Abstracts

Some aspects of the connection between toric geometry and resolution of singularities

Bernard Teissier

We know from [2] that normal toric varieties over a field admit (non embedded) resolutions of singularities described by the regular refinements of their fan. The toric embedded resolution of singularities for affine toric varieties over an algebraically closed field k was proved in [3] and [5]. The combinatorics works as follows: an affine toric variety $X_0 \subset \mathbf{A}^N(k)$ over k is defined by a prime binomial ideal $I_0 = (u^{m^{\ell}} - \lambda_{\ell} u^{n^{\ell}})_{\ell \in L}$ in $k[u_1, \ldots, u_N]$. The monomial u^m corresponds to a point m in the lattice $M \simeq \mathbf{Z}^N$, and $\lambda_{\ell} \in k^*$. The vectors $m^{\ell} - n^{\ell} \in M$ determine dual hyperplanes H_{ℓ} in the real vector space $N_{\mathbf{R}}$ generated by the dual lattice $N \simeq \check{\mathbf{Z}}^N$ of M. The intersections with the first quadrant of these hyperplanes determine a fan Σ_0 subdividing the fan whose maximal cone is the first quadrant. The strict transform of X_0 by the corresponding birational map $\pi(\Sigma_0): Z(\Sigma_0) \to \mathbf{A}^N(k)$ of normal toric varieties is the normalization of X_0 . The strict transform of X_0 by a birational toric map $\pi(\Sigma): Z(\Sigma) \to \mathbf{A}^N(k)$ corresponding to a regular fan Σ subdividing Σ_0 is non-singular and transversal to the toric boundary. Such subdivisions provide embedded pseudo¹ resolutions of X_0 . The fan Σ can be chosen so as to contains the regular faces of the weight cone $\beta = \mathbf{R}_{\geq 0}^N \cap (\bigcap_{\ell} H_{\ell})$, and then $\pi(\Sigma)$ is an embedded resolution.

One may wonder whether such toric maps also (pseudo) resolve the spaces obtained by suitable deformations of the binomial equations. This question comes from the basic observation of [5]: Given a local integral domain R with maximal ideal m and a rational valuation of R corresponding to an inclusion $R \subset R_{\nu}$ of R in a valuation ring R_{ν} of its field of fractions, such that $m_{\nu} \cap R = m$ and $R/m \to R_{\nu}/m_{\nu}$ is an isomorphism, we have a faithfully flat specialization of SpecR to the affine toric variety (which may be of infinite embedding dimension) corresponding to the associated graded ring $\operatorname{gr}_{\nu}R = \bigoplus_{\phi \in \Phi} \mathcal{P}_{\phi}/\mathcal{P}_{\phi}^+$ of R with respect to the filtration associated to ν , where $\mathcal{P}_{\phi} = \{x \in R | \nu(x) \ge \phi\}, \ \mathcal{P}_{\phi}^+ =$ $\{x \in R | \nu(x) > \phi\}$. The fact that ν is a rational valuation implies that $\operatorname{gr}_{\nu}R$ is a k-algebra and each homogeneous component is a vector space of dimension 1 over k. There is therefore a presentation $\operatorname{gr}_{\nu}R = k[(U_i)_{i\in I}]/(U^{m^{\ell}} - \lambda_{\ell}U^{n^{\ell}})_{\ell \in L}$ where U^m denotes a monomial, $\lambda_{\ell} \in k^*$, the sets I and L may be infinite, but countable.

We note that the degrees which actually appear in the graded algebra are the valuations of the elements of R, which form a subsemigroup of the semigroup $\Phi_+ \cup \{0\} = (R_\nu \setminus \{0\})^{mult.} / \{units\}$ of non negative elements of the (totally ordered) value group Φ of ν . In fact $\operatorname{gr}_{\nu} R$ is isomorphic to the semigroup algebra over k of the semigroup $\Gamma = \nu(R \setminus \{0\})$. If R is noetherian the semigroup Γ is well ordered and therefore has a unique minimal system of generators, indexed by an ordinal,

¹This means that the restriction over the non singular part is not necessarily an isomorphism.

which is at most ω^h where h is the (archimedian, or real) rank of the value group. By transfinite induction one defines γ_{i+1} as the smallest non zero element of Γ which is not in the semigroup generated by the previous ones.

Let us concentrate on the case where the semigroup Γ is finitely generated and R is a local equicharacteristic and complete noetherian domain with an algebraically closed residue field k. Pick and fix a field of representatives $k \subset R$. Then R appears as an *overweight* deformation of its associated graded ring, in the sense of [6]: there is a continuous and surjective map of k-algebras

$$k[[u_1,\ldots,u_N]] \xrightarrow{\pi} R$$
, determined by $u_i \mapsto \xi_i$,

for any choice of elements $\xi_i \in R$ whose valuations are the minimal generators of the semigroup Γ or equivalently are such that their initial forms minimally generate the k-algebra $\operatorname{gr}_{\nu} R$. Giving to u_i the weight $\gamma_i = \nu(\xi_i) \in \Gamma \subset \Phi_+ \cup \{0\}$ determines a weight w on $k[[u_1, \ldots, u_N]]$, with its filtration by weight and the associated graded ring $\operatorname{gr}_w k[[u_1, \ldots, u_N]] \simeq k[U_1, \ldots, U_N]$, now graded by the weight: $\operatorname{deg} U_i = \gamma_i$. Moreover the valuation ideals of R are the images by π of the weight ideals of $k[[u_1, \ldots, u_N]]$ and so the map π induces a surjection of graded k-algebras

$$k[U_1,\ldots,U_N] \xrightarrow{\operatorname{gr}_w^n} \operatorname{gr}_\nu R$$
, determined by $U_i \mapsto \operatorname{in}_\nu \xi_i$

whose kernel is a binomial ideal $(u^{m^{\ell}} - \lambda_{\ell} u^{n^{\ell}})_{\ell \in L}$; it is essentially the presentation of the semigroup algebra of Γ over k which corresponds to an affine toric variety X_0 . By flatness the kernel of π is generated by series $F_{\ell} = u^{m^{\ell}} - \lambda_{\ell} u^{n^{\ell}} + \sum_p c_p^{(\ell)} u^p$ with $c_p^{(\ell)} \in k$, $w(u^p) > w(u^{m^{\ell}}) = w(u^{n^{\ell}})$, for $\ell \in L$, a finite set. Let us call X the formal subspace of $\mathbf{A}^N(k)$ defined by the ideal $I = (F_{\ell})_{\ell \in L}$; it is an overweight deformation of the affine toric variety X_0 .

For a regular fan Σ with support the first quadrant of $\check{\mathbf{R}}^N$, the corresponding birational toric map $Z(\Sigma) \to \mathbf{A}^N(k)$ is described in each chart $Z(\sigma)$ corresponding to a maximal cone $\sigma = \langle a^1, \ldots, a^N \rangle$ of Σ , where $a^j \in N$, by

$$u_{1} = y_{1}^{a_{1}^{1}} \dots y_{N}^{a_{N}^{n}}$$

$$\vdots \qquad \vdots$$

$$u_{N} = y_{1}^{a_{N}^{1}} \dots y_{N}^{a_{N}^{N}}$$

and the valuation ν of R picks a point in the strict transform of X. A combinatorial argument explained in [8] shows that one can find regular fans Σ subdividing the fan Σ_0 corresponding to the initial binomials of the F_{ℓ} , and such that for appropriate $\sigma \in \Sigma$ the transforms of the F_{ℓ} can be written

$$F_{\ell} \circ \pi(\sigma) =$$

$$y_1^{\langle a^1, n^{\ell} \rangle} \dots y_N^{\langle a^N, n^{\ell} \rangle} (y_1^{\langle a^1, m^{\ell} - n^{\ell} \rangle} \dots y_N^{\langle a^N, m^{\ell} - n^{\ell} \rangle} - \lambda_{\ell} + \sum_p c_p^{\langle \ell \rangle} y_1^{\langle a^1, p - n^{\ell} \rangle} \dots y_N^{\langle a^N, p - n^{\ell} \rangle}).$$

The point is to find fans for which the inequalities $w(u^p) > w(u^{n^{\ell}})$ induce inequalities $\langle a^i, p - n^{\ell} \rangle > 0$. The largest torus-invariant charts of $Z(\Sigma)$ in which the strict transform meets the toric boundary correspond to cones σ of Σ whose intersection with the weight cone β is of maximal dimension $r = \dim R$. The variables y_{i_j} , $1 \leq j \leq r$ corresponding to the vectors $a^{j_i} \in \beta$ do not appear in the transformed binomials $y_1^{\langle a^1, m^{\ell} - n^{\ell} \rangle} \dots y_N^{\langle a^N, m^{\ell} - n^{\ell} \rangle} - \lambda_{\ell}$ and can be taken as local coordinates on the strict transform of X. In fact, at the point picked by the valuation, this strict transform is a deformation of the strict transform of X_0 and hence non singular. In summary:

Theorem: Given a rational valuation ν on a complete equicharacteristic local domain R with an algebraically closed residue field k, if the semigroup of values $\nu(R \setminus \{0\})$ is finitely generated, say by N generators, there is a continuous surjection $k[[u_1, \ldots, u_N]] \xrightarrow{\pi} R$ such that some of the toric modifications of $\mathbf{A}^N(k)$ in the coordinates u_i which resolve the singularities of the toric variety corresponding to $\operatorname{gr}_{\nu} R$ also produce an embedded local uniformization of the valuation ν on the space $X \subset \mathbf{A}^N(k)$ corresponding to R.

In the situation of the theorem, by flatness of the deformation, the valuation ν is Abhyankar, which means in this case that the Abhyankar inequality dimgr_{ν} $R \leq \dim R$ (see [5]) is an equality. Since local uniformization for Abhyankar valuations of algebraic function fields has been proved by Knaf and Kuhlmann in [4], it is natural to ask whether in general the Abhyankar condition implies that the semigroup Γ is finitely generated. An attempt to prove this is in progress. Combined with the theorem above it would have as consequence that the Abhyankar valuations are exactly the quasi-monomial ones, a fact proved by Cutkosky for valuations of rank one using embedded resolution of singularities (see [1], Prop. 2.8).

References

- L. Ein, R. Lazarsfeld, and K. Smith, Uniform approximation of valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409-440.
- [2] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, *Toroidal embeddings. I*, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin, 1973.
- [3] P. D. González Pérez and B. Teissier, Embedded resolutions of not necessarily normal affine toric varieties, C.R. Math. Acad. Sci. Paris 334 (2002), no. 5, 379–382.
- [4] Hagen Knaf, Franz-Viktor Kuhlmann, Abhyankar places admit local uniformization in any characteristic, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 833–846.
- [5] B. Teissier, Valuations, deformations, and toric geometry, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, 361–459.
- [6] B. Teissier, Overweight deformations of weighted affine toric varieties, Oberwolfach Workshop on Toric geometry, January 2009. Oberwolfach Reports, Vol. 6, No.1, 2009. European Math. Soc. Publications.
- [7] B. Teissier, A viewpoint on local resolution of singularities. Oberwolfach Workshop on Singularities, September 2009. Oberwolfach Reports, Vol. 6, No. 3, 2009. European Math. Soc. Publications.
- [8] B. Teissier, Overweight deformations of affine toric varieties and local uniformization, submitted.

Reporter: Susanne Mueller