
Abstract

s

Some aspects of the connection between toric geometry and resolution of singularities Bernard Teissier

We know from [2] that normal toric varieties over a field admit (non embedded) resolutions of singularities described by the regular refinements of their fan. The toric embedded resolution of singularities for affine toric varieties over an algebraically closed field k was proved in [3] and [5]. The combinatorics works as follows: an affine toric variety $X_{0} \subset \mathbf{A}^{N}(k)$ over k is defined by a prime binomial ideal $I_{0}=\left(u^{m^{\ell}}-\lambda_{\ell} u^{n^{\ell}}\right)_{\ell \in L}$ in $k\left[u_{1}, \ldots, u_{N}\right]$. The monomial u^{m} corresponds to a point m in the lattice $M \simeq \mathbf{Z}^{N}$, and $\lambda_{\ell} \in k^{*}$. The vectors $m^{\ell}-n^{\ell} \in M$ determine dual hyperplanes H_{ℓ} in the real vector space $N_{\mathbf{R}}$ generated by the dual lattice $N \simeq \check{\mathbf{Z}}^{N}$ of M. The intersections with the first quadrant of these hyperplanes determine a fan Σ_{0} subdividing the fan whose maximal cone is the first quadrant. The strict transform of X_{0} by the corresponding birational map $\pi\left(\Sigma_{0}\right): Z\left(\Sigma_{0}\right) \rightarrow \mathbf{A}^{N}(k)$ of normal toric varieties is the normalization of X_{0}. The strict transform of X_{0} by a birational toric map $\pi(\Sigma): Z(\Sigma) \rightarrow \mathbf{A}^{N}(k)$ corresponding to a regular fan Σ subdividing Σ_{0} is non singular and transversal to the toric boundary. Such subdivisions provide embedded pseudo ${ }^{1}$ resolutions of X_{0}. The fan Σ can be chosen so as to contains the regular faces of the weight cone $\beta=\mathbf{R}_{\geq 0}^{N} \cap\left(\bigcap_{\ell} H_{\ell}\right)$, and then $\pi(\Sigma)$ is an embedded resolution.

One may wonder whether such toric maps also (pseudo) resolve the spaces obtained by suitable deformations of the binomial equations. This question comes from the basic observation of [5]: Given a local integral domain R with maximal ideal m and a rational valuation of R corresponding to an inclusion $R \subset R_{\nu}$ of R in a valuation ring R_{ν} of its field of fractions, such that $m_{\nu} \cap R=m$ and $R / m \rightarrow R_{\nu} / m_{\nu}$ is an isomorphism, we have a faithfully flat specialization of $\operatorname{Spec} R$ to the affine toric variety (which may be of infinite embedding dimension) corresponding to the associated graded ring $\operatorname{gr}_{\nu} R=\bigoplus_{\phi \in \Phi} \mathcal{P}_{\phi} / \mathcal{P}_{\phi}^{+}$of R with respect to the filtration associated to ν, where $\mathcal{P}_{\phi}=\{x \in R \mid \nu(x) \geq \phi\}, \mathcal{P}_{\phi}^{+}=$ $\{x \in R \mid \nu(x)>\phi\}$. The fact that ν is a rational valuation implies that $\mathrm{gr}_{\nu} R$ is a k-algebra and each homogeneous component is a vector space of dimension 1 over k. There is therefore a presentation $\operatorname{gr}_{\nu} R=k\left[\left(U_{i}\right)_{i \in I}\right] /\left(U^{m^{\ell}}-\lambda_{\ell} U^{n^{\ell}}\right)_{\ell \in L}$ where U^{m} denotes a monomial, $\lambda_{\ell} \in k^{*}$, the sets I and L may be infinite, but countable.

We note that the degrees which actually appear in the graded algebra are the valuations of the elements of R, which form a subsemigroup of the semigroup $\Phi_{+} \cup\{0\}=\left(R_{\nu} \backslash\{0\}\right)^{\text {mult. }} /\{$ units $\}$ of non negative elements of the (totally ordered) value group Φ of ν. In fact $\operatorname{gr}_{\nu} R$ is isomorphic to the semigroup algebra over k of the semigroup $\Gamma=\nu(R \backslash\{0\})$. If R is noetherian the semigroup Γ is well ordered and therefore has a unique minimal system of generators, indexed by an ordinal,

[^0]which is at most ω^{h} where h is the (archimedian, or real) rank of the value group. By transfinite induction one defines γ_{i+1} as the smallest non zero element of Γ which is not in the semigroup generated by the previous ones.

Let us concentrate on the case where the semigroup Γ is finitely generated and R is a local equicharacteristic and complete noetherian domain with an algebraically closed residue field k. Pick and fix a field of representatives $k \subset R$. Then R appears as an overweight deformation of its associated graded ring, in the sense of [6]: there is a continuous and surjective map of k-algebras

$$
k\left[\left[u_{1}, \ldots, u_{N}\right]\right] \xrightarrow{\pi} R, \text { determined by } u_{i} \mapsto \xi_{i},
$$

for any choice of elements $\xi_{i} \in R$ whose valuations are the minimal generators of the semigroup Γ or equivalently are such that their initial forms minimally generate the k-algebra $\operatorname{gr}_{\nu} R$. Giving to u_{i} the weight $\gamma_{i}=\nu\left(\xi_{i}\right) \in \Gamma \subset \Phi_{+} \cup\{0\}$ determines a weight w on $k\left[\left[u_{1}, \ldots, u_{N}\right]\right]$, with its filtration by weight and the associated graded ring $\operatorname{gr}_{w} k\left[\left[u_{1}, \ldots, u_{N}\right]\right] \simeq k\left[U_{1}, \ldots, U_{N}\right]$, now graded by the weight: $\operatorname{deg} U_{i}=\gamma_{i}$. Moreover the valuation ideals of R are the images by π of the weight ideals of $k\left[\left[u_{1}, \ldots, u_{N}\right]\right]$ and so the map π induces a surjection of graded k-algebras

$$
k\left[U_{1}, \ldots, U_{N}\right] \xrightarrow{\mathrm{gr}_{w} \pi} \operatorname{gr}_{\nu} R, \text { determined by } U_{i} \mapsto \mathrm{in}_{\nu} \xi_{i},
$$

whose kernel is a binomial ideal $\left(u^{m^{\ell}}-\lambda_{\ell} u^{n^{\ell}}\right)_{\ell \in L}$; it is essentially the presentation of the semigroup algebra of Γ over k which corresponds to an affine toric variety X_{0}. By flatness the kernel of π is generated by series $F_{\ell}=u^{m^{\ell}}-\lambda_{\ell} u^{n^{\ell}}+\sum_{p} c_{p}^{(\ell)} u^{p}$ with $c_{p}^{(\ell)} \in k, w\left(u^{p}\right)>w\left(u^{m^{\ell}}\right)=w\left(u^{n^{\ell}}\right)$, for $\ell \in L$, a finite set. Let us call X the formal subspace of $\mathbf{A}^{N}(k)$ defined by the ideal $I=\left(F_{\ell}\right)_{\ell \in L}$; it is an overweight deformation of the affine toric variety X_{0}.

For a regular fan Σ with support the first quadrant of $\check{\mathbf{R}}^{N}$, the corresponding birational toric map $Z(\Sigma) \rightarrow \mathbf{A}^{N}(k)$ is described in each chart $Z(\sigma)$ corresponding to a maximal cone $\sigma=\left\langle a^{1}, \ldots, a^{N}\right\rangle$ of Σ, where $a^{j} \in N$, by

$$
\begin{aligned}
& u_{1}=y_{1}^{a_{1}^{1}} \ldots y_{N}^{a_{N}^{N}} \\
& \cdot \\
& \cdot \\
& \cdot \\
& u_{N}= \\
& \cdot \\
& y_{1}^{a_{N}^{1}} \ldots y_{N}^{a_{N}^{N}}
\end{aligned}
$$

and the valuation ν of R picks a point in the strict transform of X. A combinatorial argument explained in [8] shows that one can find regular fans Σ subdividing the fan Σ_{0} corresponding to the initial binomials of the F_{ℓ}, and such that for appropriate $\sigma \in \Sigma$ the transforms of the F_{ℓ} can be written

$$
\begin{aligned}
& F_{\ell} \circ \pi(\sigma)= \\
& y_{1}^{\left\langle a^{1}, n^{\ell}\right\rangle} \ldots y_{N}^{\left\langle a^{N}, n^{\ell}\right\rangle}\left(y_{1}^{\left\langle a^{1}, m^{\ell}-n^{\ell}\right\rangle} \ldots y_{N}^{\left\langle a^{N}, m^{\ell}-n^{\ell}\right\rangle}-\lambda_{\ell}+\sum_{p} c_{p}^{(\ell)} y_{1}^{\left\langle a^{1}, p-n^{\ell}\right\rangle} \ldots y_{N}^{\left\langle a^{N}, p-n^{\ell}\right\rangle}\right) .
\end{aligned}
$$

The point is to find fans for which the inequalities $w\left(u^{p}\right)>w\left(u^{n^{\ell}}\right)$ induce inequalities $\left\langle a^{i}, p-n^{\ell}\right\rangle>0$. The largest torus-invariant charts of $Z(\Sigma)$ in which the strict transform meets the toric boundary correspond to cones σ of Σ whose
intersection with the weight cone β is of maximal dimension $r=\operatorname{dim} R$. The variables $y_{i_{j}}, 1 \leq j \leq r$ corresponding to the vectors $a^{j_{i}} \in \beta$ do not appear in the transformed binomials $y_{1}^{\left\langle a^{1}, m^{\ell}-n^{\ell}\right\rangle} \ldots y_{N}^{\left\langle a^{N}, m^{\ell}-n^{\ell}\right\rangle}-\lambda_{\ell}$ and can be taken as local coordinates on the strict transform of X. In fact, at the point picked by the valuation, this strict transform is a deformation of the strict transform of X_{0} and hence non singular. In summary:
Theorem: Given a rational valuation ν on a complete equicharacteristic local domain R with an algebraically closed residue field k, if the semigroup of values $\nu(R \backslash\{0\})$ is finitely generated, say by N generators, there is a continuous surjection $k\left[\left[u_{1}, \ldots, u_{N}\right]\right] \xrightarrow{\pi} R$ such that some of the toric modifications of $\mathbf{A}^{N}(k)$ in the coordinates u_{i} which resolve the singularities of the toric variety corresponding to $\operatorname{gr}_{\nu} R$ also produce an embedded local uniformization of the valuation ν on the space $X \subset \mathbf{A}^{N}(k)$ corresponding to R.

In the situation of the theorem, by flatness of the deformation, the valuation ν is Abhyankar, which means in this case that the Abhyankar inequality $\operatorname{dimgr}_{\nu} R \leq \operatorname{dim} R$ (see [5]) is an equality. Since local uniformization for Abhyankar valuations of algebraic function fields has been proved by Knaf and Kuhlmann in [4], it is natural to ask whether in general the Abhyankar condition implies that the semigroup Γ is finitely generated. An attempt to prove this is in progress. Combined with the theorem above it would have as consequence that the Abhyankar valuations are exactly the quasi-monomial ones, a fact proved by Cutkosky for valuations of rank one using embedded resolution of singularities (see [1], Prop. 2.8).

References

[1] L. Ein, R. Lazarsfeld, and K. Smith, Uniform approximation of valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409-440.
[2] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin, 1973
[3] P. D. González Pérez and B. Teissier, Embedded resolutions of not necessarily normal affine toric varieties, C.R. Math. Acad. Sci. Paris 334 (2002), no. 5, 379-382.
[4] Hagen Knaf, Franz-Viktor Kuhlmann, Abhyankar places admit local uniformization in any characteristic, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 6, 833-846.
[5] B. Teissier, Valuations, deformations, and toric geometry, Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun., vol. 33, Amer. Math. Soc., Providence, RI, 2003, 361-459.
[6] B. Teissier, Overweight deformations of weighted affine toric varieties, Oberwolfach Workshop on Toric geometry, January 2009. Oberwolfach Reports, Vol. 6, No.1, 2009. European Math. Soc. Publications.
[7] B. Teissier, A viewpoint on local resolution of singularities. Oberwolfach Workshop on Singularities, September 2009. Oberwolfach Reports, Vol. 6, No. 3, 2009. European Math. Soc. Publications.
[8] B. Teissier, Overweight deformations of affine toric varieties and local uniformization, submitted.

[^0]: ${ }^{1}$ This means that the restriction over the non singular part is not necessarily an isomorphism.

