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Introduction

From the table of contents, the reader might have gathered the impression
that what is presented here is a survey, a medley, or even a motley of results
on singularities.

However, I hope that those who read the text will agree that on the
contrary, it is entirely devoted to the illustration of a single idea:

‘Primitive invariants of the discriminant D of a map yield rather subtle
invariants of the fibre of the map.’

For the purposes at hand, let us agree to a primitive invariant of a germ of
a complex hypersurface (D, 0)<{(C™*", 0), being the Newton polyhedron in
some coordinates of the restriction of an equation 8(v, t, -+ - t,)=0 of D to
an i-plane in (C™*', 0) through the origin. The simplest primitive invariant
in this sense is the multiplicity of D, corresponding to i=1 and a line
transversal to D. The next simplest is the Newton polygon of a plane section
of D (see §3) and this is what we study here in the case where D is the
discriminant of a miniversal deformation of a hypersurface with isolated
singularity (Xg, 0)< (CV, 0), (i.e. our map is in particular stable).

In fact, it has been an open problem for some time to understand to what
extent the geometry of the discriminant determines the geometry of (Xo, 0).

The real-analytic version of this problem is important in the theory of
catastrophes of Thom, and problems of a related nature appear in the Jung-
Zariski-Abhyankar approach to resolution of singularities (by resolving the
discriminant of a projection) (see [1]) and in Zariski’s theory of equisingu-
larity. ([5]).

This problem is at least partly solved here in the special case where
(X, 0) is a plane branch since it is shown, using a theorem of Merle, that the
Newton polygon of a general vertical plane section of D (see 5.5.7) is a
complete invariant of the equisingularity class of (X,, 0), i.e. in this case, of
its topological type. In particular, one can compute the Puiseux characteristic
exponents of (X, 0) from the inclinations of the edges of this polygon. Of
course this case is only the basic test for any theory of invariants of
equisingularity, and in the general case the conclusion is not so clear-cut, but
we show that one can read from the Newton polygon of a general vertical
plane section of D such interesting invariants of (X, 0) as the smallest
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integer a such that if f(z), - -, zy)=0 defines X, any geCiz, -, zn}
such that g—fe(zy, -, 2x)*"" defines, by g=0, a hypersurface equisingu-

lar with X;, 0),—or the diminution of class which the presence of a singular-
ity isomorphic to (Xj, 0) would impose on a projective hypersurface. Fur-
thermore, this Newton polygon is an invariant of equisingularity, as we define
it {(see below).

It might seem that all this is not of great practical utility since the
equations of discriminants are very hard to compute, but our method also
yields a way of computing these Newton polygons which T have found quite
usable in practice.

From a geometric viewpoint, what is done here is to take a dynamic view
of Morse theory: the Newton polygon mentioned above can also be deemed
to describe the various ‘speeds’ with which the (coordinates of the) quadratic
critical points in a generic morsification v = f(z,, - - + , zx)+ u (XY o,z )(e; €C)
of an equation of (X, 0) vanish to 0 with the parameter of morsification u.
It is perhaps a pleasant surprise that in the case of a plane branch these
speeds suffice to completely determine the topology of the function f(z,, z.),
and conversely.

From a formal viewpoint, what we do is this: we introduce on the set of
germs of hypersurfaces an equivalence relation: {(c)-cosécance (see 2.19),
which is our working definition of equisingularity. Two (c)-cosécant germs of
hypersurfaces with isolated singularity are topologically equivalent, as well
as all their general plane sections. Then, on the set $s of (c)-cosécance
classes of isolated singularities of hypersurfaces we introduce an operation
[Xo], [X1]~[Xo]1 [ X,], which is induced by the Thom-Sebastiani operation:
if X (resp. Xi) is defined by fo(zy, -+, 2x) =0 (tesp. fulwy, -+ -, war)=0)
then [Xp]L[X;] is the (c)-cosécance class of f(zy, -+, zn)~
g{wy, -+, wp)=0. The Milnor number gives us a map u:9s— Z, (where
the subscript 0 indicates the non-negative part) satisfying ;J.([XU]J.[Xl])
nw((Xo]) - w (X ]).

What we do here is to construct a new ring N, the ring of special Newton
polygons and to factor this map p by a ‘Jacobian Newton polygon map’ v;:

(Ns)o

SN

where [ is the length of honzoutal projection of a Newton polygon (see 3.6)
and v; satisfies

Vj([X{J]J- [X:]) =_“:([Xo]) v, (D))
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where * is the product of Newton polygons defined in 3.6, and the datum of
v; is equivalent to the datum of the Newton polygon of a general vertical
plane section of the discriminant D of & miniversal deformation of (Xo, 0)
{see 5.17).

We remark that p and w; are given by the two simplest primitive
invariants of D, since p is the multiplicity of D (see 5.5.2). What happens
for the higher-dimensional primitive invariants of D is, as yet, unknown to
me.

These notes therefore contain material which I believe to be essentially
new, but since their aim is partly pedagogical, I decided to include not only
the notions and results which I had found necessary to understand what 1
was doing, but also some illustration of them, to help their assimilation.

For example, to compute invariants from sections of the discriminant, it is
indispensable to have a definition of the discriminant compatible with base
change. Since the discriminant is— by definition ~ the image of the critical
subspace, we are led towards a definition of the image of a finite map which
is compatible with base change. In other words, finding a procedure of
elimination stable enough to be computable. This is the subject of §1. The
discriminant D has the structure of an envelope, in the sense of [4]. Since
this fact, although not of direct use to us, is of importance in the study of the
geometry of D, we go a little into this in §2, and this gives the idea of our
method of exposition. This method has the disadvantage —apart from the
lengthening of the text— of provoking brutal changes in the level of exposi-
tion, of which I must warn the reader.

e
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§1. Fitting ideals

In this section we will give the definition and elementary properties of
Fitting ideals, which we will use later to give a definition of the image, as a
complex analytic space, of a finite map between complex analytic spaces. We
then.give a definition of the resultant ideal of two polynomials as a Fitting
ideal, and as an application give a proof of Bezout’s theorem.

Let A be aring, and let M be an A-module of finite presentation, that is,
M is the cokernel of an A-linear map between two free A-modules of finite
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rank, or if you prefer, there is an exact sequence, called a presentation of
M:

AT L AP S M0

where p, geN. For each integer j we associate to M the ideal F(M) of A
generated by the (p—j)x(p—j) minors of the matrix (with entries in A)
representing . Here we need the convention that if there are no (p—j)x
(p—j) minors because j is too large, i.e. j=p, then F(M)=A (the empty
determinant is equal to 1) and if, at the other extreme, p—j>gq, set
F;(M)=0 (the ideal generated by the empty set is 0).

A theorem of Fitting (for a proof see [1] p. 5 where the F;(M) are called
aj(if)) asserts that F;(M) depends only on the A-module M and not on the
choice of a presentation. We call it the jth Fitting ideal of M.

More generally, if (X, x) is a ringed space, and ./{ a coherent sheaf of
Ox-modules, we can define a sheaf of ideals %;(.#{) of Ox, by defining F; (/)
locally as above, and then by uniqueness the ideals found locally patch up
into a sheaf of ideals. Remark also that since % {#) is locally finitely
generated, ;{A4f) will be a coherent sheaf of ideals as soon as Ox is
coherent, e.g. for a complex analytic space by Oka’s theorem.

One important fact about Fitting ideals is that ‘their formation commutes
with base change’ as one says. The idea is that if you have (X, 0x) and a
coherent 0x-module ., then for any map f:(Y, @v) — (X, 6x) we have that
Fi(f*4) = %;(M#)0y, where this last expression means, here and in the
sequel, the ideal in @'y generated by the image of the canonical map, from
fHF (M) t8° Oy = f*Ox coming from the inclusion % (M)<Ox. Algebrai-
cally, it means that for any A-module M of finite presentation, and any
ring-homomorphism g: A— B, we have F,(M @& , B)=ideal generated by
g(F;(M)) in B, which is denoted by F;(M)B. (this is immediate from the fact
that tensoring a presentation of M by B gives a presentation of M ®,4 B). In
particular, for any maximal ideal m in A we have that F;(M) <o if and only
if dimay., M ®4 Afm > | since the jth Fitting ideal of M &4 Afm is either 0
on Afm depending upon whether the map  of A/m-vector spaces in the

exact sequence: (A/m)? LN (Afm)* — M ®, Alm — 0 (obtained by tensor-
ing a presentation of M by A/m) is of rank <p—j or not, i.e. M &, Alm is
of dimension > or not.

Geometrically, we think of this as follows: a coherent sheaf of modules £
on a complex-analytic space (X, Ox) is the sheaf of sections of a mapping of
complex analytic spaces p:L(#)— X such that for any xeX, p~'(x)=
M, ® Ox.mx, is a finite dimensional vector space over Ox.fmx,=C,
and a section is a holomorphic map o:X — L{) such that p e ¢=idx.
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Note that if 4 is not locally free, the dimension of p~*(x) as a vector space
can vary with x, and since F;(#). = Fi(4(,) (as an Oy ,-module) we have that
the set underlying the analytic subspace V{(%;(#)) of X defined by the
coherent sheaf of ideals () is:

| V{F ()| = {x e X{dim p~"(x) > j}.

Let now f:(X,0x)— (Y,0y) be a map of complex analytic spaces. We
would like to define the image of f as a complex analytic subspace of
(Y, Cy). This is not always possible, and in particular if one hopes to get a
closed complex subspace of Y it is better to assume f is proper, and here we
will consider only the case where f is finite (= proper and with finite fibres).

By theorems of Grauert, the direct image sheaf {0 is then a coherent
sheaf of Oy-modules, and its formation commutes with base change, i.e. for
any complex analytic map h:Y' — Y

k
X=X, XY — X

Y
P B
Y-y v

we have, in the above cartesian diagram of base change, that fi€x = h*f.0x
(see [Cartan Seminar] 60-61, p. 15, cor. 1.6).

Now a basic requirement for the definition of the image is that again its
formation should commute with base change, i.e.

imf=h""im (f))  as complex spaces

The first sheaf of ideals that comes to mind as a candidate to define f{X)
is the sheaf of functions g on Y such that g = =0 on X i.e. the annihilator
sheaf

Anng, (fx0x)=sheaf {functions g on Y such that g - fo¥x =0}.

This is rnot a good choice because its formation does not commute with
base extension, as we will show by an example below.
- The second try is the Oth Fitting ideal of fuC'x, which set theoretically
describes also the image of f, since the subspace of Y defined by it, as a set

is {y e Y| dime (f20x)(y) > 0}={y € Y | (fu0x), # 0}.

Now since, as we have seen, both the formation of direct images and the
formation of Fitting ideals commute with base change, in any case we know
that the formation of the imape, with this definition will also. So we set:
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Dernrmion. Let f:X— Y be a finite morphism of complex analytic
spaces. The image of f is the subspace of Y defined by the coherent sheaf of
ideals F;(f:0x).

Lemma. The formation of im (f) commutes with base change. Proof:
9'_0(f§k@x') = ‘%'_D(h*f*ﬁ'x) = g:n(f*g‘x)ﬁv»
Remark. Cramer's rule tells us that always Ann fu0x 2 Fo(fx0x),

ExameLE. Let f:(C,0)— (C% 0) be given by x=1r* y=r* for some
integer k. Clearly the set-theoretic image of f is the eurve y*—x*=0.
However, we wish to obtain an ideal defining a space supported on that
curve, but possibly with nilpotent functions. To compute Fo(fx(0c) we will
look locally near 0, and therefore compute Fy(fi: Oc)o as the Oth Fitting ideal
of C{s} considered as C{x, y}-module via the map of rings C{x, y}— C{t}
sending x to ** and y to **. We must therefore write a presentation of C{t}
as C{x, y}-module. Let eg=1, e;=1,+ -+, egp—y = > . It is easily seen that
they form a system of generators of C{¢} as C{x, y}-module, and that between
them we have the following 2k relations:

2 —

Xe, — yep =0 X eq— yei =0
2 —_

XEr41— YE1 =0 X781~ Ver41 =(}
’ EP —

xez-1—Ye-1=0 X e_1—yesn-1=0

which are obviously independent.
Hence we_ have a sequence of C{x, y}-modules.

ak—1 2fe—1

0—> @ Cfx,yla—> @ Cix, yle——C{}—0
i=0 i=0

with @(e;)=t, and where W is given by the matrix

X B
£_y 0 0 O\ r N 0—|W
0 -y 0 0 x Lk
0 ) -y J
y=| = 0 -y 0]
0 x?
vk
0
0 x* -y
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We give it as an exercise to check that the sequence is exact, for there is a
general reason why C{t} must have such a resolution of length 1 as
C{x, y}-module (see §3, 3.5).

By permuting tows and columns of  one checks that det iy = (y*—x")*
i.e. we have shown that -

Fo(fs0c)o= (}’2 - xa)kc{x, v

Let us now calculate Anncy, 4, C{t}. Since 1eC{1}, the annihilator is just the
kernel of the map C{x, y}— C{t}, which is the ideal generated by (y*—x?},
certainly different from our Fitting ideal if k> 1.

Let us now make a base change by restricting our map over the x-axis, i.e.
by the inclusion {y = 0} < (C?, 0) or algebraically by C{x, y}— C{x} sending y
to 0. Then C{f} @y C{x} =C{t}/(+**) viewed as C{x}-module via the map
sending x to £, Then, the annihilator of this C{x}-module is (x*)C{x} while
the image in C{x} of (y*—x*)C{x, y} is (x*)C{x}. This shows that the forma-
tion of the annihilator does not commute with base change.

We will now construct the resultant of two polynomials as a Fitting ideal.
As an application we will prove Bezout’s theorem.
Let A be a ring and let P, Qe A[X] be two polynomials:

P=pg+p1X+‘ ' "{'p".Xrl
Q=CI0+Q'1X+ e +q"le

We will assume that p, and q,, are units in A. The resultant R(P, Q) will be
an element in A, satisfying the following property:
For any field K and any homomorphism

¢:A— K, the polynomials o(P), ¢(Q)ec K[X]

have a common root in an extension of K if and only if ¢(R(P, Q))=0.

Here ¢({P) denotes the polynomial ¢(py)+ @(p )X+ - ¢(p,) X" e K[X].
Remark first that the A-module M = A[X, Y]/(P, Q) satisfies M ®, K=0if
and only if ¢(P) and ¢(Q} have no common root in any extension of K. In
fact, they do not have a common root if and only if we can find an extension
K’ of K and polynomials S, T K'[X] with

1=38¢(P)+ Te(Q)
which clearly is equivalent to A[XJ/{(P, Q)®, K=0.

Note. The existence of such an element R(P, Q)e A is not at all clear a
priori, and anyway if it exists the properties we ask of it will aiso be satisfied
by UR(P, Q), where U is any invertible element of A. Therefore what we
can see a prior, is that we can hope to define a resultant ideal in A, and
then prove it is a principal ideal, which is what we do below.
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The geometric meaning of the resultant is the following. Let A corre-
spond to a space S, i.e. let A be the ring of germs of holomorphic functions -
at a point se€S. Then A[X] corresponds to the space §xXC. Denote by ‘
m:SXC— § the projection.

The polynomials P, Q define hypersurfaces V(P) and V(Q) in SXC. Let
mc A be the maximal ideal, and let ¢: A — A/m be the canonical map.
Then ¢(P) and ¢(Q) have a common root if and only if V(P)N V(Q)
intersects the fibre 7 *(s), that is s € w#(V{(P)N V(Q)). Thus by the property
above the resultant should be a defining equation for the image of V(PN
V(Q) by . This motivates the following definition.

Dermnion. Let M be the A-module M= A[X]/(P, Q). We define the |
resultant ideal of P and Q as F(M)< A, |

Lemma. Fo(M) is a principal ideal. .
(In fact we will by abuse of language call any generator of Fo(M) the
resultant of P and @ and write it R(P, Q).)

Proor. We will write down a presentation of M as an A-module, namely
A[X]I(P) > A[X]I(P)— A[XTI(P, Q)—> D

Where ¢ is multiplication by Q, that is ¢, (a)= Qa, where the bar means
reduction modulo (P). Now as the highest-coefficient of P was invertible,
A[XY(P) is a free A-module of rank n. Thus we have a finite presentation
and moreover ¢ is represented by a square matrix so Fo(M) is generated by
its determinant.

We could use other presentations too, for example:
AXVXMBAX)(X™)— A[XINP - Q)— A[X]/(P- Q)= 0
(d, b)— aQ+ bP

or the presentation coming from the ‘chinese exact sequence’ (i.e. Chinese
remainder theorem)

A[XIHP - Q)= A[XW(P)RA[X](Q)— A[X]/(P,Q)— 0
a—{a, a) a B
(@, b)—a—b

where the bar indicates reduction modulo the ideal in question.
The natural ring in which to treat the resuitant is the following

ﬂ—z[ [ p q P L L]
Po: s Pnr HOs JQnu p":qm

where the p, and gq; are indeterminates.
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In the ring [ X] we have the two polynomials # and 2 of degree n and
m respectively given by

P=potp X+ +pX"
D=got+q: X+ +g. X"

They have the following universal property: Take any ring A and any two
polynomials P, Q € A[X] of degree n and m, and suppose that their highest-
degree coefficients are invertible in A. Then there exists a unique
homomorphism ¢:5f— A with ¢(P)=P and ¢(2)=Q. It is given by
sending p; to the coefficient of X' in P and g; to the coefficient of Xin Q.

The ring & has a grading given by degree p,=n~i and degree g;=m—|.
If we give X the degree 1, the polynomials ? and 2 are homogeneous of
degree m and n respectively for the corresponding grading of «[X].
Moreover if the ring A above is graded and P and Q are homogeneous, the
homomorphism ¢ will be homogeneous of degree 0.

Lemma 0. In the situation described above, the resultant R(P, 2)ed is
homogeneous of degree mn (i.e. the resultant ideal is homogeneous and
generated by an element of degree mn).

To prove this we need a lemma on graded modules. Let A be any graded
ring and let » be an integer. We define a graded A-module A{»). As an
A-module it is just A itself, we change only the grading by giving 1 the
degree ». That is, for any homogeneous element x € A, its degree in A(») is
v+ (its degree in A).

Lemma 1. For any homogeneous homomorphism of degree 0:
g q
@ A~ DA).
= =

[This represents just a graded homomorphism between two free A-modules,
graded as indicated] the Fitting ideals F, (coker i} are homogeneous.
Moreover,

deg (det )} = _;lef - _;lf,-.

Proor. Let i be represented by the matrix (if;). By writing what is
happening to a basis element in @}, A{e) it is easily verified that iy is
hoemogeneous of degree & —f. In the expansion of det () each term is a
product ;. Wi, Wi, . g where each ie{0,---, g} and each je
{0,--+, g} appears exactly conce. Hence it is homogeneous of degree
e =23 f=Yl,e—Y}-1f. Thus we have proved the part of the
lemma concerning det .



576 Bernard Teissier

As F, (coker ) is generated by minors of ¢, the same argument shows
that it is homogeneous.

To calculate deg R(P, ) we go back to our presentation:
ALXV(P) = A[XW(P) — A[X](P, 2)— 0

The free «f-module A[X]/(?) has a basis 1,X, X~ -, X" We will
assign degrees to this such that the muitiplication by 2 becomes homogene-
ous of degree 0, that is, as X'2 has degree m + i, we must give X' the degree
m+i Hence e=m-+i and f=j which gives deg(R(P 2))=
Y (m+i)—Yi—, i=nm.

Exercise. Check this computation using the other presentations of
A[XTN(P, 2).

Now we will, as an application, give a proof of Bezout’s theorem.

Tueorem. Let Ci, C;=P*(C) be two curves defined by homogeneous
polynomials P and Q of degree n and m. Suppose they have no common
companent. Then

mn= ), dimc (Gos ,/(P, Q)0pa)-
yep?
In the proof we will need another lemma, very similar in nature to Lemma
1 above:

Lemma 2. Let A =C{t} and let v be its valuation. Suppose that f: A" — AP
is an homomorphism whose cokernel is of finite length, i.e. a finite dimensional
vector space over T. Then

v(det i) = dimg {coker ¥).

Proor. By the main theorem on principal ideal domains we can find bases
for A" such that the matrix representing i is a diagonal matrix:

a4 0

| O a,
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Clearly v(det ¢#) =Y v{a,} and
dim (coker /) = ), dime (A/@:A)

Hence we may assume p = 1. Then ¢ is just multiplication by an element a.
If v(a)=n, we can write a=ut" with u a unit. One easily checks that
1,62, is a C-basis for AJaA=C{}/(ut")C{f}. Hence wv(a)=
dim. A/aA.

We will now prove Bezout’s theorem. Let A =C[x;, x;] and let P, Qe
Alxo] be the two homogeneous polynomials defining the curves C; and C,.
We can write

P:

Dlaes

pi(x1, X2)x5 deg pi(xy, xz)=n—i

Q:

1

gi{xy, x2)xh  deg qlxi, xa)=m—j

i

After a change of coordinates, we may assume that p,(x;, x») and g,,(x1, x2)
are non-zero, that is invertible in A. Geometrically this means that the point
(1,0,0) is not on any of the curves C; and C,. There exists then a
homogeneous homomorphism of degree 0, ¢ :sf = A with o(?)=P and
¢(2)= Q. Clearly ¢{R(P, 2)= R(P, Q), and we obtain: If R(P, Q)=0, then
deg (R(P, Q))= mn. (as a polynomial in x,, x.).

I leave it as an exercise to check, using the factoriality of polynomial rings
over C, that if R(P, Q)=0 then P=0 and Q=0 have an irreducible
component in common.

But the fundamental theorem of algebra can be subsumed by the follow-
ing formula:

Let R C[x,, x;] be a homogeneous polynomial of degree d, and for every
point x = (&, £2) eP'(C), let us denote by Op: . the local ring of P'(C) at x, i.e.
the ring of all fractions S(xj, x5}/ T{x,, x;) with T and S homogeneous
polynomials and T(%,, %)+ 0. This is a discrete valuation ring, and we
denote by v.(R) the valuation of the image of R in this ring, i.e. R/1. Then:

d= Y v.(R)
xeP(C)
where of course the sum on the right is finite since v, (R)# (0 only if
Rz, 5)=0. .
Let us now consider the projection m: P*{C)\{(1, 0, 0)} = P'(C) given by
(%0, X1, X2} —> {x1, X2). For each point x€P' there are finitely many points
y € C; N Cs such that w(y}=x, and since R(P, Q) is the ideal Fp{0e:/{P, Q))
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it follows by localization that

R(P, Q)0p .= Fﬂ( D O, /(P Q)Gp“.v)

wiyl=x

50 that by our Lemma 2 above i

2 (RP, Q)= ), dimeOr,/(P, Q)0e,
wly)l=x

and by summing up and using the fundamental theorem of algebra, and
Lemma 1 above, we obtain Bezout’s theorem. Remark that in Bezout's
theorem the right-hand side is a sum of local terms, called the intersection
multiplicity of C; and C, at yeP? and usually noted (G, &)y or
i(C,, C;, P, y). Bezout’s theorem provided the first and most basic exam-
ples of computation of local and giobal intersection multiplicities. Remark
also that we deduced Bezout’s formula from its analogue in P', which is:
deg R =Y, v.(R), only by using a good definition of the image. Anyway,
the formula can easily be generalized by these methods to the case of n
hypersurfaces in P".

Exercises on images

Exercise 1. Check that if Y—i-—> X is a closed immersion, defined by a
sheaf of ideals I, then the image of i is Y.

Exercise 2. Let Y; and Y, be two closed subspaces of X defined
respectively by I, and L. Then the image of the natural map p: ¥, I Y; > X
is the subspace defined by I1I;, and therefore in general different.from
Y, U Y,, which is defined by LN L (which is the annihilator ideal of ‘

p$0Y.uY,)-

Remark. If you are surprised by this, think of mapping the two points in
C* with coordinates (x=0,y=1) (x=0,y=2) to the x-axis. The image
should be defined by (x%)C{x} since as soon as you move the points a little,
you get two distinct images.

Addendum

In what follows, I shall use the definition of the image of a finite map
f:X =Y of complex analytic spaces only in the case where f is not
surjective. In general, my definition of the image does not have the property
that if g: Y — Z is another finite map, then im(g © f) is the image by g of
im(f). To see this, Jet us consider a finite map h:X— Z such that
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Fo(h:0x) # Anne, (h40'x). We have already seen that such maps exist. Then,
let us define Y to be the subspace of Z defined by Ann,, (hOx): we can
obviously factor i as g o f where g: Y — Z is the inclusion, and f: X — Y.
Since f is surjective, Fo(f«@x)=0, hence im(f)=Y and its image by gis Y
in Z (see exercise 1 on images, §1), but by our assumption, Y is different
from the image of h = g o f, which is the subspace of Z defined by Fo(hyx).
Apparently, if we want a definition of the image which not only is
compatible with base changes, but also behaves well under composition, the
only possibility is to decide that .0 ‘is’ the image, and then to remark that
when f is not surjective, then the Fitting ideal construction associates to
fxOx a subspace of Y, in a natural way. In fact we have:

Prorosrrion. Let there be given for every A-module of finite presentation M
an ideal A, (M) of A, this correspondence satisfying the following conditions:

(1) for any ring homomorphism ¢:A — B, we have

Np(M ®A B)=U,(M)- B (compatibility with base change)

) VUL (M) =+VAnn, (M) (set-theoretically the right one)

(3) If A is a discrete valuation ring
v (M) =1ga M (lg=length)

i.e. Lemma 2 of the proof of Bezout’s theorem in §1 holds. Then W, (M)=
Fo(M) for all A and M.

Sketch of proof: given a presentation A AP M (} with matrix
#=(y), we work in the ‘universal ring’ A =Z[T;] (or C{T;} if we really
want to stay within complex analytic geometry) and consider the ‘universal
module’ 4 = cokernel of A ——> A® where the matrix of ¢ is (Ty).

Then, thanks to theorems of Macaulay (algebraic theory of modular
systems, Cambridge University Press 1919) and Buchsbaum-Rim (see §5)
we know that the subspace of Spec =A™ (or C™ in analytic geometry)
defined by the p X p minors of ¢ is reduced and all its components are of
codimension gq—p+1. In this case, then Fy(4#f)= Ann, (/). Suppose that
W (M) # Fo(AL), the subspaces they define must be the same set-
theoretically, and if they differ as spaces, we can already see it by restricting
to arcs in C* {or mapping 7Z[ T;] into discrete valuation rings). But condition
(3)+ (1) implies that W ,(#) and Fy(.#) cannot become different when we
restrict them to arcs in C™. Therefore they must be equal, i.e. W (M) =
Fo(A}. Since our original M is of course / @, A where ¢ ::d — A is the
morphism sending Tj; to ¢y, we are done.
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§2. First part: The module of differentials

In this section, we talk about differentials and non-singularity. We will
define the critical subspace {(and not just the critical locus) and the dis-
criminant subspace (and not just the branch locus) of some flat complex
analytic mappings, using Fitting ideals, and we will prove a small theorem on
discriminants.

2.1. There is a complex analytic space, usually denoted by T, which is the
subspace of the complex line C (with coordinate ©) defined by the ideal (v7),
i.e. (v®)C{v}. The underlying topological space of T is therefore just a point,
and its ‘structure sheaf’ is C{v}/(¢?). It is just an infinitesimal direction, and
for that Teason, Mumford calls it the ‘disembodied tangent vector’.

Define the Zariski tangent space Ex. of an analytic space (X, 0x) at a
point xe X as the set of complex-analytic mappings T— X having x as
(set-theoretic) image. Algebraically, it is described -as the set of morphisms
of C-algebras Ox.— C{v}/(v®), which is the same as the set of C-linear
mappings mjm* — € where m is the maximal ideal of Ox.,. This gives Ex,
its matural structure of C-vector space: Ex,, = (mfm Y.

Remark that dimg Ex .= dimg m/m” and that by Nakayama dime mfm> is

the minimal number of generators of the ideal =, which is therefore also the.

smallest integer N such that there exists a surjection of C-algebras
Clxy, - - -, xn}— Ox,. Geometrically this integer is the smallest N such that
there exists a germ of closed imbedding (X, x)<=(C",0): it is called the
imbedding dimension of X at x.

Exercise. Build singular points of curves with arbitrarily large imbedding
dimension.

Exercise. Compute the image of a morphism p:T— X as a subspace of
X, i.e. given a morphism of C-algebras @‘x'xp—‘> C{v}/(v*), compute the 0th
Fitting ideal of C{o}(v*) as Ox,-module. Hint: Use a presentation of Ox as
quotient of a convergent power series ring as above, and distinguish two
cases: p* is surjective, or not. You’ll be surprised!

2 2. It turns out that there is a coherent sheaf of modules on X which has as
fibre at x € X exactly m/m®: it is the sheaf of differentials on X. I will now
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give the construction of this sheaf not only for a space, but also for a
morphism, as we will need this later:

Let f: X — S be a morphism. For simplicity, and because we will examine
only local problems, we assume f separated, i.e. that the diagonal Dy <
XxgX is closed. Let I be the sheaf of ideals describing Px as subspace of
X xgX. Then, by definition, the module of differentials of X/8 iz I/I%, which
can be viewed as Ox.x/I-module since it is annihijlated by I I/I* becomes an
Ox-module via the isomorphism €0y —— Gx.x;r given by pT where p,: XX
X — X is the first projection.

This sheaf is denoted by Qk;s, and simply Q) in the case where S is a
point. Sometimes it is also written ().

Remark that, for any se S, Qs ®s, Ox =0 where X, =F'(s) is the
fibre of X — § over s, defined by mg 0. More generally, one can check
that ‘The formation of )y commutes with base change’ i.e. given a
cartesian diagram (or fibre-product)

x s x
fl O Tf (X'=X X5 8"
st
we have:
R Q5= Qs

Also, Qs comes equipped with a natural C-linear map dyys:0x — Qs (we
write d in the case S is a point) defined as d = pr{ — pr¥ mod I?, i.e. given a
function g: I/ — C on an open subset of X (i.e. ge (U, @x)) we associate to
g the function on U XglU which takes at (x, x')e U x5 U the value
g(x)—g(x"), and we remark that this function belongs to I, dg is its class in
I'I*. Remark that d(g - g=g-dg'+g - dg.

Now let us consider the following construction: Let Al be a coherent
& x-module. Then for any x € X| there is an open neighborhood U of x in X
such that we have an exact sequence

04— 04— M|y — 0

So the symmetric algebra Syme,, .| is a quotient of &[T, - -, T,] by an
ideal generated by elements which are linear in the T}, and finite in number.
These elements describe a ‘linear’ subspace of UUXC? (linear in the P
coordinates) which is therefore a relative vector space over U, which we call
Specan,; Syme,, . | This local construction glues up naturally, and there-
fore we can define a relative vector space Specany Symeg, Jf — X over X. (It
is the L(4) of §1.) To give ourselves a section of this is, by the universal
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property of the symmetric aigebra, to give ourselves a map J{ — Ox of
O x-modules.

Dernrrion. The Zariski tangent space of (X, Ox) is the relative vector
space Tx = Specany Syme, Ox— X.

ReMARK. We like to think of a holomorphic vector field on X as a section
of the Zariski tangent space Tx — X. Algebraically, it means an x-linear
map Q% —> 0. By composing V with d:6'x — (%, we get a C-linear map
D:0x— Oy satisfying D(g- g =g Dg-+g-Dg'. ie. a derivation of Ux
into itself. More generally, one can easily check that any C-linear map
D:0x— M satisfying D{(g-g)=g-Dg'+g -Dg (# an Ox-module) is
obtained as V-4 where V is an @x-linear map V : 0% —> A [This is the
universal property of the module of differentials {}%, or more precisely of the
differential d : @5 — Qk, it is the ‘universal derivation’]. In particular, Qx is
generated as @x-module by the dg, g € @x. All this enables us to identify the
holomorphic vector fields on X (i.e. sections of Tx — X} with derivations of
O into itself. Also, we remark that the fibre Tx(x) of Tx = X over xe X is
in fact Home (m/m?>,C) i.e. the Zariski tangent space Ex ..

Exercise. Check that the datum of an holomorphic vector field on X is
the same thing as the datum of a complex-mapping X XT— X which
induces the identity of X on Xx{0}c X XT.

2.3. Exact sequences of modules of differentials, When we have a map
f:X— S, we=expect to be able to define a tangent map Tf: Ty — Ts, or
more precisely: Tf: Tx — T X X. With our definition of Ty, and the fact
that Spec is contravariant this means we want to describe the tangent map
by: af: f*Qi— QX and indeed, there is an exact sequence of sheaves of

#x-modules
af

A0 — 0k —— Qs 0

where af is defined as follows: by linearity, it is sufficient to define af on
elements of the form £=dg ®1|veI'(V, f*(3), where ge(U, 0s) for some
open U7 of S. (This is because the dg’s generate Qf as Og-module.) Then we
define 3f(¢) as d(g - flv) € T(V, Q).

We note that 9f is not in general injective. The fact that the sequence
above is exact is often used as a definition of (%5, and it is not very hard to
check that it coincides with the definition given above.

Another important exact sequence is the following:

Suppose we have been able to imbed our mapping f:X — S locally
around a point x€X. That is, we have, after restricting (X, ’x) to some
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open neighborhood of x in X which we still write X for simplicity, a
diagram '
(X, x)c=(§x CN, §x0)

| /

(S, 5)

where X is defined in SXC™ (locally near x) by an ideal J=

(fla e :fk)G'SHCN: fl' EG‘S{ZI: T, zN}'
Then, we have an exact sequence as follows: (of Ox-modules)

(d) 1 1
Jip—— ﬂs:c‘“,'slx——’ Qxys— 0

where the map (d) is defined as follows: Let g=Y% af,eJ then, dg=
Y a; - dfi+Y da; - f; in Quems (d is actually dg.ovys here, i.e. we differentiate
only with respect to coordinates on C") is equal to ¥, a; df; modulo JO.cvs
and in particular is in JO§ucvs if aeld, ie. gel’. Now Qi.cwsx=
Q5uchysl TQE xemys s0 our map (d) is well defined.

If we choose coordinates z;,+++,zy on €V, then Qi.evs is the free
Ogsxev-module generated by the dz; (1=j=N), i.e..

N
1 —
ﬂschfs— Z OstN . de-
f=1

and the exactness of the sequence means that {}x;s is just the quotient of
Qixcvss | x by the submodule generated by the images of the df,, which is easy
to check using the universal property of the module of relative differentials
Qs, as above (for derivations of Oy into .# which are 0 on ©'g). The sheaf
J/J? is often called the conormal sheaf of X in $XC™ and the above exact
sequence is in fact a special case of a general exact sequence, where we have
Z instead of §x¢CV

N = Qs | X — Qs> 0

which is commonly called the exact sequence of the normal bundle: after
dualization, in the case §=point, and X and Z smooth, it gives the usual
sequence of sheaves coming from the sequence of vector bundles:

where Ny is the normal bundle of X in Z. -

This aspect has been peneralized to normal cones, which replace the
normal bundle in the singular case, in [Lejeune-Teissier, Normal cones and
sheaves of relative jets. Compositic Mathematica 28, 1974].
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2.4 Implicit function theorem, and simplicity theorem

Intuitively, we expect that if the Zariski tangent space Tx — X is actually
a bundle, i.e. the dimension of its fibres is constant, then X will be
ron-singular. There are actually several versions of this result, according to
whether we assume X reduced or not to start with, and whether we like to
have a relative theorem or not. Let me start with the relative theorem:

SmvpLiciTy THEOREM. Let f: X — S be a flat morphism of complex spaces,
and x € X. The following are equivalent
(i) there is an S-isomorphism of germs (X, x)=(SxC?, sx0) where s = f(x)
(i) f'(f(x)) is non-singular of dimension d at x
(iti) Qks is locally free of rank d at x.

(i.e. Tx, — X, is a vector bundle of rank d for ali s € S). In particular, taking
$ =a point, we have that: X is non-singular at x& Oy =C{z1, - - - ,‘zd}&“:) 0k
is locally free, generated by dzy,- -+, dz; at x.

We will see below that (i}¢» (ii) can be best interpreted by saying that a
non-singular germ of complex space is rigid in the sense that any flat
deformation of it (such as our f, as deformation of f'(s)) is actually locally a
product.

Anyway, let me now describe an avatar of the implicit function simplicity
theorem; first, why implicit function: suppose we have a map f (N, 0>
(C”,0). The implicit function theorem says: if the tangent map at 0 is
surjective, then f is simple, in the sense of the above result. This breaks
down into two parts

@ f is flat.

@ Qingr is locally free.

(D is a very general fact: For f: X — S and xe X, s= f(x) if the tangent
map Cy . —> Cs, (of tangent cones) is flat, then f is flat at x. If X and S are
smooth, then Cx, and Cs, are just the usunal tangent maps, and for linear
maps, flat is equivalent to surjective.

@ comes from the sequence

0L Ol — Qlyer — 0

and the surjectivity of Tf is equivalent (via the vsual Jacobian condition on
the minors of the matrix describing af as a map between locally free
modules, which is the Jacobian matrix) to the fact that df is everywhere of
rank P, so that O}~ has to be locally free of rank N-P.

Now here is the avatar of the simplicity theorem:
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ProrosiTion. Let X be a reduced complex space of pure dimension d.
Suppose that Q has a locally free quetient of rank d. Then X is non-singular
(and hence QX is in fact locally free).

Before going into the proof, let us give the geometric interpretation of this:
Even though Q is not the sheaf of sections of a vector bundle, we can

define, after Grothendieck, an associated Grassmannian space over X, G =

Grass,; Qx— X which has the property that for any x € X, the fibre is the

Grassmannian of d-dimensional subspaces of Ex,. The characteristic prop-

erty of g:G— X is that for any map h:T— X it is equivalent to give

oneself a locally free quotient of rank d of h*Qx or to give oneself a

factorization of h through G.

.+ 0 = Grass, OQx

T-" lg S h*0x—L—0
~& L locally free rank d.

X

[This is exactly right if you think of a locally free rank d quotient of 0k as a
sub-relative vector space of Ty,— X which is actually a vector bundle of rank
d, i.e. picks a d-dimensional vector space in each fibre, in an ‘analytic way’.]
In particular, g*€0} has a universal locally free quotient of rank d, corre-
sponding to the tautological bundle on the grassmannian.

Now let X”= X be the non-singular part of X. Of course, O |yo=0% is
locally free of rank d since X is purely of dimension d. Hence we get a
section ¢”: X" — G of g: G— X. By Cartan’s theorem, we can check that
the closure in G of the image of ¢° is a complex analytic reduced subspace
of G, which we call X

X1=0"0(Xﬂ).
g induces a map d: X, — X

ProrosiTion + DeFmNiTION. The induced map d: X, — X is-a proper mod-
ification of X, which is surjective. We will call it the ‘development’ of X.

Remark. For us ‘proper modification’ means a proper map, which is an
isomorphism over an open dense subset (here X°, of course). d is proper
since X, is closed in G and g is proper of course. This implies that d is
surjective, since its image is closed and dense in X.

Remark. A local version of d, presented in another manner, is often
called “Nash blowing up’. The reason why I chose another terminology is that
d, as globally defined, is not the blowing up of a coherent sheaf of ideals in
general, and also that d is the opposite operation of taking an envelope,
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which seems significant to me. This construction applied to the module of
relative differentials, has been used by Hironaka in his lectures, and he
called it ‘df-modification’.

Remark. The fibre d~*{x) is best thought of as the set of limit directions
of tangent spaces to X at non-singular points near x. (This is the meaning of
our closure operation.)

Cram. The assertion of the proposition is equivalent to.
d is an isomorphism < X is non-singular.

In effect, to say that 4 is an isomorphism, is equivalent to saying that
o?: X® — G extends to a section of g:o: X — G having then necessarily X,
as its image. But by the universal property of the Grassimannian G, this is
equivalent to saying that Q% has a locally free quotient of rank d.

Remark now that when X is a small representative of a germ of an
analytically irreducible curve, d is in fact always an homeomorphism, (the
limit of tangents at non-singular points is well defined and unique) so there
is in effect something to prove. The proof is by induction on d, and uses
the following:

Intepration of vector fields {as taught by Zariski in: Studies in equisingu-
larity I, IT Amer. Journal of Maths. 87, 1965). Let @ be a complete local ring
containing a field k of characteristic zero. Let D : ' — @ be a k-derivation of
¢ such that D@ & m where m is the maximal ideal of &. Then, there exists
x & and a subring @, of @ containing k, such that ¢ = @,[[x]]. [Translation:

If you have an holomorphic vector field which is not 0 at the origin, you can

integrate it to get an isomorphism (X, x}=(X; xC, x), at least formally.] In
fact, we could do it in the convergent case, by extending to a non-singular
ambient space and using the existence theorems of differential equations,
but I think it jempre informative to do it in the fol@ng way, as Zariski
does:

If D@2 m, we can suppose that there exists x € @ such that Dx=1, after
multiplying D by an invertible element of @. Let us consider the operator
e *P :0 — @ defined by

e P(h)y=h—xDh +% D?*h+ - +(—1)‘%D"h+ ‘e
which is in @ since & is complete for the m-adic topology. One checks that
the image of e ™" is a subring @, of & containing k and that since Dx = 1, we
have Dy =0. Furthermore, the kernel of e is x -0, so we have an
isomorphism @/, ., =0;; now, to check that the natural injection 04[[x]]c &
is surjective is easy: take h €@, and define inductively ki by: hy=Fh and
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hi_1—e P {l_1)=x - h, Then, setting i =e P () €@, we can see formally
that

h = Eu'i'x]?l'!' xzﬁz"' "t E@l[[x]].

Now back to our proposition: The assertion is local, and to prove that an
analytic algebra is a convergent power series ring, it is enough to prove that
its completion is a formal power series ring. Thus we can reduce to the case
of a complete local C-algebra, with a module of differentials having a free
quotient

0 and Qe—0%—0

Now let us choose a map 6 — @@ mapping the basis vector (1,0--0) to 1
and all others to 0. There is an element x €@ such that the image of dx in @
is invertible, so this gives us a derivation D:0 — ¢ and xe@ with Dx=1.
By the lemma, 0 =,[[x]] but now we remark, using for example the
geometric interpretation, that 7, satisfies exactly the same hypothesis as &,
and dim 0; =dim @ —1. (e.g. use the fact that d X id;: X; XC— X XC is the
development of XXC if d:X;— X is the development of X). So by
induction on the dimension, we can assume that @, is a formal power series
ring C[[xy, * -+, x2—1]], and get the proposition, provided we can prove it for
d=0, but here we use the fact that ¢ (hence @) is reduced. A reduced
analytic algebra of dimension 0 is C.

QuesTioN. If we iterate the development
X=Xy X e Xy e—Xye—- - -

does d: X+ — X; become an isomorphism for some i?

2.5. 1 hope I have now given enough motivation to define the singular
locus of X as the set of those points of X where the dimension of the fibre
Qx(x) is greater than it should be, i.e. where % has no chance of beirig
locally free. More precisely:

Dermrrion. Let X be a reduced equidimensional complex space of di-
mension d. We define the singular subspace of X by the coherent sheaf of
ideals F;{Q}%).

And similarly, the simplicity theorem for a map suggests:

DeriNrTioN. Let f: X — S be a flat map of complex analytic spaces, the
fibres of which are of pure dimension d. We define the critical subspace C of
f by the coherent sheaf of ideals F;(Qx;). Let me immediately give two
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examples:

ExampLE 1. Let feC{zp,* -, 2,} be such that f=0 defines a reduced
hypersurface, (X, 0)<(C"*',0). Using the second exact sequence of the
module of differentials, we get

I L Qhons |y —> Ok — 0

and since Qg+ is (locally) freely generated by the dz;, and (AN is free of
rank 1; this is a presentation of Q1 exactly as we need to compute a Fitting
ideal. Here the matrix of (d) is obviously {3f/8z,, * - -, df/#z,) and therefore
our F,(£}3)q is (8f/dzy, - -, 8f/02,)0x.0, as one would have wished!

ExameLE 2. Consider now f as a map C"*! — C, necessarily fiat. Then, the
1st exact sequence of the module of differentials gives us, if we take a
coordinate v on C:

0n+1 < dv _““) Z @n+1 - dz,- _> ﬂé““ﬂ:'—"" 0

since clearly QL=0:dv and f*QL=0,,,dv (here O,=C{v}, Opp1=
C{zo," -+, za])-

The map ¢ sends dv to d(v o f)= Y- (3f/8z;) dz; hence again the matrix
of W is (8ffazg, - - -, dff8z,) and we find that the critical subspace of f is
defined by (dffdzo, - ,08f182,)C{zp, - -+, 2.}, again as one would have
wished. '

Exercise. Generalize both examples to the fibre of a flat map F:C""' —
C*, and then to the map itself (i.e. compute the singular subspace of F'(0)
and the critical subspace of F) you will find the ideal generated by the
minors of the Jacobian matrix, of course. [To say that F is flat is the same as
to say that F '(0) is a complete intersection, in this case, i.e. that it is
defined by a regular sequence in @, =C{zo, " -+, Zu}.]

2.6. Given a flat mﬁp f:X— S, and since we know how to define its
critical subspace C, we can, in the case where f| C:C— S is a finite map,
define its image, which we will call the discriminant subspace of f, after §1.

Dermrrion. Let f: X — § be a flat map such that the restriction of f to the
critical subspace C of f is finite. The discriminant subspace of f is the
subspace of § defined by Fy(fafc) (Oth-Fitting ideal of fuOc).

As an example, let us compute the discriminant of f: 0 —=(C,0in
the case where it is defined, i.e. where the critical subspace defined by
(8ffdzq, + + -, Bffdz,) is finite over C, which means, looking locally around 0,
that 0 is an isolated critical point of f. Now we have to compute the Oth
Fitting ideal of M =C{z,, - - -, z,}/(8fldzy, - - - , #f/dz,) as C{v}-module. Here,
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we have no God-given resolution, but we can use Hilbert’s Syzygy theorem,
which tells us that M has a resolution of length 1 because C{v} is regular of
dimension 1: we get an exact sequence of C{v}-modules

0— C{o)* s o — M—— 0

hence g=p. But the support of M is the origin, so necessarily g=p
otherwise the support of M would be C. Hence g = p and Fo(M) = (det )=
C{v}. But remember Lemma 2 in the proof of Bezout’s theorem in §1: we
have (det )= (v"*) where g =dim. M. Hence we have:

Prorosrrion. The discriminant of f:(C", 0)— (C, 0) is the subspace of
{(C.0) defined by (v")YC{v} where

m= dlmc C{Zu, Y Zn}f(aﬁBZu, T af/azn)

is the Milnor number of f. (See Orlik’s lectures).

Exercise. Let now (X, 0)< (C""', 0) be a complete intersection with iso-
lated singularity, defined by fi, - - -, fi—1. Let fi. : (X, 0) — (C, 0) be such that
the fibre f;'(0) still has an isolated singularity. Use the same argument as
above to show that the discriminant of f, is the subspace of € defined by

(v*)C{v} where

A= dim, @:/([M}(fh ceei)elo, -, n})

a(zfp T, zl'k)

§2, Second part; The idealistic Bertini theorem

2.7. In this part, we give the definition and characterization of integral
dependence of ideals, which is a powerful tool to translate certain transcen-
dental conditions on complex analytic spaces into geometric, or purely
algebraic, conditions. We use this notion, and our space-theoretic viewpoint
on singularities, to prove a result which is algebraically much stronger than
the Bertini-Sard theorem, and then to show some connections between this
result and some equisingularity and incidence conditions, such as Thom’s Ag
conditions.

One statement of the (second) Bertini theorem, which is a complex
analytic version of Sard’s theorem on the critical values of a C~ mapping
(see K. Ueno: Classification theory of algebraic varieties, Springer Lect.
Notes No. 439, chap. 1 §4) is as follows:

Let f:X— Y be a morphism of complex analytic spaces with X reduced
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and Y non-singular (this is not essential). Then, there exists a nowhere
dense closed complex subspace B of X such that:

(i) f(B) has measure 0 in Y

(if) |Sing. X;e|= [Sing, X|N Xj,y for all xe X — B, where X =f'{f(x))
is the fibre of f through x, and |Sing, X| is the germ at x of the singular locus
|Sing X|.

Now that we have defined singular subspaces, we can ask whether this
statement continues to hold true with singular subspaces instead of just loci.
It turns out that it does not, as will be shown by an example below, but still,
considerably more than the above statement is true, which can be formu-
lated thanks to the notion of integral dependence on ideals, which I now
summarize:

Integral dependence on ideals (for proofs see [1], [2]). Let X be a reduced
complex analytic space, and let I be a coherent sheaf of ideals on X. Then,
there exists a coherent sheaf of ideals T on X, which has the following
property (and is characterized by it):

For any point x€ X, let {(gy," - *, &) be generators for the ideal I, = Ox.;.
Then, let us call I, the ideal of elements i e@x, satisfying an integral
dependence relation:

he+a, - h* '+ -+a,=0 with agel.
Then we have:

@ (D.=L

@ hel, if and only if there exists an open neighborhood U of x in X
and a constant C€R, such that h and the g converge in U (i.e. come from
elements in I'(U, 0), denoted by the same letters) and that: |[h(x")|=C.
Sup |g(x")| for all x'e U.

(B [Arcwise condition of integral dependence]
he L if and only if for any mapping of C-algebras ¢*:0x, — C{t} we have
v(@*(h))Z=min, v(e*(g) where v( ) denotes the order in ¢ of an element
of C{¢}, also known as its valuation.

@ Given U& X and heT(U, Ox), we have h eI'(U, I) if and only if there
exists a proper modification p:Z-—> U of complex spaces such that
zh op).e(I-0z). for all zeZ, where I-0z is the image in Gz of the
natural mapsp*(fjy) = p*0y = 0z coming from the inclusion I<Ox.

® hel if and only if h ‘asymptotically belongs to I’ in the sense that
there exists a v, such that k- L I*" for v = v,.

Conditions @~ can be seen to be different ways of giving a meaning to
the idea that k ‘almost’ belongs to I, which turn out to coincide. I (resp. I,)
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is called the integral closure of the sheaf of ideals I in Oy (resp. of I in
Ox.). The elements & € I, are said to be integrally dependent on I.. We see
that I, « L < VI, but I, retains a lot of information from L. which is lost
when we look at VI,

Exercise. (1) The integral closure- of the ideal (z§,---,z5) in
Clzg, "+ +, 2,1 i5 (2o, -~ -, 2o )™

(2) If a ring A is reduced and integrally closed in its total ring of
fractions, and ge A is not a zero-divisor, then (g)=(g), (for example: if
A=0x, and X is normal at x, and g is a local equation of a divisor).

(3} Check that for any feC{z, -+ -, z,} belonging to the maximal ideal,
we have: fe(zy- @ffazy), - - -, z, - (8ff82,)) in C{zg, - -+, 2.}, and hence, in
particular (since I=J=>IcJ) we have fe((affazy), - -, (8ffdz,)) always
(Hint: use (). Recall that if f=0 has isolated singularity, fe
((8ffzo), - - -, (8ffdz,)) is equivalent to the fact that U-f is quasi-
homogeneous in some coordinate system, with some invertible U7 (K. Saito:
Inventiones Math. 14, p. 123 (1971)).

Remark. L L1l i=T

2.8. Idealistic Bertini theorem

Let f: X — Y be a flat morphism of complex analytic spaces, X being
reduced and Y non-singular. Assume the fibres of f are all of pure
dimension d. Set n=dim X=d+dim Y. Then, we have: There exists a
nowhere dense closed complex subspace B of X such that;

(i} f(B) has measure 0 in Y.
(ii} F,(Qk). = F;(Q%), for all xe X~ B.

In words, the germ at x of the singular subspace of X and of the critical
subspace of f are defined by ideals having the same integral closure, outside
B.

Now let us remark that if we induce F,(Qx;v) to Oy, . we obtain the ideal
defining the singular subspace of X, i.e. F;(Qx,,). Since anyway, as one
can check by using the exact sequences, F;({ %)= F,(Q%), and since an
integral dependence relation can be restricted to a closed subspace, we see
that we have

CoRoLLARY. F,(Q%) - Ox,, = Fa{Qk,.): for all x e X — B, whereas Bertini’s
thearem quoted above can be translated by:

VE(0) - Ox,..=VF(0k ).

which is a much weaker statement, algebraically speaking.
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Proor. First, remark that the assertion is local on X, so we can replace X
by an open subset, still written X, so small that we have a commutative
diagram:

I
Xt —YxCY (closed immersion)

fl g nry

Y

where YXCV also stands for an open subset in YyECN, and i is a closed
immersion (Y also stands for an open set in Y) [recall, or admit, that a flat
morphism is open]. Now let us choose coordinates yi,-*-,¥% on Y,
zy,+++,zy on CV, and let F{y,+} 1=j=m be generators for the ideal
defining X in YxCN. Here m = N — d = codimension of X in YXC™. As we
know from the exercises in §2, F,({)3) is the sheaf of ideals in 0x generated
by the Jacobian determinants (3(F,, - -+, Fj_ D/@(¥ips =5 Yio Ziers " *+ Zie_u))s
(1. s jnmd) {1l omb (i, oo by e {l, - kb (ieys oy inca) < {1, -+, N}
with 0=1=N-d, and F,(Q%~) is generated in 0y by those among the
above determinants where no 4/dy; takes place, i.e. I=0.

Let us now consider the normalized blowing up of F,{{2},v} in X, i.e. the
composed map: '

X =X " X

where 1, is"the blowing up of F;{(Q%;y) and n is the normalization of X,,
which is reduced since X is so. Since F,({¥y,y)# 0 and X is reduced, 7 is a
proper modification of X, and let us consider the exceptional divisor, i.e. the
subspace D of X' defined by the sheaf of ideals F,{Q%/y) - @x, which is now
invertible, (i.e. locally on X' generated by only one element, non-zero
divisor) by the fundamental property of blowing up. By further restricting X
and Y, we may assume that D has only a finite number of irreducible
components and write D=|J,.a D,. Let us write A=AgUA, where

acAgep(D)EY
esA &Sp(D)=Y

where p: X' Yis fom

Now set B= J,ca, m(D,). It is a closed complex subspace of X since 7
is proper, and contained in |Sing f|. Furthermore, its image in Y is of
measure 0.

Let us now take a point x € X— B, and change our coordinate system so
that x is the origin of C*XC", (i.e. y, and z; all vanish at x). Since X' is
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normal, hence non-singular in codimension 1, we have that for each open
neighborhood U of x in X, we can find a dense open analytic subspace V,
of D, N~ (U)a e A,) such that if x’'e V,, we have:

(i) the germ of D at x' is equal to the germ of D, at x' and
r | D, a:D,ea— Y is 2 submersion of non-singular spaces, at x'.

(i) X' is non-singular at x', and hence by (i), p is a submersion of
non-singular spaces at x'.

By the implicit function theorem we can choose local coordinates on X'

centered at x', (yi, ',V U Uz, Uy)  such  thatt Oy .=
C{yfla T, ys:: U; u?..; trty, uN} aﬂd:

Fy (Q;QY) Oxe = 0" Oy . (1)

{(yi o me=yi. 2)

Since (F} o 7)., =0(1=j=m) we have:

8 & aF 8(z; o dF,
_—,(F}nw)x'EOE(Z —‘ﬂqr'(z‘—,“-)-}-—iuqr)
a)"j i=1 az; &y; aYr x'

and hence

aF ) B (” ) B(Z,-ﬂq'r)) .
(By; T s i; P T PV forall j and [

The multilinearity of determinants now implies immediately that we have:
F Q%) Ox o= Fa{Qx)  Ox (X' VL)

I claim that this implies in fact that we have F,(Q%) ‘0. an=
Fy(Q+v) - Oy (U open neighborhood of x). This because anyway
F{Q%+) < F,(€2)) on the one hand, and F;({lyy)-Ox is invertible by
construction on the other hand. Therefore to check equality is to check that
certain meromorphic functions generating (Fy(Qkv) + )™ - (Fo(QY) -
@ .-y are in fact holomorphic on 7~ '(U):

this will then imply that F, (Q%) * 01y S Fa(Qry) - 021y, and we already
know the other inclusion. The meromaorphic functions in question are locally
the hi/g where g is a generator of F,(Qky) - Ox, and the h; are generators
of F,(Q1) - O

But now we can argue as follows: the polar subspace of these meromor-
phic functions, if it is not empty, is of codimension 1 in X', by a classical
result on normal spaces (see R. Narasimhan: Introduction to the theory of
analytic spaces, Springer Lecture Notes No. 25, 1966, p. 89). On the other
hand; this polar subspace is certainly contained in the subspace defined by
Fi{Q%y) - Ox, which is DN« '(U), and we have just seen that each



594 Bernard Teissier

component of I contains a dense open analytic subset at each point of
which the meromorphic functions in question are holomorphic. Hence the
polar subspace in question is empty., and therefore we have
Fo(Qx) - O vy = Fa(Qkv) - 01wy, which implies that F,(Qx) = Fa(Qxrv)x
at every xe X—B.

Remark. If we assume f proper, then by a theorem of Frisch (Inventiones
Math. 4 (1967), pp. 118-138) there exists a complex-analytic nowhere dense
closed subspace Fc— X such that f(F) is a nowhere dense closed complex
subspace of Y and f|X-F is flat, so we may drop the assumption of
flatness on f in the theorem, and in this case the conclusion of the theorem is
that there exists a nowhere dense closed complex subspace Z < Y such that
for any ye Y—Z we have:

F,(Q%);: = Fy(Qkv). forall xef'(y)

and hence for ye Y- Z, the equality of sheaves of ideals of O

F, (\Qic) : D'x, =Fy (Q;c.rv) * O'x, =F, (Q;c,)

Remark. I have assumed known that the image of a nowhere surjective
andlytic mapping is of measure 0. {Cover the source by countably many
semi-analytic compact subsets and use the description of subanalytic sets.)

2.9. Examrre. Let f: X — P? be the restriction of the natural projection
P*xC? — P to the subspace X defined by the ideal (az;+ bza+ ¢z, 25+ 25+
z$) where (a:b:c) are homogeneous coordinates on P* and z,, za, z3 are
coordinates on C7. f is the family of plane sections of the surface in C?
defined by z§+ z5+ z5=0. The Jacobian matrix of X is

[ﬁz{ 6z 6z 0 O 0]

a b €  Zy Za Za
and therefore F,({ky:) is generated by:
(bz:—az3, cz3— bz3, az3—cz3)

while F3(Q%) = Fy(Qkw) + (25, 2123, 2123, 2227, 25, 2223, 2323, 2123, 23). Now
I claim that F;(Qke2) - Ox, & F3(Qx) - Ox, for a general point peP*. We work
in the affine open subset of P* where abc# 0 and can therefore assume
c=—1 and replace z3 by az,+ bz, on X. Using the homogeneity, we see
that the remaining equation of X in C2*XC* (with coordinates a, b, z,, z,)
already belongs to the ideal generated by (bzi-— az3, z3+ b(az,+ bz,)%),
which is an ideal on €*>xC? inducing F;(Q%s) on X. Using the homogeneity
again, we conclude therefore that the equality F3(Q)}) - Ox = Fi(Q%p) - Ox,
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if it were true, would imply that there exist complex numbers Ay, Aa, piq, o
such that we have, for example:

z1 - 23 = (Mz1 + haz2)(b23 — azd) + (21 + pa22) (23 + blaz + bz2)”)

in the ting C[z1, z2]. Looking at the coefficient of each monomial, we obtain
7 linear equations for Aq, As, p£q, £, and it can be checked that there are no
solutions, provided p is outside a curve in P?. This shows that when p is
outside this curve, F;(Qkp2) - Ox, ¢ F5(Qk) - Ox,.

However, using the arcwise condition of integral dependence I will now
show that when the coordinates of p satisfy, in addition to abc#0, the
condition a®+ b%+ cf# 0, we have equality of the integral closure of the two
ideals. To see this, set again ¢= —1, and check that if 1+ af+ bi# 0,
whenever we take an analytic arc z,(t), z2(f) in the fibre X, the lowest order
terms in ¢ cannot cancel simultaneously in the two expressions bzl(r)5 -
az. (1), z (6 +blaz;(1)+bz{(r))", therefore the ideal they generate in
C{t} is ("), where v =5 - min (v(z,(t}), v(z:2(1))), and we see immediately that
all the monomials appearing in the expression of Fi({lx) give a greater
valuation in ¢, which shows that Fg(ﬂ.&)-(ﬁ'&, is integrally dependent on
F 1‘(9;1!(;5»1) ) G’x,.-

Remark. If we denote by Fx and Fx;v respectively the ideals in Oy~
generated by the Jacobian determinants which when restricted to X generate
F. (0% and F,(Q3+) respectively, it is not true in general that for many
points ye Y we have for any xef '(y) that Jx.=Jxv, In the above
example, if we did not require that the arc z{t), z.(t) lies on X,, (or merely
in azy;+bz,+ cz3=0) we could always arrange to have cancellation of the
lowest order terms in the two expressions in question, the ideal they
generate in C{f} then being {¢") with v> 5 - min (v(z,(1)}, v{22(1)), and it is
no longer true that, for example, v{z4(#)° - za(t)) = », so that z7 - z, is not
integrally dependent over $x v in Oyye~,. However, when X is a hypersur-
face in Y XC™, this phenomenon does not occur, and since this fact is of
importance in the theory of equisingularity. I will now prove two results in
this direction, which are results of integral dependence of the d¢F/dy; over the
ideal ((aFjazy, - -, (0F/dzy)) in the ambient space Y XC", and not just on
the hypersurface X defined by F=10.

2.10. Provosrrion 1. Let F(yy,***, Y Z1,° * -, Zy) be convergent in (an
open subset of) YXC®, and such that all 3F/az; do not vanish identically.
Then, there exists a nowhere dense closed complex subspace B’ of YxCV
such that:

(i) the image of B’ in Y by the projection has measure 0,
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(ii} for all xe YxCN —B' we have:

F oF aF )
(a—) IS (—, con ,-——) y AN Py, (i=i=k).
a}’i x 82'1 BZN x

Proor. The idea of the proof is the same as for the idealistic Bertini
theorem, and I shall therefore give only the main features: let w:Z — Y X
CN  be the normalized blowing up of the ideal #=
{(dFfaz,), - - -, (8F/8zx)) * Oyxcn, det D=1).c.a D, be the exceptional di-
visor, defined bylg - 0z, and D, its irreducible components. Note that 7 is a
proper modification of YXCV since J# 0. Now set A=A, 1I A,

O!EA(]@ p(Da)?& Y
aE-EA1¢>p(Da)= Y

where p: Z— Y is pry © o, and let B'= |4, w(D,)}, nowhere dense closed
complex subspace of YXCV. I claim that if xe YXCN — B’, @F/oy). € T let
U be an open neighborhood of x in ¥xC". Each D, N a1 (U) contains a
dense open analytic subspace V, at each point z of which the following
hold:

(i) the germ of D at z is equal to the germ of D, at z, and

P | Darea: Dasea— Y is a submersion of non-singular spaces at z,

(il) Z is non-singular at z and hence by (i), p: Z— Y is a submersion of
non-singular spaces at z, '

(iii) the strict transform by a of the hypersurface X defined by F=0 in
YxC" is empty near z.
[Recall that by definition, the strict transform X' is =~ (X~ F) where F is
the subspace defined by %, so that X'N D, is nowhere dense in each D,.]

Now by the implicit function theorem, we can choose local coordinates on Z
centered at z, (yi, -, Yk, 1, Uz, - - -, ) such that:

Oz.=C{yl. ", Vo ¥ U, "~ -, un} and:
(1) F:05.=0") Oz ne
@) (yom).=yl A=I=k),
(3) (Fow).=A 0" where A is invertible in @z (this is the translation
of condition (jii)).
Then we have:

8(Fom < oF d(z; o ) aF
=) —ewmr— —+— in Oz *
ay; IZ; az, ayt oy, z= )
and
dFom) _3A

ay ayi
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Therefore, to check that ((8F/ay,) o ), € % - 0., it is sufficient to show that
we have v=u. To show this, let us restrict the equality (*) to the non-
singular subspace W of Z near z defined by yi=---=y.=0. By the
exercises on integral dependence, we know that F(0, z,,- -+, zy) is inte-
grally dependent over ((8Ffaz, )0, =), - -, (0F8zy)(0, z)) inC{z,,- - -, z:}-
Since W= p~'(0),, and since an integral dependence relation can be lifted to
W= 7"1(0XC"} and then localized at z, we see that A0, v, up, * **, uy) - v°
is integrally dependent aver (v"} in C{v, ug, * -+, n}= 0w, and since Oy,
is integrally closed in its field of fractions, by the exercises on integral
dependence it means Av” € (v*) but now we use the fact that A is invertible
in Oz, hence its image in @y is also invertible, and finally » = pu.

The end of the proof is as before: § - 0,1y, is invertible in a normal
space by construction, and the argument above shows that the meromorphic
functions (J - @,-1)~" - ((8F/dy) = ) are holomorphic on an open dense
subset of each compoment of DN 7 Y(U), hence they are holomorphic
everywhere on # U), hence (BFdy) O, un=F O.-q, hence
(@FByN. T, (1=1=k).

Remark. Proposition 1 obviously implies the idealistic Bertini theorem in
the case where X is a hypersurface in Y% C", by taking B = B'N X, since in
this case, F, (£)%) is generated by the (8F/dz;) and (8F/ay,), and F,{(Qx,;y) by
the (aFjaz;).

The theory of (c)-equisingularity uses the following result:

2.11. Prorosmion 2. Let Fly,, -+, Yo, 21, "+, Zn) be convergent in (an
open of) YXCV, such that all (3F/dz,) do not vanish identically, and that
Fly, *+, % 0)=0 [ie. we are now given a section o YxCN &= Y such
that o(Y)< X). Then there exists a nowhere dense closed complex subspace
By oY) (= Y X{0)) such that at any point x€ o(Y)— By we have:

F
(E-) E(zl--fE,---,zN-a—) in Ovwecrx (1=I1=k).
ay; x . 621 aZN x

Proor. It is essentially the same as that of proposition 1 above, except
that we take the normalized blowing up = of the ideal generated by
(z1: (OF8zy), -+, zn - (8F02zn)) in Oyue~. Then By is the union of the
(D, )N o(Y) for those o such that w(D,) does not contain o(Y), where
D = UD, is the exceptional divisor of 7. Furthermore, the open analytic V,
which we take in each D, has to satisfy, in addition to the conditions (i), (ii},
(iii) appearing in the proof of proposition 1, the condition (which is also
satisfied on an open dense .analytic subset):

(iv) the strict transform by = of each of the hyperplanes z;=0 (1Si=N)
is empty near ze V,.
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Then, the argument is the same as in the proof of proposition 1, using the
equality (*), remarking that condition iv) implies that (2 » ). = £ - v* with
£ invertible in €., and hence (8/ay{)(z; o w)= (8&/ay!) - v™ is a multiple of
(zi o w), in Gz. and this time using the full strength of the inclusion
flzo, -+, z.)E(zo - (Bffdz0), - - -, 2, - (8f/02,)) given in the exercises on in-
tegral dependence, to prove that »= p, where p is the order in v of the
ideal (2, (8Ffazy), -+, zn ' (0F/02y)) - Oz ..

The details of the adaptation of the proof of proposition 1 are given as an
exercise to the reader.

Remark, My original statement of proposition 2 was that (3F/dy). €
(z1, ., zn) - ((BF)3z.), -+ -, (#02n)): and I must thank J. P. G. Henry for
remarking that my proof actually gave the statement above, which is slightly
stronger, and also easier to use. Remark that the ideal
(z, - (3Ff8z;), - - -, zw - (0Ff0zy)) depends on the choice of coordinates

zZy," '+, 2y, and that proposiion 2 holds for any choice. The ideal
(z1,° "+, zn) - ((8F82q), - + -, (BF/9zx)). does not depend upon the choice of
coordinates, but presumably we have the equality

(z1-(@F0z.), -, zn - (0F82n))c = (21, - - -, 2n) - ((BFf0z4), » -+, (3F/9zn))x
at a general point x of o{Y) and for a ‘sufficiently general’ choice of
coordinates z,, - -+, Zy. We are now ready to move into some equisingular-
ity conditions:

2.12. DeriniTioN. Let f: X Ybea family of germs of hypersurfaces,
which means that X can be locally around 0 € X imbedded as a hypersurface
in YxCV, o is a section of f, and we may even assume o(Y)= Y x{0} We
still assume that ¥ is non-singular. We say that X is (c)-equisingular along
a(Y) at xe a(Y) if there exists such an imbedding X < YXCV described by
F(yy, "+, Ye,21,***, zn)=0 and such that:

aF aF

aF
e A 2 0 R a ==
(ay,_); €(z1,"*, 2n) (621 2T azN)x in Cly, 4=0yxovy- (1=I=k)

Exzrcise. (1) Check that this condition depends only on f and o, i.e. is
independent of the choice of the equation F and the coordinates. Hint: use
the fact that

i

Fe(y, - (@Fay,), -+, ye - @Fay), z1 - (@F0z1), - - -, Zn - (0F/82n))s.
(2) Check that in fact this condition depends only upon ¢(Y)< X and not
upoen the choice of a retraction Y XCV — o(Y).

2.13. Cororrary 1. Given §: X Y, o a section of f, and f a family of
hypersurfaces, then the set of points x of o(Y) such that X is (c)-equisingular
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along o(Y) at x is the complement of a nowhere dense closed complex
subspace of o(Y). This is an immediate consequence of proposition 2 above,
and the fact that the set of points where we have an integral dependence
relation is open and analytic in any case (possibly empty) because of the
coherence of T.

2.14. CoroLLARY 2, Iff:Xi> Y is {c)-equisingular at x € o(Y), then for
any local imbedding X = Y XC" near x, and for each i, 1 =i = N, there exists
a Zariski open dense U of the Grassmannian of i-planes in (CV,0) such
that for any Hoe U® we have, setting H=Y X H,

(a) foC"'!Y(F) Oy = foHu.'Y(F ‘Ouy) in Oprx [F- O, = (F| H).]

(b) XN H is (c)-equisingular along o(Y) at x, [where jywc(F) is the
ideal in Oyyen . generated by ((0Fdzq), -, (0Fazx))].

Proor. The idea is to apply proposition 2 above to the family of sections
of X by such Y x H,, as follows: We can restrict ourselves to an open subset
of the Grassmannian of i-planes, of course, and therefore describe the
family of sections X N H, where H= Y x Hy, Hy an i-plane in C", as follows:

Fa=F(Y1: Ve 21,7 " s Zpy z ai-l-l.fzj's t Y, Z aN.j‘zi):O
1&fat 1s5j=i

F.eC{y, zy, -, 2z1,(a,;)} (where i+1=p=N,1=j=i).

Given any function g{y,, " - -, ¥ 21, * * * » Zn), we will write g, or (g), for the
function
g(Yl: Ve Z1, 00ty B Z Q1,2 " " Z ﬂN.ij)
1sj=i 15jsi

in C{ya -4 P-4} (ap,f)}'

Now, by proposition 2, we have that there exists a dense open analytic
subset V' in the space C*™™" of the coefficients a =(a,;) such that if
ae V®, then we have:

d ( aF, aF, i 8 )
] N Fa

—F € Z1'_“F e g —
da,; ° U oazT® T ax

in G-ty xehy,axior

which can be explicited by:

R N [ N 2

‘

() 3 el E)))
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for all 1=j=i,i+1=p=N. Our assumption that the original family is
{c)-equisingular implies:

&P) BF) (BF) ) . -
I {7 vrsect s M1 ()
(aYI a &z, ’ ZI)((BZ] a ! dzin/a m gt xg! M1 0x{a) ( )

We can assume, after a change of the coordinates z,, that our point ag V®
is the origin of C'™~". I now give as an exercise to check, using (*) and (**)
that for any mapping

‘P*:C{yh Tty Yk, zls T, Zi, (ap,j)}qC{r}

we have that for any i+1=p=N,

(57).= min b3
vl— ] = min jo{—
dz,/a  1sisi L \DZ /4
where v(h)=order in t of @*(h), using the arcwise condition of integral
dependence, and the fact that v(y)>0, v(g,;)>0. (Hint: use reductio ab
absurdum.) From this, we deduce that

aF

(_) EjY"HnIY(F ) OH.J:): (i+ lépéN)’ (***)
azp Hx

where Hj is the plane corresponding to a € V%, and from this inclusion, the
equality (a) of the proposition follows immediately.

Assertion (b) of the proposition also follows immediately from (**) and
(***), in view of assertion (a).

RemARKs.- (i) We have not even used the fact that the hypersurface
defined by F=0 is reduced. The only assumption needed is (8F/dz;}#0.

(i) Even when Y is a point, the statement above is not a triviality. Then,
condition {c) is automatically satisfied, and we have:

2.15. CoroLLARY 3. Given Fel{z,, - -, 2y} such that F(0)=0, F#0, for
each i,1=i=N, there exists a Zariski open dense subset U" in the
Grassmannian of i-planes through 0 in CN such that for any He UV we
have, denoting as above F - Oy the germ at O of the restriction of F to H:

j(m . GH,D = j(F . @H.U) in G\H'[)

where j(F) is the ideal generated in the ring of functions of the ambient space
by the partial derivatives of F. [Equivalently, since Fe j(F), we can say
(F, ](F)) * Opo= (F - On,o, f(F : OH.U)-]

Exercise. (1) Compare corollary 3 with the idealistic Bertini theorem.
(2) Find an example where one cannot remove the bars above the ideals
in corollary 3. Hint: F=zj+z3+z3 will do. If you have done exercise 1,
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you know why such a simple example will not work for the idealistic Bertini
theorem.

We now turn to some geometric consequences of condition (c).

2.16. Derinrrion. Let Ty and T, be two vector subspaces of C™ considered
as hermitian space with the form ((z), (z})) — ¥ z;Z] and assume dim T;=
dim T, = 1. The distance from T, to T, (in that order) is defined as

) (21, t2)]
d(T,, To) = :}2.2 %@i% {"fnu ' "r!”}

where T7 is the vector space of vectors orthogonal to T, with respect to the
hermitian form.

Remarg. By translating to the origin, this gives a distance between
directions of linear subspaces,

Let now X< YXCY be a hypersurface, defined locally near x by
F(y1,* ", ¥ 21, * * , 2v) =0 where we have identified Y with C* locally as
usual, and x with 0eC* xC", and Fly, 0)=0. Given a point pe YXC" let
us denote by L, the level hypersurface through p of the mapping Y x
cN-Es¢, e F ' (F(p))=L,. Whenever p is not a singular point of L,, we
can define the distance between the directions of the tangent hyperplane to
L, at p and Ty, which we have identified with C*.

T, is generated by the vector: ((aF/ay,)(p),- - -, (0Fay.}(p), 0F/az,)-
(p), - - -, (3F/8zx)(p)) and hence

k QF
!)_:1‘%[' (p)- Erl
d(TL,.,ps TY.D)'= Sup " o — BT T (-
geck—{0} aF PP §|aF, P\ . ( AL
(1§1 aw (p) +i§1 9z; (P)l ) 1§1 i )

2.17. ProrosiTion 3. If X< Y xXCV is a hypersurface satisfying condition
(c) along Yx{0} at O, then there exists a neighborhood V of 0e Y XC~, and
CeR, such that for any point pe V such that the level hypersurface L, is
non-singular at p, we have

d(TL,,.p: Ty_g) = C - dist (p, Y-),

[where dist (p, Y) is the distance from the point p to Y =C*x{0} in YxCV],
and conversely, this inequality implies condition (c).

Proor. It follows easily from the above expression of the distance from
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Ti,p» to Ty, and the criterion @ of integral dependence, if we remark that
@ allows us to express condition {c) by:

' (p)] K - SuplZ.(p)\ Sup —(p)‘ (1sIsk K eR,)

ie.

l— (p)|= K} - dist(p, ¥) - Sup —(p)

CoroLLary 1. Let X° denote the open analytic set of non-singular points of
X, and assume X reduced, so that X=X Set Y,=Yx{0}cX. If X is
(c)-equisingular along Y, at x€ Yy, we have:

(1) the pairs of strata (YXCN—Y,, Yy) and (X°— Y., Yy) both satisfy
Thom’s Ar condition at x, where F: YXCN — C is the map given by F. (See
Hironaka’s lectures §3, def. 3).

(2) The pair strata (X°— Y3, Y)) satisfies the Whitney condition at x (see

Hironaka’s lectures §3, def. 2).
[REmARk. In practice, most often Y;=Sing X, so that X°—Y;=X"]

(3) Assuming furthermore that X°=X-Y,, we have:

Any holomorphic vector field on Y, can be extended to a vector field on YxcV
(in a neighborhood of x) which is:
(1) real-analytic outside Y,,

(ii) tangent to the level hypersurfaces L,

(iii) ‘rugose’ in the sense of Verdier [Stratifications de Whitney et théoréme
de Bertini-Sard, Inventiones Math, 36 (1976}] with respect to the Whitney
stratification: (¥ xCN ~Y,, Y1) of YXCN, or, what amounts to the same, with
respect to (Y xCN— X, X— Y., Y,). [rugosity is a Lipschitz-like condition, but
relative to a stratification).

Proor. (1) and (2) follow from proposition 3 and the definitions. As for
(3), we think of vector fields as derivations: a {germ of) vector field on Y is
given by a derivation 3 of Oyo=C{ys," -, yx}, and the pull-back of this
vector field to YXCV by the projection YXCV— Y is given by the
derivations 3 Of Oywero=C{y1,***, Vi 21, * ', 2x} described by dy =
dyy, 8z; = 0.

Now the projection of this vector field, at each point pe Y XCV, on the
tangent space Ty, is described by the derivation:
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and now of course DF=0, which means it is tangent to L, at each
pe YxCN—Y,, and to check its rugosity is just a matter of applying proposi-
tion 3 to the definition. .

Since a rugose vector field is always integrable (Verdier, loc. cit.), we
obtain by extending the constant vector fields on Y) a topological trivializa-
tion of X viewed as a family of hypersurfaces with isolated singularity
parametrized by Y, and in fact better than topological triviality, 2 ‘rugose’
triviality, namely a homeomorphism of pairs

(YxC", X)=(YxC", Y X

compatible with projection to Y, and ‘rugose’ with respect to the stratifica-
tions described above.

Now that we are dealing with isolated singularities, we can ask what
happens to the Jacobian ideal j(F,) associated to the singularities of hyper-
surfaces (X,, y {0} in our family. First we need a definition:

Dernrmion. Let (X, 0) < (CV, 0) be a germ of hypersurface with isolated
singularity. For each 0=i=N we define Xy, ) =ming p(XeNH,0) H
running through the Grassmannian of i-planes in CV. It is not difficult to
check that in fact the set of those H such that p (XN H, 0)=p(X, 0) is a
dense Zariski open subset of the Grassmannian. Remark that p™M(X,,0) is
the usual Milnor number, that (X, 0) is the multiplicity (= order of
equation) minus none, and u‘“(X,, 0)=1.

2.18. TueoreM. Let X< YXCN (Y non-singular, as always) be a hyper-
surface such that |Sing X|=Y,=Yx{0}. For each yeY set (X,,0)=
(X N{y}=CM), 0). Then the fallawmg are equivalent

(1) M(X,,0)=Xil, (ﬂ#m(Xy, 0) is independent of ye Y (in a neighbor-
hood of 0€Y),

(2) for each i, (X, 0) is independent of ye 'Y,

(3) X satisfies the condition (c) along Yy at O0x0.

I will not give the proof, referring to my ‘Introduction to equisingularity
problems’ (Proceedings A.M.S., Conference on Algebraic Geometry, Arcata
1974, A.M.S. Pub., Providence Rhode-Island), and to the forthcoming notes
of a course at the College de France, Spring 1976, but I will say this: the

‘easy part’ is to check that condition (c) implies that the Milnor number of
the fibres is constant. Then by cor. 2 to prop. 2, all p® are constant. The
converse is more delicate, and uses a connection between integral depen-
dence and the multiplicity of ideals in the sense of algebraic geometers,
which implies that equi-multiplicity conditions such as (1) or (2) have the
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consequence that a condition like (3}, when true generically (which we know
by corollary 1 to prop. 2 above) remains true at the special point, [and the
fact that M(X,, 0) is the multiplicity of m - j(F,)]. This is the ‘principle of
specialization of integral dependence’ [Appendix 1 to ‘Sur diverses condi-
tions numériques d’équisingularité des familles de courbes . ..", preprint No
M208.0675, Centre de Mathématiques, Ecole Polytechnique, 91128
Palaiscau Cedex, France, see also ‘Cycles évanescents, sections planes et
conditions de Whitney’, ch. I1, §3, No 3.3, Astérisque No 7-8, Société Math.
France, 1973].

Remark. One can generalize condition {(c) to the incidence of any pair of
strata (M, N) with M> N in a complex-analytic space (in our case, M=
X® N=Y,) and prove that any complex space has a locally finite stratifica-
tion such that any two distinct strata (M, N) with NN M# & satisfy: Nc M
and (M, N} satisfies condition (c) at every point of N.

Remark. It is known [see ‘Cycles évanescents - - -* quoted above] that the
Milnor number p™(X,) of a hypersurface with isolated singularity depends
only on the topological type of the imbedded germ (X,, 0)= {C™, 0). This is
not true for the other w'® (it is conjectured by Zariski for ¢ but the
answer is not yet known), as is shown by the examples found by Briangon et
Speder: X is the family of surfaces in C* with isolated singularity defined by
z3+ yzpz3+ 23z + 23 = 0 the topological type of the fibres is independent of
y, hence also p® =56, but p®(X)=8, p?(X;)=7 for y#0. This shows
that the topological type of a germ of hypersurface does not determine the
topological type of its generic hyperplane section (through the singular
point), and ‘that M(X,,0) is not an invariant of the topological type of

(X5, 0)

2.19. Dernimion. Two germs of hypersurfaces (X, 0} and (X;,0) are
(c)-cosécant if there exists a 1 parameter family f:X Sy of germs of
hypersurfaces everywhere (c)-equisingular along o (D), and having one fibre
isomorphic to (X;, 0) and another to (X, 0).

We have just seen that the ¢ are invariants of (c)-cosécance, and in fact
(c)-cosécance implies not only that our hypersurfaces have the same to-
pological type, but all their generic plane sections too. (c)-cosécance will be
our working definition of equisingularity, and we will see what it means for
plane curves in the next paragraph.
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§3. Families of curves

In this section, we introduce invariants attached to singularities of curves,
and study families of curves where some of these invariants remain constant.

3.1. We will mostly study germs of families of curves, i.e. germs of flat
mappings f: (X, 0)— (Y, 0) such that (f"(0), 0) is a germ of curve, i.e. purely
L-dimensional analytic space. We will study also (germs of) families of germs
of curves, which means that we have also given ourselves a section & of f, so
that for any small representative of f, we can speak of the germs
(f (y), o(y)) as the members of our family of germs. Occasionally, we will
consider mappings f: X— Y, such that X, = F*(0) is a projective or affine
curve. In all caszs, we will say that f is a family, or a deformation of its
special fibre X;=7"'(0) (or the germ (X,, 0)=(f~1(0), 0)).

Let us start by fixing what we mean by the datum of a germ of curve
(X0, 0). Abstractly, as we have said, it is a germ of a purely 1-dimensional
analytic space, hence it is described by an analytic algebra ¢ purely of
dimension 1. Geometrically, (Xo, 0) can be effectively given in two ways:

(D By equations. By giving an ideal I=(Fy,---,F,) in C{zy," ", zn}
such that O,=Clz,,---, zy}/I. Saying that @y is purely one-dimensional
means that the ideal (0} has a primary decomposition (0)=g.N--- Ny,
where ;= #; is a minimal prime ideal in 0o, and dim ol ;= 1. All this is
easily translated in terms of the primary decompositivii of I in
C{z1, - -, zv}. The rings Oyly; (resp. o/ 4;} correspond to germs of irreduci-
ble (resp. irreducible and reduced) analytic curves, called the irreducible
components (resp. branches) of the curve. We will mostly study reduced
curves, which means that Oy, is a reduced ring, or equivalently that 4 = # for
all j. In this case, it is well known that the integral closure &, of @, in its
total ring of quotients is isomorphic to [Ij.,C{s}, and if we choose
generators z,,- -, zy of the maximal ideal m of @y, the injection @<
[[;-1C{$} is described by the datum of the N elements z = (z(y)e
[T;=1 C{#}, and such a datum is usually called a parametrization of the germ
of curve (X, 0), which brings us to the second way of giving a curve.

@ By a parametrization. By giving ourselves a germ of a finite map
p: li-1 (€, 0)— (", 0).

Here one has to be very careful: except when N =2, it is not true, even if
r=1, that the image of this mapping in the sense of §1 is a curve: it will
have ‘imbedded componenis’ concentrated at the singular points, as will be
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shown in the examples at the end of this section. More precisely, if we give
ourselves a reduced germ of curve (X, Q)f-> (%, 0), then normalize it, as
explained above, the normalization #:(Xo, n7'(0))— (X, (?) is isomorphic
with 115-; (€, 0)—>(Xy, 0) where 7 is the number of irreducible ‘compolnents
of X,. Then it is not true, if N>2, and Xj is singular, that the image in the
sense of §1 of p=ion:]lj=1 (C, 0)—(C",0) is X,:im(p) has some extra
0-dimensional components (imbedded compenents). However, it is truei the.lt
the ro0f of Fo(psOz, . ') gives an ideal defining (X, 0)< (C™, 0), (which is
also Ann (ps0, .-y This is another instance of the phenomenon seen 1n
the addendum to §1, and is the price we have to pay for the stability of our
images. Anyway, Fo(p0z,n @) contains more information than is needed
to recover (X, 0).

3.2. Since a reduced curve is normal outside its singular point we see that
the quotient sheaf & x,/0x, is concentrated at the singular points, and hence
Go/0, is a finite dimensional vector space, and this will give our first
invariant:

Dermrmion. Let (Xo, 0) be a germ of reduced curve (resp. X, be a reduced
affine algebraic curve). Then the ‘invariant & of (_Xg, () is defined
by 8(Xo, 0)=8(0) =dime Go/0 (resp. 8(Xo)=dimc AJ/A where A=
P(Xl)z @X'{,))-

ReMark. We have: 8(Xg) = Txex, 8(Xo, x), remarking that the sum on the
right is finite,.since & is nonzero only at singular points.

This invariant has to do with the following problem: each of the above
descriptions of a germ of a curve suggests a description of what a germ of a

family of curves is: abstractly, anyway, we have defined it as a germ of a flat

map f:(X, 0)—(Y,0). Assume that Y =C with parameter v, i.e. that we
have a 1-parameter family. :

We can try to describe our family: ‘ .

(@D By a family of equations: Let f1(0)= X, be described in C be
A{F,,- -, F,) as above. Can we describe (X, 0) as a subspace of (CXC", 0)
with coordinates (v, zy, " *, Zn), defined by an ideal generated by (Fy+
v Gy, FEptv- Gy) in Ocxcro, Where G eClv, z,* * * , Zn1 € Ocxero?
[there is a v in front to mark that the perturbation of the equations F; must
vanish for v=0].

@ By a family of parametrizations: Can we describe (X, 0) as the ;edur:-ed
image of a complex-analytic mapping: (€, 0)x =1 (€, 0)—={CxC", 0} ie.
by giving N elements z= (z:(v, ) ellf-1 Clo, £} .where zi(v, t!)=
zi(t)+v - Lo, 1), with &i(, t)eC{v, 4} and the z,() describe a parametriza-
tion of (X, 0) as above and where the induced map €, 0x [1i=1 €, 0)—>

The Hunting of Invariants in the Geometry of Discriminants 607

(X,0) is the normalization and for each fixed value of t induces the
normalization of the corresponding fibre?

In fact, any germ of mapping f: (X, 0)— (Y, 0) can be described as in (D,
i.e. X ¥YxCV defined by FeOyo{zy, -, 2y} it is just a matter of
remarking that myg- Gxge+(z, -, 2Zn) =Mxe (m=maximal ideal) and
hence we have a surjection of C-algebras Oy ofz;, - - -, zn}— 0xo. We are
going to see that, on the contrary, a family of reduced curves can be
described by a family of parametrizations if and only if it satisfies a
numerical condition, essentially that the §-invariant of its fibres is constant.

3.3. Let f:(X,0)—(C,0) be a germ of a flat morphism of complex
analytic spaces, such that its fibre is a reduced 1-dimensional analytic space
(i.e. f is a germ of a family of reduced curves).

Let n:X—X be the normalization of the surface X and let p=
fon:(X n ' {O)—(C,0).

Let us agree to denmote p~Y(0) by (X); and to set &((X))=
Yen-1m 8(p~1(0), x). Let us also agree to set 8(X,)=8(f"(0)) and 6(X,)=
3(f'(y)) for yeC—{0} in a small enough representative of f so that all the
singular points of X, =f (y) tend to 0 as y—0, and 0 is the only singular
point of X,=f"'(0). Then we have:

Prorosrrion. {1) p=fon is a (multi-germ of a) flat mapping;
(2) 8((X)g) =-8(X0) - 8(X,XyeC—{0}, but near 0). In words, the invariant 8
of the fibre over 0€C of the normalization of the surfuce which iy the total
space of our family of curves, is equal to the difference of the invariants 8 of
the ‘special’ and ‘generic’ fibres of our family.

Proor. The proof is entirely algebraic, and has little to do with complex-
analytic geometry, or even characteristic zero for that matter: set R = Oy =
C{v}, A =0x,p, a reduced R-algebra (by the map f*: R— A corresponding
to f) and let A be the integral closure of A in its total ring of quotients.
Thus, A =0gz,-1q. Then, since A is a Krull domain, we can apply the
results of [Bourbaki, Algébre commutative, VII, §1.6 Prop. 10 and V, §2.1,
Cor. 2] since by our assumptions Oy (=A/v-A is a reduced 1-
dimensional ring, we have that v-A =4, N -+ N}, with z; prime ideals
such that dim A/fz; = 1. Furthermore, for each 4, there exists a prime ideal
/4 in A such that A/z is of dimension 1 and #N A = 4, and furthermore
that v-A< g4 M- N 4. Hence we see that  ANAcwv-A and since the
other inclusion is obvious, we have v-ANA =v-A. Now we need:

Lemma (Universal property of the normalization). Let A be a reduced ring
and let A be its integral closure in its total ring of fractions. Assume that the
conductor of A in A, e={dc A |d-A < A} is not zero. Then, for a mapping
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¢ : A— B where B is a reduced ring integrally closed in its total quotient ring,
and ¢ such that @(c) contains a nonzero divisor of B, there exists a unique
extension & of @ to A.
A
/ 0 Y
A— B
Proor. Choose d € ¢ such that ¢(d} is not a zero-divisoer in Tot (1_5’), and

set ¢{a) = (¢(d - a)/(¢(d)) e Tot (B), which has a meaning, since le A2 e <
A, and d-a e A.

@(a) is integral over ¢(A) since a is integral over A, hence ¢{a) is
integral over B, so it is in B by our assumption. Uniqueness is obvious.

Let us apply this to the composed map
A Alv-A Afv-A.

We have that A/A, which is supported by the singular locus of our surface
X, is an R-module of finite type, since by our assumptions, the singular
locus of X is finite over (C,0)= Y in view of the simplicity theorem of §2,
because f is flat, and with non-singular fibre at every point of X, —{0}, for a
small enough representative. It then follows from the Weierstrass prepara-
tion theorem (see Hironaka’s lectures) that any module supported by
|Sing X} is of finite type as an R-module. So A/A and also Afc are
R-modules of finite type.

From thi§ we deduce that it is impossible that e< 4; for some i, other_wise
we would have a surjection Ale —Al# and Al fu is definitely not an
R-module of finite type since its fibre over 0 is itself because v € 4, and it is
of dimension 1, hence certainly not a finite dimensional vector space, in view
.of Hilbert’s nullstellensatz. By a useful lemma [cf. J. P. Serre, Algébre locale
et multiplicités, chap. I, Prop 2 (0ld edition: Springer Lect. Notes No. 11)]
we have that ¢ pU---Ug, so the image of ¢ in A/v-A or Afv A
contains a nonzero divisor, and we conclude that the map A—Alv-A
factors through A, and since v goes to zero, it factors in fact through
Afv-A so we have a commutative diagram:

Alv-A
VA
A— Al Ac— Alv-A

We know that i is injective, since its injectivity amounts to: vANA=
v-A. Now let us show that & is injective: to construct our factorization
according to the above lemma, we have chosen an element d €z — Ui=1 fu
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An element ac A such that &(a)=0 must be such that d-agv-A, but
since d& U 4, it means a€ 4, N - - - N, hence a € v- A, which shows that ¢
is injective. Hence we obtain the equality:

dime Afv-A/Ajv- A =dim, Alv-A/Afv-A+dim; Alv-A/Afv-A

since Afv:A =04 ,, the left-hand side is §(X, 0) and now we remark that
v*AMNA=1vA implies that A/A is an R-module without torsion. Since R
is a discrete valuation ring, this implies that AJA is a (locally) free R-
module of finite type, and its rank is necessarily 8(X,) since for y# 0 small
enough, (_X)y p~'(y) is non singular [by Bertini’s theorem because X, being
a4 normal surface has only isolated singularities], and (X),,—>X is the
normalization.
Since A/A is a locally free R-module of rank 8(X,), we have

dim. Afv-A/Afv-A =dim. AJAQR/v-R =8(X,)
R

v&ihere_of course Rfv+R =¢, and finally, Afv-A is also the integral closure of
Afv-A in its total ring of fractions, so that

dim Afv-AfAlv-A =8((X),).

This shows the equality 6(()?)0)=6(Xn)—8(X7) and on the way we have
seen that A/A is flat over R, and since A is by assumption fiat over R, this is
in fact equivalent to the flatness of A as an R-module, as follows: We have
the following exact sequence:

Tor? (A, C) —— Tor® (A/A,0)— AR c—5 AR Cc— A/AQC— 0
R R R

coming from the exact sequence 0—-A—>A—>A/A—0 and since v-AN
A=vA, jis injective so { is surjective and (see Hironaka’s lectures:
appendix prop. 2) we see that A/A is a flat R-module¢> A is a flat
R-module.

CororLary 1. Let f:(X, 0)—(C, 0) be a germ of flat mapping, the fibre of

which is reduced of dimension 1. The following are equivalent:
(i) f can be described by a deformation of a parametrization of its fibre

(X5, 0)=(F1(0), 0), in the sense explained at the beginning of this paragraph;

(ii) the normalization X of X is non singular for a small enough represen-
tative of f, and the composite map X— X—C is a submersion of non-singular
spaces. Furthermore, for any yeC (i.e. in a small disk around Q) the induced
map (X),— X, is the nonnalization of the curve X,;

(fil) for any small enough representative of f we have 8(X, )= 8(X,) for any
yef, i.e. the family of curves has ‘8 constant’.
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Proor. (i) ¢ (ii) has just been seen. (ii) & (iii) follows from the proposi-
tion in view of the fact that X—¢C is flat, and its fibre is non-singular if and
only if 5((X)s)=10, (use the simplicity theorem of §2).

CoRrOLLARY 2. Let X <CXPN be a closed complex subspace such that the
projection pr,:CXPY —C induces on X a flat mapping f: X—C, the fibres of
whick are reduced projective connected curves in PY (and C stands for a
represeniative of (C,0), as usual). Then the following conditions are
equivalent: :

(i) the family has ‘simultaneous normalization’, i.e. again the normali-
zation X of X is a non-singular surface, and the composed mapping X>X—
C is a differentiable fibration (since it is proper and submersive) the fibre (X),
of which aver yeC is the normalization of X,;

(i) g(X,)—(r,—1) is constant {y € C), where g(X,) is the geometric genus
of X, and r, is the number of its irreducible components - (equivalently: the
topological Euler characteristic xmp(}?,,) of X, is constant).

The geometric (or effective) genus of a reduced projective curve is the
genus of its normalization, which is a non-singular projective curve. It is a
birational invariant, and also a topological invariant of the normalization,
since 2g(X,) = b,(X,). Since r, = bo(X,) is also a topological invariant, it is
clear that (i) = (ii).

To prove that (ii)=> (i), we use the general genus formula (see H.
Hircnaka: On the arithmetic genera and the effective genera of algebraic
curves, Memoirs College of Science Univ. of Kyoto, series A vol. XXX No 2
(1957) and J. P! Serre: Groupes algébriques et corps de classe, chap. IV §1,
2 Hermann éditeur, Paris (1959). The genus formula states that

Pa(X,) = g(X,)~ (7~ 1)+ Z&a(x;, x)

where p,(X,) is the arithmetic genus of X,, which is defined by 1— PiX,)=
x{X,) where y(X,) is the constant term of the Hilbert polynomial of
X, <PV, which is also the Euler characteristic Y7o (1) dim H'(X,, 0x,)=
x(0x,)(here H'(X,, 0x,)=0,i>2). This last definition has the consequence
that p,(X,) is constant in a flat family of curves (it is perhaps easier to see
that the Hilbert polynomial of the fibres of a flat family of projective
varieties is constant). We obtain in this way that the assumption of (ii)
implies that }. ., 8(X,, x) is constant. We can now localize near each one of
the singular points of the special fibre X, say, and then using the semi-
continuity of the invariant & which is implied by the proposition, we obtain
that the assumption of (ii) implies that each singular point of X, has a
neighborhood in X which satisfies the equivalent conditions of corollary 1,
whence we get simultaneous normalization, since it is a local property of X.
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REMARK. A proof in abstract algebraic geometry {(characteristic #0 for
example) would require that we find a hyperplane H in PV such that all the
singular points of the fibers X, lie outside H, hence in an affine open subset
of X,, and then repeating the argument of the proof of the proposition in
this relatively affine situation (of course such a hyperplane always exists).

3.4. We are now ready to give our geometric interpretation of the
invariant 8(X,) of a plane curve as the maximum number of singular points
which one can pile up in the same fibre of a deformation of X, meaning of
course an arbitrarily small deformation. We consider X, either as a suffi-
ciently small representative of a germ of plane curve, or as an affine plane
curve, but since all our constructions and invariants are of a local nature on
X, it is sufficient to treat the first case.

Let n:X,— X, be the normalization of the reduced curve X,, and
consider the closed complex subspace X §(,X—U c X% X,, defined by a sheaf

of ideals %, on the non-singular surface X, % X,. We will denote by I the
multi-germ of %, along the finite set [n7}(0)x n™(0)}.

Let 8'(X,, 0) be the maximum number of singular points which can occur
in a fibre of an arbitrary small representative of a deformation f:{X, 0)—
(Y, 0) of X, [f is flat and (f "(0), 0) = (X0, 0)]. Remark that if X, is such a
fibre having &'(Xg, 0) singular points, since the invariant 8 s an integer,
5'(Xq, 0)= 8(X,), and it follows from the propesition above that 8(X,)=
5(X,, 0), so that we know that 8'(Xq, 0) = 8(Xo, 0). We are now going to
prove two statements at once:

CoroLLARY 3. For a germ of a reduced plane curve (X, 0):

(1) 8'(Xo, 0)=8{Xo, 0);

(2) I,=K, N where Ky is invertible and Ry defines a germ of a subspace
of Xox X, contained in |n”'(0)x n™'(0), and:

(3) e(No) = dime (G'f.leu.u“(())xn"(ﬂ)/m(l) =2 8(X,, 0).

Here e(%,) is the multiplicity in the sense of Samuel of the ideal 3%, in the
semi-local algebra in which it lives and the first equality in (3) is due to the
fact that 9, is generated by a regular sequence [see J. P. Serre, Alggbre
locale, Multiplicités, Springer Lect. Notes, No. 11].

Comment. We will see that Ky is in fact the ideal defining the diagonal
X, Xy % Xy, and e(Rg)ina way measures the difference between Xy %Xx, X,and
this diagonal.

Proor. We call z; and z, generators of the maximal ideal of Oy=0x, 0,
and the normalization is described algebraically by 0g=][j=1 C{t;} given by
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(z1(1)} and (z2(f)) as explained above. We have O gz, n-'@pen-t)=
[[:;C{t; 1} and to describe an ideal in such a product it is sufficient to
describe the ideal it induces in the (i, f)th factor C{#, t{}. For example, we see
that our ideal I, in view of the definition of the fibre products, is described
by the:

Lo, = (za(t) = (1), 22(8) — 2o (P))C{t, 13}
We can define K and i, by:
Koui=(t—t)C{t, 11} andif i#j Koi;=Cls, t]},
Ny, = (Zl(fi) - 21(!':{), 2a(#) — za(1})
” =1 [l 1}
Roii = (2:1(8) — z4(t]), z2(8) — za (ST s, £}
Clearly K, is invertible, and Iy= K- ;. Now we have the:

)C{r,-, 1} andif [#j

LemMma. Let (X, 0)=(C*, 0) be a germ of reduced plane curve described
paramerrically by (z:(t)) and (z.(t))€lli=1 C{4}. There exists a nowhere
dense closed complex surface Bc(C?) such that if (o, ) 1=j=r)e
(C)"—B, the plane curve X described parametrically by (z,(t;)—
al, z,()— But;) has only ordinary double points as singularities (in a
neighborhood of 0e€C?) for v# 0 sufficiently small.

Proor. Consider the graph TI'<([[[_{(C,0))x(C*0) of the map
%=1 (€, 0)—(C?, 0) of which X, is the image. T is a non-singular curve, and
the parametric description above is nothing but that of the projection of I' to
C® parallel to the multi-direction with vectors (1, a;p, Biv). Itis a well-known
result that a general plane projection of a non-singular curve has only
ordinary double points as singularities, ‘general’ meaning: for all directions
of projection except those in a nowhere dense closed subspace of thz space
of directions of projection.

This proves the lemma.

Remark that the lemma in fact provides as with a 1-parameter deforma-
tion of (X, 0) (see 3.5.4 below) such that all the fibres except (X,, 0) have
only ordinary double points. Furthermore, this deformation is—by
construction ~ obtained by a deformation of the parametrization, hence by
corollary 1, we have 8(X,}=8(X,,0). Since, as is readily checked, the
invariant 8§ of an ordinary double point is 1, we see that X, must have
exactly 8(X,, 0) ordinary double points. Hence &'(X,, 0)= 5(X,, 0) and since
we know the other inequality, we get the equality.

Let us now see how R, varies in this deformation: we proceed as follows:
consider the ideal I in X %, X defining the closed subspace X X, Xc X X X,
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where (X, 0)— (C, 0) is the family constructed in the lemma and n: X— X is
the normalization. By corollary 1, we know that for any v, (X),=X,.so I is
the family of the ideals I, corresponding to the fibre X,. We lock at the
multi-germs along |n~*(0) % n™'(0)| and get:

0)?,. cln Oxalim = ]i-.i[c{v; & t;}
and again I=K - N where

_ (Zl(ti)_zl(ff) za{t) — za2(1})
Ni= — oy, -
' L—H L=t

ﬁiu)c{vs ri: t%}
and if j#i
Nii=(z1(6)— 2N — (st — ot w, z2(5)— z3(t}) — (Bit; — Bt} )C{v, 1, ).

It is easily checked that the natural injection
clot—[1cto, 4 }/9
i

makes the quotient a C{v}-module without torsion, i.e. flat (essentially
because M is generated by a regular sequence} and hence the dimension of
the fibres is independent of v (Bourbaki, Algébre Commutative, chap. II)
and thus, taking small representatives of X, X etc. we find that e(0,) = e(%,)
for any sufficiently small value of v. Now, we remark that ¢(%,) is the sum of
the e(,, x;} corresponding to the various singular points of X,, and we give
the:

Exercise. Describe parametrically an ordinary double point of plane
curve, and check that in this case, e{My) =2.

Since X, has, for v# 0, 6(Xq, 0) ordinary points, we obtain e(Ry}=eM,) =
2. S(Xg, 0)

Remarks. (1) The lemma above is a parametric version of the Morse
lemma which states that if f:(C"*", 0)—(C, 0) has an isolated critical point at
0, by an arbitrary small generic linear perturbation f+Y§ a;z, of f, we obtain
a new function which has only x quadratic non-degenerate critical points
with distinct critical values, where

n=dimcC{Zu,---,zn}/(aa—Z{),--- af)‘

> 9z,

For n=1, i.e. plane curves, we see that, while & is the maximum number of
critical points which one can spread out by a small perturbation of f, & is the
maximum number of critical points which one can pile up (in the same fibre)
by a small perturbation of f. We shall see more about this below.
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(2) The consideration of the ideal N, defined above, together with its
normalized blowing up, and its deformations given by the lemma, provides a
wealth of information about the numerical invariants of Xj. [See: F. Pham
and B. Teissier, Fractions lipschitziennes d’une algebre analytique complexe,
Centre de Maths. de 'Ecole Polytechnique, Juin 1969, also: F. Pham in
Congrés International des Mathématiciens, Nice 1970]. In particular, one
can use it to prove algebraically a well-known relation between p and &

26=p+r—1

(r = number of irreducible components, or branches), given by Milnor in his
book ‘Singular points of complex hypersurfaces’. I will not give the proof
here, referring to Milnor’s book or I. I. Risler: Sur I'idéal jacobien d'une
courbe plane, Bull. Soc. Math. Fr. (Risler gives an algebraic proof) but this
equality will be used below.

3.5. On the images of parametrizations: the Fitting ideal as a prophet

Let A be a regular local ring (for example C{z,, - -, zn}) and let M be an
A-module of finite presentation. By the Hilbert Syzygy theorem, M has a
resolution of finite length (in fact of length=dim A), i.e. there exists an
exact sequence of A-modules:

0 > L, __.)...__;,L?__._;Ll_—)‘y' Ly—M—0

p=dim A, where each L; is a free A-module of finite type. The smallest
integer p such that there exists such a sequence is called the homological
dimension~of M over A, and denoted dh.{M). Let us now define an
M-sequence of elements of A as a sequence (a;,* -, a,) of elements of the
maximal ideal of A such that for any j, 1=j=k, g; is not a zero-divisor in
the module M/{ay, - -, @-1) - M where {(a,, - - -, g;_1) - M is the submodule

= a, - M (and 0 if j=1). It turns out (see Serre’s book on Local algebra)
that all the maximal (in the obvious sense) M-sequences have the same
length, called the depth of M, and that:

dha{(M)+depth, (M)=dim A.

APPLICATION. Suppose we can check that depth, MZ=dim A—1 and that
Anna M#0. Then Fy(M) is generated by 1 element, which is not zero.

Proor. By the above equality, dha M =1, hence we can find a resolution

0 AvE, AP M 0.

We see that q=p, but since Ann, M# 0 we have M@K =0 where A—>K
A

The Hunting of Invariants in the Geometry of Discriminants 615

is the field of fractions of A. This implies that W1, : K9— K" is surjective,

hence g= p. So we must have p=¢g and Fy{M)=(det¥)- A, where ¥ is a
matrix representing V.

3.5.1. Suppose now that we parametrize a eurve in (C*, 0) by x{1), y(1),
both #0, thus making C{t} a C{x, y}-module of finite representation. Clearly,
x(t) (for example) is not a zero-divisor in C{t}, so the depth of C{f} as
C{x, y}-module is =1. On the other hand, we know our curve has an
equation, so that AnnC{f}# 0, hence we know that F,(C{f}) is a principal
ideal in C{x, y}, and a generator is what we call an equation of the image
curve. If we have arranged that for a given ‘general’ point (xg, yo) on the
image curve, the equations x(#)= xo, y(#) = yo have only one solution then
we know even our equation will be reduced, that is, will be a prime element
in C{x, y}. (Compare all this with the example given in §1.)

3.5.2. Suppose now that we consider the same plane curve but as lying in
C?, that is, the curve in C* given by x=x(1),y = y(8), z=0. Then, let us
compute the Fitting ideal of C{f} as C{x, y, z}-module. Take for example
x{t)=1*, y(f)=1*. Then C{#} is generated as C{x, y, z}-module by e;=1, e, =
t, ex=1* and it is not difficult to see that the relations are described by the
matrix

_ —x 07

-X

n

e
Il
=R -

o N O D
(]

0

i.e. ¥ is the matrix of a presentation
cix, y, 2} —=> Cfx, y, z}* ~—> C{t}—> 0

here Fo(C{t) = (y*—x*, 2°, zx*, zy?, 2%y, 2%x) so that the image of our curve
computed by Fy(C{}) consists of the curve y*—x*=0,z=0, plus an extra
O-dimensional component sticking out of the (x, y)-plane. Of course,
VE({h) = (y*—x", z)C{x, y, z}. If we had computedyFup(C{r}) for a curve
which really lies in C*, such as x=1t* y=1% z=¢" which is a complete
intersection with ideal: (y*—x*, z*—x*y)C{x, y, z}, we would similarly have
found Fo©{th)=((y*~xD1, (2°—27y)ga)Cix, 3,2} where Vi, =vg,=
(x, y, Z)C{x, y, z}. In general, given a morphism C{z,, - - -, zy} — C{} cor;e—
sponding to a parametric representation of a curve, Fo(C{s}) will define a
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curve, in the sense that C{z,, - -, z2n}/Fo{Cfz}) is purely 1-dimensional, only
if N=2 or if min v(z;())=1, which is the case where our germ of curve is
non-singular.

3.5.3. Let us now turn io the following problem: given again a parametri-
zation of a curve in C", let us consider the generalization of the construction
made above for plane curves, namely, for general values of (a;}eCm, the
algebra A =Clv, z,{t) +ayvt, + - -, zn(t)+ anvt} =Cly, t}. It is not difficult to
see that if N= 3, for general values of a;, the curve thus described for each
value of the parameter v is non-singular for v# 0. This might seem to
contradict the proposition proved above: we apparently have a family of
curves given by a deformation of the parametrization, such that 8(Xy)>0
(we have of course chosen our curve to be singular) but §(X,)=0 for v# Q.
What happens here is that Afu- A is not a purely l-dimensional ring if
N =3, again it has an imbedded component. Setting A =C{u, t}, it amounts
to the fact that we do not have v- ANA =19 - A, Therefore A does not
describe a deformation of our original curve, if N=3, and the proposition
above is not contradicted. [Remark that to say that v-ANA=p-A
amounts to saying that A/v - A can be computed by setting v=0 in A.]

In order to see this, take for example A =C{v, t*+ avt, °+ Bot, '+ yot} in
A =¢{v, t}, and look at the element (t°+ Bvt)* = (*+avt): itisin v - AN A
but not in v - A. The choice of this element was dictated by the fact that
y2—x? les in the annihilator of C{f} (as module over C{x,y, z} via
x=t" y=15 z=1") but does not lic in the Fitting ideal Fy(C{1}). In fact, the
Fitting ideal predicts, by its imbedded components, before any deformation
is made, that*§uch ‘accidents’ will happen when deforming the parametriza-
tion.

3.5.4. When N=2, however, we can apply the results of the beginning of
3.5, and check that Fy(Clv, t}) is a principal ideal. By the compatibility of the
Fitting ideal with base change, the fibre over v =0 of the hypersurface in
€ X C? thus described is precisely our original plane curve by 3.5.1. Hence in
this case C{v, x(f) + avt, y(1)+ Bor} dees describe a flat family of curves and
the argument used above in the proof of corollary 3 is indeed valid.

3.6. The Newton polygon of a plane curve

We do not leave the subject ot parametrization, or prophecy for that
matter, since the Newton polygon construction gives information in reverse
of the Fitting ideal: given an equation f(x, y)=0 for a plane curve, it allows
us to predict at least the ratio of the smallest exponents appearing in a
parametric representation of our curve, that is, which ratios v(x(#))/o(y(%))
we get in the parametric representation {x(#), y(t;)) (v is the order in f).

Yslo vel ar. 39
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Take feC{x, y}, assume for simplicity f(0, y)= and f(x, 0)¢0. Write f=
Seyx'y' and set A(H)={(, )= N*/c;# 0}. The Newton polygon (f) (in the
coordinates x, y) is the convex hull of A(f) in the following sense: N(f) is a
convex polygon with two sides of infinite length and a finite number of edges
of finite length, and a line / in R* contains an edge of finite length of A(f) if
and only if contains at least 2 points of A(f), and there are no points of A(f)
on the same side of [ as 0eR>.

Since we have assumed f(0, y)= 0 we can, by the Weierstrass preparation
theorem, assume, up to multiplication by an invertible element UeC{x, y},
which does not change the Newton polygon, that f=y™+
A1 (X)y™ 1+ - ap(x). Tt is clear that R(f) is also the convex
hull of the finite set {(v(a,(x)), k)}= N> Let us consider f as an element of
C{{x}y], where C{{x}} is the field of ‘meromorphic functions’, valued by the
order in x (whether =0 or <0). I think it is clear what a valued extension of
a valued field is: (K, v)=(L, w) means w|K=uv. (Note that w can take
values in a subgroup of @ isomorphic to Z, such as 1/k - 7.)

3.6.1. We now describe a formalism on Newton polygons which will
simplify matters later. We think of a Newton polygon as the following
picture

n

v {ag) v (a,}

Figure 1

the coordinates of the vertices being integers. We define an elementary
polygon as one having only one edge of finite length. An elementary
polygon P has a height hA(P), length I{P) and inclination i(P) as shown
in Fig. 2.

We count the polygon consisting of the two coordinate axis as the 0-
polygon. Its inclination is not defined. For any Newton polygon, we can still
define A(P) and /(P). We now define the sum of two elementary polygons
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(P

Figure 2

P, Q as the only convex polygon having an edge of inclination i(P) and
length (of horizontal projection) I(P), and an edge of inclination i(Q) and
length (of horizontal projection} {Q). If i(P}=i(Q) then P+ Q is apain
elementary, of length [{(P)+!(Q) and height A{P)+ h(Q). We need a nota-
tion for an elementary polygon, and I propose P ={{(P)//h(P)}. We sece that
any Newton polygon has a decomposition as a {(convex) sum of elementary
polygons, and this decomposition is unique if we require that they all have
different inclinations. This enables us to define the sum of any two Newton
polygons P and (O by first decomposing them into elementary polygons,
P=3P, Q=3Q and then making the only convex polygon sum of all the
P, Q,. This operation is associative and commutative, and the 0-polygon is a
neutral element, so at this stage we have made the set of polygons into a
semi-group No. We now formally symmetrize it to imbed it into a group R.
Remark that {(P+ Q)= I(P}+1(Q) and h(P+ Q)= h(P)+ k(Q).

Exercise. Prove that R{(H)+N(g)=N({f- g) in N,.

We now proceed to define a product on N: first we define it for two
elementary polygons by

(P U oo o
|l wso
(o RR10) R
[W} it (PY=i(Q).

We remark that for elementary polygons, i(P * Q) =max (i(P}, i(Q)) and we
now extend # to all polygons by requiring distributivity, i.e. decomposing
P=3P, Q=232Q into elementary polygons, define:

P+Q=)P +0Q
[8]
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it is easy to see that * is commutative and associative. Furthermore, define
the set of special Newton polygons s <=M as those having only edges of
inclination =1. R is stable under sum and #, and defining the unit Newton
polygon to be 41 ={1//1}, we have:

PeRs& P # 1=P.

So that we have now endowed our symmetrized semi-group of Newton

polygons N with a commutative ring structure and Rs <R is even a com-

mutative ring with unit, which we call the ring of special Newton polygons.
There are two other useful operations on Hi:

(1) the symmetry o defined by

AL i) I e

(2) The horizontal expansion £ defined by

S(Z {xi((l;))}) =2 {_I(P’f)fp‘?)w_i)}'

Exercise. (1) Show that for any Newton polygons:

WP+ Q)=UP)-1(Q), h(P+P)=2-S(P), P+ P)=IP)y,

where S(P) is the area between the polygon and the two axis.
(2) The application Z—Rg defined by n— {n//n} identifies Z with a
subring of Ng.

We can now state:

TrEOREM (Newton-Puiseux) of decomposition of a pelynomial along the
sides of its Newton polygon [see R. J. Walker, Algebraic. curves, Dover
books, and J. Dieudonné, Calcul infinitésimal, Hermann, Paris].

(1) Let (L, w) be a finite valued extension of the valued field (C{{x}}, v)
[where v is the order in x, whether =0 or <0 of an element of the field of
fractions C{{x}} of C{x}, and w is a valuation of L with values in a subgroup
of ©Q isomorphic to Z (i.e. (1/d) Z for some d) and w |C{{x}} = v] assume that
feCi{x}ly] has all its roots in L, call them y,,- - -, y.. Then

wﬂ=2{22£}

pel m,

where m, is the number of roots y, of [ having valuation w(y,)= p. Of course
except for a finite number of values of p, the number so found is zero, so
the sum on the right is finite.
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(2) Any finite extension of C{{x}} is isomorphic with C{x*“Y} where d is the
degree of the extension, and in particular, the algebraic closure of C{{x}} is
U gz CH{xM 1

(3) Let py, -, pi be the rational numbers such that m, # 0. Then there is
in C{{xW[y] a decomposition f=f,, - - - f,, where each f, is of degree m,, in y,
all its roots have the same valuation p, and m, - p; is the order in x (or the
valuation) of the constant term (in y) of f,.

TRANSLATION. Assume f to be irreducible. Then all its roots in y lie in
C{x"™"}} where m is the degree of f in y which means that the roots of
F(x, y)=0 are convergent series in x*/™ or equivalently that we can describe
the curve f(x, y) parametrically by

x=1
{y =@{f) ¢ a convergent power series.

Finally we have that the valuation of y, which is (1/m) X (order in ¢ of ¢(1)) is
uniquely determined by the equation

(-1

n m

where {e//m} is the Newton polygon of f, which is elementary in view of 3
above. So finally, we see that if f is irreducible, its Newton polygon has only

one edge, hence is elementary, say {e/m} and from this we can predict that
the parametric representation of our curve will be

=t
{y=u(r)(tc+cc+1f““+---) with  u(0)=0.

Of course if N (f) is elementary, we cannot conclude that f is irreducible, but
only that the ratios e/m, occurring in the parametrizations of the various
branches of the curve f(x, y)=0 are equal.

Exercise. Convince yourself that at least the valuation w(y.) of a root of
f(x, y)=0 in a valued extension is the inclination of an edge of 3(f).

3.6.2. One can also use the Newton polygon construction in reverse;
namely, knowing a parametric representation of a plane curve, say
(x(#), y(,)) in [T=; C{t;} we can immediately say something non-trivial about
the equation f=0 of our plane curve, without having to compute the Fitting
ideal;

N(f)= Z {zggg} (where v = order in £).

e {———
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Remarks. (1) The Newton Polygon depends very much upon the choice
of the coordinates (x, y) in which we expand f and if we take a ‘generic
choice’ of coordinates (x, y), R(f) ={m//m} where m is order of f at 0, so that
T(f) contains very little information about f. There are two ways in which
the Newton polygon can be made to yield information: by taking coordi-
nates ‘as special as possible’, basically asking that the inclination of N(f) in
these coordinates should be as large as possible: this is the theory of
maximal contact of Hironaka, or alternately by looking only at those
functions which are well represented by their Newton polygons in given
coordinates: this approach is that of A. Kushnirenko (Inv. Math. 32, 1
(1976)). Both theories were actually developed in arbitrary dimensions,
and in Hironaka’s theory of infinitely near points, the behaviour of Newton
Polyhedra and polygons under some special modifications (permissible
blowing ups} plays an important role.

Anyway, given a family of equations f, =¥ ¢,{v)x'y’ with c,(v) eC{v} we
can observe that N(f) lies above N(f,) simply because the coefficients ¢;(v)
can only vanish when v=0, and not suddenly become #0, hence A(fo)=
A(f,), and the condition that 9(f,) should be independent of v, say for some
coordinate system, is a rather weak condition on the family of curves
described by f= 0, unless we assume that they are ‘well represented’ by their
Newton polygen. However, this condition, as explained above, does contain
some interesting information about the parametrizations of the curves in our
family. We now turn to much stronger conditions.

3.7. A short summary of equisingularity for plane curves {after (6], [1])

One of the things we try to do here is to describe pertinent numerical
invariants of the geometry ‘up to equisingularity’ of isolated singularities of
hypersurfaces. The model is what happens for plane curves, where the
situation is very agreeable. Let us first consider the case of a germ of an
irreducible plane curve (Xg, 0), defined by f(x, y)=0. Then, as we have seen
we can obtain a parametric representation of our curve by x=1t", y = ¢{f)
and if we have chosen our coordinates so that of f (which is the multiplicity
of X), and that the x-axis is in the tangent cone of X, then v(¢(t)}>n and
the topology of (Xy, 0) as an imbedded germ in (€7, 0) (i.e. up to a germ of a
homeomorphism extending to €*) is completely determined by the integer n
and the values v(@(t)— ¢{w!)}, @ running through the nth roots of unity. Call
these values B, << - -+ <{f,; then our curve is fopologically equivalent to the
curve described parametrically by

x=t
y:tﬁl+rﬂz+...+rﬁl.
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The set of integers (n, ,B ts** *» B,) is called the characteristic of the branch
(X0, 0).

Define integers [, by ly=n, I, =(n, B4}, - -, I, =(l_;, B;) and remark that
since our branch is not multiple, {, =1. Now define n, by _y=mn 1L we
have n=mn,---n, and finally deﬁne m; by B;=m L. Then (m,n)=
1(l=i=g) and we can check that any branch w1th characteristic

(n, B1," +, Bg) can be described by a Puiseux expansion
Fy fa

y= Z ag, 1x + Z a, x(m L J Z ap,ix(m"ﬂ'f"‘“'"w)-l—
=0 i=0 i=0

4o Z ag'ix("‘u"“"'"u"'"g.
i=0
Another way to obtain the characteristics is thig: consider & =C{x(1), y()}c
C{t}. Then, the valuations of the elements of @y form a semi-group ' i,
and I'= N(r)lel’(:b@‘ﬂ-c{t} i.e. X, is non- smgular One constructs a
minimal system of generators Bos' ", Bg, (i.e. B; €T does not belong to the
semi-group (ﬁﬂ, e Bisy) generated by the previous ones, and is the smal-
lest non-zero element of I with this property). Then, by a theorem (see [7])
one has that g'=g, the number of characterfstic exponents, and further-
more, the B,’s and B'q’s are linked by the following relation: By = By, B, =B
qunq—l' Eq—l—Bq—l'l_Bq (1<q§g)
And so we see that the datum of (n, B, -+, B,) is equivalent to the datum
of T=(Bo, -+, o).

Let us néw consider a reducible, but reduced, (i.e. without nilpotent
functions) plane curve, (X,, 0) with equation f=0. Let us decompose f in
cix, v}, f=fi. -, f. where each f; is a prime element in C{x, y}. Then each
of the branches X,; (defined by f;=0) has its own characteristic, and
in addition we consider the intersection numbers (X Xo,;}=
dim: C{x, y}/(f. f;} (compare §1).

Let us now consider a germ of family of reduced plane curves, (X, ()<
(Y xC?,0) defined by (F)0yxez0 (Where (Y, 0)= (C*, 0)). By the Weierstrass
preparation theorem, at the price of a linear change of the coordinates
{(x, v), we can assume

F=y"+a,_1{y, x)y" '+ - +aoly,x) where a;eCiy,- -,y X},

and we can define the discriminant of the projection « of X to YX{
(Oyxco=Cly, x}) it is, as we know Fy(Cy«c2/(F, (6F/dy))), Fp being the Fitting
ideal as @'yco-module, of course. The critical locus of = is finite over Y XC
because 7 '(0), being defined by (y")C{y}, has an isolated singularity. This
discriminant is a hypersurface A in Y XC, defined by the resultant of F and
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(8F/ay). We say A, is trivial at 0 if A4 is 2 non-singular hypersurface at 0.
(This implies that A, is itself analytically trivial along A, ., i.e.: (A, 0)=
(Zo X A req, 0) where Z, is isomorphic to the subspace of C defined by (x)*
for some integer A.) Then we have:

THEOREM OF EQUISINGULARITY FOR PLANE CURVES (see [6], [1], [2], [5]):

I. For a family (X,0)c(YxC> 0} as above, assuming that X> Y, =
Y x{0}, we have equivalence of the following conditions:

(1) All the fibres (X,, 0) have the same topological type.

(2) All the fibres (X,,0) have the same Milnor number, i.e. u®(X,, 0) is
independent of ye Y.

(3) The invariant 5(X,, 0) and the number of branches r, of each fibre are
independent of ye Y.

(4) The composed map p:X—>X—— Y is a submersion of wnon-
sr’ltgular spaces in a neighborhood of n™'(0), n induces the normalization
(X), = X’,,—:»X,, in each fibre, and the map induced by p:(n" (Y\))ea— Y is a
(trivial) covering of degree r (= the number of branches of the fibres).

(5) There exists a projection w:X — YXC such that the discriminant is
trivial (hence (A, e, 0)= (Y x {0}, 0).

(6) There exists a projection m such that the multiplicity of the discriminant
A is constant along Y x{0}cA_.

(7) The sum p™(X,)+m(X,)—1=pD(X,)+pP(X,) is independent of
yevY.

(8) For any projection w:X— Y XC such that the multiplicity of =~ '(0) at
0 is equal to the multiplicity of X at 0, the discriminant A_ is trivial.

(9) Any holomorphic vector field on Y, =Y x{0} can be locally extended to
a vector field which is Lipschitz and meromorphic on X (hence extends to a
holomorphic vector field on the normalization X, see condition 4).

(10) For any two values y,, y, of y€ Y (near Q) there is a bijection b from
the set of branches of (X,,,0) to the set of branches of (X,,, 0) such that
b(X,,:) has the same characteristic as X, ; (1 =i=r) and we have equality of
intersection numbers:

(b(Xyl.i), b(Xy1 1) ( Y103 thj‘)()-

(11} (X, 0) satisfies the condition (c} of §2 (2nd part) along Y, = YX{O} at
0. }

(12) X—">X-——>Y is a submersion of non-singular spaces and
Jewey(F) - O u-vy is an invertible ideal.

II. Given two germs of plane curves (Xy,0), (Xa, 0) having the same
topological type, or satisfying the numerical condition of (10), there exists a
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1-parameter family of germs of reduced plane curves

Xev¥Yxc?

N/

and vy, v.€ Y{dim Y =1) such that:
(i) the family satisfies the 12 equivalent conditions at every point of o(Y).
(ii) (X, c{y )=(X4, 0), (X, o(y2))=(X5,0), where=means analytic
isomorphism.

This theorem summarizes results, mostly due to Zariski [6], also to L&
Diing Trang and C. P. Ramanujam [2], Pham and Teissier [3] and Teissier
[4]. See [1]. Complete detailed proofs will appear in [5].

We will see examples of deformations of curves in the next section.

Exercise. (1) Check in 12 different ways that the family of curves defined
by y*—x*+ v - x*= 0 has constant invariant § but is not equisingular. Check
that y>—x*=0 has no equisingular deformation which is not analytically a
product. Check that the same holds for y*—x*=0, y'—x*=0.

(2) Check that the family y*—x*+ v - x*y* =0 is equisingular at 0, but not
analytically trivial.
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§4. Unfoldings and deformations

In this section, we give the basic definitions of the theory of unfoldings
and deformations. Our purpose is not to prove the existence of versal
unfoldings, but rather to illustrate the definitions by examples and above all
to emphasize the close connection between the complex-analytic avatar of
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the differential geometers’ theory of unfoldings (Thom-Mather) and the
algebraic geometers’ theory of deformations (Schlessinger-Tjurina-Grauert).
In fact, the local theory of unfoldings becomes simpler in the complex-
analytic frame, and we have thought that the best way to show the
connection mentioned above was to give a proof of the existence theorem
of versal deformations for those singularities which can be presented as the
fibres of a morphism f:(C", 0) — (C7, 0) of finite singularity type in the sense
of Mather, a class which includes complete intersections with isolated
singularities and finite analytic spaces. This proof uses the existence of versal
unfoldings and the existence of a local flattener for a map of complex-
analytic spaces.

We use a transcription in complex-analytic geometry of the theory of
unfoldings as found in the notes of Mather in these proceedings, and in the
notes of Martinet and of Mather in ‘Singularités d’applications
différentiables’, Springer Lecture Notes No. 535.

4.1. DeFiNITION 1. Let f: X—Y be a morphism of complex analytic
spaces. An unfplding of f, with base a germ of complex space (5,0), is a
morphism:

F:X®x8—=YxS

commuting with the natural projections to § and such that F| Xx{0}=f.

We immediately remark that the datum of such an F is equivalent to the
datum of F=pr ¢ F:XxS§— Y (and F| X x{0}=f).

The first example is that of an infinitesimal unfolding of f: it is the case
where S =T(see §2). Then, we can view F: X XT— Y as a vector fieldon Y
parametrized by X (vector field in the sense of §2, i.e. of Zariski tangent
vectors). Namely, for every x€ X, F gives a vector tangent to Y at f(x),
varying analytically with x. In this sense, as we saw in an exercise in §2, a
vector field on X is nothing but an infinitesimal unfolding of the identity of
X

DermitioN 2. Two unfoldings F and G of f: X— Y with the same base
are said to be sf-isomorphic if there exists a commutative diagram

XxS—5YxS§
El l‘l]
. X%x§-Z> YXS

where ¢ and n are isomorphisms, unfoldings of the identity of X and Y
respectively.
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An unfolding of f is said to be s-trivial if it is «-isomorphic to the
morphism fXids: XX5—->Y XS,

Let us see what it means for our infinitesimal unfolding to be &/-trivial; in
order to simplify notations, we will write our unfoldings as F: XX 5§— Y.

We can make many infinitesimal unfoldings of f as shown in the following
diagram:

XxT-% yxT

-

~ \

e
F -
L

X <L v

Take a vector field £ on X (resp. ® on Y) and take F=fo& (resp.
F=mn o (fxid;)) and you get an infinitesimal unfolding of f. However, by
our definition, all such unfoldings are trivial.

Remark, In the case where X and Y are non-singular, £—fe £ is
Mather’s #, and §— 7 ° (f X idy) is his wf.

We now remark (see §2) that to give such an F is the same as to give a
derivation of f '€y in Ox and that therefore, the set of such F is canonically
endowed with a structure of Ox-module. [Essentially, F corresponds to a
map F*:60v—Ox[e] such that the composed map
Oy ——s Ox[e]— Ox[e]/{e) = O is the map ‘composition with f°, and the
derivation i§ defined by: A(k)= coefficient of & in F*(h)].

Dermnerion 3. f is infinitesimally stable if every infinitesimal unfolding of f
is A-trivial that is, if any F:XXT— Y such that F|Xx{0}=f can be
written as

F=fe &+ e (fxidys)
where £ (resp. n) is a vector field on X (resp. Y).

Let us now consider germs of mappings f: (X, 0)— (Y, 0). Then the set of
infinitesimal unfoldings of f can be identified with the set of C-derivations of
Oy in Oxo where Ox is considered as €yg-module via the map 00—
O x.o ‘composition with f7, which is a map of C-algebras. The vector fields on
(X, 0) (resp. (Y, 0)) then correspond to the C-derivations of Ox (resp. Ov.o)
in itself. Let then D €Derg (v, Ovo) be a derivation of Oyp into itself
corresponding to 7, and let D' Derc (Ox g, Ox,0) correspond similarly to &
Then, fe £ corresponds to the derivation D'e f* of Oyg in €xo and
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n o {(fXid;) corresponds to f*o D. Assume that (X,0) and (Y,0) are
non-singular, so that we can set Oxo=0cvg=C{z4, -, zn} and Oygy=
Ocro=C{y1, "+ *, yp}, with f* described by

o =flzi, -, z2n)eC{zy,- -+, zn) (1=j=p).

We can see that a derivation A € Derg (Ocrp, Oeng) is described by the datum
of the Ay; eC{z,, - - -, 2y}, 50 that, having made a choice of coordinates, we
can identify the set of C-derivations of Tc~ g as Oy g-module with @8~ 5, while
the ‘trivial’ ones coming from derivation of #fy into itself are identified with
the sub O -module (f*(0crq))” of O&, and the ‘trivial’ ones coming from
derivations of &g~ into itself are identified with the sub Gp~g-module of
OZ~o generated by the N elements (3f/zy),- - -, (@ffdzy) where f=
(fi, -+, fp)- [N.B. This is clear because it means that we can write Ay, =
D'fi =%iL, (8fi/8z) D'z if and only if the element (Ayy, -+, Ay,) of Ocvg
belongs to that submodule.]

We will write the submodule of €2~ generated by ((9f/8z,), - - -, (0F/3zx))
by: ((8f/924), - - -, (8f/82x)) when no confusion is to be feared.

Finally we see that the infinitesimal unfoldings of f modulo the A-trivial
ones, which we will call the non(-&-}trivial infinitesimal unfoldings of f can
be identified with the quotient:

A} =08 ol (FH(Op o)) +(@Ff0z1), - - -, (@ff2zn)).

It is very easy to check, using Hilbert’s Nullstellensatz that if 0 is an isolated
critical point of f:(C", 0)—(C", 0) then A} is a finite dimensional vector
space.

We also remark that A; =0< f is infinitesimally stable.

In the case where (X, 0) and (Y, 0) are allowed to have singularities, the
situation is more delicate and 1 refer the reader to the work of Mount and
Villamayor (Publ. Math, THES No 43, P.U.F. 1974),

4.2. Now that we have studied infinitesimal unfoldings of a map
f:(€N, 0)—(CP, 0), let us turn to arbitrary unfoldings of such an f: Remark
that we can always describe an unfolding F:(CN x S, 0)—(C* X S, 0) of f as
follows: if we describe f by f*(y) =fi{zs, - -+, zx){(1 £j=p), then F can be
described by:

Fry)=fia)+ 2 has™,
AN
where R 4 € 5o, maximal ideal of Osg.
In this way, we can clearly see what the unfolding F':(C"x §',0)—
(C" x §', 0), obtained from F by a base change ¢ :(8', 0)— (S, 0), is: letting
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@*:0g0—> 0, o be the map of algebras corresponding to ¢, F' is described by
FHy)=fl2)+ ), o*had.

Dermrrion 4. An unfolding F:(CVxS§,0)— (C"x 5,0} of f:(CY,0)—
(CP, 0) is said to be sf-versal (resp. #-miniversal) if any other unfolding
H:(C¥ %8, 0)— (C"%x§,0) of f can be obtained, up to sf-isomorphism,
from F by a base change ¢:(S',0)-—(5,0) (resp. and S has the smallest
possible dimension for this property to hold).

Tueorem (Mather). An unfolding F:(CY xC’, 0)—(C" xC* 0) of f is &-
versal (resp. s{-miniversal} if and only if, when we describe it by

FHo)=fildt ) hale)s®

[ee=(ur, -+, u), coordinates on (C',0)]; we have that setting F=
(F*(yy), - -, F*(y,)), the elements
oF oF

in Clzy, -, znl"

«=0

Btiy | =0 ” du,

have images in A} which generate it as a C-vector space (resp. form a basis of
it). All A-miniversal unfolding of f are obtained from one another, up.to
A-ismorphism, by base change by (non-canonical) isomorphisms (C,0)=
(,0).

In particﬁiar, we see that f has an s/-miniversal unfolding F: (N xc*, 0)—
(C" xC*, 0) if and only if Aj is a finite-dimensional vector space, and then
s =dimc A} and F is the unfolding of f constructed as follows: one takes in
Cl{zq," ., zn}' 5 elements fi,-++, h, such that their images in Af form a
basis of it over C. Then F is described by:

FHy)=fild+ Lu- byl (1=]=p)

where hy(x) is the jth component of h.

4.2.1. Remarx 1. Strictly speaking, the proof given in differential
geometry, once transcribed in analytic geometry, proves only the versality of
such an F with respect to unfoldings having a non-singular base, while we
have in our definitions allowed arbitrary bases, e.g. a finite local analytic
space: the analytic spectrum of an Artinian analytic algebra (a.k.a* ‘thick
point’). This difficulty, however, is inessential because if we begin a theory of

* a.k.a.=also known as.
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unfoldings over such bases in the spirit of Schlessinger (‘Functors of Artin
rings’, Trans. A.M.S. 130 (1968)208-22) we see immediately that the
functor of unfoldings is unobstrucied, having the property that given (S, 0)
and (8-, 0) closed in (8, 0) and unfoldings of base (5, 0) and (S,, 0) which
coincide on (8§, N S,, 0), they can be extended to an unfolding over (S, 0).
This follows from the explicit description piven at the beginning of 4.2, and
implies that the base of the A-miniversal unfolding is non-singular, as
implied by Mather’s theorem above.

4.3. Until now, we have been considering the set of mappings C¥ —C”
modulo the group action of A=AutCYXAutCP:fi>nofe &' and the
sub Ocrg-module of O~ g, (F* (o)) +((8ffaz1), - - -, (@ffdzn)) = O~ which
we saw above is deemed to be the ‘tangent space at f of the orbit A - f of f°,
the vector space A} then being its ‘supplementary’ in the tangent space at f
to the space of functions such as f.

We now look at another group action, corresponding to an interest in the
geometry of the fibres of mappings more than in the mappings themselves. It
is the group of contact transformations in the terminology of Mather, or
V-isomorphisms in that of Martinet. The idea is that we allow more than the
usual automorphisms in the target space C°, namely we consider f and f' as
equivalent if (f~'(0), 0) and (f~'(0), 0) are isomorphic, or, what amounts to
the same, if there exists a complex map €V - GL(p, C) such that f'(x)=
M(x) - f(x) [which simply means that the ideals generated by (fi.-- -, f,)
and (fi,-- -, fp in Clzy, -+ -, zy} are equal]. In this spirit, we have:

DEerFmrTION 5. Two unfoldings F,F': (X% 8§, 0)— (Y, 0) of f: (X, 0)—(Y, 0)
are #-isomorphic if there exists a germ of an analytic isomorphism &: X %
§—— Xx 8, which is an unfolding of the identity of X, and such that
((F' = ®)"'(0),0) and (F '(0),0) are isomorphic as germs of complex-
analytic spaces.

Let us now see what it means for an infinitesimal unfolding to be
H-trivial, i.e. K -isomorphic to the trivial unfolding XX S— Y which is
fopn.

We are given an unfolding F: (X% T, 0)—(Y, 0} viewed as a derivation D
of Oyp intd Oxo. We assume (X, 0) and (Y, 0) non-singular again, and set
Oxo=C{z1," ", zn}, Oy o =Clyy, - - -, ¥,}. To say that F is F-trivial is to say
that there exists an infinitesimal unfolding of idx, i.e. a vector field on X, i.e.
a derivation D’: 0w~ g—> Ocn g, such that '

DYf_D‘fj effi, " ',fp)'@‘c".n (1=j=p)

where f; = fi(s) € Ocvg=C{zy, - - -, 2y} describe f (Le. f*(y;)=f;). We remark
that (fy,--,f,)  Ogvp is the ideal generated in Ocve by the image by
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f¥:0crg— Ocr o of the maximal ideal m, of O, i.e. what we usually write

simply by m, - Oc~p.
Therefore, we see that the ‘tangent space to the % orbit’ of f is exactly the
sub-Oer g-module: - -
af .. 3

_@p +( . . )C@pn
My 2% \az, aznl T

because to say that D describes a ¥ -trivial infinitesimal unfolding is exactly
to say that (Dy,, - - - , Dy,) € O, belongs to this submodule. We shall write:

af af
K} = O‘g‘."'.ﬂ/my ) @‘EN,D_I' (a_jl: T a)

and remark that, since the fibre (Xg, 0) of f:(C¥, 0)— (C¥, 0) is the subspace
defined by m, - O¢v o, we have also:
. N T
K}=0%0/) Ox0- ;—f
i=1 Z;
DrrinTion. Those maps f:(CV, 0)—(C”, 0) such that dimg K} <o are
called ‘of finite singularity type’ or “T.S.F.” by Mather.

Exercise 1. Check that when f is finite, f is T.S.F.

Exercise 2. Check that when f is flat and its fiber (X, 0) has an isolated
singularity, f is T.S.F. In general, f is T.S.F. if and only if the critical locus of
f is finite over C".

Exercise 3. Consider the map f:(C*,0)—=(C%0) given by
(21, 22, 23, 241> {21 * Za, Z2 * Z3, Z1 * 24, Z2 * Z4) and check that it is not T.S.F.
although its fibre (X, 0), the union of two 2-dimensional planes in ct
meeting in one point, has an isolated singularity. Deduce that no map
F: (€Y, 0)—(C", 0) having (Xo, 0) as fibre is T.S.F.

Dermrrion 6. An unfolding F:(C¥ xS, 0)—(C”x§,0) of f:(C",0)—
(C", 0) is ¥ -versal (resp. ¥-miniversal) if any unfolding of f, say H (TN %
S’ 0)—=(C"x §',0), is ¥ -isomorphic to an unfolding obtained from F by a
base change ¢ :(S', 0)— (S, 0) (resp. and S has the smallest possible dimen-
sion for this property to hold).

Tusorem (Mather). An unfolding F: (CV %€\, 0)— (C" xC', 0) is #-versal
(resp. I -miniversal) if and only if, when we describe it by:

yo F=F*y)=f(+ ) ka(v)z*
AckIN

lv=(vy, -, ), coordinates on (C',0)] we have that, ._s.em'ng F=
(F*(YI)s Ty F*(YP)) € OENXC'.D: the elements (aF/avl) |1}=01 T (aF/aul) ]1J=0 in
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Of~o have images in K; which generate it as C-vector space (resp. form a
basis of it).

All X-miniversal unfoldings of f can be obtained from one another, up to
J-isomorphism, by base change by (non-canonical) isomorphisms (C', 0)=
(c', 0). ,

In particular, f has a ¥-miniversal unfolding if and only if K} is a
finite-dimensional vector space, and it is built in the manner analogous to that

explained for o-miniversal unfoldings. In particular, it has the form
1

Fy)=fila)+ 2 whyls)  (1=j=p)

i=1
where the elements h; = (h;;) have images in K; which form a basis of it.
4.4. We now turn to the theory of deformations; here we (temporarily)

forget mappings, and think only of spaces. Let (X;,0) be a germ of a
complex analytic space:

Derinrrion 7. A deformation of (X, 0) is a Cartesian diagram of germs:
(X, 0) = (X, 0)
o e
{0} = (5,0)
where G is a flat map. [Cartesian diagram means in this case that we are
given an isomorphism of (G~'(0), 0) with (Xg, 0).] A morphism of deforma-
tions is a morphism of squares inducing the identity on (X;, 0). A deforma-
tion is said to be trivial if it is isomorphic with the product deformation
pra:(Xo% S, 0)— (S, 0), or equivalently if there exists a commutative diagram

i>r

(X, 0)— (Xy%x S, 0)
G\‘ 0 /JI'J
(s, 0)
with ¥ an isomorphism inducing the identity on (Xj, 0).

DerFmvimion 8. A deformation G:(X,0)— (S, 0) of (X, @) is said to be
versal (resp. miniversal) if any deformation H:(X’, 0)— (5", 0) of (X, 0) is
isomorphic to a deformation obtained from G by a base change ¢ : (S, 0)—
(8,0} i.e. H is isomorphic to G*;

(Xx§',0) -5 (X, 0)
G° O lG
8,0 — (5,0

(resp. and S has the smallest possible dimension for this property to hold).
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4.5. Now let us recall that by definition, any germ of complex analytic
space (Xq, 0) can be presented as the fibre of a germ of complex analytic
map f:(C~, 0)— (C", 0). Namely, the map is described by generators of the
ideal defining (Xj, 0)<(C™, 0). Recall also (see Hironaka’s lectures), that
(Xy, 0) is a complete intersection if and only if it can be presented with a fla:
map f.

Finally recall that, given any complex-analytic map-germ h:(X, 0)—
(Y, 0), there exists a germ of a complex subspace (Z,,0)=(Y,0), the
flattener of h, which satisfies the following universal property:

For any complex-analytic map ¢ :(Y",0)—(Y,0), the map obtained by
base change by ¢:

(X3 Y, 0)—5 (X, 0)
1[1"’ D 1!1
(Y,0) =4 (Y,0)

is flat {(at 0, of course) if and only if ¢ factors through the subspace
(Z, 0)= (Y, 0).

(This was originally proved in [1] and is proved by a different method in
Hironaka’s lectures, §3).

Now the theory of unfoldings and the theory of deformations meet in the:

4.5.1. Prorostmion. Let (Xo, 0) be a germ of complex space with isolated
singularity. Suppose there is a presentation of (Xy,0) as the fibre of an
fi(CV, 0)—(C", 0) such that dim. K} <w, let F:(CY xC',0)— (C* xC',0) be
a ¥ -miniversal unfolding of f. Consider the subspace (X', 0)=(F HoxcH,0)
and the induced map F:(X',0)—(C,0). Let now (50)x(C,0) be the
flattener of F' and G:(X,0)— (S, 0) be the map obtained from F' by base
change by the inclusion (S,0)w(C', 0), i.e. restriction of F' aver (8,0). Then,
G is a miniversal deformation of (X, 0). The construction is summarized in
the diagram:

(X, 0) > (X, 0) —— (X', 0)c— (CV x €', 0) «—(C" x 0, 0)
O lc» Ol lp lF lf
{0} ©— (8, 0) 4o (0X T, 0) — (€ X T, 0) > (€7 x 0, 0)
PROOF OF THE PrROPOSITION. First, remark that any deformation of (Xo, 0)

can be represented by an unfolding: let f,eC{zy, -+, zn}{1=j=p) be the
equations of (X, 0)= (C¥,0). As we saw in §3, any deformation
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H:{X',0)— (5", 0) of (X;,0) can be put in a commutative diagram:
(X', 0)—(§'xC",0)

N0

(5", 0)
where (X',0)=(S'xC" 0} is defined by an ideal generated by Fe
Os ofz1,- -+, zn}H{1=j=p). These F; of course also describe an unfolding

F:(CVxS8',0)—(C" 0) of the map f:(C", 0)—(C", 0) described by the f..
Now by definition of a #-miniversal unfolding, there exists a base change
@:(5,0)—(C',0) such that F is J-isomorphic to the unfolding obtained
from F by the base change ¢, and by the definition of ¥ -isomorphism, this
means exactly that our deformation is obtained from the map F in the
diagram above by the base change ¢. Since H is a flat map by definition, ¢
must factor through the flattener (S, 0)=(C', 0), and this shows that G is a
versal deformation of (X, 0). To check that G is in fact miniversal, we first
stop to examine the Zariski tangent space to the base of the miniversal
deformation of (X}, 0), which of course coincides with the set of infinitesimat
deformations of (X;,0) modulo isomorphism of deformations: suppose
again (X, 0)<(C",0) given by the ideal L=(fi, -, f.)=C{zy,- - -, zn}
Then, any deformation of (X, 0) with base T can be described in C¥ X T by
an ideal I=(fi+e- g1, - ,fr+&-g)=Cle z,, zn}, with £2=0. It is
an exercise on flatness (use the appendix to Hironaka’s lectures) to check
that X <C" x T described by such an I is fiat over T (by the restriction to X
of pr;:CY XT—T) if and only if the following condition is satisied:

(*) For any relation Y5 a;(<) * f;(+) = 0 between the f; in C{zy, - - -, Zn}, We
have that:

iaf(z) e h=(f ).

Let us now remark that the datum of a set of (g;) is exactly the datum of a
map C{z,, -+, zn)" = C{zy, - - -, 25} of €{z4, - + -, Zy}-modules (by sending
the ith base element to g) and (*) is equivalent to the fact that the
composed map:

C{zll T, ZN}p_')C{zln T, ZN}_'}C{ZB T, ZN}/ICI=G'JQ,,D
factors through the map
Clzy, 2w — [ C{z;,- - -, 25}

sending the ith base element to f;.
Finally, we can identify the set of infinitesimal deformations of {Xg, 0)
with Homg y,, (I, Ox,0). Now those infinitesimal deformations which are
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trivial are those such that the ideal generated by the (fi+eg) in
C{e, z1,- - -, zy} becomes equal, after a change of variables, to the ideal
generated by the (f;), and since a change of variables adds to each g an
element of the form YjL, (3fi/8z}h it is clear that the deformation is trivial if

and only if, setting g=1(gy," - -, ) € Ot~ p, we have:
D) (G0
gely Obnp+ ((&zl) "\azn

where ((8f/3z1), - -+, (3f/8zn)) =21 Ocvp - (8f18z;) (as submodule of Q:;N,O).
Compare this with 4.3, after remarking that if we view O¢~ g as Ogrg-module
via f*, we have m, - ORug=1I;- O,

Exercise. The natural map of @cvg-modules: Iy — Qgng ® G'x,,o given
by & ——dh ® 1 induces a map

d*: Hom,, N (Q-cNo ® ﬁx, 0s @xﬂ o)_>H0moc ' (Iu: G‘XD.D):

Check that the trivial infinitesimal deformations of (X, 0) correspond
exactly to those elements # inducing elements of Homg.~, (I, @x,0) Which
are in the image Im d* of d*.

Therefore, the Zariski tangent space to the base of the miniversal defor-
mation of {Xj, 0} can be naturally identified with the C-vector space:

Tk,o=Homgn, (I, Ox,.0)/Im d* = Home,,, (Io/I3, Ox,0)/Im d*

[which is a finite-dimensional vector space if (Xp, 0} has an isolated
singularity].

I claim that T, is precisely the Zariski tangent space to the flattener of
the map F' of the proposition. The reason is very simple: an infinitesimal
unfolding of f is given by (f; + £g;) with no condition on the g. To say that it
is H-trivial is to say, as we saw in 4.3, that

gely- 0o+ (3NI@z1), - - -, @H)/(@zn)) in OBng,

and therefore the Zariski tangent space to the C' parametrizing the ¥-
miniversal unfolding is naturally identified with

af af)
1_me —_— @
Kf X"'D/(azl’ aZN

again as we saw in 4.3. To prove the claim is to check that Tk, is precisely
the subset (in fact vector subspace) of K} corresponding to those infinitesi-
mal unfoldings of f which give innnitesimal deformations of (X4, 0),i.e. to check
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that in the natural map
¥ :Homg (1o, Ox,,.u)—)Homecﬂ_[.(@E”,o, Ox0)= 0%,0

coming from the map Of~,— I, sending the ith base element to f;, we
have that !Ir‘l((af),f(azl-),- ~+,{8)/(@zy)) - 0% o=1Im d* = those elements in
Homg» ,(Iy, Ox,0) corresponding to trivial infinitesimal deformations of
(Xo, 0).

But this is exactly what was checked above, hence the claim.

This shows that the flattener (S, 0) of F' is a versal deformation of (X, 0)
having as its Zariski tangent space Tx,o, and which therefore has the
smallest possible Zariski tangent space: it must be a miniversal deformation
of (Xj, 0).

4.5.2. Remark 1. If (X;,0) is a complete intersection, then F is flat,
hence F' is also flat since flatness is preserved by base change, and in this
case F' itself is the miniversal deformation of (Xj, 0): we recover the fact
that the miniversal deformation of a complete intersection has a non-
singular base—and source —. In fact, from the viewpoint we take here, we
see that ‘all the obstruction comes from the flatness requirement’, and this is
quite different from the way algebraic deformation theory constructs the
obstruction. (See M. Schlessinger’s papers [2].)

4.5.3. REMARK 2. It is a theorem of Grauert (Inventiones Math., 15, 3
(1972)) that any isolated singularity has a miniversal deformation. Since
such an isolated singularity cannot always be presented as the fibre of a
T.S.F. map f, (see exercise 3 in 4.3) it motivates the construction of a theory
of unfoldings with an infinite-dimensional base, and the extension of the
construction of the flattener to' mappings between such infinite-dimensional
spaces, so that hopefully the base of the miniversal deformation of an
isolated singularity would appear as the {finite-dimensional) flattener of a
map of infinite-dimensional spaces. (See Astérisque No 16, Soc. Math. Fr.
1974). Our viewpoint is always, given a deformation problem, to embed it in

a ‘bigger’ problem which is unobstructed, [instead of directly constructing a
prorepresentable hull of our original problem] and then to seek the base of
our original problem as a subspace of the base of that bigger problem. Here
of course, the ‘bigger problem’ is the % -miniversal unfolding of the mapping
having our space as fibre. We will see other instances of this in §5.

4.6. Examples of miniversal deformations

4.6.1. Exercise. Check that if (X, 0) is non-singular, then the canonical
map (Xu, 0}— {0} is the miniversal deformation of (X,, 0): in other words
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any flat map having non-singular fibre is locally a product: this is the
simplicity theorem of §2.

4.6.2. Exercise. (1) Let (X, 0)<=(C, 0) be defined by the ideal (z"*").
The miniversal deformation of (X, 0) is the map (X, 0)— (C", 0) induced by
the projection (CxC",0)—(C" 0) on the hypersurface (X, 0)<(CXC",0)
defined by:

2"z 4+, =0,

(where 1, - - -, t, are coordinates on {C", 0)).

(2) Check that in characteristic zero, where one can remove by a change
of variables the term in z" of a polynomial of degree n+1 in z the
statement of the existence of a miniversal deformation of this (Xj, 0} is
equivalent to the statement of the classical Weierstrass preparation theorem.

4.6.3. (Taken from the appendix to {6]). Fix an integer s, and consider the
curve in C? (with coordinates z1, z, z3) defined by (z =~ z3, 23— z§"z,). (It is
the curve parametrized by zo=t*, z; = 1°, z, = ***”). The miniversal defor-
mation of this curve is the restriction of the natural projection C*xC**1%—
€**1% to the subspace X of C*XC* " defined by the ideal generated by
(Fy, F>) in C{z4, 2, 23, 01,* * * , V2s+10} Where

P B e Ry R o R v O G R )
= + +ol{ . )+ + +
(Fg) (z%—zé”-zl LAV VARGV ARV A Zo "\ o
+v (O)-l-v (22)
8 Zq 7 0
z Zp' 2 In' Z 0
+Ug(0u)+vg( DO 1)+v10( 00 2)+U11(z§)

’f ] i 0
+ U9+f( ) UIU+5+I'( P )
i=3 24/ ¢ zo * 2

Exercise, Check that in this example all the curves corresponding to
points in C>**'° with v, =0 for k#7, 10 and v,#0 are isomorphic
to the plane curve with equation (zi—z3)*—zi"*+ z; =0, and that all the
germs of curves corresponding to points with v, =0 for k# 10, and 0,570
are isomorphic to one another, but not isomorphic to the special curve
{Xo, 0).

Check that, given #;eC—{0}, the mapping F:(C*xC, 0)—(C*xC, 0) de-
scribed by

Y1 ° F= Z?f_zg‘l'ﬁ;r *ZatUip- 2122
542

2
yao F=z25—1z3 Zy

v1g® F=10y
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and considered as an unfolding of the map:
f:o=c?
described by
yio f=zi—23+T2za
yao f=23-125"z

is H-trivial but not «-trivial.

4.7. In the special case of functions f:(C"*', 0)— (C, 0), there is another
useful notion of equivalence, known as HR-equivalence (for Right-
equivalence). Two unfoldings F, F': (€Y X §)—=(Cx §, 0), with the same base
(S, 0) of a function f:(C", 0)—(C, 0) are Right-equivalent if there exists an
S-isomorphism ¥:{(C" x S, 0)—(C x §, 0), unfolding of the identity of CV,
such that F' e W=F,

By the same methods as used above, we can check that an infinitesimal
unfolding f(z,- -+, zn)+eg(zy, -+, zy) is GR-trivial if and only if ge
((8ffazy), - - -, (8ffdzn)) - C{zy, - - -, Zn} 50 that the space ‘transversal to the
R -orbit’ is

R} =C{z;," -, ZN}J'((aﬂazl): oL, (Bffazn))

which is finite-dimensional if and only if (Xp, 0)=(f"'(0), 0) has an isolated
singularity, and then we have:

dime Rf = p™(X,, 0)

where p™(Xo, 0) is the Milnor number of (X,, 0), which we have already
met in §2 as a discriminant and also (2.18) in equisingularity conditions.

Remark. The reason why one does not consider ®-equivalence when
p>1 is that the corresponding R; would then be infinite dimensional, except
when it is zero, which is the case where f is a germ of submersion. To see
this, please do the:

Exercise. Generalize the notion of ®-equivalence to unfoldings of an
f:(C™,0)—>(C", 0), and check that the corresponding R} is:

Ri=Clzy,- -+, zn)"/(8fl0z1), - - -, (8f32n)).

This shows that R} is the cokernel of a map W : 08— 02 4. Using the fact
(easy consequence of what has been tecalled in the addendum to §1) that
the non-empty components’ of the subspace of CV defined by the Fitting
ideal of the cokernel of such a map ¥ are of codimension =N—p+1, check
that if p>1, dime R} <=¢» Rf=(0)© f is a submersion.
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4.7.1. There is a notion of %-miniversal unfolding of a germ of function
f:(CN, 0)—(C, 0): it is the function described by

Y=f+ifr'5i(21s"',-z~) (s;eC{zy, -+, Zn])

1

e CNxC*—»CXC*  [(C*, 0) with coordinates t;, - -+, 1,)]

where the images of the s form a basis of R}.

However, with this definition, one can always take one of the 5 to be 1,
and the corresponding  changes the function only by a translation.

The custom therefore is to enlarge the Right-equivalence by allowing
translations in the target space, and if we call g -equivalence the corre-

sponding notion, we have of course that
R} = (zh T ZN) ) C{Z], Ty ZN}/((a_ﬂazl)s T, (a.ﬁazN))

so that dim B} = w®)(Xo, 0)—1 and an %-miniversal unfolding of f is a map
F: (€N xC*t, 0)— (CxC*7F, 0) where p = p""(Xp, 0) described by

=1
too F=f{zy, ", 200+ Z t - sz, 0, Zw) (sseC{zy, -, 2n])
1

peF=4 if 0<j=p-1

where the images of s form a basis of Rj.

This should be compared with the miniversal deformation of the hypersur-
face (f71(0), 0)=(X,, 0)c €V, 0): from what we saw above, this miniversal
deformation: G appears in a diagram

(X, 0y (€ xC, 0)

N

€, 0
where X is defined by

fon e o)+ Yo gz ) =0 (eCizu .z
1

and the images of the g form a basis of
af af )
1 ——1 R ) — L) — .
Kf '—C{Zl, E zN}/(f! 82'1, ) aZN

Again, one of the g must be invertible, so can be chosen to be —1. Alslo,
tradition imposes that in this case we write 7(Xo, 0) instead of t for dim¢ K.

Finally, setting m = 7(Xo, 0)—1, the miniversal deformation of (X, 0) is
isomorphic to the map:

G: (V¥ xC", 0)—(CxC™,0)
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given by
vo° G=Flzq, -, ZN)+gvi cgilzy, 0, Zn)
poG=y 0<j=m

where (C™, 0) has coordinates oy, *, .

Exercise. Write similarly the miniversal deformation of a complete in-
tersection (X, 0)< (C", 0) given by p equations as a map (CVXC™,0)—
(C°xC™, 0) where m=dime Kf—p (and f:(C",0)—(C" 0} has (X,, 0) as
fibre).

4.8. Basic results on the openness and economy of unfeldings and
deformations

4.81. Let F:(CVxS,0)—>(C"x8,0) be an unfolding of a map-germ
f:C™, 0)—(C", 0) which is of finite singularity type. Let m, be the ideal
defining 0x S in C"x S, i.e. the ideal in Geresp generated by coordinates
{y1,- -, ¥,) on (C", 0}. We can consider

aF aF
A}r,'s'—' Og“xs.o/og"xs.o+ (_s T, _)
le aZN
where Ofvxso designates the sub-Ccecso-module of Terv.sy generated by the
basis elements and F= {(yi° F, -+, ¥ ° F) and similarly: ‘
oF JE)

1 _ 5P . —_— .
Kr-“fs—(’j'c"xs.u/my Oerixgot (&z A
1 N

aF F
osa (2. )
! dz, 0z

and in the case p=1, we consider:

- oF aF
Riys=(z1," ", 2n) " tD'c:"xs.o/ (_, e ,_)-
aZ] dzn

Consider now the map of Ogg-modules
Q%25 BLs where B=A,KorR

defined as follows: take DEQ;"6=HUmgs." (5.0, O0s0) and extend it to a
derivation D of Ocvyesp by setting Dz, =0. Then define 65(D) to be the
residue class in By of DF=(D(y,° F), -, D(y, = F)), and the kernel of
65(0) corresponds to elements of Qg 4(0) = Ego which give &-trivial infinites-
imal unfoldings and F is a #-miniversal (resp. versal) unfolding if and only
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if 85{0) is an isomorphism (resp. is onto), which is just another formulation
of what we saw above.

Now as soon as Bjs has a support which is finite over S (by H=pr, ° F)
fs can be sheafified in a map of coherent fs-modules:

a
QsY—> HyBps

(this finiteness will occur if f ts T.S.F.) and if F is miniversal at (,
85(0): Eso—> Bj is an isomorphism, and by Nakayama's lemma this implies
that 8g(s) is onto for all s € § sufficiently near 0, This is the source of results
of openness of versality, of which I will now quote only what I will use:

4.8.2. Tueorem (Product decomposition theorem, see [5] chap. III
§1). Let (X,, 0} be a germ of complete intersection with isolated singularity.
Any sufficiently small representative G :(X, 0)—(C', 0) of a miniversal defor-
mation of (Xg,0) has the following property: for any seC’, if the fibre
X, =G Ys) has I(=I(s)) singular points x;(s)(1=i=1) there is a (non-
canonical) decomposition of C in the neighborhood of s: CT=8;X - - - X § X T’
where r=7{X,, O —Yi_, 7{X,, x;) such that in a neighborhood of x,(5), G is
isomorphic as a deformation to a map:

id51><' . -XidsHX G{xidslﬂx' . ‘xfdsl XC":

Slx---XS,-._IX_XEXS;.HX---)(S,XC'—MS'IX-"XSi_l
: XE XSG Xr XX

where G;:X,— S, is the miniversal deformation of the isolated singularity of
complete intersection (X, x;(s)) [I have omitted marked points for simplicity of
notation and we have §; =C %50 ]

Remark. The theorem implies in particular that G remains a wversal
deformation of X, at every point of X, near 0, hence the terminology
‘openness of versality’ but it is stronger than this and has in particular the:

4.8.3. CororLary. Let 3. X be a closed complex subspace of X (for a
small enough representative) defined by conditions concenirated at each
singular point of a fibre of G. Then, setting A= G(Z) we have in a neighbor-
hood of every points seC' (and in particular of course if seA) a decom-
position according to the singular points (x,(s), 1si=1(s)) of G™'(s):

t -
A=U 4
f=1
where Ei=S,X---xSi_leixS,-ﬂx---xS,xU

and A, <=8 is Gi(5;), where 3; < X; is the subspace of X; defined by ithe
conditions which define 3= X.
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In particular this shows that near every s €A, A is & union of subspaces in
general position of C”, which are in 1-1 correspondence with the singular
points of G7'(s).

If we recall the way we built the miniversal deformation G:(X, 0)— (S, 0)
(where S =C"%") of an isolated singularity of complete intersection, we see
that we can define a coherent Os-module GyCls with the property that for

any se8§
1

dime G«Chys(s) = ), 7(X,, x(s))
i=1
where x;(s)(1=i=1) are the singular points of X,. From this, one can
deduce the existence of a (locally) finite partition of 5, §= U S, into locally
closed complex subspaces, such that

!
se8e ) (X, x(s)) =1
i=1

S.(x,0) Is the subspace containing 0, and is a closed complex subspace of S.
We remark that if s € S, (%, o) and if X, has only one singular point, x(s), then
the restriction of G to a neighborhood of x{s) is a miniversal deformation of
(X, x(s)).

4.8.4. TueoreM (of economy of miniversal deformations, see [T;] exp. 1,
§1). Let (Xy, 0) be a germ of a complete intersection with isolated singularity.
Any sufficiently small representative G : (X, 0)—(C", 0) of a miniversal defor-
mation of (Xg, 0) has the following property:

the set of points x € X such that the fibre of G through x, (X, x) where
§ = G(x), is analytically isomorphic to (Xy, 0), is reduced to {0}.

The meaning of this theorem can be seen as follows:

CororLrLary 1 (proved by Seidenberg when (X, 0) is a plane curve). For
any deformation H:(Z,0}—(Y,0) of (X, 0) where (Y, 0) is reduced, the
following conditions are equivalent:

(1) there exists a representative of H such that each fibre Z has a point z(y)
such that (Z,, z(y)) is analytically isomorphic to (X;, 0).

(2) There exists a germ of a section o:(Y,0)—{(Z,0) of H and H is
isomorphic (over (Y,0)) to the trivial deformation (Xyx Y, 0)—==2> (Y. 0) in
such a way that a(Y) is sent to 0X Y, _

In words: if all the fibres are isomorphic, the deformation is (locally) trivial.

Cororrary 2 (See my appendix to [6]):
A. Same situation as above, but we only assume that there exists a nowhere
dense closed subspace (F,0)<=(Y,0) such that for any ye Y~ F, the fibre Z,
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has a singular point z(y) such that: given any other y'e Y—F,(Z,, z(y)) is
isomorphic to (Z,,, z(y") (but not necessarily to (Xo, 0) since Fe0.
Then we have: If (Z,, z(y)) is not isamorphic to (X5 0) forye Y—-F

m(Xo, 0)>1(Z,, 2(y)} (yeY-F).

B. Let 8' < S, x,0) be a complex subspace of the ‘t constant stratum of
constructed above, such that for any se 8, X, has only one singular point
x(s). Then the ‘analytic type of the fibres varies continuously’ on S' meaning
that any s€S* has a neighborhood V, such that (X,,, x(s")} is not isomorphic
to (X, x(s), forall s'e V..

Remark 1. We have nowhere been explicit about the uniqueness of the
base change through which a given unfolding or deformation comes from
the miniversal unfolding (or deformation): it is only the Zariski tangent map
to this base change which is uniquely determined.

Remark 2. In the proof of all the theorems above, the integration of
holomorphic vector fields is often used, a procedure which is very far from
being alpebraic. Renée Elkik has proved the ‘algebraicity’ of the construc-
tion of miniversal deformations of isolated singularities (Ann. Sc. E. N. S.
4gme série, t. 6 (1973) 553-604) and Bruce Bennett has given a beautiful
new proof, without ‘integration’, of the product decomposition theorem
(Normalization theorems for certain modular discriminantal loci, Com-
positio Math. 32 (1976) 13-32).

Exercise. Let f(zy, -, zn) =0, feC{z,," - -, zy} define a germ of com-
plex hypersurface (Xo, 0) < (CV, 0) with isolated singularity. Write a miniver-
sal deformation of (X;, 0) as

G:(CVxC", 0)—=(CxC",0) where m=71(Xp 0)-1
and an %-miniversal unfolding of f as
F:(CVXC* ™., 0)—(CxC* %, 0) where p=p"X0).

Show that there is a germ of submersion

@ (CxC* ™, 0)—(CxC™,0)
such that F is obtained up to isomorphism of deformations from G by pull
back, and that the restriction of G to ¢~ *(0) is trivial as deformation, but
not as unfolding.

Exercise. Define the ‘u constant stratum’ as a closed complex subspace
of the target space of the % -miniversal unfolding, in analogy with the ‘r
constant stratum’ defined above, and show that the dimension of the ‘7
constant stratum’ in the base of the miniversal deformation is nof upper
semi-continuous.
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Himnt. Use the plane curve (zi— zj) + z3z; = 0. Use what you have seen
about it in an exercise above to prove that its r-constant stratum is {0}.
However, for any vg# 0, the curve (z7—z3)*+ 23z, + voz3) =0 has a one-
dimensional T-constant stratum in the base of its miniversal deformation.
Check that this phenomenon does not occur for the p-constant stratum in
the base of the % -miniversal unfolding of f=(z3—z3)*+z3z,. For more
details on the w-constant stratum in the base of the % -miniversal unfolding,
sez Arnold’s article in the Proceedings, International Congress of
Mathematicians, Vancouver 1974.

Exercise. Let F:(C*, 0)—(C?, 0) be a flat map. Show that it is infinitesi-
mally stable if and only if it is a versal deformation of (F'(0), 0).

Hint. Use Nakayama’s lemma and the Weierstrass preparation theorem.
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§5. Discriminants

In this section, we define and study the discriminant of versal deformations
G:{X,0)— (S, 0) (with S non-singular) of complete intersections with iso-
lated singularities, i.e. equivalently, of stable and flat maps between non-
singular spaces. In the case of hypersurfaces, we go into more detail, and
finally reach the goal of these notes, which is to show connections between
naive invariants of the discriminant, on one hand, and invariants of the
geametry up to (¢)-cosécance (§ 2) of the hypersurface, on the other hand.

On the way, we meet some naive invariants of the discriminant which are
not invariants of (c)-cosécance of the fibre, and we emphasize the structure
of the discriminant as an envelope.

5.1. To study versal deformations with a non-singular base of a complete
intersection, it is sufficient to study the miniversal ones, since a versal
deformation is the product of a miniversal one by the identity of some space.
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Let G:(X, 0)— (S, 0) be a miniversal deformation of a germ of complete
intersection with isolated singularity (Xo, 0)={(G7*(0), 0). As we saw in §4,
G is an infinitesimally stable and flat map between non-singular spaces (and
is stable, by a theorem of Mather), and G can be described as the restriction
over 0XC" of a ¥ -miniversal unfolding F:(CN xC~, 0)— (C? X", 0) of a flat
map f:(C", 0)— (C", 0) having (X, 0) as fiber.

Tradition imposes that we write Tk:s for the Ox-module K of §4 (here
(5,0)=(C", 0)) and 7= 7(Xs, 0) for dimc K}, which was denoted by ¢ in §4.
We also saw in §4 that G itself can be described as an unfolding of f,
namely G:(CVxC™, 0)— (C"XC",0) commuting to projections to cm,
where m = 7(X,, 0)-p.

We wish to study the critical subspace C of G in the sense of §2: it is the
subspace of X defined by Fn—,(€s).

Exercise. Show that Fy_,(Qks) = Fo(Tkss) and that Tx;s has a presenta-

tion:
W
o% 0% Ths 0.

Since G is flat and (X, 0) has an isclated singularity, we see by using the
simplicity theorem of §2 (at“the non-singular points of {Xg, 0)) and the
Weierstrass preparation theorem for a sufficiently small representative of G,
the critical subspace C will be finite over §=C, i.e. G| C:C—C" is a finite
map. By &1, Gx(C)=im (G| C) is therefore a subspace of C°, and by the
theorem of Bertini, (see §2, second part) since X is non-singular, G(C) is a
strict closed subspace of C7, so that Anng, - (G:Oc)# 0.

5.1.1. CLamm. depthg,- (GsOc)Z7—1.

The proof is as follows: by an easy computation of local algebra, (see A.
Grothendieck: E.G.A. IV, 0.16.4.8) depth,, . (G40c)=depthy, (Cca) since
Oc is a finite Og-g-module (see above). Now we use a result of Buschsbaum-
Rim ([5] cor. 2.7) (already used in §1) to the effect that since Tis has a
presentation as above, the maximum length of a sequence of elements of
Fo(Ts) which is a regular sequence for @x, (called the Fy(Txs)-depth of
Oxois =N—p+1, and also that if it is equal to N—p+1, then dhg, (O cp)
Le., depthg, (Oxof Fo{ Txs)), is also equal to N—p+1. Therefore, if we can
prove that the Fo(TYs)-depth of @y, is at least N—p+1, we will obtain
dhg, (@cg)=N—p+1 and then by the equality quoted in 3.5
dept'h(ﬂ’cvo)=m +p—1=7-1, and we win. Now, a basic property of a
Cohen-Macaulay local ring A is that for any proper ideal I in A, we have
I-depth A =dim A —dim A/IL Since O, is regular, it is Cohen-Macaulay,
and hence, setting d = Fy( Tiys)-depth of @, we have:

dim O x.of Fo{ Txys) = dim Oxo—d
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and hence:
d = dim O‘X'(}_ dim C

but we have already seen that dim C=dim Gx(C)=m+p—1 by Bertini’s
theorem, hence dZN+m—(m+p—1)=N-p-+1 which proves the claim.

Remark. If you wish to understand the geometry behind this kind of
computation, as well as that in the addendum to §1, and more, I suggest
reading the beautiful papers of G. Kempf ([15] and [16]). The above
presentation partly follows suggestions of Patrick Barril.

Our geal is to deduce from this:

5.2. TueoreM (of purity of discriminants. See [7]). Let G : (X, 0)— (S, 0) be
a miniversal deformation for a germ af a complete intersection with isolated
singularity. Then the discriminant D = G4(C) of G, as defined in §2, (i.e. by
Fo(GeOc) is a reduced and irreducible hypersurface germ in the non-singular
space (S,0)=(C",0). Furthermore, C is normal and G|C:C— D is the
normalization map.

ProoF. Since D is defined as the image in the sense of §1 of C by G| C,
the fact that it is a hypersurface follows immediately from the claim above
and 3.5. To prove the rest of the assertions, we stop a while to give a typical
application of the stability of G (which we know thanks to Mather’s
theorem) and the product decomposition theorem of §4:

The Thom-Boardman strata of G. (See [4], [23]).

Given a stable G such as above, for every sufficiently small representation
there are non-singular complex subspaces 2'(G) of X, indexed by sequences
of integers I'= (i, -, i) and defined inductively as follows: 3= X, and

3M(G)={x € 2/dim Ker{T.(G | Z7)) = j}

in words: points where the dimension of the kernel of the tangent map of
G |3 is exactly j.

In fact these can be defined for any map G as subspaces using Fitting
ideals, and they can also be defined as coming from a stratification
of the jet-space J7(X, §), and in this way one sees that if G is stable, Z(G)
is non-singular,

5.2.1. Exercise. Show that in the case of hypersurfaces (p=1) one has
C=3%"(G), and that the set of points of C which are of multiplicity
a = my(Xy, 0) (the multiplicity in the usual sense of (X, 0)) in their fibre
(of G) is 3™ " ™(G) when N occurs a — 1 times.
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Boardman also gave a formula for the codimension of his strata 3HG) as
follows: if £'(G) is not empty, with I=(iy,- - -, i), then

((I) ilgigg' * 'gik
(B) N—p=ii=N+m {(m=dim Kj—p)
('Y) ifilzN_p; i?.=' ) .=ik=N_p’
and then the codimension of 2(G) in X is
V= (p_N+il)p'ih---,Ik_(il_i?_)”'i;.u-.fk_ et _(ik—l—ik).“'fk
where g ... ; is the number of non-increasing sequences (fi, - * -, ji) with
f1 #0 and j; = ig.

We will see these Thom-Boardman strata again later, but for the moment
we use them to prove the theorem of purity: first, remark that it is an easy
consequence of 4.8.3 that the mapping G |27:37— G(Z') is generically
one-one, just because G(3') has to be locally irreducible outside of a
nowhere dense closed subspace of itseif. If i, > N— p, then 2"« C and hence
G | 3" is finite. If we denote by S’ the closure of = in X, which is a closed
complex subspace of X, we have:

5.2.2. Prorosrrion. [f ii>N-—p, G|8":8" — G4(S") is a proper modifi-
cation of Gu(S")}= G4(Z7), and in particular G4(S") is reduced. {See §2 for
‘proper modification’): this follows from the above remark and the definition of
the 3" by rank conditions.

End of the proof of the purity theorem. Oc¢ is of depth (as @cr_o—.module)
equal to its dimension 7—1 (5.1.1) hence all its irreducible components at 0
are of the same dimension T— 1, which is also the dimension of ¥ °*}{G),
and of no other Boardman stratum, by the codimension formulas. Hence,
C=8N"r*1((3), and hence D is reduced. Moreover, the singular locus of C
is contained in the union of 3! where I'>(N—p+1,0- - 0} in the lexico-
graphic order, and this is of codimension at least two in C. Since we already
know that C has depth #—1 at each of its paints, it follows from the
criterion of Serre ([30]) that C is normal hence it is locally analytically
irreducible, and hence its image D is also locally analytically irreducible at
0, and finally since the induced map G| C:C— D is a proper modification
of D (5.2.2), it has to be the normalization.

Remarks. (1) As we saw in 5.2.1, in the case p=1, C is even non-
singular, so that G | C is a resolution of singularities of the hypersurface D.
However, there is a deeper fact about this map C— D: it is in fact also the
development of D in the sense of §2, as we shall see below.

(2) I want to illustrate the proof above in the case p=1 as follows: how do
we prove in this case that the discriminant D is reduced? as follows: the
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Boardman stratum 3V(G) is dense in C, and xe3(G) if and only if the
singularity at x of the fibre of G through x is isomorphic to the ordinary
quadratic singularity A, with equation z3+- - -+2z%=0. Now D is of course
locally irreducible outside a nowhere dense closed subspace B, so by 4.8.3
there is an homeomorphism C-n"'(B)— D—B. At every point of
(C—n"YBY)NZY(G), which is dense in C, we can apply the openness of
versality of §4 (4.8.2) and see that our whole situation is locally isomorphic
to a cylinder over the situation for the singularity A,: it remains to check
that for this singularity, the map from critical subspace to discriminant
subspace is an isomorphism, which is obvious since the versal deformation is
given by tyo F=2z3- ...+ 2% critical subspace and discriminant are both
reduced points (here ™ =1).

5.3. Examples of discriminants

The purpose of these examples is to convince the reader that it is much
more convenient to give oneself the discriminants parametrically. i.e. by
C—D {n= G| C) (more precisely, as image of G| C:C— € XC™) than
to actually compute the equation of D in C” XC™, Here is what happens in
the simplest cases: for the versal deformations of the singularities defined in
€ by (zM):Ciz}: the versal deformation is the restriction of (Cx

cV1, 0)—2 (N1, 0) to the hypersurface X defined in CxCV™' by
ZN+ IN_zzN_2+ e +tg= 0

and the equation of the discriminant in CV™? is of course just the z-resultant
of this equation and its derivative with respect to z.

Here is what you get for the equation of the discriminant:

2: =0.

3276 +48=0.

=4: 25665 — 2711 — 1286513+ 144130, + 164,62 — 4536 =
5 3.125t‘$—3.75013tzt3+2.250r§rlt§+825r§t§t§+ 1081213
—900£34,13+2.00043 £ 15~ 63011, 315+ 164,56 -+ 108 4,15
=72t 1243 + 560117 1,45 — 1.6001, 13 1+ 25665 — 128632
+ 16615+ 1446655 - 27654 -44325=0.

N = 6: the equation has 76 monomials (available on request).

(I thank Gérard Lejeune for programming this for me.)
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The real part of the discriminant for N=4 is well known (not as
discriminant, but as bifurcation set, see below) under the name swallowtail:

[D]

Figure 3

N.B. You €an find pictures of sections of the (real part of the) discriminant
also for N =35 (again considered as bifurcation set) in [38].

Indeed, in the case of the discriminant of the general unitary polynomial
in one variable, there is a very pleasant way of building the discriminant
geometrically, due to Dominique Thillaud (unpublished):

Consider P(z)=zN +1ty_12V 1+ -« - +1,=0.

Notice that here we have not removed the term in z¥ %, so this is in fact a
versal deformation of (zV) - C{z}. Now the set of points where P(z)=0 has
an N-uple root is a curve My in C" (f, " - -, tv—1) given parametrically by

e

where u is the value of the root.

Prorosition (Thillaud). The set M, of points in C¥ where:P has at least a
puple root is the (N — p)th developable variety Dy, of the curve My, where
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the (N—p)th developable variety of My is the closure in CV of the set
U tentes Tn-p(Mn, £}, where Ty_,(Mn,?) is the osculating space of dimension
N—p to the curve My at £, meaning the affine subspace of CV made of
elements of the form My(v)+3r7 AMP (1), AeCN™P. M designates the
poinis ¢ of My where the d:mensran of Ty.,(My, &) is actually N—p. Remark
that dim M, =N-p+1.

CoroLLary. The discriminant of P(z) is the (N—2)th developable variety
of the curve My,

Proor. Given as an exercise.

QuesTioN. Take a non-singular curve M in projective N-space, and
consider its (N—2)th developable, Dy_, which is a hypersurface on PV
containing M. Is it true that there exists a Zariski dense set of points Uc M
such that if pelU, Dy_. is locally at p analytically isomorphic to the
discriminant of z™+ fy_,; zV '+ - -« 4 1g?

(For N=13 it is well known that a curve is a cuspidal edge for its developable
surface.) Tt would then follow that the section of Dy, by a generic
hypersurface through p is locally at p analytically isomorphic to the N-
swallowtail, i.e. the discriminant of z™+ ty_2z™¥ 24 - - + 4.

5.4. We now come back to the general discriminants, with the following
easy consequence of the product decomposition theorem of §4:

Remarg. Given a discriminant (D, )= (C" xC™, 0) as above, for each
integer k, 1 =k=m +p, there exists for any sufficiently small representative
of D= C"XC™ a closed complex subspace B, = D, of codimension at least k
in D, such that at every point p e D — By, D is locally analytically isomorphic
to a finite union \J,; D; of cylinders D, in general position over discriminants
D, <= C" of miniversal deformations of isolated singularities of complete
intersections with 2=k

Cororrary. For each k, there exists a Zariski open dense subset U in the
Grassmannian G(m +p, k) of directions of k-planes in €™, such that given
Hye U, for a sufficienuly small representative of D <C? XC™, there exists an
open analytic dense subset V of the space of affine k-planes in C* xC™ having
direction Hy such that: If He V, DN H is locally near each of its points
isomorphic to a finite union |J, D, of cylinders, in general posmon in H, over
discriminants D, < C" with S =k.

In particular:

5.4.1. Exercise (from [7]) Show that for any sufficiently small represen-
tative of a discriminant D =CPxXC™ as above, for ‘almost every’ affine
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2-plane H (in the sense made precise above), HMN D is a plane curve having
as singularities only nodes and cusps.

Hivr, Use the local irreducibility of discriminants at their origin, the
general position coming from the product decomposition theorem, and the
fact that the only singularities of a complete intersection (Xp, 0) such that
T(XD,O)—Z is, up to isomorphism the singularities called A, or ‘suspen-
sion’ of z*=0, namely Y){7' z7+ 24 =0, where N=dim X+ 1.

By an easy flatness argument, one sees that in fact the number 4 of nodes
and the number k of cusps of DM H are the same for ‘almost all H® in the
sense made precise above. These numbers k£ and d depend only upon the
geometry of D, i.e. of G. They are mentioned here because they are related
to the geometry of certain plane sections of the discriminant D through the
origin, and these plane sections, in the case p=1, will be one of our main
points of interest.

5.4.2. We therefore have the following picture in mind: a non-gingular
point p in the discriminant corresponds to a singularity in G™'(p) at which
G~ '(p) is locally isomorphic to an ordinary quadratic singularity: 23+ - -+
z%-p+1 = 0 (of the right dimension). And it is the only singularity of G~*(p).

A point p at which the discriminant is cusp-like (i.e. cylinder over a cusp)
corresponds to a point in the fiber G™'(p) at which it is isomorphic to
zi+ -+ z%_,+ 2% .1 =0 (i.e. again cusp-like) a point at which the discri-
minant is node-like corresponds to a fibre G~*(p) which has two ordinary
quadratic smgulantles and there are no points more complicated than that
outside a subspace of D of codimension 2.

5.5. We will from now on consider any versal deformations of germs of
hypersurfaces with isolated singularities, i.e. we restrict to the case p=1.

5.5.1. Tueorem. The map induced by G:(X, 0)— (S, 0) from the critical
subspace C to the discriminant D = G4(C) is the development of D, in the
sense of §2. Since C is non-singular, we see that the singularities of D are
resolved by one development (and in this case the development tumns out to
coincide with the normalization).

Proor. We need the following

Lemma. Any feCfzy, -+, zny} can be written after a change of variables:

f(zla' ‘ ‘:ZN)=Z§+ " '+z[21+f(zp+ls. : 'szN)

where fe (Zp+1, 7" * > 2n) is uniquely determined, and has an isolated critical
point if such was the case for f.
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The proof is immediate by using the classical form of the Weierstrass
preparation theorem and the removal of the term in z in a polynomial of
degree 2 in z.

Next we make the

Remark. The bases of miniversal deformations for f and f are isomor-
phic, and the discriminants are also isomorphic.

ProoF. A miniversal deformation for f=0 is described by
G:(CV¥xC™, 0)— (CXC™ 0) (coordinates v, ty, - * -, t,) on CXC™)
vo G=flzy, -+, zv)+ L, tgilze -, Zn)
i=1

LoG=1t (1=i=m)

where the images of 1 and the g in C{z;,-- -, 2y }{f, (3ffdzy, - - -, (@f'azn))
form a basis over C. Clearly

| : ff 2
C{z,, - ZN}/( ZN) C{Zp+1: ", Zn} faz,,+1 Fr
and therefore we can assume that the g depend only upon z,.q," -, Zn.

Hence

G:{CVP xC™, 0)— (CXT™, 0)

Tt
ve G=Ffzpar, s )+ D 68 Zpers  , Zv)
1
Lo G= L
is a miniversal deformation of f(zpﬂ, «++,zy)=0, and has the same

discriminant as G.

ArpLication. For the study of f from the discriminant of its miniversal
deformation, we can always assume that fe(zy, -+, zyv)?, and we will do so.
It implies that we can choose g, - - *, gv equal to (z,,* -+, zy), and from now
on we will write our miniversal deformations by

ve G=Fle, )< f(zy,+ -, zn)
+hzit ot eyt v Ba(2) T b (2,

where gy €(zy, "+, zn) 2 f k=N +1.
Let now 8(v, #y,- -+, t,) =0 be an equation for our discriminant {D, 0} <
(€xC™,0).
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Prorosrtion. We have for all 1=j=m
8,
a5

6‘6
c &u

OF
Cat,‘C‘

Proor. C is defined in C¥XC™ by the ideal ((8F/az,),- - -, {0F/dzy))
[which incidentally shows again that C is non-singular (#F/éz;) begins with 1]
since D = G4C, we have that 8 ¢ G vanishes on C (i.e. 8€ Ann- Gu0c: in
fact (8)0c.em = Ann G,.0c since D is reduced, see §1).

Since C is reduced (being non-singular!) it implies that

§o0G= ZA(*,f) (.,,f)

9(8 ° G) &*F (BF &F)
—_ = A e —
Btf Z ' az,—at,- mod aZl ’ azy

and since § comes from CXC™:

0=28°0)_ ZZA(x,t) (~,¢) od(ap : aF)

0z; i=1j= dzq1 BZN

but as we saw, on an open-analytic dense subset of C, the hessian determin-
ant det ((°F/9z;9z;)) is different from 0. Hence A,;{s,t) vanishes on C, hence
A;e((9F/az,), - - -, (AF/3zn)) and therefore on C we have:

_ (8 o ()

o
88
6u

L
c ov
aF

[y &f,-

J3(v = G}

ad
+—2G
c a4

c d4

o G

= c

t—o G
C Bt!

C

which proves the proposition,
In particular, we can write
a6 96 oF

o= T LT

3t o oy et 0
which shows that the restriction to D of the Jacobian ideal of § becomes
invertible on C:

) ad

j(8) - Ocq =£ *Ocp-
Since for a hypersurface, the development is isomorphic to the blowing up
of the restriction to the hypersurface of the Jacobian ideal, as is easily
checked (see §2), we see that C must dominate the development D, of D,

e m—— e g
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i.e. we have a factorization for n= G| C:

c

C
l D,
V4

D

In particular, d”*(0) has only one point, and to prove that p is a local
isomorphism at 0, it is sufficient to prove that m, - @y =mcg Where m; is
the maximal ideal of D, at d7*(0), and mgg is the maximal ideal of C at 0.
Because of the equations described above for C in €V XC™, we see that mcq
is penerated by the restrictions to C of zi, ', Zne Invir, " * * 5 I SINCE
tnet. "0, by give elements which are already in mpg hence a fortiori in
mp, g, it is sufficient to check that z e mp, ;. But by definition of a blowing
up, the ratios (38/94)/(38/dv) which are meromorphic on D and tend to 0
since they do so when lifted to C by the proposition above, become already
holomorphic on D,, which means that (3F/3%)|, a priori meromorphic on

"D, is in fact in mp,p (1=j=m). But for 1=j= N, (aF/at;) = z;, which shows

that z;€mp, o hence D= C and this concludes the proof of the theorem.

Remark 1. The fact that (C, 0)— (D, 0) is the development seems to me
to lie deeper than the fact it is the normalization. Are there similar results
for the other G4(S")?

Remary 2. This result enables one to identify C with the ‘projectivized
conormal bundle to D’ in the ‘projectivized cotangent bundle to CXC™’ and
Pham has shown to me that the real-analytic version of this result (which I
had proved only for aesthetic reasons) was of great use in the theory of
caustics. It is not my purpose to go into this here, and I refer to [29], [1).

Remark 3. It follows from the theorem and the fact that there is only one
point of C lying over 0, that there is only one limit position at 0 of tangent
hypersurfaces to D, and since the (3F/a4) tend to 0 with (x,£), this limit
position is the ‘horizontal hyperplane’ dv=0. This can be expressed by
saying that the discriminant ‘fattens’ on the hyperplane 0XC™ (a flattening
very different from that used in §4!). We shall see more about this below.

Exercise. Show that the tangent cone to D at 0 is set-theoretically given
by v = 0 [strictly speaking one would say V =0 where V is the initial form of
v in the associated graded ring grCexcol-

Hinr, Use the fact that the tangent cone to D must be contained in the
image of the restriction to Tcp of the tangent map to G, which can be
written expliciily.
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5.5.2. Prorosrrion. The multiplicity of D at 0 is equal to the Milnor
number "X, 0}, where (X, 0) is the hypersurface with isolated singularity,
fibre of G.

Proor. The multiplicity of 'a hypersurface at 0 can be computed as its
intersection multiplicity at 0 (in its ambiant space) with any non-singular
curve C such that Teg2 Cpo (Cpo=tangent cone). It follows from the
exercise above that the line ,=:--=t¢,=0 (i.e. the v-axis) satisfies this.
Therefore we have to compute the multiplicity of the restriction of our
discriminant to this v-axis. But since our definition of the discriminant is
compatible with base change, this is exactly what was computed in 2.6.

Remark. Consider now the restriction «:D —C™ to D of the natural
projecion CXC™ —C™: it has a discriminant’ which we will denote by
(B, 0)=(C™,0). B,.4 is called the bifurcation locus of G: it is exactly the set
of values £€C™ such that the corresponding function v = f(s)+ 1" t; g:(z) is
not an excellent Morse function (near the origin) i.e. a function having only
ordinary quadratic singularities giving distinct critical values.

5.5.3. We remark that these notions can be defined just as well in the
real-analytic case, and then the discriminant and bifurcation locus will be
semi-analytic hypersurfaces in their respective ambient spaces RXR™ and
R™, and a fundamental object of study in Thom’s theory of elementary
catastrophes is the bifurcation locus of an R-miniversal unfolding of a
function f:(R™, 0)— (R, 0) having an (algebraically) isolated critical point.
The fact that these sets, defined as images, are semi-analytic, follows from
Galbiati’s theorem (see Hironaka's lectures) in this case, because they are
images of maps having a finite (hence proper) complexification. The same
remark applies to all the imapes occurring in a stratification of a stable
map-germ in the real-analytic case (see below). In fact, using finite determi-
nacy, Mather even made them semi-algebraic. Anyway, going back to the
complex case, if we take /eC™ — B (for a small representative of G), the
line Cx{# will meet D in p®™(X,, 0) non-singular points of D, and
transversally. It means the function v= f+Y g will then have p™(Xo, 0)
non-degenerate critical points.

5.5.4. One should not confuse B<C™ with the discriminant of the
composed map C—— D —"—C™ which is easily seen to be flat (it is just
that ¢, - - -, t,, lift to regular sequence on C) and to be a ramified covering
of degree p™(X,, 0) in view of 5.5.2. The discriminant A of this composed
map p:C— C", set-theoretically, is the image by o of the locus of cusp-like
points of D, but does not take into account the node-like points of D.
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We will use very much from now on the following:

5.5.5. Prorosrrion (See [7]). Let (Xg, 0) <= (CV, 0) be a germ of hypersur-
face with isolated singularity, and let 1:(CN,0)— (C, 0) be a linear function
(i.e. a coordinate function if we want). Assume that I"*(0)N X, still has an
isolated singularity. Then the discriminant of 1|Xy:(Xo, 0)— (C, 0} is the
origin counted with a multiplicity equal to p™(X,, 0)+u™"V(X, N H, 0),
where H is the hyperplane 17'(0). Furthermore, if f(z1,--+,2n)=0 is an
equation for (Xp, 0)c(C",0), the ideal generated by the coefficients of the
2-form df A dl defines a curve Sy in (C¥, 0) (the polar curve of f with respect to
) and we have

(Xo, Ser)o = ™ (Xo, 0)+ ™ P(Xa N H, 0)

where ( , ) is the intersection number at 0 in C~,

Finally, when 1 ranges through the PN~ of linear maps, g™ " "(Xy N H, 0)
takes its minimal value if and only if [7'(0)= H is not a limit direction of
tangent hyperplanes to X, at non-singular points near 0 (in the sense of the
first part of §2). This minimal value is the "~ (X,, 0) defined at the end of
2.17.

RemARK 1. In view of the last exercise in 2.6, we have, taking = z,, and
defining H by z;=0:
[82)] {N—1}) : af a‘f
w (X, 0)+ p X N H, 0) =dime Clzy, s zwd [\ g a3
Zn dzn
We will meet this curve S defined by ((8f/az2), - - -, (8ff9zx)) again. Remark

that because (Xj, 0) has an isolated singularity, the (3ffdz;) form a regular
sequence, so that Sy is a complete intersection.

ReMark 2. The numerical part of the above proposition has been shown
to be a special case of a nice general formula, proved topologically by 1.
([17]) and more algebraically by Greuel ([8]): Assume we know the Milnor
number of an isolated singularity of complete intersection is. Then if (Xp, 0)
is such an isolated singularity, and h:(Xj, 0)— (C, 0) any function such that
(h™*(0), 0) again has an isolated singularity, than taking a coordinate v on C,
the discriminant of & is (v*)C{v} where A= u(X,, 0)+ w{h~(0), 0).

The ‘vanishing cycles’ aspect of this proposition and the interpretation
of p™(X,, 0)+pu™~X,NH, 0} as an intersection number have also been
generalized to arbitrary singularities of hypersurfaces by L& ([18]).

Anyway, please do the

/

Exercise 1. Let (X, 0)=(C? 0) be a germ of reduced plane curve. Let

7:(Xo, 0) = (C, 0) be a projection parallel to a line H in (C*, 0). Show that
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the discriminant of # is (v*)C{v} (v:coordinate on the target of 7) where
A= F"(z)(XCI: 0)+ (X(): mﬂ_ 1.

In particular, if H is mnot tangent to (X, 0), then A=
12X, 0)+ mo(Xy, 0)— 1 where mo{ ) is the multiplicity (= order of the
equation).

In particular, show that if (X, 0) is a cusp (resp. a node) then if H is not
tangent, A= 3 (resp. 2).

Exercisg 2 (from [7]). Let D=CxC™ be the discriminant of a miniversal
deformation of an isolated singularity of a hypersurface, and let (B, 0)c
(C™, 0} be the corresponding bifurcation subspace discriminant of the projec-
tion 7:(D, 0)— (C™, 0). Show that

5.5.6. mo{B,0)=2d+3k=jG+pu—1.

Where p = u™(X,, 0) and where g is the Milnor number of the plane curve
(DN({€xH),0), (H,0)c(C™, 0) being a ‘generic’ line (in fact, a line not in
the tangent cone to B at 0).

(We remark that B is not reduced, so that we have to use again that we
have a good definition of the discriminant.)

Hmvt. Use the fact that if you move H away from the origin, it will meet
B ‘transversally’ in a number of points which (counted with multiplicities) is
mq(B, 0).

5.5.7. DermitioN. 1 shall call a section of the discriminant D by an
i-plane of the form Cx H, where H=C™ is an (i—1)-plane, a vertical
section. We will be very interested in general vertical plane sections of D.

5.5.8. The invariant & of curves and the geometry of the discriminant: first
movement,

In fact, there is another relation between d, k& and the general vertical
plane sections of D, basically that found by L& and Iversen [20], but which
here we shall deduce from the results of §3: take a 2-plane (H, 0) in C"™, and
write it (H,X H{, 0). If H is sufficiently general, for every 1 € H,\{0}, the line
H, = Hyx{t} in C™ will be such that I N{Cx H,) has as singularities only k
cusps and d nodes. On the other hand, we can view DN(CX H) as a flat
family of plane curves parametrized by H;. Furthermore, n” (D N{Cx H))
is a surface in C which is Cohen-Macaulay since the two coordinates on H
form a regular sequence in @ (see the beginning of this paragraph) and is
non-singular in codimension 1 (by Bertini’s theorem) hence is normal, and is
the normalization of D N({Cx H). Let therefore " denote the curve (DN
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(Cx Hy), 0) and TV the curve (n~Y(I"), 0) = (C. 0). It follows from 3.3 and the
fact that the invariant & of a cusp or a node is equal to 1 that:

5.5.9. s, 0)=6N—-(d+k), ie.
d+k=358(I)—8(").

Remark 3. If we assume known the fact, recently proved by Marc Giusti
[9], that the formula 25= u+r—1 of 3.4 remains valid for reduced curves
which are complete intersections, we deduce from 5.5.9 the equality:

5.5.10. k=p'+p—1
where p' is the Milnor number of the complete intersection I = {C, 0).

Exercise. Give another proof of the equality 5.5.10 using the formula of
L& and Greue! quoted in remark 2 above.

Hmvr. Remark that k is precisely the multiplicity at (0 of the discriminant
A of the p-fold branched cover (C, 0)—p> {C™, 0), and use the fact that
(p~*(0), 0) being a 0-dimensional complete intersection, its Milnor number is
equal to its multiplicity minus 1. Remark that I = p~*(H).

RemARrk. The computation of k and d for the discriminants of versal
deformations of complete intersections with isolated singularity has been
done by L& and Greuel ([19]). The new feature is that the discriminant non
longer ‘fattens’ so that 5.5.6 (for a generic projection of D to a hyperplane)
becomes my(B, 0)=2d+3k+7 where 7 is a number of ‘vertical tangents’
which has to be evaluated.

Remark. One can seek estimates for k and d in terms of u = p™(X,, 0)
only. It follows from 5.5.6 that ([7] chap. IiI).

(@) 2d+3kz p2—1
and it follows from 5.5.9 and a well-known formula for the behavior of &
by blowing up (see [10]) that

(8) d+k§ﬁ(—‘5’“—2“—1)

of course {a) follows from (8) and 5.5.10.

5.6. The invariant 8 and the geometry of the discriminant: second
movement

5.6.1. Let (D, 0)< (C™*", 0) be a germ of hypersurface. For any represen-
tative of D, define Crp (k) to be the set of points s € D at which D is locally
analytically isomorphic to the union of k non-singular hypersurfaces in
general position in C™**. (Cr is for Cross). Crp (k) is a locally closed complex
analytic subspace of D, of codimension k in C™"', if it is not empty.
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5.6.2. Dermirion. Let (Xp, 0) < (CV, 0) be a germ of a hypersurface with
isolated singularity. Define 8(Xj, 0) to be the maximum number of singular
points which one can pile up in the same fibre of an arbitrarily small
deformation of (X, 0).

Exercoise 1 (from [36]). Show that, if D is the discriminant of a versal
deformation of (X, 0}, one has:

S(XO, O) = Max {k/O 1S CI‘D (k)}.
Hint., Use 4.8.2.

Exercise 2. Check that when (X,,0) is a plane curve, this definition
agrees with that given in §3.

5.6.3. Remark. 8(Xg, 0), maximum number of critical points of a func-
tion nearby the function f:(C", 0)— (C, @) having (X, 0) as fibre which one
can pile up in the same level variety of this function, should be compared
with u'™'(Xy, 0), which is the maximum number of critical points of such a
function which one can spread out (in the sense of critical values). In a way,
8 and p correspond to the same preoccupation, but § is to the geometer,
interested in spaces, i.e. fibres, what u is to the function-theorist. Anyway,
Mr. I. N. Iomdin has communicated to me the following results:

5.6.4. Prorposrrion (1. N. Iomdin [12]). For an isolated singularity of
hypersurface (Xy, 0), one has the following inequalities:

33 (N)(XU! 0) -

w2 K 0=k (X, 0+ 1™ (X0, 0).
02 .

Proor. The upper bound for & is obtained as follows: it is a theorem in
{[7], chap. II) that the multiplicity in the sense of algebraic geometry of the
Jacobian ideal on the hypersurface i.e. of j(f) - Ox o, is equal to w"™(X,,0)+
pw™M=Y(X,, 0). Suppose we have a deformation of (X, 0) where the general
fibre has &§(Xp, 0) singular points. By exercise 1 above, they have to be all
ordinary quadratic singularities, and by the upper semi-continuity of multi-
plicities we must have:

M(M(Xo, 0+ F«(N_I)(Xn, 0z a-5(X 0)

where a is the value of p™+u™~" for an ordinary quadratic singularity,
which is obviously equal to 2.
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5.6.5. Ta prove the other inequality, we must go back to the theory of
polar curves according to ([14] §3, [35]). Anyway, this theory will be of
essential use below: the polar curve of f(zy, -+, zy)=0 with respect to a
hyperplane H is the curve Sy defined in 5.5.5. It is not difficult to convince
oneself [and it is proved in [35] with the help of generic simultaneous
normalization as in §3] that there exists a Zariski open dense subset
V ePN"! such that if the hyperplane H e V, if we choose coordinates so that
H is given by z,=10, the paolar curve Sy, which is now (dffaz;)=---=
(8ffazn) =10, is reduced, has a number of irreducible components 1 in its
decomposition Sy = Ji-1 Iy which is independent of He V and further-
more, setting m=my([,), we can define integers e, =0 by e,+m,=
(Xo, Ty)o (intersection multiplicity in (CV, 0)) and the sequence of integers
(e, m,) is independent of H e V. Furthermore, e, is equal to the intersection
multiplicity of T, with the hypersurface defined by {(9f/dz,) =0, and we have
(He V)

1

Y e =p®(X,, 0)

q=1

1
Zl My = “(N—n(xﬂ’ 0) = ma(Sp) = (S, H)o.
a=

This means in particular that no component of Sy; has its reduced tangent
cone {a line) contained in H, and therefore we can think of the branches I';
as given parametrically by: '

T {Z]_ = f:'“
q zi=[:ll-l+"' kq_,imq (ZsiéN)
While fi, has an expansion
fll'q =y - IZ‘!+'""+ e ('Yq EC*)
and
af
| =7 ... 1%
8z, Ir, b (é’q )

(by the equivalence of the several definitions of intersection multiplicities).
(Remark that the (e, m,) thus defined are independent of the choice of
coordinates and equation as-follows from [35] th. 2.)
Now Jomdin argues as follows: take a = [Sup, [(e,/m,)] and a point p on a
component I', on which this sup is attained. Then we can find a polynomial



660 Bernard Teissier

P,(z,) depending on p such that fi, ~ P,r, vanishes with multiplicity a +1 at
p, and furthermore, as a =Sup {e,/m,), P, tends to zero as p—0 on T,

The polar curve of f(z;,--, zy)— P.(2z,)=0, which is ', near p, is
non-singular and intersects it with intersection multiplicity a+1. Hence
f(z)—P,(z,)=0 has at p a singularity of type A, i.e. locally isomorphic to

"”+za+- «+4+z%=0. (Recall that u™ V=1 implies that the general
hyperplane section has only a quadratic singularity.) Therefore we have
proved:

Lemma (TIomdin). Arbitrarily close to a singularity (X, 0) with invariants
(e, my) as constructed above, there are singularities of type A, where a=

[SUPq (eql" mg )] .

Now there only remains to prove that for A, one can find a nearby fibre
with [{a+1/2)] quadratic singularities. But according to exercise 1 above,
this depends only upon the geometry of the discriminant and hence by the
lemma in 5.5.1 we are reduced to z§*' =0, where it is obvious. All that
remains now is to observe that

(N}
Sup eq - H (XD:I 0)

—=—————— b 5.6.6).
' m, “(N—l)(XG’O) y )

5.6.7. Remark. The method used in §3 when N=2 to realiz:e & will not
work in higher dimensions: take a resolution of singularities Xo— X; and
perturb the composed map Xo— Xy—CV: the i image will have generalized
pinch-points!

5.6.8. Question. How many points of Crp (k) are there in a sufficiently
general section of D by an affine k-plane near the origin? (for k=2, it is the
computation of d).

5.7. Remark. The map G |C :(C, 0)—=(CxC™,0) is not sufficiently gen-
eral for its image (D, 0)=(CXC™, 0) to be weakly normal in the sense of [2],
which means that every complex map-germ which is continuous on I and
becomes holomorphic on € (i.e. when composed with n) is already
holomorphic on D. (Weak normality would imply no cusps in codimension
1) but it is sufficiently general for D to be Lipschitz saturated as was
remarked in [7 chap. III, 5.18] which means that every locally Lipschitz
function on I which becomes holomorphic on C is already holomorphic on
D.

The question above is linked to what happens when one makes a generic
perturbation of the map G| C:C—CxC™.
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5.8. Stratifications (see Hironaka’s and Mather's lectures in these
praceedings).

5.8.1. Let G:(CVxC™, 0)— {CXC™, 0} be a versal deformation of a germ
of hypersurface with isolated singularity (X, 0)c (CV, 0). We want to de-
compose the source and target of any small representative of G in a finite
number of locally closed non-singular subspaces,

CNanl:U Zu, Cxcm=LIaJ Sﬁ

such that

(i) for each a there exists a 8 such that G induces a subsmersive
surjection Z, — S,

(ii) some interesting feature of G remains constant along each ‘stratum’
L

We shall be interested in the following three features of G:

(1) the local topological type at xeCN XC™ of the fibre (G~ {G(x)), x) of
G through x (again a hypersurface with isolated singularity,.

(2) The (c)-cosécance class (2.19) of this same fibre,

(3) The topological type of the germ at x of the map G:

G:(CVxg™, x) = ({LxC™, 5). (s=G(x))

5.8.2. It is a basic fact of life in these problems that if we require nothing
about frontier conditions and such, the constancy of (1) along a Z, is in
general strictly weaker than the constancy of (2) if N= 3, and the constancy
of (2) is in general strictly weaker than the constancy of (3), even for N=2,
(i.e. plane curves). {See below 5.12.1 and 5.12.4).

5.8.3. Anyway, a process for building Thom stratifications of G [i.e. of
the source and target of a small enough representative of ] along each
stratum of which (3} is constant, has been described in the lectures of
Hironaka and Mather. Basically one finds Whitney stratifications of C¥ xC™
and CXC™ such that (i} is satisfied and also Thom’s condition Ag: then one
has an isotopy lemma to prove the topological triviality of G along the strata
(by the integration of controlled vector fields), a fact which is even stronger
than the constancy of 3). The point is that the finiteness of C over CXC™
implies the ‘no blowing up’ condition of Thom.

Remark 1. One can prove exactly the same results but with the
generalized condition (c)} (2.18, Remark) instead of Whitney conditions. One
then inteprates rugose vector fields, which gives a stronger trivialization.
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Remark 2. Of course, G HCXC™—D) will be one stratum, and
G~ (D)~ C will be a union of strata. I wish to remark that for any stratum
Z.,<C,G|Z, will in fact have to be a local isomorphism onto a stratum
Ss = D. Furthermore, one can build at the same time a stratification of the
parameter space C™, say C" = |J T, such that if /e T,, then the topological
type of the maps F, : C¥—C are the same.

Furthermore, denoting by Sy {resp. Tp) the stratum of the origin in the
Thom stratification in CXC™ (resp. C™) the projection CXL™ — C™ induces
a local isomorphism Sy = Ty: This is simply because by the properties of our
stratifications, as long as /€ T,, F; has only one critical value.

Finally, all this remains true in the real analytic case, with semi-analytic
(even semi-algebraic) strata.

We will be mostly interested in the constancy of (2}, but let us stop a while
to sketch an application of the idea of the invariant & above:

5.9. A real interlude. The catastrophic version of the Gibbs phase rule
(after [32], [36]).

In the theory of elementary catastrophes of Thom, a family of physical
systems depending on parameters is ‘represented’ by a family of functions
F,:RY — R, representing the family of potentials which govern the evolution
of the systems. Stability conditions imply that we can think of this family of
functions as an R-miniversal unfolding (see §4) of a given function f=
Fo: (@™, ) — (&, 0) with an algebraically isolated critical point. Our family of
functions is then represented by

F:(BY %", 0)— ® xR, 0).

Now take a Thom stratification of any small representative af this map (what
follows is true for any Thom stratification, but Mather has proved the
existence of a canonical one in his lectures) and let TocR*~! be the image
of the stratum of the origin S,=RXR*~' by the cannonical projection.
Recall that pr,|Sp:S,— Ty is a local isomorphism, and that F induces a
local isomorphism Z,— S, where Z; is the stratum of 0 in RY xR+
Since the morphology of our family of functions does not vary along T,
the true number of parameters of our systems is the dimension of the
supplementary subspace to T, i.e. codimg.-1 Ty = codimaxp- Sp—1 and on
the other hand, the stable states of the physical system represented by F;
correspond to the ordinary minima of the function F, on B (i.e. of course in
a ball around 0 in RV): therefore, the maximum number »(F) of minima
which a function F; in (an arbitrary small representative of) our family can

The Hunting of Invariants in the Geometry of Discriminants 663

present, will represent the maximum number of phases which can coexist in
a system of our family (if we think of our systems as chemical or ther-
modynamical), and the well-known Gibbs phase rule to the effect that the
number of phases is at most the number of parameters plus one, becomes a
purely geometric statement:

v(F)= codimas— Tp+1
that is

v(F) = codimgaxpe—t Sg. 5.9.1

One proves this in two steps: first, one defines the real analogue 8,(X,, 0)
of the 8(X,;,0) of 5.6 and since one has a real analogue of the
product decomposition theorem, one proves that §8.(X,, 0)=
max {k/0 € Crp (k)} where Crp (k) is the k-cross locus of the real discriminant
D of F. Since a homeomorphism of ambient spaces respecting D cannot
help to respect Crp (k) for all k, we see that Sy < Crp {8:(Xs, 0)) and hence
codimgugs -1 (8p) 2 85(X, 0). On the other hand, following ideas of Smale,
since all minima of a function have the same index as real critical points,
there is no obstruction to putting them all at the same level, i.e. in the same
fibre of F: this shows that 8x(Xj, 0) = ¢{F) and proves 5.9.1.

"5.10, The partition of the discriminant D according to multiplicity {a.k.a.
its Samuel stratification. See [33])

The fact that the Milnor number p™(X,,0) of a germ of hypersurface
with isolated singularity is an invariant of its topological type (as embedded
germ in {C, 0)) is easily deduced from the material in Milnor’s book. There
is a partial converse, harder to prove:

Tueorem (L& Diing Trang and C. P. Ramanujam [21]). In an analytic
family of germs of hypersurfaces with isolated singularity (in the sense of
2.12), the constancy of the Milnor number of the fibres implies the constancy
of their topological type, if N#3.

RemARK. The restriction N# 3 comes from the fact that the proof uses the
h-cobordism theorem. The author has recently given a purely algebraic
proof of a stronger result in the case N =2 (i.e. for plane curves). See [35].

5.10.1. Anyway, from our peint of view this theorem and 5.5.2 show that
the most primitive invariant of D at 0, namely its multiplicity mgo(D), already
contains some good information about (Xg, 0). This fact led me to introduce
in [33] the so-called Samuel stratum D, of the origin in D as a candidate for
the base of a deformation ‘miniversal for deformations where the topologi-
cal type of the fibres remains constant’.
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We must first make precise what we mean by Samuel stratum, since we
can define it either as a reduced subspace of D or not. Let us go back to the

notations of 5.5.1 and write
o G=’ F(z,t)=f(x)+ t121+' TR INZN'I' tN+1gN+1(*5)+ et rmgm (.:.')

assuming fe(z, ", 2n)". .
I will also write an equation 8{(v, t,,- - -, ¢,) for D in CXC™ as follows:

8=v"+a, (" - tay)=0 (=, -, )

5.10.2. Dermvrrion. The (non-reduced) Samuel stratum D, of the origin
in D is the subspace of €XC"™ defined by the ideal generated by the

(% EG‘C,C,...U) where (i, y)=a, |aj<p=p"(Xy,0).

Of course (D, )ea={(v, 1) € D/mg, 4(D)= p}.

5.11. I now want to make a list, with references, of positive and negative
facts known about (D, )ea.

5.11.1. ([33], [7], using results on the monodromy proved by Lé, Lazzeri,
Gabrielov.)

Above any point (v,{) € D,, there is only one point of C, which is given by
an analytic section described by:

z _—lda,4() (1=i=N)
#oat
(recall that ;, +++, zy and fyya, * 7, &y fOrm a system of coordinates on C).
This shows that n~'((D,, );.q) is the image of a section o :{D, ).ca — C. This is
the ‘non splitting’ principle, (see [14]).

5.11.2. In particular, after 4.8.2 and 5.2, I remains locally analytically
irreducible at every point of (D,)}.s and in particular, its tangent cone
remains a p-fold hyperplane, the hyperplane in question being given by the
tangent space at the point (z,¢) to the non-singular subvariety W of €xC™
with equation

1
W:TJ =—- ap.—1(t1: R tm)'
1A

(Remark that the flattening property of D of 5.5.1 implies that a,_;€
(tlr Tty rm)H-l')
Remark, In the language of the theory of contact of Hironaka [11], W

has the maximal contact at every point of (D, ). (in fact W> D, ) and if
seD,, Ty, in one case coincides with the strict tangent space to D at s.
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This is important for us because it will give us a natural frame in which to
take Newton polygons (namely the v axis and Tw,s} at every point s of D,..

5.11.3. The problem of the non-singularity of the ti-constant stratum was
as far as I know raised in [33), where it was shown that:

Tueorem. If D is the discriminant of the miniversal deformation of a germ
of reduced plane curve, (D, )rea is non-singular.

Remark 1. In that first proof, the hard work had been done by J. Wahl
who had shown in his thesis [37] the existence of a (formal) miniversal
Zariski equisingular deformation for a germ of plane curve, and had shown
it was (formally) non-singuiar. All I had to do was to identify the completion
at 0 of the local ring of (D, ),.q at 0 with that constructed by I. Wabhl, thanks

to the fact that p-constant<> equisingularity in the sense of Zariski (see
3.7.

Recently however, in the appendix to [39], I succeeded in giving a
completely different proof, at least in the case of branches: the idea, which is
new I believe, is to make any branch with a given semi-group of values T
(see 3.7) appear as a deformation of the menomial curve CF which has the
same semi-group. Of course one has to go out of the paradise of plane
curves: if [=(B,, - - -, Eg), the monomial curve C', which is given paramet-
rically by v; = % (0=i = g) has imbedding dimension g+ 1. What one wins is
that it has a C*-action, and if it is a complete intersection, which is the case
it I' is the semi-group of a plane curve, then it is easy to see that it has a
miniversal constant-semi-group deformation which is a linear subspace in the
base of a C*-equivariant miniversal deformation of C*. Now for plane
branches, equisingularity is equivalent to ‘same semi-group’ so that by 4.8.2,
since our original plane branch (X, 0) appears as fibre of a deformation
(arbitrary small) of C', the p-constant stratum of its discriminant, multiplied
by a non-singular subspace, is non-singular: therefore this p-constant
stratum is non-singular (the example 4.6.3 is lifted from that theory). Tt
seems to be easy to pass from this result to an arbitrary reduced plane curve,
but I think the generalization of the ideas of this proof to higher dimensions
{where the question is still open) is quite an intriguing problem (see below),
and is for me the main motivation for the study of complete intersections
andfor quasi-homogeneous singularities. Another form of the question,
which is stronger and therefore perhaps easier to answer, is the following:

QuesTion. Is the Samuel stratum D, a resolved space in the sense of
Hironaka? (see [11])

(A resolved space is a (non-reduced) space which cannot be improved by
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permissible blowing up: its underlying reduced space is non-singular and it is
normally flat along it.)

Remark 2. The non-singularity of (D, ).q of course would imply the
non-singularity of the p-constant stratum in 3 R-miniversal unfolding of f,
after the first exercise in 4.8.4.

5.12. We now come to the negative facts concerning (D, ),.q, which are
extremely important.

5.12.1. TueoreM (Pham [26], [3]). Even when N =2, the topological type
of G:CN x™ — CxC™ can vary along o((D,).a) where o is the section built
in 5.11.1. The example given by Pham is the miniversal deformation of the
reduced plane curve y* + x” = 0. The miniversal deformation is described by:

vo G=y +alx) y+£4(x)
where
ax)=apta, - x+- - +a; x’
LxY=by x+-+-+by 2" +x".
The p-constant stratum is given in this case by v =0, b;=0(1=j=7), a;,=0
(0=i=3) and the corresponding family is given by
Yy +(agx"+ a;x)y+x"=0.

Exercise. Check that it is an equisingular family, using 3.7. Now Pham
shows that near every point of (D, }..s with as=0, there is a point of the

discriminanf such that the corresponding fibre has 2 singular points of .

multiplicity 3 which have in suitable coordinates Newton polygons of
smallest inclination =4/3 and 25/3 respectively, and that this is nof the case
if ag# 0. Since the maximum over the set of coordinate choices of the
inclination of the first side of the Newton polygon is a topological invariant,
[11], this shows that the topological type of G cannot be the same if a;=0 or
as# () (near a point where a5=0, a; + 0, say).

5.12.2. Furthermore, the counterexamples of Briancon and Speder (2.18,
see [6]) show that even if (D,).as is non-singular, or if we restrict to a
non-singular subspace of it, it is not true that the corresponding fibres will
be equisingular in any strong sense, as soon as N=3. (FHowever, they will
have the same topological type, at least if N#3, by the theorem of
Lé&-Ramanujam).

My reaction to this was to abandon ‘constant topological type’ as a
definition of equisingularity in high dimension, in favour of (c)-cosécance,
since in my opinion the topology of the general sections is an important part
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of the geometry of a singularity (see for example 5.20.2 below). Further-
more {c)-cosécance can be easily generalized to the non-hypersurface case,
coincides with Zariski’s definition of equisingularity when N'=2, and in the
case of hypersurfaces implies that the functions having our hypersurfaces as
fibres are topologically equivalent, a fact often deemed useful.

One could think that in the definition of equisingularity conditions ‘the
stronger the better’ provided the condition is always satisfied for ‘almost all’
fibres in a family. However, I do not go all the way to the really strong
possible definitions of equisingularity, such as ‘miniversal deformation to-
pologically constant’, which is called also ‘universal equisingularity’ or ‘s
constant’, which both satisfy the openness condition mentioned above (see
also [14] §1). The reason is that with these definitions, some deformations
which T like, such as the specialization of a plane branch to the monomial
curve with the same semi-group, mentioned above, would not be
equisingular.

5.12.3. By the results in [14] §2, all the p’(X, 0) are analytically upper
semi-continuous in a family of hypersurfaces. Hence we can define a closed
complex subspace of the u-constant stratum D,, the u*-constant stratum
D+, at least as a reduced subspace. Of course, when N=2,D ,«= (D, );q. It
seems that the extensions of the methods of proof of the non-singularity of
(D }rea for plane branches are better geared to answer the

Question. Is D= non-singular?

5.12.4. The last negative fact on D, (or D,-}, also due to Pham, is quite
important for us:

Treorem (Pham). Even when N=2, the topology of a general plane
section of the discriminant D<=CXC"™ of the miniversal deformation of
(X0, )= (CM, 0), through the point s D, can vary when s varies as the
i -constant stratum D,. As a consequence (see 5.5.6) the number k of cusps in
a general plane section of D near s (see 5.4.1) can vary as s varies on D,.

5.12.5. IMPORTANT REMARK. | want to emphasize that after the counter-
examples of Briangon and Speder (5.12.2) one is aware of the fact that a
hypersurface (such as our D) can be topologically trivial along a non-
singular subspace S (such as (D, )4) while the topological type of its general
i-plane section (i =2 for example) through s€ S varies with s. There is no
example where the topology of the discriminant varies along (D, ),.q as far as
I know. See [22].

5.12.6. We shall analyze the phenomenon in 5.12.4 in a way different
from Pham’s. The idea is that there is 2 very close connection between a
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general plane section of D through the origin and the polar curve we saw in
3.6.5 and 5.6.6. This is seen as follows:

5.13. Prorosrmion. The fopological type (indeed, the (c)-cosécance class
2.19), of a general vertical plane section of the discriminant D (5.5.7) is the
same as that of a general plane section of D.

Proor. Since the set of 2-planes H in (CXC™,0) giving the pgeneral
topological type for D N H is Zariski open and dense in the Grassmannian
Gr(m+1, 2), it is sufficient to check that the family of plane sections of D
through 0 satisfies an equisingularity condition near a plane section of the
form:

U= agX, L= By (1=i=m)

where ay#0.
Let us then consider the family of plane curves X defined in C*™** X C” by

F(ai IB: X, Y)= 5(“03‘7“’30)’: a1x+B‘.| Voo, amx+3my)= 0
where (v, #,, - - -, £,,}= 0 is the equation of the discriminant D. We see that
GF_ 9  9F__ 25
dag av’ 9B v
9F__ 95 aF_ o8
aa; EH‘,’ Bﬁ, y 6!‘1
oF 28 Z as

y-

. o
< ax Y3 at,
aF o8 a8
=g+ Y=
ay Bo v LB at

CrLam. Near a point p:(a, 8,0) where a,# 0 we have

oF aF aF .
a—al_'O‘x_pE(x, y)- (a,a;)-@’x,p (0=i=m)
aF oF aF )
B—E-Q‘X,pe(x, y)- (a,a)'@'x,p (0=i=m).

Proor. Since an integral dependence relation can be pulled back by a
map such as the map X — D induced from the, map ¢ :C*"**xC*—CxC™
given by v =agx+ Boy, 1= ax -+ By (1=i=m), on X= (D) we see that
as soon as @y or B, is different from 0, since (38/84) Op, is integrally
dependent on the ideal (86/dv) - Opy for all i, as follows from the proof of
5.5.1, and 4 of 2.7, we sec that if ag 0 the ideal ((9F/dx), (@F/3y)) Ox, is
generated by (88/dv) - Ox, and all (38/8%) - Ox,, are integrally dependent on
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it. The claim follows from this. Now we remark that the claim is nothing but
the restriction to X of the integral dependence required for X to satisfy
condition (c) along C*™**x{0} near p. Of course, condition {(c) does not
follow directly from this, but a direct computation shows that the pull-back
by ¢ of the map G| C:C—CXC™ is non-singular and is the normalization
of X, provided «,#0. Then one can apply the criterion (12) of 3.7 since
J(F): O¢ -1 1s then generated by (38/dv): O -1,

Remark. The same argument shows that general vertical sections of any
dimension give the general (c}-cosécance class.

5.14. ProrosrrioN. The Newton polygon (in the coordinates given by the
decomposition H=CX H,) of the intersection of D with a general vertical
plane is equal to the Newton polygon of the intersection of D with the plane
CxHy where H, is the line b=---=14,=0 in C™, provided z;=0 is a
sufficiently general hyperplane in the sense of 5.6.5. Furthermore, this section
also has the same topological type ((c)-cosécance) as a general plane section
aof D.

Proor. A vertical plane in CXC™ can be given parametrically by:

v=v
6 = oU CE,'E‘E (1§i§m)

and if we write the corresponding functions, with the conventions of 5.5, we
find

N m
v=Fflzi, -, znlt ) auz+ ), ewuglzi, -, zw)
i=1 i=N+1
which, after a linear change of coordinates, becomes (if our vertical plane is
general in the sense that a#0)

m

Y aglz, e, ZN))

I=N+1

v=f(z,-- -,zN)+u(zl+

with g e(zy, - -+, zn)*
After a new change of coordinates, we can write it as

v=f(z," -, z2n)+ uzy.

/

Now since the formation of the discriminant commutes with base change,
DNH is just the discriminant of the map (CM xC,0)— (CXC,0) thus



670 Bernard Teissier

described. The critical subspace is defined by the ideal

(Lol

u
8z, 9z  Tdzn

) * Oerng

which is nothing but the intersection of the surface Sy XC, where Sy is our
polar curve with respect to z; =0, with the hypersurface (8ffdz,)+u=0
As we have already assumed z, =0 to be peneral, we are ready to obtain a
parametric representation of our general vertical plane section of D, as
follows:
Take the parametric representation of the branches I'; of Sy as in 5.6.6:

—tm
r,{""
* {zi=aq'irk‘1'i+--- (ZEI‘EN) - k. ;=m

qi = g

We have now a parametric representation of the branches C, of the critical
subspace above (which is a reduced curve) as follows:

u= —af/azlqu = —fpfgt - (&, eC*)
Cy {z1=tgn
1zi= aq.itk“'I+ o

and therefore also a parametric representation of the branches of D N H, say
D,, as follows: computing v=f+uzr, gives: (see 5.6.6 and remark that
differentiating gives v, = &, * (my)/(e; +my))

- U= — Lt

D,
’ v=7 [ R (1] = — i gq EC*)
4 T e tmy

Hence we have proved:

Tueorem. The number of branches of a general vertical plane section
DNH of D is equal to that of a general polar curve of the function
f(zi,+*+, zn), and its Newion polygon in the natural coordinates (u,v) on
H=CxH, is

NG| H)= z {eq : m“} (notations of 3.6).

q

This now follows immediately from 3.6.2,

5.15. We remark that since k,; = m,, it is reasonable to say that the ratios
m,le, describe the vanishing rates of the critical points of the Morse function
f+uz, as functions of u since for example, on C;:

2= (=)
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and that the {e; + m,)/(e,) describe the vanishing rates in function of u of the
critical values of this function.

/ D ﬂ/H

Figure 4

5.16. The point is that while it is quite hard to compute the discriminant,
it is relatively easy to compute the polar curve (in practice, of course, we
have to decompose it into its irreducible components, which is not so easy,
but usually manageable by using the following trick: a peneral plane
projection, and then Newton polygon again!) For example, to prove Pham’s
theorem in 5.12, all we have to do is to find an equisingular (i.e. x-constant)
family of plane curves such that the number of irreducible components of a
general polar curve does not remain constant:

Consider for example the family of plane curves given by

Zz+zl+yzlzz=0 in CXC"

since it is cubic in 2, it is easy to see by Zariski’s discriminant criterion that
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it is equisingular along C x {0}. However, consider a general polar curve:
A(Bzz+yzD)+ u(725+5yz1z2)=0 (A:p) P! ‘general’.

It is not difficult to see that for y =0, the general polar curve is reducible: it
has two non-singnlar components. However for y# 0, it is topologically the
same as z>+z3=0 hence irreducible. Therefore we can assure that the
topology of a general 2-plane section of the discriminant D varies along the
w-constant stratum.

Exercise. Parametrizing the components of the polar curve and comput-
ing adequate intersection numbers, check that whether y is 0 or not, the
Newton polygon of a general vertical plane section of the discriminant is
{14//12}.

Exercisg, Consider the family of plane curves

za+ 2 +yzszi=0

(1) Check that it is equisingular.

(2) This time, the general polar curve is irreducible for y =0, but becomes
reducible for y#0 (two components).

{3) Whatever the value of y, the Newton polygon of a general vertical

section of the discriminant of the miniversal deformation is {27//24} (but for
y#0 it appears as {9//8}+{18//16}).

5.17. This Newton polygon (8 | H)=%1_, {(e, + m}//(e,)} of a general
vertical plane section of the discriminant of a miniversal deformation of
{X;, 0) is the main new invariant which I wish to associate to an isolated
singularity of hypersurface (X, 0), but I am used to working with another
polygon, namely ¥;-1 {e,//m,} which I will call the Jacobian Newton polygon
of X. Of course, the datum of ¥{(X,, 0)=%1_, {e,//m,} is equivalent to that
of 91(8 | H). In fact with the notations of 3.6, we have

(8 | H) = (o (#;(Xs, 0))).
We also remark that since ¢, is the intersection number of T, with a
hypersurface, €, = m, so that »;(X,, 0) is a special Newton polygon. Remark
also that

1 (X0, 0) = p™(X0, 0),  h(w{Xo, 0= p " (Xo, 0).

5.18. 1 now quote results concerning v;(X,, 0). First, it is important to
remark that the analytic type of the hypersurface defined by f(z,," -+, zx)—
g{wy, -+, wy)=0 does not depend only upon the analytic type of the
hypersurfaces (X, 0) and (X, 0) defined respectively by f=0and g=0 (e.g.
multiply f by a unit). However, we have
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Prorosrmion. The (c)-cosécance class of f(x)— glee) = 0 depends only upon
the (c)-cosécance classes of (X, 0) and (X, 0).

The proof is given as an exercise on {c)-cosécance. Therefore we have
defined an operation on the set Ju of (c)-cosécance classes of isolated
singularities of hypersurfaces. This operation will be denoted by L: the
(e)-coséeance class of f{z)— gle)=0 will be denoted by [X]L[X;], where
[X] is the (c)-cosécance class of the germ of hypersurface (X, 0}. Now we
have

5.19. TueoreM ([35] th. 4). Assuming that (X, Q) and (X:, 0) (given by
f(=}=0, glee)=0) have isolated singularities, the Jacobian Newton polygon
of f(z)—g{ee)=10 is given by

v {f()— g(e) =0, 0) = v;(X,, 0) * w;(Xy, 0).

This theorem is not stated in this way in [35], but the proof of theorem 4
there actually proves this. (* is the product defined in 3.6).

5.20. TueoreM ([35] th. 6"). The Jacobian Newton polygon is an invariant
of {c)-cosécance.

The idea of the proof is as follows, and relies on Theorem 2.18. First, one
checks that if a family F(y, z,,---,zx)=0 of hypersurfaces is {c)-
equisingular, then so is the double family F(y,zy,---,2v)t
Fly, wy, * - -, wy)=0. After Theorem 2.18, the Milnor number of the generic
hyperplane section of the fibres of this family is constant (independent of y).
But by an exercise in 3.6, and 5.19, this number is twice the area under the
Jacobian Newton polygon #;(X,, 0). Since a Newton polygon can only rise
under specialization we have that #;(X,, 0) is above ¥;(X,,0) (y#0) and
encloses the same area: therefore they are equal.

5.21. Now we have defined our Jacobian Newton polygon map v, : $s —
N and shown that v, ([ X,]L[X]) = v, ([ X+ v ([ X1 D).

Remark. Since for plane curves a deformation is (c)-equisingular if and
only if it is equisingular in the sense of Zariski (3.6), the two exercises given
above are nothing but verifications of 5.20. However, they show that 5.20 is
a rather fine phenomenon since the number of branches of the polar curve
varies.

5.21.1. Remark. 1 want to emphasize that 5.20 has also the following
geometric meaning: Along the p*-constant stratum D« in the discriminant
DcCxC™ of a miniversal deformation of an isolated singularity of hyper-
surface (X, 0), the Newton polygon of a general vertical plane section
{which has a meaning in view of 5.11.2) is constant.
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For the reader familiar with the theory of contact of Hironaka ([11]) this
implies in particular that the contact exponent 8,(W, D} of the discriminant
D with the non-singular hypersurface W of 5.11.2 (which has maximal
contact) is constant (and equal to 1+(1/n) where m=max, (e/m,))
along D=,

5.21.2. Furthermore, we have also that the intersection multiplicity at
se D, +»of D with a general non-singular curve contained in W is also
constant along D,+ and equal to pw™(X, 0)+p®™N"1(X,, 0) where X, =
G '(s)<=C is the fibre of the miniversal deformation G over s. It is rather
intrigning that this number, which is the diminution of class due to the
presence of the singularity (X,,0) on a projective hypersurface (i.e. what
comes in the Pliicker formula, see Kleiman’s lectures) is also very closely
linked with the contact of the discriminant D with the limit direction at
s € D - of tangent hyperplanes, at nearby non-singular points, namely Tw,.

I will end by quoting from [35] theorems showing that »;(X,, 0), or
(8 | H), contains real information on the geometry of the singularity {X,, 0)
up to {c)-cosécance:

THEOREM. A necessary and sufficient condition for {X,,0) to be (c)-
cosécant to a hypersurface defined by an equation ‘with one variable sepa-
rated’ i.e. of the form f(zs,- -+, zy)+ 277" where ;=0 is a general hyper-
plane section, is that v;(X,, 0) is of the form {a-mf/m} where a is an
integer.

Tueorem. Let feC{z,, -, zn} define a function with an isolated critical
point at 0, and (X, 0)=(f*(0), 0). For an integer, the following conditions
are equivalent

() a>Sup (e,/m,) where (e,/m,) are those associated to f as in 5.6.5.
(i) Any function geC{z,," -+, zn} such thatg—fe(z,, -+, z5)""" defines
by g=0 a hypersurface having the same topological type as (X, 0).

(iii) Any funttion geCizi, - -,zx} such that g-fe(zy, -+, zn)*"?
defines by g =0 a hypersurface (c)-cosécant to (X, 0) (and hence g has the
same topological type as f, as a function).

Finally, the test of any invariant is that it recovers, for plane branches, the
classical complete systems of invariants to the geometry up to (c)-cosécance
namely the characteristic {8y, - -, ;) or the semi-group I={By," ", ﬁg):
the translation in the language presented here of a theorem of M. Merle [24]
gives a complete answer:

Teeorem (M. Merle). Let (X;,0)=(C? 0) be a plane branch. Then
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(notations of 3.6 and 3.7) we have:

v {(X,, 0) = i {(nq “DBy—m Ng—1{n, — 1)}.

a=1 nyccng—i{ng—1)

CoroLLarY. Given two glane branches (Xy,0), (X, 0), letting N(8, | H)
(resp. R(8, | H)) denote the Newton polygon of a general vertical plane section
of the discriminant of a miniversal deformation of (X;, 0), resp. (X,,0). The
following are equivalent:

(1) (Xo, 0) and (X1,0)} have the same topological type.

(2) (X0, 0) and (X1, 0) are (c)-cosécant.

(3) ¥{Xo, 0) = w,(X;, 0).

(@) (8, | F)=R(5, | H).

Exercise. Using the construction in Appendix II of [34] show that
v;(Xo, 0) plays with respect to the local Pliicker formula exactly the role
that (5 | H) plays with respect to Milnor’s formula: it is a dynamic version.
{See also [14] §3.)

Exercise. Let (X5, 0)=(C?,0) and (X, 0)<=(C? 0) be defined by Z3+
Z8Z:+ Z3*=( and (X3, 0)=(C3, 0) be defined by Z3+25Z,+ Z8Z.+ 73
where 3a=28+1 and a =3 (see [6]).

Show that
(X, 0) = [%E—‘f_;—”}
Hmvr. Use 5.19 and 5.20.
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NOTES ADDED AFTER PROOFREADING

p-567 1line -5 of text : the ES should be an 25

line 2.
p-571 in the diagram : X' =X¥Y' -

as on p. 619

p-592 1line 4 of text : Y)(EN instead of X_¢& EN.

£

p-603 line -18 : u(l)(xo,o) instead of 11( )(Xo,o).
L £

p-618 in the picture : P :{:ﬁ%%%}instead af i(P)= ﬁ%%% -

p-644 line -8 : replace depth ( ) by dh ().
Cx,0 Ox
! o

p-660 line 13 : read [(a+1)1/2] instead of [(a+1/2)].

Addendum : The facts stated in Corollary 3 of §3 were appa-
rently kngwn to various people for different purposes. I

want to guote two papers giving beautiful pietures and appli-
cations to. monodromy of the deformation of the Lemma :

N. A'Campo : Le groupe de monodromie du déploiement des
singularités isolées de courbes planes, Math. Ann. 213 {1975}
pp. 1-22.

S. M. Gusein-Zade : Intersection matrices of some singula-
rities of funetions of two variables, Funktional. Apal. i.
Prilozen. 8 (1974) No 1 pp. 11-15.

Alseo, this Corollary 3 shows geomeirically that the conduc-
tor gives the right structure for the double-point scheme
of a map from a curve to a non-singular surface. (See Klei-
man's lectures, chap. 5, and the paper quoted p. 614.)
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