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INTRODUCTION

My purpose in the course was to provide a simple introduction to the resolution of
singularities of curves in analytic Geometry and to the basic invariants of these singular-
ities. However, the course is not elementary or self contained in the usual sense that it
uses only simple notions and results. On the contrary, taking advantage of the existence
nowadays of excellent treatises of complex analytic Geometry, I freely refer to them for
some results, for example on normalization. My hope is to entice the reader to study them
carefully by showing some applications of some of the material they contain in the fairly
intuitive context of singularities of curves.

The study of singularities of functions begins with that of analytic functions of one
variable, say f(x). The local study consists in the assertion that in a neighbourhood of
a zero of order (also called multiplicity) k of a formal or convergent power series f(x),
which we may assume to be the origin after a translation on the variable x, one may
write f(x) = xkg(x) with g(0) 6= 0, and by a change of variable x1 = xg(x)

1
k which is

well defined near 0 since g(0) 6= 0, we get the function f(x′) = x′k ; the point is that
the lowest exponent of the series f(x) determines completely the local behaviour of the
function f(x) up to an analytic isomorphism. Over an algebraically closed field, say the
field C of complex numbers, the global study in the case of polynomials functions of one
variable consists on one hand in the assertion that the total number of roots counted with
multiplicity is the degree of the polynomial and on the other hand on the residue theorem.

We will begin the study of functions of two variables in the neighbourhood of a zero.
First let us consider the formal situation, that is the case where we deal with formal power
series in two variables without constant term. It means that we do not worry about the
convergence of the series which we construct. It is then of course awkward to speak the
”mappings” defined by formal power series, since its value may be undefined but it is
customary to do this, with a cautionary ”formal” in front of everything, or an ”oid” after.
Thus a formal power series in two variables f(x, y) ∈ C[[x, y]] represents a formal mapping
(C2, 0) → (C, 0) and the quotient ring C[[x, y]]/(f) is known as an algebroid plane curve
although if the series f(x, y) is divergent, there is no germ of curve in (C2, 0) defined by
f(x, y) = 0 and such that this ring is the ring of formal functions on this germ. In any
case, the first goal is to try and parametrize such a curve, that is, find all possible different
pairs of power series x(t), y(t) ∈ C[[t]] without constant term such that f(x(t), y(t)) = 0.
This is the geometric problem of presenting any (formal) germ of curve in C2 as the union
of the images of (formal) maps (C, 0)→ (C2, 0). Let me first describe an apparently more
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”analytic” problem, which will turn out to be equivalent, and its solution by Newton, who
used a favourite method of analysts: successive approximations.

1. NEWTON’S STUDY OF PLANE CURVE SINGULARITIES

A general reference for this paragraph is [W]. Let f(x, y) ∈ C[[x, y]] be a formal
power series without constant term. We seek series y(x) without constant term such that
f(x, y(x)) = 0.

Let us first eliminate a marginal case;
If f(0, y) = 0, it means that f(x, y) is divisible by some power of x; let a be the

maximum power of x dividing f(x, y), and let us set f(x, y) = xaf ′(x, y). Geometrically,
the equality f(0, y) = 0 means that the curve f(x, y) = 0 contains the y-axis, and the
equality above means that this axis should be counted a times in the curve. This component
may be parametrized by x = 0, y = t and we are left with the problem of parametrizing
the rest of the curve, which is defined by f ′(x, y) = 0. We now have f ′(0, y) 6= 0, and we
may thus reduce to the case f(0, y) 6= 0. From now on we shall assume that f(0, y) 6= 0.
We may then write, since f(0, y) is a formal power series in y, f(0, y) = ykg(y), with g(0) 6=
0.

The proof of the existence of parametrizations proceeds by induction on the integer k.
If k = 1, we have ∂f

∂y (0, 0) 6= 0, and by the implicit function theorem there exists a unique
formal power series y(x) ∈ C[[x]] such that y(0) = 0 and f(x, y(x)) = 0. We now assume
that k > 1.

Considering series f(x, y) of the form yp − xq with p, q > 1 and (p, q) = 1 shows that
one cannot hope to find series in powers of x. Newton’s idea is to seek solutions which
are fractional power series in x, that is, he seeks series in x

1
m for some integer m, say

φ(x
1
m ) ∈ C[[x

1
m ]] such that f(x, φ(x

1
m )) = 0.

More precisely he seeks solutions of the form:

y = xν(c0 + φ0(x
1
m )) with c0 6= 0, ν ∈ Q+, φ0 without constant term.

If we write
f(x, y) =

∑
i,j∈N

ai,jx
iyj with a0,0 = 0

and substitute, we get ∑
i,j

ai,jx
i+νj(c0 + φ0(x

1
m ))j

and we seek ν, c0 6= 0 and a series φ0(x
1
m ) such that this series is zero. In particular, its

lowest order terms in x must be zero. Since φ0 has no constant term, if we denote by µ
the minimum value of i+ νj for (i, j) such that ai,j 6= 0, we have∑
i,j

ai,jx
i+νj(c0 + φ0(x

1
m ))j = xµ

∑
i+νj=µ

ai,jc
j
0 + xµh(x

1
m ) where h has no constant term.

So c0 must satisfy ∑
i+νj=µ

ai,jc
j
0 = 0
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For this equation to have a non-zero root in C, it is necessary and sufficient that the sum
has more than one term.

Let us consider in the (i, j)-plane the set of points (i, j) such that ai,j 6= 0. It is a
subset N (f) of the first quadrant R2

0 = {(i, j) /i ≥ 0, j ≥ 0}, called the Newton cloud
of the series f(x, y). Any two subset A and B of Rd can be added coordinate-wise, to
give the Minkowski sum A + B = {a + b, a ∈ A, b ∈ B} of A and B. Let us consider
the subset N+(f) = N (f) + R2

0 of R2
0; its boundary is a sort of staircase with possibly

infinite vertical or horizontal parts. The Newton polygon P(f) of f(x, y) is defined as the
boundary of the convex hull of N+(f). It is a broken line with infinite horizontal and
vertical sides, possibly different from the coordinate axis.

Note that it is a natural generalization to the case of two variables of the construction
of the ”lowest exponent” for a function of one variable.

The following is a picture of a Newton polygon in the case where the infinite sides do
coincide with the coordinate axis, or equivalently where the area bounded by the polygon
is finite.

Recall that the convex hull is by definition the intersection of the half-spaces containing
N+(f), so that the number µ = minai,j 6=0{i+νj} is the minimal abscissa of the intersection
points with the i-axis of the lines with slope −1

ν meeting N+(f). Let us denote by Lν the
line which gives this minimum; an example in drawn on the picture. So the polynomial∑

i+νj=µ

ai,jc
j
0

corresponds to the sum of the terms ai,jxiyj such that (i, j) lies on the intersection of the
line Lν with the Newton polygon.

A necessary and sufficient condition for this polynomial to have more than one term is
that −1

ν is the slope of one of the sides of the Newton polygon. For simplicity of notation,
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let us call ν the inclination of the line of slope −1
ν . Let us denote by l

h the inclination of
the ”first side” of the Newton polygon of f , that is, the side with the smallest inclination.
Let c0 be a non zero root of the corresponding equation, and let us make the change of
variables

x =xh1
y =xl1(c0 + y1)

The substitution in f(x, y) gives

f(xh1 , x
`
1(c0 + y1)) =

∑
ai,jx

hi+`j
1 (c0 + y1)j .

By definition of µ, for each ai,j 6= 0, we have hi + `j ≥ µh, so we may factor the series
above as

xµh1 f1(x1, y1) ,where f1(x1, y1) =
∑

ai,jx
hi+`j−µh
1 (c0 + y1)j .

We remark that
f1(0, y1) =

∑
i+νj=µ

ai,j(c0 + y1)j ,

and since a0,k 6= 0 by definition of k, the order in y1 of f1(0, y1) is ≤ k.
Since c0 has been chosen as a root of the polynomial

∑
i+νj=µ ai,jc

j
0, this order is ≥ 1.

We remark that
The order in y1 of f1(0, y1) is equal to k if and only if c0 is a root of multiplicity k of the
polynomial

∑
i+νj=µ ai,jT

j = 0
But then we must have an equality∑

i+νj=µ

ai,jT
j = a0,k(T − c0)k

which implies by the binomial formula and since C is a field of characteristic zero, that
the term in T k−1 is not zero; this is possible only if ν is an integer and then the equality
above shows that the ”first side of the Newton polygon” meets the horizontal axis at the
point (νk, 0), which corresponds to the monomial xνk , which has the non zero coefficient
(−1)ka0,kc

k
0 , so it is actually the only finite side of the Newton polygon of f(x, y), which

means that we may write in this case

f(x, y) = a0,k(y − c0xν)k +
∑

i+νj>µ

ai,jx
iyj with ν ∈ N, µ = νk.

Making the change of variables
x =x1

y =y1 + c0x
ν
1

the series f(x, y) becomes

f ′(x, y) = a0,ky
k
1 +

∑
i+νj>µ

ai,jx
i
1(y1 + c0x

ν
1)j
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The monomials which appear are of the form xi+νl1 yj−l1 , so that they all satisfy i + νl +
ν(j − l) = i+ νj > νk. This means that if the order of f1(0, y1) is k, the Newton polygon
of f1(x1, y1) still contains the point (0, k) and the inclination ν1 of its first side is strictly
greater than ν .

The proof now proceeds as follows, :
a) If the order in y1 of f1(0, y1) is less than k, by the induction hypothesis, there exist an

integer m1 and a series φ1(x
1
m1
1 ) ∈ C[[x

1
m1
1 ]] such that

f1(x1, φ1(x
1
m1
1 )) = 0

By the definition of f1, this implies that

f(xh1 , x
`
1(c0 + φ1(x

1
m1
1 )) = 0

If we set m = m1h and φ(x
1
m ) = x

l
h (c0 + φ1(x

1
m )) ∈ C[[x

1
m ]], we have f(x, φ(x

1
m )) = 0

and the result in this case.
b) If the order in y1 of f(0, y1) is still equal to k, we saw that ν is an integer and the
inclination of the first side of the Newton polygon of the function f1(x1, y1) obtained from
f(x, y) as above is strictly greater than ν.

We now set ν0 = ν ∈ N and repeat the same analysis for f1, defining a function
f2(x2, y2). If again the order of f2(0, y2) is k, the slope of the first side of the Newton
polygon of f1(x1, y1) is an integer ν1 > ν0 and after the change of variables x = x2, y =
y2 + c0x

ν0
2 + c1x

ν1 the slope of the Newton polygon has become greater than ν1.
There are two possibilities;

– either after a finite number of such steps we get a function fp(xp, yp) such that f(0, yp)
is of order < k, and by the induction hypothesis we have a series φp(x

1
mp ) ∈ C[[x

1
mp ]] such

that fp(x, φp(x
1
mp )) = 0, and so a series

y = c0x
ν0 + c1x

ν1 + · · ·+ cp−1x
νp−1 + φp(x

1
mp )

such that f(x, y(x)) = 0;
Or the order remains indefinitely equal to k and we have an infinite increasing sequence

of integers
ν0 < ν1 < . . . < νp < . . .

and a formal power series

φ∞(x) = c0x
ν0 + c1x

ν1 + · · ·+ cpx
νp + · · · ∈ C[[x]]

such that the Newton polygon of the function f∞(x∞, y∞) obtained from f(x, y) by the
change of variables x = x∞ , y = y∞+φ∞(x) has a Newton polygon containing the point
(0, k) and with inclination 0. This means that f∞(x∞, y∞) is divisible by yk∞, so we may
write

f∞(x∞, y∞) = yk∞g(x∞, y∞)
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This implies that the order of g(0, y∞) is zero, so g(0, 0) 6= 0. Geometrically, our curve is
the non singular curve y = φ∞(x) counted k times. Indeed, for each integer p, we have

f(x, c0xν0 + c1x
ν1 + · · ·+ cpx

νp) = xν0+ν1+···+νpfp(x, 0),

so that by Taylor’s expansion theorem, f(x, φ(x)) = 0. This completes in the formal case
the proof of the existence of a fractional power series such that f(x, y(x)) = 0.

In order to describe all the solutions of the equation f(x, y) = 0, it is convenient
to develop a little more the formalism of the Newton polygon. Let P and P ′ be two
Newton polygons; we can define their sum P + P ′ as the boundary of the convex hull of
the Minkowski sum of the convex domains in R2

+ bounded by P and P ′ respectively. It is
easy to verify that the following equality holds for f, f ′ ∈ C[[x, y]]

P(ff ′) = P(f) + P(f ′).

Any Newton polygon has a length and an height which are the length of the horizontal and
vertical projections of its finite part, respectively.

We say that a Newton polygon is elementary if it has only one finite side. If it bounds
a finite area, it is then uniquely determined by its length and height. We use the following
notation for such an elementary Newton polygon.

We also need a little more algebra, beginning with the following fundamental theorem:
One says that a holomorphic function f(x1, . . . , xn, y) defined on a neighborhood of 0 in
Cn × C is y-regular (of order k) if f(0, y) has a zero of finite order k at 0 ∈ {0} × C.
Geometrically this means that if we consider the germ of hypersurface (W, 0) ⊂ Cn × C
defined by f(x1, . . . , xn, y) = 0 and the first projection p:W → Cn, then for a small enough
representative, if W is not empty (i.e k ≥ 1), the fiber p−1(0) is the single point 0. In
other words, the fiber is a finite subset of {0} × C. The general idea of the avatars of
the Weierstrass preparation theorem is that finiteness of the fiber over one point x in an
analytic map implies finiteness of the fibers above points sufficiently close to x.

Weierstrass preparation Theorem(see [K], [ L] p.110).-If f(x1, . . . , xn, y) is regular of
order k in y, there exist a unique polynomial of the form

P (x1, . . . , xn, y) = yk + a1(x1, . . . , xn)yk−1 + · · ·+ ak(x1, . . . , xn)
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with ai ∈ C{x1, . . . , xn} and a convergent series u(x1, . . . , xn) with u(0) 6= 0, i.e invertible
in C{x1, . . . , xn} such that we have the equality of convergent series

f(x1, . . . , xn, y) = u(x1, . . . , xn, y)P (x1, . . . , xn, y).

The polynomial P is said to be distinguished in y, or to be a Weierstrass polynomial.
If we start with any power series f , we have the same result but in the ring of formal

power series.
It can be shown that, given a function f , for almost every choice of coordinates in Cn×C,
the function f is distinguished with respect to the last coordinate.

It follows from the Weierstrass preparation theorem that provided we have chosen
coordinates such that f(0, y) 6= 0, say f(0, y) = aqy

q + · · · with aq 6= 0, it is equivalent
to seek solutions of f(x, y) = 0 and of P (x, y) = 0, where P (x, y) is the Weierstrass
polynomial

u−1(x, y)f(x, y) = yq + a1(x)yq−1 + · · ·+ aq(x) = 0 with ai(x) ∈ C[[x]]

Now from an algebraic point of view, we must consider the field of fractions C((x)) of the
integral domain C[[x]]; the irreducible polynomial Tm−x ∈ C((x))[T ] defines an algebraic
extension of degree m of C((x)), denoted by C((x

1
m )) which is a Galois extension with

Galois group equal to the group µm of m-th roots of unity in C. The action of µm is
exactly the change in determination of x

1
m , determined by x

1
m 7→ ωx

1
m for ω ∈ µm. A

series of the form y =
∑
aix

i
m such that the greatest common divisor of m and all the

exponents i which effectively appear is 1 gives m different series as ω runs through µm.
Suppose now that our function f is an irreducible element of C[[x, y]], and that the

order in y of f(0, y) is k < ∞. Then the construction described above provides a series
y(x

1
m ) with m ≤ k such that f(x, y(x

1
m )) = 0. The product

Πω∈µm(y − y(ωx
1
m ))

is a polynomial Q(x, y) ∈ C[[x]][y] which, by the algorithm of division of polynomials in
C((x))[y], divides P (x, y); the rest of the division of P by Q is a polynomial of degree
< m− 1 with m different roots; it is zero.
We have therefore Q(x, y) = P (x, y) and m = k in this case.
We remark that the expansions y(ωx

1
m ) all have the same initial exponent l

h , and by the
definition of Q(x, y), only monomials xiyj with i

` + j
h ≥

µ
` appear, and the monomial xh

actually appears. So we have verified:

Proposition.- The Newton polygon of an irreducible series is elementary, and of the form
{ p

k
}, where k is the order of f(0, y).

Now it is known that rings such as k[[x, y]], where k is a field, or C{x, y} are factorial;
each element has a decomposition f = fa1

1 . . . farr where fi is irreducible, which means that
it cannot be factored again as a product fi = gh in a non trivial way, that is, without g or
h being an invertible element in k[[x, y]], (= a series with a non zero constant term).
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My aim now is to prove the following

Theorem.- a) Let k be an algebraically closed field of characteristic zero, and let f ∈
k[[x, y]] be a power series without constant term such that f(0, y) 6= 0. Consider the
decomposition f = ufa1

1 . . . farr of f into irreducible Weierstrass polynomials faii , with a
factor u which is invertible in k[[x, y]]. For each index i, 1 ≤ i ≤ r, there are power series
without constant term xi(t), yi(t) ∈ k[[t]] such that f(xi(t), yi(t)) ≡ 0; we may choose
xi(t) = tmi where mi is the degree of the Weierstrass polynomial fi, and yi(t) is then
uniquely determined. Moreover if we then write yi(t) = cit

li + . . . with ci ∈ k∗, then the
Newton polygon of f in the coordinates (x, y) is the sum

N (f) =
r∑
1

{ aimi

aili
}.

Here we have to allow the case where for some i, yi(t) ≡ 0, that is li =∞.
b) If k = C and f ∈ C{x, y} is a convergent power series, the series xi(t) and yi(t) are
also convergent.
Remark: if we do not assume f(0, y) 6= 0, a similar result holds, but we may no longer
apply Weiertrass’ theorem and we have to allow expansions of the form x = 0, y = t and
the corresponding Newton polygons appears as summands in N (f).

The geometric interpretation of this result is that if we take any reduced analytic plane
curve f = uf1 . . . fr with fi irreducible, i.e all ai = 1, the curve defined by f = 0 is a
sufficiently small neighborhood of the origin is the analytic image of a representative of a
complex-analytic map-germ

r⊔
i=1

(C, 0)i −→ (C2, 0).

Conversely, given two power series x(t), y(t) ∈ k[[t]] without constant term, one may
eliminate t between them to produce an equation f(x, y) = 0 with the property that
f(x(t), y(t) = 0. Indeed, by using the ”natural” elimination process (see[T1]) we may do
this in such a way that eliminating t beween x(tq), y(tq) produces the equation fq(x, y),
so that we may even represent parametrically a non-reduced equation.

There are several ways to prove this theorem; one is to prove the convergence first,
either directly by providing bounds for the coefficient of the series produced by Newton’s
method, which works but is inelegant, or by considering the analytic curve f(tm, y) = 0,
and proving that it is a ramified analytic covering of the t-axis; it is also the union of m
non singular curves, so each of them is analytic, and this proves the convergence of the
series. (see [ L], II.6).

These proofs give no basis for generalizations to higher dimension, so I chose to present
a geometric method of constructing the analytic map

r⊔
i=1

(C, 0)i −→ (C2, 0).
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This method was perfected by Hironaka and is the basis for his method of resolution in all
dimensions over a field of characteristic zero.

2. RESOLUTION BY BLOWING UPS

Let us consider the projective space Pn(C) as the space of lines through the origin
in Cn+1. If we choose coordinates x0, . . . , xn on Cn+1 the projective space is covered by
affine charts Ui, the points of which correspond to the lines contained in the open set
xi 6= 0. It is customary to take homogeneous coordinates (u0 : · · · : un) on the projective
space, corresponding to the lines given parametrically by xi = uit, or by the equations
xiuj−xjui = 0, where it is enough to take the n equations for which j = i+1 and i < n. The
term ”homogeneous coordinates ” means that for any λ ∈ k∗ the coordinates (u0 : · · · : un)
and (λu0 : · · · : λun) define the same point.

Now consider the subvariety Z of the product space Cn+1 × Pn defined by these n
equations. It is a nonsingular algebraic variety of dimension n+ 1 and the first projection
induces an algebraic morphism B0:Z → Cn+1.

The fiber B−1
0 (0) is the entire projective space Pn(k) since when all xi are zero, all

the equations between the uj vanish,while the fiber B−1
0 (x) for a point x 6= 0 consists of

a unique point because then the coordinates xi determine uniquely the ratios of the uj
which means a point of Pn(k). ”Blowing up a point ”replaces the observer at the point by
what he sees”, because the observer essentially sees a projective space (in fact a sphere,
but this is just a metaphor).

A basic properties of blowing up is that it separates lines: in fact consider the algebraic
map δ: Cn+1 \ {0} → Pn which to a point outside the origin associates the line joining the
origin to this point. Of course we cannot extend the definition of this map through the
origin; The graph of δ however, is an algebraic subvariety of (Cn+1 \ {0}) × Pn, and we
may take the closure (for the strong topology if k = C, or for the Zariski topology) of this
graph. It is a good exercise to check that this closure coincides with Z as defined above.
A point of B−1

0 (0) is precisely a direction of line, so the map δ ◦B0 can be defined there as
the map which to this point associates the direction: in Z we have separated all the lines
meeting at the origin.

Let us consider in more detail the case n = 1. Then Z is a surface covered by two affine
charts corresponding to the charts of the projective space: for convenience of notation set
u0 = u, u1 = v, x0 = x, x1 = y so that Z is defined by vx− uy = 0. On the open set U
of Z where u 6= 0 we may taxe as coordinates x1 = x, y1 = v

u and then the map induced
by B0 on U is described in these coordinates by

x ◦B0 =x1

y ◦B0 =x1y1

and similarly on the open set V defined by v 6= 0, we take as coordinates x1 = u
v , y1 = y

and the map B0 is described by
x ◦B0 =x1y1

y ◦B0 =y1
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Remark that in the first chart the projective space B−1
0 (0) is defined by x1 = 0 and in

the second by y1 = 0 (remember that they are coordinates on two distinct charts, and on
the intersection of the two charts they define the same subspace). It is a crucial property
of blowing up that it transforms the blown-up subspace (here the origin) into a subspace
defined locally by one equation (called a divisor); it is a good exercise to check that this
is the case in any dimension. The space B−1

0 (0) is called the exceptionnal divisor. We are
now able to study the effect on a function f(x, y) (formal or convergent) of its composition
with the map B0. Consider the expansion of f as a sum of homogeneous polynomials

f(x, y) = fm(x, y) + fm+1(x, y) + · · ·+ fm+k(x, y) + · · · ,

where fj is homogeneous of degree j. In the chart U , we may write

f ◦B0 = f(x1, x1y1) = xm1
(
fm(1, y1) + x1fm+1(1, y1) + · · ·+ xk1fm+k(1, y1) + · · ·

)
and there is a similar expansion in the other chart. Now if we look at the zero set of
f ◦B0 we see that in each chart it contains the exceptionnal divisor counted m times. If we
remove this exceptionnal divisor as many times as possible, i.e divide f ◦B0 by xm1 in the
first chart and by ym1 in the second, we obtain the equation of a curve on the surface Z,
either formal or defined near B−1

0 (0), which no longer contains the exceptionnal divisor.
This curve is called the strict transform of the original curve. We also say that the equation
obtained in this way is the strict transform of f). In the first chart it is x−m1 f(x1, x1y1),
and in the second y−m1 f(x1y1, y1).

By construction, the strict transform meets the exceptionnal divisor only in finitely
many points; let us determine them: in the first chart they are given by fm(1, y1) = 0 and
in the second, by fm(1, y1) = 0. By construction of the projective space the points we
seek are therefore the points in the projective line defined by the homogeneous equation
fm(u, v) = 0. The homogeneous polynomial fm of lowest degree appearing in f(x, y) is
called the initial form and fm(x, y) = 0 is a union of m lines (counted with multiplicity)
called the tangent cone of f at the point 0. So we see that the strict transform of f meets
the exceptionnal divisor at the points in this projective space corresponding to the lines
which are in the tangent cone at 0 of our curve.

In particular, if our curve has two components with tangent cones meeting only at the
origin, their strict transforms are disjoint. Consider for example f(x, y) = (y2−x3)(y3−x2).

In order to analyze in more detail what goes on, we have to assume that k is alge-
braically closed, which we will do from now on , and introduce the concept of intersection
number of two curves at a point. The simplest definition (but not the most useful for
computations) is the following:
Let f, h ∈ k[[x, y]] be series without constant term and without common irreducible factor.
Let (f, h) denote the ideal generated by f and h in k[[x, y]]. Then the dimension

dimk[[x, y]]/(f, h)

is finite and is by definition the intersection number of the two curves at 0. If k = C and
f, h are in C{x, y}, then the dimension above is also

dimC{x, y}/(f, h)

10



where now (f, h) is the ideal generated in C{x, y}.
To prove the finiteness we first remark that it is sufficient to prove it after replacing

k by its algebraic closure and then we may use the Hilbert nullstellensatz which tells us
that since f = 0, h = 0 meet only at the origin, the ideal (f, h) contains a power of
the maximal ideal m = (x, y) say mN . This implies the finiteness since k[[x, y]]/(f, h) is
then a quotient vector space of k[[x, y]]/mN and also shows that we may without changing
the ideal assume that f, h are polynomials of degree < N , so that for example if f, h are
convergent power series the vector spaces C{x, y}/(f, h) and C[[x, y]]/(f, h) are equal.

The definition of intersection multiplicity at the point 0, of the two curves f = 0, h =
0, say in the analytic case is then(

f, h
)

0
= dimC{x, y}/(f, h).

Note that we use large parentheses for the intersection number, small ones for the ideal
generated by f, g.

In any case this definition of the intersection multiplicity has the advantage to suggest
the following intuitive interpretation :
Consider a 1-parameter deformation of one of the two functions, say f + ε; it is possible
to show that if f, h converge in a nice neighborhood U of 0, for small enough ε, then the
two curves h = 0, f + ε = 0 meet in U transversally at points which are non-singular
on each. Moreover, these points tend to 0 as ε tends to 0, and the number of these
points is dimC{x, y}/(f, h). So this number may be thought of as the number of ordinary
intersections (i.e transverse intersection of non-singular curves) which are concentrated at
0.

There is another way to present this intersection number, which is very useful for
computations:
Suppose that h(x, y) = uhe11 . . . herr with u(0) 6= 0. For each i, 1 ≤ i ≤ r, let us parametrize
the curve hi(x, y) = 0 by x(ti), y(ti). Now substitute these power series in f(x, y); we get
a series in ti, the order of which we denote by Ii. Then we have

Ii = dimC{x, y}/(f, hi) ,

and (
f, h
)

0
=

r∑
1

eiIi.

Remark: Given a germ of curve f = 0, where f = fm + fm+2 + · · ·, its multiplicity at
the origin may be defined as the smallest degree m of a monomial appearing in the series
f . A better definition is to say that the multiplicity is the intersection number

(
f, `
)

0
for

a sufficiently general linear form `. In fact, we have

m ≤
(
f, `
)

0

with equality if and only if the line `(x, y) = 0 is not in the tangent cone defined by
fm(x, y) = 0.

Indeed, we may parametrize the line ` = 0 by x = αt, y = βt; then we substitute in
f :

11



f(αt, βt) = fm(α, β)tm + fm+1(α, β)tm+1 + · · ·

is of order ≥ m, and of order m exactly if and only if fm(α, β) 6= 0.
It is convenient, given a curve f(x, y) and a point z in the plane, to define the multi-

plicity of f at z as follows: take coordinates (x′, y, ) centered at z, which means that they
vanish at z; if z = (a, b) we may take x′ = x − a, y′ = y − b. Then expand f in those
coordinates (of course we assume that z is in the domain of convergence of f).

We get f ′(x′, y′) = f(a + x′, b + y′). Then we compute the lowest degree terms
appearing in the expansion of f ′ and denote this by mz(f) or, if X is the curve f(x, y) = 0,
by mz(X). We see that mz(f) = 0 unless f(z) = 0, and that if ` is a line through z, we
have mz(X) ≤

(
X, `

)
z

with equality except if ` is in the tangent cone of X at z.
Let us apply this, in our blowing up as described above, to the line x1 = 0 (the

exceptionnal divisor) and the strict transform f1(x1, y1) = 0, at a point x′ with coordinates
x1 = 0, y1 = t1) where fm(1, t1) = 0 i.e a point of intersection of the strict transform with
the exceptionnal divisor. We have

f1 = fm(1, y1) + x1fm+1(1, y1) + · · ·

and if we denote by ex′ the multiplicity of t1 as a root of the polynomial fm(1, Y ), it follows
from what we saw above that we have

ex′ ≥ mx′(f1)

with equality unless the curve f1(x1, y1) = 0 is tangent to the exceptionnal divisor at the
point x′, in the sense that the tangent at x′ to the exceptionnal divisor is in the tangent
cone of f1 = 0 at the point x′. Since the multiplicity of f1 is zero at points where fm(1, y1)
does not vanish, we see that if we look at all the points x′ in the blown up surface Z which
are mapped to our origin by the projection Z → C2, which we denote by x′ → 0, we have∑

x′→0

mx′(f1) ≤
∑
x′→0

ex′ = m ,

so that in particular, if there is a point x′ of the strict transform X ′ of X which is mapped
to 0 and is of multiplicity m on f1 = 0, then it is the only point of X ′ mapped to 0 and
X ′ is transversal to the exceptionnal divisor at x′. This fact and its generalizations play a
crucial role in Hironaka’s proof of the resolution of singularities.

In order to show that the situation which we have just described cannot persist in-
definitely in a sequence of blowing ups, we have to use the intersection number in another
manner, according to Hironaka:

Given a germ of a plane curve (X,x) with r branches (Xi, x)1≤i≤r and a nonsingular
curve W through the point x, define the contact exponent of W with X at x as follows:

δx(W,X) = minri=1

((
Xi,W

)
x

mx(Xi)

)
12



and the contact exponent of X at x as follows

δx(X) = maxW δx(W,X),

where W runs through the set of germs at x of non-singular curves.

Lemma.-Let f(x, y) = 0 be an equation for X. If the coordinates (x, y) are chosen in such
a way that x = 0 is not tangent to X at x and W is defined by y = 0, the rational number
δx(W,X) is the inclination of the first side of the Newton polygon of f(x, y).

By definition of δx(W,X) is enough to prove that for an irreducible f , the inclination

of the only side of it Newton polygon is
(
X,W

)
x

mx(X) , but if we parametrize X by x = tm, y =
tq+ · · ·, we find that the transversality condition implies m ≤ q, and we have

(
X,W

)
x

= q;
the result follows.

Lemma.- Assume that W is the curve y = 0 and that f(x, y) is in Weierstrass form, i.e.,

f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x) ai(x) ∈ C{x},

then the inclination of the first side of its Newton polygon is

δx(W,X) = min1≤i≤n−1
ν0(ai)
i

.

Here as usual ν0(a(x)) denotes the order of vanishing at the origin of the series a(x).
Indeed, the point (0, n) is a vertex of the first side of the Newton polygon, and the

lemma is just the observation that if we write ai(x) = αix
ci + · · ·, the other vertices of the

Newton polygon are among the points (ci, n−i), which follows directly from the definition.

A nonsingular curve W such that δx(W,X) = δx(X) is said to have maximal contact
at x. non singular curves with maximal contact are the nonsingular curves which it is
hardest to separate from X by a succession of blowing ups (in the sense of separating
strict transforms), and so when they eventually separate, something nice should happen;
indeed once they separate, there is no point of multiplicity mx(X) in the iterated strict
transform mapping to x. As one says, ”the multiplicity has dropped”. Hironaka’s approach
to resolution uses the existence of varieties with maximal contact to build an induction on
the dimension.

The next step is to prove the existence of curves with maximal contact.
Assume that a non singular curve W defined by y = 0 does not have maximal contact

with X at x. We way assume that the curve x = 0 is transversal to f(x, y) = 0, which
means that f(0, y) = a0,my

m + · · ·, where m is the multiplicity of f at 0. By a change of
variable y = (a0,m)

1
m y′, which does not change the contacts, we may assume that a0,m = 1.

To say that δx(W,X) < δx(X) means that there is a series A(x) such that the contact of
the curve f(x, y) = 0 with y−A(x) = 0 is greater than its contact with y = 0. By a change
of the coordinate x which does not affect the contacts, we may assume that A(x) = ξxd
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for some integer d and ξ ∈ C∗. Let us now compute the power series expansion in the
coordinates x′ = x, y′ = y −A(x);

f ′(x, y′) =
∑

i
δ+j≥m

ai,jx
i(y′ + ξxd)j =

∑
k
δ′+`≥m

a′k,`x
ky′`.

By expanding the powers of y′ + ξxd we get, for each (i, j), and k ≤ j the inequality
i+kd
δ + j − k ≥ m but we know that i

δ + j ≥ m. From this follows the inequality d ≥ δ.
Isolating the terms which lie on the first side of the Newton polygon, we get:

(∗)
∑

i
δ+j=m

ai,jx
iyj +

∑
i
δ+j>m

ai,jx
iyj =

∑
k
δ′+`≥m

a′k,`x
ky′`,

and the slope of the first side of the Newton polygon of the right-hand side is δ′ > δ. Let
us first assume that δ = 1. Remark that all the terms xky′` with k

δ′ + ` ≥ m except y′m

are in the ideal (x, y′)m+1. Therefore we must have the equality∑
i
δ+j=m

ai,jx
iy=y′m mod.(x, y)m+1

so that the left hand side is the m-th power of y − ξxd. This implies that d = 1 = δ since
the left hand side is homogeneous.

If δ > 1 we follow the same method. Since we know that d ≥ δ, it is easy to check that
the ideal of k[[x, y]] generated by the monomials xky′` , k

δ′ + ` ≥ m , k 6= 0 is contained
in the ideal I generated by the monomials xiyj , i

δ + j > m. Looking at the equation (∗)
modulo I gives us ∑

i
δ+j=m

ai,jx
iyj = y′m mod.I

which again by homogeneity shows that d = δ and the sum on the left hand side is
(y − ξxd)m.

Note that this argument also works if δx(X) =∞. So there are two possibilities:

1) We have δx(W,X) < δx(X); in this case the sum of the terms of f(x, y) lying on the
first side of the Newton polygon is of the form (y − ξxd)m.
2) The sum of the terms of f(x, y) lying on the first side of the Newton polygon is not of
the form (y − ξxd)m.
In the first case, as we have seen, d = δx(W,X). We make the change of variables x′ =
x; y′ = y − ξxd and in the new coordinates x′, y′, if W ′ is the curve y′ = 0, we have
δx(W ′, X) > δx(W,X). This follows easily from the computation we have just made; an
effect of the change of variables is that all the terms lying on the first side of the Newton
polygon, of inclination d, are transformed into the single term monomial y′m. So the
inclination of the new Newton polygon has to be > d; but we know this inclination to
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be δx(W ′, X). If we have not reached δx(X), we continue the same procedure, and after
possibly infinitely many steps, i.e. after a change of variables of the form

x′ = x ; y′ = y − ξ1xd1 − ξ2xd2 − · · · − ξrxdr − · · ·

we reach the stage where the sum of terms on the first side of the Newton polygon is not
a m − th power, so δx(Ws, X) = δx(X), with s possibly infinite. Since the denominators
of the δx(W,X)’s are bounded, the series is infinite only in the case where δx(X) = ∞.
At least formally this series converges, since we have d1 > d2 > · · · > dr > . . ., but we
can omit the proof of convergence if we work in C{x, y} since the equality δx(X) = ∞
means that in some coordinates f(x, y) is of the form u(x, y)ym where u is an invertible
element in k[[x, y]]; indeed for any other case, we see from the definition that δx(X) <∞.
But the Weierstrass preparation theorem tells us that if such a presentation exists with
formal power series, it also exists with convergent power series, so that the series defining
our final coordinates converges.

So in all cases, we can find a nonsingular curve W which has maximal contact with
X at x, i.e. such that δx(W,X) = δx(X).

Remark that all the discussion above is valid on a germ of a non singular surface, since
it is analytically isomorphic to the plane. The definition of the blowing up is independant
of the choice of coordinates, and makes sense on any nonsingular surface.

The next step is to study the behavior of the contact under blowing up of the origin.
I will leave the proof of this as an exercise, since it is a direct application of what we have
just seen and the definition of blowing up:
Theorem(Hironaka).- Let m be an integer, let f(x, y) = 0 define a germ of a plane curve,
(X, 0) ⊂ (C, 0) of multiplicity m and let (W, 0) ⊂ (C, 0) be a non singular curve with
maximal contact with X at 0. If, after blowing up the point 0 by the map B0:Z → C2,
there is a point x′ ∈ X ′ of multiplicity m in the strict transform X ′ ⊂ Z of X, then
1) The point x′ is the only point of X ′ mapped to 0 by B0,
2) The strict transform W ′ of W by B0 contains the point x′, and W ′ has maximal contact
with X ′ at x′,
3) We have the equality δx′(W ′, X ′) = δx(W,X)− 1.
Corollary.- The maximal length of a sequence of infinitely near points of multiplicity m
on the strict transforms of X, each mapping to its predecessor in successive blowing ups

· · ·Z(r) → Z(r−1) → · · · → Z(2) → Z(1) → C2

is equal to the integral part [δx(X)].
This suffices to show that unless the curve is of the form ym = 0, the multiplicity of

its strict transform in the sequence of blowing ups obtained by blowing up at each step
the points of maximal multiplicity drops after a finite number of steps. By induction on
the multiplicity, this proves the resolution of the singularity of X at 0 by a finite number
of blowing ups of points on non singular surfaces.

We should remark that the map X ′ → X of the strict transform of X to X is defined
by itself, without any reference to an embedding (X, 0) ⊂ (C2, 0) (see [K]).
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We have proved a local result, but if now we consider any algebraic or analytic curve,
it has finitely many singular points, and the local resolution processes at each point are
independant, so we have:

Theorem.-Given an algebraic or analytic plane curve X there exists a finite sequence of
point blowing ups such that in the composed map X ′ → X the curve X ′ has no singularities.

Actually we can get, by the same method, a better result, known as embedded resolu-
tion and originally due to Max Nœther, as follows:

Theorem.- Given a curve X on a non singular surface S, there exists a finite sequence of
blowing ups of points

S(r) → · · · → S(1) → S

such that if we denote by π:S(r) = S′ → S their compositum, then the inverse image of the
singular points of X (the exceptionnal divisor) is a union of non singular curves meeting
transversally on the non singular surface S′, and the strict transform X ′ of X by π is a
non singular curve meeting transversally these curves.

In analytic terms, if f(x, y) = 0 is a local equation for X in S, then f ◦ π is, at every
point x′ of S′, of the form (f ◦ π)x′ = uavb for suitable local coordinates of S′ at x′. Of
course a and b will be zero unless we have x′ ∈ π−1(X).

The induced map π:X ′ → X is a resolution of singularities of X. If we fix a singular
point x ∈ X, let r be the number of analytically irreducible components of the germ (X,x).
The number of points in π−1(x) is equal to r and for a small enough representative Xx of
the germ (X,x), the part π−1(Xx) of X ′ lying over Xx consists of r non singular curves
Di, each marked with one of the points of π−1(x). The image by π of each of these non
singular curves Di is one of the irreducible components of Xx.

If we choose for each non singular curve Di a coordinate ti vanishing at the only point
zi of Di lying over x, then Di is described parametrically, in local coordinates (u, v) on
S′ centered at zi, by convergent power series u(ti), v(ti), because of the implicit function
theorem. Since the map π:S′ → S is a composition of algebraic maps, x ◦ π and y ◦ π
are at worst convergent power series in (u, v), so when we restrict them to Di, we get
convergent power series in ti. This shows that each branch of our curve has a convergent
parametrization, and from this we deduce that the formal parametrization constructed by
Newton’s method converges.

Note that this convergence argument works equally well with the first resolution the-
orem. The new fact in the resolution result above with respect to the resolution theorem
is the transversality of the strict transform with the exceptionnal divisor, which is not part
of the resolution theorem as we have stated it above. The proof of this improvement is
not difficult: it amounts to resolving singularities, by a sequence of points blowing up, of
the union of the strict transform and the exceptional divisor of the map which resolves the
singularities of X.
As an example, given an integer m > 1, after one blowing up the strict transform of a
curve with equation ym − xm+1 = 0, but is not transversal to the exceptionnal divisor.
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It is the first example of a fundamental fact of analytic or algebraic geometry:you
can make spaces (in fact, their strict transforms) transversal by well chosen sequences of
blowing ups.

3. RESOLUTION OF SPACE CURVES

1. Integral dependance

To prove a resolution theorem for space curves, one meets the difficulty that their
equations may be complicated (for example to define a curve in Cn one may need more
that n−1 equations; those for which n−1 equations suffice are called complete intersections
, and also that rather different looking sets of equations may generate the same ideal in
C{x1, . . . , xn} and therefore define the same curve. In the proofs above we have used
constructions which depend heavily on the equation. Moreover, even to show that a
germ of a complex curve in Cd has a finite number of irreducible components, which are
analytic germs, is not completely trivial (see [ L], II.5). There are two possibilities: we can
conceptualize and abstract the proof for plane curves to make it less dependent on the
equation, or try to reduce to the plane curve case. As it happens, the two methods are
not so different, at least for one of the ways of abstracting the ideas.
To reduce to the plane curve case, the natural idea is to project the space curve X to a
plane curve X1. One can then show that a resolution of X1 has to map to X, and that
this map is a resolution of the singularities of X!.

The key idea is that of normalization. The Italian geometers called normal a projective
variety Z ∈ Pn having the property that any map Z ′ → Z presenting Z as a ”general”
projection by a linear map Pn′ \ L → Pn of an algebraic variety Z ′ ⊂ Pn′ had to be an
isomorphism. A typical non normal surface in P3 is therefore a general projection of a
non singular surface in P4; such a projection has a curve of double points, on which are
finitely many more complicated singular points, the ”pinch points”. Here the meaning of
”general” has to be made precise;
The variety Z is normal if any map π:Z ′ → Z which
a) is finite-to-one and
b) induces an isomorphisme Z ′ \π−1(U)→ U over the complement U of a closed algebraic
or analytic subset of Z is an isomorphism.

The resolution theorem we saw above shows that a singular curve in P2 cannot be
normal.

The concept of normalization was ”localized” and transfigured into a concept of commu-
tative algebra, as follows: Recall that the total ring of quotients of a ring A is the ring of
equivalence classes of couples (a, b) of elements of A, where b is not a zero divisor in A with
addition (a, b)+(a′, b′) = (ab′+ba′, bb′) and componentwise multiplication, the equivalence
being (a, b) ≡ (a′, b′) when ab′ − ba′ = 0. The map a 7→ (a, 1) induces an injection of A
in F and we indentify A with its image in F . If A is an integral domain, F is its field of
fractions.
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Definition Let A be a commutative ring without nilpotent elements, and let F be its total
ring of quotients.
Definition.- An element h ∈ F is integral over A if it satisfies an equation

hk + a1h
k−1 + · · ·+ ak = 0 with ai ∈ A.

Example.- Consider the germ of plane curve X in C2 defined by the equation yp−xq = 0.
The quotient O of the ring C{x, y} by the ideal generated by yp − xq is the ring of germs
of analytic functions on the germ X (the restrictions to X of two analytic functions on C2

coincide if and only if their difference is in the ideal). The ring O is an integral domain;
let K be its field of fractions. If we keep the notations x, y, etc.. for the restictions to X
of functions on C2, we have y

x ∈ F . I claim that if p ≤ q, it is integral over O; indeed, we
have the relation

(
y

x
)p − xq−p = 0 .

We can remark that the function y
x is defined and analytic on the strict transform of X by

the blowing up of the origin for any sufficiently small representative of the germ X. We
remark also that the condition p ≤ q is equivalent to saying that the meromorphic function
y
x remains bounded on X for any small representative.

Proposition.- Given a ring A without nilpotent elements, let F be its total ring of frac-
tions; the set of elements of F integral over A is a ring for the operations induced by those
of F .

This ring is called the normalization of A (or the integral closure of A in F ) and often
denoted by A. Of course we have A ⊂ A; a ring such that A = A is said to be integrally
closed. Is is not difficult to check that A is integrally closed.

If A is nœtherian and integrally closed, any injective map A → B to a subring B of
the total ring of fractions of A which makes B into a finite A-module is an isomorphism;
this is the translation of the original definition of normality. To prove it, check that if h is
an element of B, the powers of h cannot all be linearly independant over A, so h satisfies
an integral dependance relation, and if A is normal, it is in A!

An important theorem is that if A is an analytic algebra, i.e a quotient of a convergent
power series ring by some ideal, then A is a finite sum of integrally closed analytic algebras,
and moreover that the injection A→ A makes A into a finitely generated A-module. Taking
a common denominator (in F ) for a finite set of generators of the A-module A, we see that
the (”conductor”) ideal C = {d ∈ A, d.A ⊂ A} is not zero.
Another important fact is that if the analytic algebra of germs of functions on a curve
at a point is normal, the point is non singular on the curve, and the analytic algebra is
isomorphic to a convergent power series ring in one variable C{t}. ([ L], VI.3, Thm.2)

So this abstract idea, normalization, provides us with a proof of the resolution of
singularities of space curves: given (C, 0) ∈ (Cd, 0), the normalization O → O of the
(reduced) analytic algebra of germs of functions on C is an analytic algebra which is a
product Πr

i=1C{ti} of a finite number of convergent power series rings in one variable. If
x1, . . . , xd generate the maximal ideal of O, we get r d-uples of convergent power series
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expansions xj(ti), which are our Newton series in this case. They geometrically correspond
to a map

r⊔
i=1

(C, 0)i → (C, 0)

which is our resolution of singularities. However, normalization is geometrically subtle in
general, and the finiteness of normalization is a subtle theorem; in addition, we may seek
a more geometric proof, as follows

We now turn to the definition of plane projections of a space curve.
Let (C, 0) ∈ (Cd, 0) be a germ of a (reduced) space curve defined by an ideal I ⊂
C{x1, . . . , xd}. Let us choose a linear projection p: Cd → C2. Let M denote the space of
all such projections; think of it as a set of d × 2 matrices of rank 2. We endow M with
the topology (complex or Zariski) induced by that of the space of matrices. We wish to
consider only the projections such that p|C:C → p(C) is finite to one. If that is not the
case, the kernel of p, which is a linear subspace of codimension 2 of Cd, contains one of
the irreducible components of the curve C; the intersection is analytic, so it is either of
dimension 0 or 1. By looking at the equations of C, it is not too difficult to check that
the projections which do not contain a component of C form a dense open set of M . The
fact that they are those which induce a finite map C → p(C) is a consequence of the
Weierstrass preparation theorem.
Assume now that the map C → p(C) is finite. Again by the Weiertrass theorem, it
means that the map of analytic algebras C{x, y} → O defined by f 7→ (f ◦p)|C makes O a
C{x, y}-module of finite type. Since C{x, y} is nœtherian, it means we have a presentation
by an exact sequence of C{x, y}-modules:

C{x, y}q → C{x, y}p → O → 0

An argument detailed in [T1] shows that since C is of dimension 1, we must have q = p,
so the first map is described by a square matrix with entries in C{x, y}. Let φ(x, y) be the
determinant of that matrix. This determinant is, up to an invertible factor, independant
of the choice of the presentation. Then the image p(C) is the plane curve with equation
φ(x, y) = 0.

On the other hand, let us say that a plane projection p: Cd → C2 is general for C if it has
the following property:
For any sequence of couples of points (ai, bi) ∈ (C \ {0})× (C \ {0}) tending to 0, the limit
direction of the secant line ai, bi (for any subsequence) is not contained in the kernel of p.

We will see in the next paragraph that all general projections of a given space curve
are topologically indistinguishable as curves in C2. In [T2] it is shown that if p is general
for C, then the inclusion of the ring O1 of the image X1 = p(X) as defined above into
the ring O (induced by the composition of functions with p) induces an isomorphism of
the total rings of fractions of these two rings, and because O is a finite O1-module, every
element of O is integral over O1, as we saw above. Therefore O is contained in the nor-
malization O1 of O1.
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Therefore O1 is also the normalization of O, and it is a finite O-module for general reasons
( it suffices to know that the integral closure of O1 is a finite O1-module). Now we can
use the universal property of blowing ups: in O1 all ideals become principal and generated
by a non zero divisor in each C{ti}. By the universal property of blowing up ([ L], VII.5)
if we blow up the origin in O, the resulting algebra is still contained in O1, and as we
repeat blowing up points, we get an increasing sequence of O-algebras contained in O1,
all having the same total ring of fractions. Since O1 is a finite O-module, this sequence
stabilizes after finitely many steps. We have to show that this limit algebra is O1. But
if this were not the case, the maximal ideal of one of the component local algebras would
not be principal, so we could blow it up and get a strictly bigger algebra, contradicting
the stability.

In conclusion, we have shown that any space curve singularity can also be desingular-
ized by a finite sequence of point blowing ups.

One can also prove embedded resolution for space curves; it is not much more difficult
than in the plane curve case. I refer to the lecture of J. Castellanos for facts about space
curves.

4. PUISEUX CHARACTERISTIC EXPONENTS

Let
f(x, y) = 0 with f(x, y) ∈ C{x, y}

be an equation for a branch (X, 0) ⊂ (C2, 0), which means that the series f is an irreducible
element of C{x, y}.

As we saw, we may assume thanks to the Weierstrass preparation theorem that f is
of the form

f(x, y) = ym + a1(x)ym−1 + · · ·+ am(x)

where m is the intersection multiplicity at 0 of the branch C with the axis x = 0. We saw
also that we may assume that m is equal to the multiplicity n = m0(X) of the curve X at
the origin.

For this last paragraph we return to the traditional notation; n will be the multiplicity of
the curve, which we have hitherto denoted by m, and the curve will be denoted by X instead
of C.

As we saw, the branch X can be parametrized near 0 as follows

x(t) = tn

y(t) = amt
m + am+1t

m+1 + · · ·+ ajt
j + · · · with m ≥ n

Let us now consider the following grouping of the terms of the series y(t): set β0 = n and
let β1 be the smallest exponent appearing in y(t) which is not divisible by β0. If no such
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exponent exists, it means that y is a power series in x, so that our branch is analytically
isomorphic to C, hence non singular. Let us suppose that this is not the case, and set
e1 = (n, β1), the greatest common divisor of these two integers. Now define β2 as the
smallest exponent appearing in y(t) which is not divisible by e1. Define e2 = (e1, β2); we
have e2 < e1, and we continue in this manner. Having defined ei = (ei−1, βi), we define
βi+1 as the smallest exponent appearing in y(t) which is not divisible by ei. Since the
sequence of integers

n > e1 > e2 > · · · > ei > · · ·

is strictly decreasing, there is an integer g such that eg = 1. At this point, we have
structured our parametric representation as follows:

x(t) = tn

y(t) = ant
n + a2nt

2n + · · ·+ aknt
kn + aβ1t

β1 + aβ1+e1t
β1+e1 + · · ·+ aβ1+k1e1t

β1+k1e1

+ aβ2t
β2 + aβ2+e2t

β2+e2 + · · ·+ aβq t
βq + aβq+eq−1t

βq+eq−1 + · · ·
+ aβg t

βg + aβg+1t
βg+1 + · · ·

where by construction the coefficients of the tβi ; i ≥ 1 are not zero. Let us define integers
ni and mi by the equalities

ei−1 = niei

βi = miei for 1 ≤ i ≤ g

and note that we may rewrite the expansion of y into powers of t as an expansion of y into
fractional powers of x as follows:

y =anx+ a2nx
2 + · · ·+ aknx

k + aβ1x
m1
n1 + aβ1+e1x

m1+1
n1 + · · ·+ aβ1+k1e1x

m1+k1
n1

+ aβ2x
m2
n1n2 + aβ2+e2x

m2+1
n1n2 + · · ·+ aβqx

mq
n1n2···nq + aβq+eq−1x

mq+1
n1n2···nq + · · ·

+ aβgx
mg

n1n2···ng + aβg+1x
mg+1

n1n2···ng + · · ·

The set of pairs of coprime integers (mi, ni) are sometimes also called the Puiseux charac-
teristic pairs. Their datum is obviously equivalent to that of the characteristic exponents
βi. The sequence of integers B(X) = (β0, β1, . . . , βg), where β0 = n, may be characterized
algebraically as follows: let µn denote the group of n-th roots of unity. For ω ∈ µn let us
compute the order in t of the series y(t)− y(ωt). If we write ω = e

2πik
n , we have

y(ωt) = anω
ntn + · · ·+ aβ1ω

β1tβ1 + · · ·

and we see that multiplying t by ω does not affect the terms in tjn. The term in tβ1 is
unchanged if and only if ωβ1 = 1, that is kβ1

n is an integer, i.e; kβ1 = ln or km1 = ln1

with the notations introduced above. Since n1 and m1 are coprime, this means that k is
a multiple of n1, which is equivalent to saying that ω belongs to the subgroup µ n

n1
of µn

consisting of n
n1

= n2 · · ·ng-th roots of unity. If this is the case, then the coefficients of
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all the terms of the form tβ1+je1 in the Puiseux expansion are also unchanged when t is
multiplied by ω, and the first term which may change is aβ2t

β2 . An argument similar to
the previous one shows that if ω ∈ µ n

n1
, then ωβ2 = 1 if and only if ω ∈ µ n

n1n2
, and so on.

Finally, if we denote by v the order in t of an element of C{t}, we see that

v(y(t)− y(ωt)) = βi if and only if ω ∈ µ n
n1···ni−1

\ µ n
n1···ni

for 1 ≤ i ≤ g

This provides an algebraic characterization, and a sequence of cyclic subextensions

C{x} ⊂ C{x
1
n1 } ⊂ C{x

1
n1n2 } ⊂ · · · ⊂ C{x

1
n1n2···ni } ⊂ · · · ⊂ C{x 1

n }

corresponding to the nested subgroups µ n
n1···ni

of th group µn.
This shows that the sequence (β0, β1, . . . βg) depends only upon the ring inclusion

C{x} ⊂ OX,0.
We shall see later in a different way that this sequence does not depend upon the choice

of coordinates (x, y) in which we write the Puiseux expansion as long as the curve x = 0
is transversal to X.If this is not the case, one still obtains other characteristic exponents,
which are related to the transversal ones by the inversion formula which I leave as an
exercise.

For example consider the curve with equation y3 − x2 = 0.

I refer to the lectures of Lê for the Burau-Zariski topological interpretation of the
characteristic sequence (β0, β1, . . . βg) as a characteristic of the iterated torus knot that
one obtains upon intersecting the branch X with a sufficiently small sphere in C2 centered
at the origin.

Given a germ of a reduced plane curve X, it has a decomposition X =
⋃r
i=1Xi into

branches; each branch has its characteristic sequence B(Xi), and as numerical characters
of X, we have also the intersection numbers (Xi, Xj)0 of distinct branches at 0.

If we remember that these intersection numbers are equal to the linking numbers in
S3 of the knots corresponding to Xi and Xj and are therefore topological characters of the
link X ∩ S3

ε , since Milnor proved (see Lê’s lectures) that the curve X is homeomorphic to
the cone with vertex 0 drawn on this link, we expect that the collection of the characteristic
sequences of the branches and their intersection numbers may be a topological invariant
of the curve X.

Let us define the local topological type of a germ of subspace of CN as follows:
Definition.- Two subspaces X1 and X2 of CN are topologically equivalent at 0 if there
exist neighbourhoods U and V of 0 in CN and an homeomorphism ψ:U → V such that
ψ(X1 ∩ U) = X2 ∩ V . Two germs at 0 of subspaces are topologically equivalent if they
have representatives which are topologically equivalent at 0.

Theorem (Zariski, Lejeune-Jalabert).- Two germs of plane curves X = ∪i∈IXi and X ′ =
∪i∈I′X ′i are topologically equivalent if and only if there exists a bijection φ: I → I ′ between
their branches which preserves characteristics and intersection numbers, that is, satisfies

B(X ′φ(i)) = B(Xi) for i ∈ I, (X ′φ(i), X
′
φ(j))0 = (Xi, Xj)0 for i 6= j.
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Topological equivalence is less strict a relation than analytic (or even C1) equivalence.
Let X1 and X2 each consist of four lines through the origin in C2. According to the

previous theorem, these two germs are topologically equivalent. However, if there was a
germ et 0 of a C1 (and in particular analytic) isomorphism of C2 to itself, sending X1 to
X2, its tangent linear map at 0 would have to send X1 onto X2. But two quadruplets of
lines through 0 are linearly equivalent if and only if they have the same cross-ratio. If the
slopes of the lines of X1 are a1, b1, c1, d1, and similarly for X2, the cross ratios are(a1 − a3

a1 − a4

)(a2 − a4

a2 − a3

)
and the numbers obtained by permutation. It is therefore easy to find examples where X1

and X2 are not C1-equivalent.
In particular, in an analytic family of curves such as the surface in C3 with equation

(y − x)(y + x)(y − 2x)(y + tx) = 0

for small values of t, the fibers are all analytically inequivalent but topologically equivalent.

Theorem.- Given two reduced germs of plane curves (X, 0) ⊂ (C2, 0) and (X ′, 0) ⊂ (C2, 0)
the following conditions are equivalent:
1) X and X ′ are topologically equivalent,
2) There exists an integer d, a germ of curve (C, 0) ⊂ (Cd, 0) and two linear projections
p, p′: Cd → C2, both general for C at 0, and such that p(C) = X, p′(C) = X ′,
3) There exists a one-parameter family of germs of plane curves that is a germ along {0}×U
of a surface in C2×U , where U is a disk in C, say with equation f(x, y, u) = 0 and v, v′ ∈ U
such that the germs of plane curve f(x, y, v) = 0, f(x, y, v′) = 0 are isomorphic to X, X ′

respectively and all the germs f(x, y, t) = 0 have the same topological type for t ∈ U .

In fact, the theory of Lipschitz saturation, summarized in [T2], shows that, given the
topological type of a germ of plane curve X, there exists a space curve Xs ⊂ CN , unique
up to isomorphism, such that the germs of plane curves having the same topological type
as are exactly the images of Xs by a linear projection which is generic for Xs.

The δ invariant of a plane curve singularity.

Let O be the analytic algebra of a germ of curve (X, 0) , plane or not, and let O be its
normalization. Since it is an O-module of finite type with the same total ring of quotients,
a version of the Hilbert Nullstellensatz shows that the quotient vector space over C is finite
dimensional. So we may define an invariant to measure how far O is from being integrally
closed, i.e regular:

δX = dimC
O
O

In the case of plane curves, this invariant has a geometrical interpretation, (see [T3]) which
I will describe only in the case of a branch, for simplicity:
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Let tn, y(t) be a parametrization of our branch X. Consider the product of the normal-
ization of X with itself, with coordinates (t′t′) and the two curves in (C2, 0) = (X ×X, 0)
defined by

tn − t′n

t− t′
= 0

y(t)− y(t′)
t− t′

= 0

The intersection number of these two curves at the origin is equal to 2δX ; if now we
perturb slightly the parametrization of X by tn + vαt, y(t) + vβt with two ”general ”
complex numbers α, β, we can see that the two curves now have deformed equations and
for small v they now meet transversally in 2δX points in X×X. this means that the curve
defined parametrically by tn+vαt, y(t)+vβt has δX ordinary double points (two branches
meeting transversally), which tend to 0 as v tends to 0. So we can view δX as the number
of ordinary double points which have coalesced to form the singularity of X at the origin.
Of course, for an ordinary double point δ = 1.

5. THE SEMIGROUP OF A BRANCH

There is another natural object associated to the inclusion O → O; again I will decribe it
only in the case of a branch.

Let O be the analytic algebra of a germ of analytically irreducible curve X, and let O
be its normalization; we have an injection O → O which makes O an O-module of finite
type and O is a subalgebra of the fraction field of O. Since O is isomorphic to C{t}, the
order in t of the series defines a mapping ν: C{t} \ 0→ N which satisfies
i) ν(a(t)b(t)) = ν(a(t)) + ν(b(t)) and
ii) ν(a(t) + b(t)) ≥ min(ν(a(t)), ν(b(t))) with equality if ν(a(t)) 6= ν(b(t));
in other words, ν is a valuation of the ring C{t}.

We consider the valuations of the elements of the subring O, i.e the image Γ of O\{0}
by ν; in view of i), it is a semigroup contained in N. The fact that O is a finite O-module
implies that N \ Γ is finite, and in fact we have for the δ invariant of C the equality

δX = #(N \ Γ)

Now we seek a minimal set of generators of Γ as a semigroup:
Let β0 be the smallest non zero element in Γ, let β1 be the smallest element of Γ which is
nor a multiple of β0, let β2 be the smallest element of Γ which is not a combination with
non negative integral coefficients of β0 and β1, i.e is not in the semigroup

〈
β0, β1

〉
, and so

on. Finally, since N \ Γ is finite, we find in this way a minimal set of generators:

Γ =
〈
β0, β1, . . . , βg

〉
This set is uniquely determined by the semigroup Γ, and of course determines it.
By a theorem of Apery and Zariski, if (X, 0) is a plane branch, the datum of these gen-
erators, or of the semigroup, is equivalent to the datum of the Puiseux characteristic of
(X, 0), or of its topological type.
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Let us take the notations introduced for the Puiseux pairs; it is easy to check that if
we set β0 = n, the multiplicity, then β0 = β0 = n, β1 = β1. After that is becomes more
complicated. Zariski ([Z], Th. 3.9) proved the following formula for q = 2, . . . , g:

βq = (n1 − 1)n2 . . . nq−1β1 + (n2 − 1)n3 . . . nq−1β3 + · · ·+ (nq−1 − 1)βq−1 + βq,

which can be summarized in the following recursive formula:

βq = nq−1βq−1 − βq−1 + βq

It follows easily from this that the datum of the semigroup is equivalent to the datum of
the multiplicity n and the Puiseux exponents βi of the curve.

The semigroups coming from plane branches are characterized among all semigroups
of analytically irreducible germs of curves by the following two properties:

1) niβi ∈
〈
β0, . . . , βi−1

〉
2) niβi < βi+1

That the semigroups of plane branches have these properties follows from the induction
formula and the inequalities βi < βi+1. The converse can be proved by the construction
outlined below (see [Z], appendix).

Conversely, given a semigroup Γ in N with finite complement, we can associate to
it an analytic (in fact algebraic) curve, called the monomial curve associated to Γ. If
Γ =

〈
β0, β1, . . . , βg

〉
, the monomial curve CΓ is described parametrically by

u0 =tβ0

u1 =tβ1

.

.

.

ug =tβg

On the other hand, the relations 1) above mean that there exist natural numbers `(j)i such
that we have

n1β1 =`(1)
0 β0

n2β2 =`(2)
0 β0 + `

(2)
1 β1

.

.

njβj =`(j)0 β0 + · · ·+ `
(j)
j−1βj−1

.

.

.

ngβg =`(g)0 β0 + · · ·+ `
(j)
g−1βg−1
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These relations translate into equations for the curve CΓ ⊂ Cg+1; since ui = tβi , our curve
satisfies the g equations

unij − u
`
(j)
0

0 u
`
(j)
1

1 . . . u
`
(j)
j−1
j−1 = 0, 1 ≤ j ≤ g,

and it can be shown that they actually define CΓ ⊂ Cg+1, so that if Γ is the semigroup of
a plane branch, CΓ is a complete intersection.

Remark that if we give to ui the weight βi, the i-th equation is homogeneous of degree
niβi.

The connection between a plane curve X having semigroup Γ and the monomial
curve is much more precise and interesting than the formal relation we have just seen;
by small deformations of the monomial curve one obtains all the branches with the same
semigroup. In fact the best way to understand all branches with semigroup Γ is to consider
the not necessarily plane curve CΓ (CΓ is plane if and only if C has only one characteristic
exponent).

By definition of Γ, there are elements ξq ∈ O with ν(ξq) = βq. We can write these
elements in C{t} as

ξq = tβq +
∑
j>βq

γq,jt
j .

Let us consider the one-parameter family of parametrizations

u0 =tm

u1 =tβ1 +
∑
j>β1

vj−β1γ1,jt
j

.

.

ug =tβg +
∑
j>βg

vj−βgγg,jt
j

The reader can check that for v 6= 0, the curve thus described is isomorphic to our original
curve C. (hint: make the change of parameter t = vt′ and the change of coordinates
uj = v−βjv′j , and remember the definition of the ξj). For v = 0, we have the parametric
description of the monomial curve.

So we have in fact described a map

C×C→ Cg+1 ×C

which induces the identity on the second factors (with coordinate v). The image of this
map is a surface, which is the total space of a deformation of the monomial curve, all of
its fibers except the one for v = 0 being isomorphic to our plane curve C.

So the monomial curve is a specialization, in this family, of our plane curve. In this
specialization the multiplicity and the semigroup remain constant; in a rather precise sense
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it is an equisingular specialization, or one may say that the plane curve is an equisingular
deformation of the monomial curve with the same semigroup.

The same phenomenon can be also observed in the language of equations rather than
parametrizations. Let us consider a one parameter family of equations for curves in Cg+1,
of the form

un1
1 − u

`
(1)
0

0 − vu2 = 0

un2
2 − u

`
(2)
0

0 u
`
(2)
1

1 − vu3 = 0
.

.

u
ng−1
g−1 − u

`
(g−1)
0

0 u
`
(g−1)
1

1 . . . u
`
(g−1)
g−2
g−2 − vug = 0

ungg − u
`
(g)
0

0 u
`
(g)
1

1 . . . u
`
(g)
g−1
g−1 = 0

For v = o we get the equations of the monomial curve, and for v 6= 0 we get a curve which
has semigroup Γ; this is a general heuristic principle of equisingularity: we have added
to each equation of the monomial curve, homogeneous of degree niβi, a perturbation of
degree βi+1 > niβi, and this should not change the equisingularity class (the perturbation
is ”small” compared to the equation).

Notice that for each fixed v 6= 0 the curve described by the above equations is a plane

curve: for simplicity take v = 1; then use the first equation to compute u2 = un1
1 − u

`
(1)
0

0 ,
substitute this in the next equation, and use this to compute u3 as a function of u0, u1,
and so on. Finally the last equation gives us the equation of a plane curve of the form

(
· · ·
(
(un1

1 − u
`
(1)
0

0 )
n2

− u`
(2)
0

0 u
`
(2)
1

1

)n3

− · · ·
)ng
− u`

(g)
0

0 u
`
(g)
1

1 (un1
1 − u

`
(1)
0

0 )
`
(g)
2

· · · = 0

The first consequence is that we can produce explicitely the equation of a plane curve with
given characteristic exponents: compute the semigroup and its generators, and then write
the equation above.

A more important fact is that one can show (see [Z], appendix) that any plane curve
with a given semigroup appears up to isomorphism as a fiber in a deformation depending
on a finite number of parameters: it is a deformation of the monomial curve obtained by
adding to the j-th equation a polynomial in the ui’s of order > njβj , and these polynomials
can in principle be explicitely computed.

Finally, all the plane branches with the same semigroup have ”the same” process of
resolution of singularities: you have to blow up points according to the same rules, the
multiplicities of the strict transforms are the same, and so on. So the resolution of the
plane curve described above shows the structure of the resolutions of all the curves with

the same semigroup. First you resolve the curve un1
1 − u

`
(1)
0

0 = 0; when its strict transform
is non singular (after a number of blowing ups which depends on the continued fraction

expansion of the ratio `
(1)
0
n1

, you take it as a coordinate axis: then you have one parenthesis
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less in the equation above (the point is that the form of the equation does not change),
and you proceed like this. After g such steps the branch is resolved.

So the deformation to the monomial curve also explains to us how to resolve the singu-
larities, and it is perhaps the best description. Can we generalize it to higher dimensions?
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[K] Kaup, L. , Kaup, B., and Barthel, G. Holomorphic functions of several variables, De
Gruyter Studies in Math., 003, W. de Gruyter 1983.
[I] I. Newton, A Treatise on the method of fluxions .
[ L] S.  Lojasiewicz, Introduction to complex analytic Geometry, Birkhäuser Verlag, 1991.
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