d− i elements of J , let us denote by Jg the ideal of O which they

generate. Is it true that the Newton polygon NI OJg
(J OJg ) is independent of the

family g provided it is ”sufficiently general”?

Such a result is true at least in the case where I ⊂ C{z1, . . . , zd} is the jacobian
ideal of a hypersurface f(z1, . . . , zd) = 0 with an isolated singularity at the origin
i.e., the ideal generated by the partial derivatives, and J is the maximal ideal m.
The Newton polygon Nj(f)(m) then takes the name of jacobian Newton polygon.
There are four ingredients:
• One proves that the jacobian Newton polygon of the hypersurfaces of an analytic
Whitney equisingular family is constant (see [T2]).
• The general hyperplane sections of an analytic space form a Whitney equisingular
family (see [T2]).
• The image in the local ring of a hyperplane of the jacobian ideal of f and the
jacobian ideal of the restriction of f to the hyperplane have the same integral closure
if the hyperplane is ”general” (a special case of the idealistic Bertini Theorem; see
[T1], 2.8).
• The Newton polygon depends only on the integral closures of the ideals (see [L-T]).
Here a hyperplane is ”general” if it is not a limit position of tangent hyperplanes
to the hypersurface along sequences of nonsingular points tending to the singular
point.

The way to extend this argument to the general case is not clear.

1.2. The  Lojasiewicz exponent at infinity. The  Lojasiewicz inequalities of the
type |F (z)| ≥ C|z|θ for families of polynomials defining a zero dimensional subspace
of Cd+1 were studied very early by P loski (see [P1]). In the paper [Hi2] Hickel uses
methods of normalized blowing up and interpretation of νI(J) as the inverse of a
 Lojasiewicz exponent to prove:

Theorem 1.1. (Hickel) Let k be an algebraically closed field with a non trivial
absolute value | |. Let I = (p1, . . . , pm) ⊂ k[X1, . . . , Xn] and V = {z ∈ kn/p1(z) =
. . . = pm(z) = 0}. Set di = degpi. There exist a constant C > 0 and exponents
θ1, θ2 such that for all z ∈ kn the following inequality holds:

m∑
i=1

|pi(z)|
(1 + |z|)di

≥ C d(z, V )θ1

(1 + |z|)θ2
,

where the best exponents θ1, θ2 are rational numbers, which can be computed from
invariants which appear in the normalized blowing up of the sheaf of ideals on Pn(k)
corresponding to the homogeneizations of the polynomials pi.

Here d(z, V ) is the distance from z to V . Of course Hickel’s statement is much
more precise, and the techniques of proof use more global techniques than just local
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intersection theory, in particular the refined Bézout theorem. The close connexion
between such inequalities and the effective Nullstellensatz has been known since the
paper [B] of Brownawell, and the paper of Hickel makes important headway towards
optimal bounds for s and the degrees of the qkfk in terms of n and the degrees of
the polynomials f1, . . . , ft and g ∈

√
(f1, . . . , ft)k[x1, . . . , xn] in equalities such as

gs =
∑
k qkfk, in all characteristics. See also [L-T], Complément 5, and the article

[C-K-T].

1.3.  Lojasiewicz exponent and log canonical threshold. The gradient
 Lojasiewicz exponents of the restrictions of a holomorphic function to plane sections
of all dimensions appear in an estimate of the log canonical threshold associated to
the hypersurface singularity f(z1, . . . , zd+1) = 0 at the origin. I refer to the notes
[Mu] of Musţată and the book [La], Vol. II, of Lazarsfeld for the definition. It is of
the nature of a  Lojasiewicz exponent for differential forms.

The jacobian Newton polygon of a hypersurface with isolated singularity, say at
the origin, can be written in the form:

Nj(f)(m) =
t∑

q=1

{
eq

mq

}
,

where the q’s index the branches of a general polar curve, which means the critical
locus of a map F : Cd+1 → C2, z 7→ (`(z), f(z)) with ` a general linear form.
The integers eq,mq are then computed from a parametrization of each branch: mq

is the multiplicity of that branch, and eq + mq is its intersection multiplicity with
f = 0. See [T2], where it is proved that the best possible exponents for the gradient
 Lojasiewicz inequalities to hold in a neighborhood of the singular point,

|f(z)|θ1 ≤ C1|gradf(z)| and |z|θ2 ≤ C2|gradf(z)|,

are θ1 = η
1+η and θ2 = η where η = supq

eq
mq

. This shows not only that the

 Lojasiewicz exponents are rational numbers and that θ1 < 1, a well known and
very useful result of  Lojasiewicz in the real case (see [L-T], Complément 1), but
also that they are invariants of Whitney equisingularity, since the jacobian Newton
polygon is.

Since the jacobian Newton polygon of a general hyperplane section is well defined,
we may for each 1 ≤ i ≤ d+ 1 define η(i) to be the gradient  Lojasiewicz exponent

and τ (i) to be the infq
e(i)q

m
(i)
q

for the restriction of f to a general i-dimensional linear

space through the origin. They are respectively the largest and smallest inclinations
of the edges of the jacobian Newton polygon of that restriction. We agree that the
restriction of f to a general line, which is equivalent to zm1 , gives θ(1) = τ (1) = m−1
where m is the order of f at x, the multiplicity at x of the hypersurface f = 0.
Then we have:

Theorem 1.2. (Loeser, see [Lo1], [Lo2]) Assume that the isolated singularity of
f(z) = 0 at x is not a rational singularity (this is equivalent to lctx(f) ≤ 1 by a
result of Morihiko Saito). The log canonical threshold lctx(f) of f at x satisfies the
inequalities

d+1∑
i=1

1

1 + dη(i)e
≤ lctx(f) ≤

d+1∑
i=1

1

1 + bτ (i)c
.

In the case where f = za11 + · · · + z
ad+1

d+1 with a1 ≤ a2 ≤ · · · ≤ ad+1, one

computes (see [T2]) that τ (i) = η(i) = ai − 1 and recovers the well known formula

lct0(f) =
∑d+1
i=1

1
ai

when this sum is ≤ 1.
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In [Lo2], one finds an application to arithmetical algebraic geometry. I had in [T3]
conjectured the first inequality, without the d e, for reasons related to the rate of
vanishing as λ tends to zero of the volumes of the vanishing cycles on a Milnor fiber
(f(z) = λ) ∩B(x, ε).

It is shown in [T2] that:
• The length of the projection to the horizontal (resp. vertical) axis of the jacobian
Newton polygon Nj(f |H(i))(m) of the restriction of f to a general vector subspace

of dimension i + 1 is equal to the Milnor number µ(i+1)(f) (resp. µ(i)(f)) of the
restriction of f to H(i+1) (resp H(i)). This jacobian Newton polygon is therefore a

refinement of the elementary polygon

{
µ(i+1)(f)

µ(i)(f)

}
.

• The double of the area bounded by the jacobian Newton polygon is the Milnor
number of a general hyperplane section of the Thom-Sebastiani ”double” f(z1, . . . , zd+1)+
f(w1, . . . , wd+1) of the function f(z1, . . . , zd+1).

Remark 1.1. If f is a homogeneous polynomial of degree m with isolated singu-
larity, one finds that all

eq
mq

are equal to m− 1, so that the optimal inequality is the

expected ”homogeneous” one:

|f(z)|m−1 ≤ C|gradf(z)|m.

But this is no longer true if the cone defined by the vanishing of the homogeneous
polynomial f has a non isolated singularity at the origin; here is a counterexample:

f(z1, z2, z3) = z3(z1z
3
3 + z4

2)2 + z9
1 .

The plane projective curve determined by this equation has at the point z1 = z2 = 0
a singularity isomorphic to w2 − z36 = 0; it corresponds to a number η = supq

eq
mq

equal to 35, which must manifest itself in any neighborhood of the vertex of the cone
defined by the equation, and prevents the exponent there from being 8

9 , since it must

be at least equal to 35
36 . (This is an example I produced in the late 1980’s in answer

to a question of Amnon Neeman; the question of finding a sharp bound, in this
homogeneous case, for θ1 in terms of m is still open as far as I know).

2. The gradient  Lojasiewicz exponent in dimension 2

In [GB-P] and [GB-K-P] some unexpected results, which find their roots in an
earlier work of A. P loski, were proved, concerning the rational numbers which can
appear as θ2, in the notations of the previous subsection, in the case d = 1 i.e., for
plane curve singularities.

Theorem 2.1. (P loski, see [P2]) For d = 2 the rational number θ2 belongs to the
set

{N +
b

a
,N, a, b ∈ Z, 0 ≤ b < a < N}.

Theorem 2.2. (Garćıa Barroso-P loski, see [GB-P]) The elements of the preceding
set for which a = N −1, b > 1, gcd(a, b) = 1 are not exponents θ2 for a plane curve.

There are more results of this kind in [GB-K-P].

Remark 2.1. The problem of determining from intrinsic invariants whether a given
ideal is the jacobian ideal of a hypersurface is part of the folklore, and nobody knew
how to begin. The previous theorem provides a partial answer in dimension 2: if a
primary ideal I in C{z1, z2} is such that (νI(m))−1 belongs to the set determined
in [GB-P], then it cannot be a jacobian ideal.
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A theorem of M. Merle in [Me] implies that the jacobian Newton polygon of a
plane branch is a total invariant of its equisingularity type: it determines and is
determined by the Puiseux exponents, or the semigroup of values, or the topolog-
ical type of its embedding in C2 locally at x. This is no longer true for reduced
plane curves, as was shown by Eggers (see [E]), and the correct generalization was
achieved by E. Garćıa Barroso in [GB].

If one thinks that the jacobian Newton polygon is a natural extension of the gra-
dient  Lojasiewicz exponent it is natural to ask whether all Newton polygons meeting
both axes (or convenient) can be the jacobian Newton polygon of a hypersurface
with isolated singularity, for a given dimension d.
For d = 1 there is a very nice answer, for branches, due to E. Garćıa Barroso and
J. Gwoździewicz in [GB-G]: there is an arithmetic characterization of the Newton
polygons that are the jacobian Newton polygon of a plane branch. Moreover, they
prove that if the jacobian Newton polygon of a plane curve is that of a branch, then
the curve is a branch, giving rise to new criteria of irreducibility.

3.  Lojasiewicz exponents in infinite dimensions

Let us briefly go back to a  Lojasiewicz inequality in the real case, relating the
distance to the zero set of a function to the value of the function:

Theorem 3.1. ( Lojasiewicz, [ L]) Let Ω be an open subset of Rn, let f be an
analytic function on Ω and V the locus of zeroes of f . For every compact K ⊂ Ω
there exist C > 0, α ≥ 0 such that:

∀x ∈ K, dist(x, V ) ≤ C|f(x)|α,

where d(x, V ) is the distance from x to V in Rn. If V = ∅, we take α−1 = 0 and
agree that d(x, ∅)0 = 1.

The key to understanding why this  Lojasiewicz inequality is true is that the
distance function to an analytic set behaves much like an analytic function: it
is subanalytic. Note that in comparison with the previous inequalities, we have
α = θ−1.
Let us reformulate the statement of the theorem as follows: for each sufficiently
small ε,

if |f(x)| ≤ ε, there exists x0 ∈ V such that f(x0) = 0 and |x− x0| ≤ Cεα.
Let us now make a translation which is perhaps ”classical” (see the review of [Sc])
and certainly well known to Hickel (see [Hi1], 2.2): consider a space of analytic
or formal functions in variables x1, . . . , xn, for example the maximal ideal M of
the ring O = C{x1, . . . , xn} of convergent power series at the origin. Consider a
finite set of algebraic (or analytic) equations Φk(x1, . . . , xn, Y1, . . . , Yp) = 0, with
Φk ∈ O[Y1, . . . , Yp] (or in O{Y1, . . . , Yp}) and 0 ≤ k ≤ q, which we shall forget to
write from now on; they define a subset V of the infinite dimensional space Mp,
which we shall call an algebraic subset (resp. an analytic subset) of this infinite-
dimensional space.
On M there is a metric given by the norm ‖g‖ = e−νM(g), where νM(g) is the
M-adic order. We have

‖g + g′‖ ≤ max(‖g‖, ‖g′‖).

We extend this norm toMp by taking the maximum of the norms of the coordinates.
In this context,  Lojasiewicz’s inequality becomes, after a small translation as above:
For any sufficiently large integerN , if we have series without constant term y(N)(x) =

(y
(N)
1 (x), . . . , y

(N)
p (x)) ∈Mp such that for all k the inequalities νM(Φk(x,y(N)(x))) ≥
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N hold, there exists a point y(x) ∈ V with ‖y(N)(x)−y(x)‖ ≤ Ce−Nα. If we write
the positive constant C in the form C = e−b this becomes, with a = α ∈ R+, b ∈ R:

νM(y(N)(x)− y(x)) ≥ aN + b,

which means that each coordinate is in MaN+b, so that we can reinterpret the
 Lojasiewicz inequality:

Proposition 3.1. Let V ⊂ Mp be an algebraic subset defined by the polynomials
Φk ∈ O[Y1, . . . , Yp], 1 ≤ k ≤ q. The following statements are equivalent:
a) The subset V and its defining equations satisfy  Lojasiewicz’s inequality with
respect to the norm ‖f‖.
b) There exist constants a ∈ R+, b ∈ R depending only on the system of equations
Φk such that for each sufficiently large integer N , if there exits a system of series
without constant terms y(N)(x) ∈Mp such that for all k we have νM(Φk(x,y(N)(x))) ≥
N , then there exists a system y(x) ∈Mp such that Φk(x,y(x)) = 0 and νM(y(N)(x)−
y(x)) ≥ aN + b.

It is natural to ask whether the  Lojasiewicz inequality of Proposition 3.1 holds
for algebraic and analytic subsets of Mp.

Strong supporting evidence comes from M. Artin’s theorem:

Theorem 3.2. (M. Artin, [A]) Given a system of equations such as Φk(x, y), there
exists an application β : N→ N such that for any integer i, if there exists a system
of series without constant term ỹ(x) such that

νM(Φk(x, ỹ(x))) ≥ β(i),

then there exists a system y0(x) such that Φk(x, y0(x)) = 0 and

νM(ỹ(x)− y(x)) ≥ i.

The only difference is that the function β̃(i) = i−b
a obtained by inverting the

map N 7→ aN + b of statement 3.1 is linear, which increases the interest of finding
linear upper bounds for Artin’s beta function. The following result due to Hickel
may help to throw some light and make one optimistic about the linearity:

Let our indeterminates consist of one indeterminate t and let the equation Φ
be f(Y1, . . . , Yn) = 0, where f(z1, . . . , zn) is an analytic function with an isolated
critical point at the origin. Solving the equation f(y1(t), . . . , yn(t)) = 0 with series
without constant terms amounts to finding analytic arcs through the origin on
the hypersurface defined by f(z1, . . . , zn) = 0. Keeping the notation η = supq

eq
mq

introduced above, we have:

Theorem 3.3. (Hickel, [Hi1]) The function β of Artin satisfies in this case β(i) ≤
bηic+ i.

However, the existence in general of a linear upper bound for Artin’s beta func-
tion, conjectured by Spivakovsky in [S], was shown to be false by G. Rond in [Ro1].
So the nature of  Lojasiewicz inequalities changes when one passes to infinite di-
mensional spaces, if we insist on taking the metric ‖g‖ = e−νM(g).

A recent result of Moret-Bailly shows that if we seek roots of our equations
Φk(x1, . . . , xn, Y1, . . . , Yp) = 0 not only in M but in the maximal ideal Mν of
a henselian valuation ring Rν containing O and such that Mν ∩ O =M, and use
an adapted metric, we recover a  Lojasiewicz inequality. The following statement is
the special case for an affine Rν-scheme, of Moret-Bailly’s theorem:
Let Rν be a henselian valuation ring such that the field of fractions K̂ of its com-
pletion is a separable extension of its field of fractions K. Let Γ be the group of
values of the valuation ν, which is totally ordered and, for γ ∈ Γ+, consider the
valuation ideal Pγ(Rν) = {x ∈ Rν |ν(x) ≥ γ}.
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Theorem 3.4. (Moret-Bailly, [MB]) Consider a finite set of algebraic equations
Φk(Y1, . . . , Yp) = 0, with Φk ∈ Rν [Y1, . . . , Yp]. There exist a positive integer B

and an element δ ∈ Γ+ with the following properties: for each γ ∈ Γ+ and y(γ) =

(y
(γ)
1 , . . . , y

(γ)
p ) ∈ Rpν such that Φk(y

(γ)
1 , . . . , y

(γ)
p ) ∈ PBγ+δ(Rν) for all k, there exists

y ∈ Rpν such that Φk(y) = 0 for all k and y(γ) − y ∈ (Pγ(Rν))p.

So, in this situation, the Artin function associated to the valuation ν (and not
to νM) is indeed bounded by the linear function γ 7→ Bγ + δ.
If we restrict ourselves to valuations of rank one, for which the value group is an
ordered subgroup of R, and take the metric ‖x‖ = e−ν(x) we are exactly in the
same situation as at the beginning of this section. Indeed, this suggests that we
must seek solutions in henselian valuation rings, and that the right ”distance to the
zero set” is measured by the valuation. Moret-Bailly’s theorem gives us a version
of the  Lojasiewicz distance inequality in the space Rpν .
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Schriften 147 (Universität Bonn, 1983).
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[GB-G] E. Garćıa Barroso and J. Gwoździewicz, Characterization of jacobian Newton polygons

of plane branches and new criteria of irreducibility, Ann. Inst. Fourier, Grenoble 60, 2
(2010) 683-709.
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