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Let (R,mR) be a local domain, with quotient field K. Suppose that ν is a valuation
of K with valuation ring (V,mV ). Suppose that ν dominates R; that is, R ⊂ V and
mV ∩R = mR. The value groups Γ of ν which can appear when K is an algebraic function
field have been extensively studied and classified, including in the papers MacLane [?],
MacLane and Schilling [?], Zariski and Samuel [33], and Kuhlmann [17]. The most basic
fact is that there is an order preserving embedding of Γ into Rn with the lex order, where
n is the dimension of R. The semigroups

SR(ν) = {ν(f) | f ∈ mR − {0}|
which can appear when R is a noetherian domain with fraction field K dominated by ν,
however, are not well understood, although they are known to encode important infor-
mation about the ideal theory of R and the geometry and resolution of singularities of
SpecR.

In Zariski and Samuel’s classic book on Commutative Algebra [33], two general facts
about semigroups SR(ν) of valuations on noetherian local domains are proven (in Appen-
dix 3 to Volume II).

1. For any valuation ν of K which is non negative on R, the semigroup SR(ν) is a
well ordered subset of the positive part of the value group Γ of ν of ordinal type
at most ωh, where ω is the ordinal type of the well ordered set N, and h is the
rank of the valuation.

2. If ν dominates R, the rational rank of ν plus the transcendence degree of V/mV

over R/mR is less than or equal to the dimension of R.
The second condition is the Abhyankar inequality [?].

Prior to this paper, no other general constraints were known on the value semigroup
semigroups SR(ν). In fact, it was even unknown if the above conditions 1 and 2 charac-
terize value semigroups.

In this paper, we construct an example of a well ordered subsemigroup of Q+ of ordinal
type ω, which is not a value semigroup of a local domain. This shows that the above
conditions 1 and 2 do not characterize value semigroups on local domains. We construct
this in Corollary ?? by finding a new constraint, Theorem ??, on a semigroup being a
value semigroup of a local domain of dimension n. In Corollary ??, we give a stronger
constraint on regular local rings.

In [?], Teissier and the author give some examples showing that some surprising semi-
groups of rank > 1 can occur as semigroups of valuations on noetherian domains, and
raise the general question of finding new constraints on value semigroups and classifying
semigroups which occur as value semigroups.

The only semigroups which are realized by a valuation on a one dimensional regular
local ring are isomorphic to the natural numbers. The semigroups which are realized
by a valuation on a regular local ring of dimension 2 with algebraically closed residue
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field are much more complicated, but are completely classified by Spivakovsky in [29]. A
different proof is given by Favre and Jonsson in [?], and the theorem is formulated in
the context of semigroups by Cutkosky and Teissier [?]. However, very little is known in
higher dimensions. The classification of semigroups of valuations on regular local rings of
dimension two does suggest that there may be constraints on the rate of growth of the
number of new generators on semigroups of valuations dominating a noetherian domain.
We prove that there is such a constraint, giving a new necessary condition for a semigroup
to be a value semigroup. This is accomplished in Theorem ?? and Corollaries ?? and ??.
The constraint is sufficiently strong to allow us to give a very simple example, Corollary
??, of a well ordered subgroup S of Q+ of ordinal type ω which is not the semigroup of a
valuation dominating an local domain.

1. Asymptotic growth of value semigroups

If R is a local ring, mR will denote its maximal ideal, and `(N) will denote the length
of an R module N .

Given a valuation ν which is non negative on R and an element ϕ of its value group,
we will denote by Pϕ(R) the ideal {x ∈ R|ν(x) ≥ ϕ} and by P+

ϕ (R) the ideal {x ∈
R|ν(x) > ϕ}. When no confusion on the ring is possible we will write Pϕ,P+

ϕ .We note
that Pϕ(R)/P+

ϕ (R) = 0 if ϕ /∈ SR(ν) ∪ {0}.
Suppose that Γ is a totally ordered abelian group, and a, b ∈ Γ. We set

[a, b] = {x ∈ Γ | a ≤ x ≤ b} and [a, b[= {x ∈ Γ | a ≤ x < b}

Let ν1 and ν2 be valuations on the noetherian local domain (R,m), with centers p2 ⊂6= p1

and such that ν1 is composed with ν2 and their ranks differ by one. Let λ : Γ1 → Γ2 be
the corresponding map of value groups. Set t1 = ν1(p1), t2 = ν2(p2).

Definition 1.1. Given ϕ2 ∈ Γ2, denote by ϕ̃2 ∈ Γ1 the minimum of {ν1(f); f ∈ R, ν2(f) =
ϕ2}. This minimum exists since the semigroup ν1(R \ {0}) is well ordered.

Note that λ(ϕ̃2) = ϕ2 and that t1 ∈ Kerλ.

We remark that for ϕ1 ∈ [ϕ̃2, ϕ̃2 + y1t1] we have the inclusions:
py1
1 Pϕ2 ⊂ Pϕ1 ⊂ Pϕ2 ,

Pϕ2 = Pϕ̃2 and since the valuation ν1 which is the image of ν1 in R/p2 is of rank one, the
number of elements of ν1(R\{0}) in the interval [ϕ̃2, ϕ̃2 +y1t1] is finite (see [33], loc. cit.).

Theorem 1.2. For any function A on R-modules with values in R which is additive on
short exact sequences we have:

(1)
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1[

A(Pϕ1/P+
ϕ1

) ≤ A(Mϕ2/py1
1 Mϕ2),

where Mϕ2 = Pϕ2/P+
ϕ2

, a finitely generated torsion free R/p2-module.

Proof. We note that P+
ϕ2
⊆ py1

1 Pϕ2 . The R-module Pϕ2/Pϕ̃2+t1y1 is a quotient of Pϕ2/py1
1 Pϕ2 =

Mϕ2/py1
1 Mϕ2 , and by the additivity of A we have

A(Pϕ2/Pϕ̃2+t1y1) =
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1[

A(Pϕ1/P+
ϕ1

).

The result follows, since the value of A can only decrease when passing to a quotient. �
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In the special case where ν1 is a valuation of rank one and ν2 is the trivial valuation,
we have Γ2 = 0, ϕ̃2 = 0 ∈ Γ1 and, writing ϕ for ϕ1, p for p1, etc., the inequality reduces
to:

(2)
∑

ϕ∈[0,yt[

A(Pϕ/P+
ϕ ) ≤ A(R/py

1R),

Remark The R modules Pϕ1/P+
ϕ1

and Mϕ2/py1
1 Mϕ2 have p1 as their unique minimal

prime.
We can take as additive function A on R-modules of dimension = dimR/p1 the multi-

plicity em with respect to the maximal ideal of R. The inequality (1) then becomes

Corollary 1.3. We have the inequalities

(3)
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1]

em(Pϕ1/P+
ϕ1

) ≤ em(Mϕ2/py1
1 Mϕ2).

It is now possible to evaluate the right hand side thanks to ([B], §7, No.1, Prop 3),
which says this: given a finitely generated R-module M of dimension d ≥ 0, denote by B
the set of minimal prime ideals of Supp(M) such that dim(R/p) = d. Let q be an ideal of
R contained in its radical and such that M/qM has finite length. Then we have

eq(M) =
∑
p∈B

lengthRp
(Mp)eq(R/p).

If we apply this to Mϕ2/py1
1 Mϕ2 we get:

(4) em(Mϕ2/py1
1 Mϕ2) = lengthRp1

(
(Mϕ2)p1/my1

1 (Mϕ2)p1

)
em(R/p1),

where m1 = p1Rp1 and the support of the R-module Mϕ2 is the ideal p2.
By the main result on Hilbert-Samuel polynomials, in view of the fact that the support of
(Mϕ2)p1 is the ideal p2Rp1 , we have an asymptotic estimate:

(5) lengthRp1

(
(Mϕ2)p1/my1

1 (Mϕ2)p1

)
�

em1

(
(Mϕ2)p1)

)
(dim(Rp1/p2Rp1)!

y
dim(Rp1/p2Rp1 )
1 .

Let us now consider a valuation ν of rank n.
Let

(0) = pn+1 ⊂ pn ⊂ pn−1 ⊂ · · · ⊂ p1

be the sequence of the centers of valuations νi with which a given valuation ν of rank n on
a noetherian local domain (R,m) is composed. We assume that the centers are distinct
prime ideals.

Let p0 be a prime ideal of R containing the center p1 of ν = ν1 (p0 could be equal to
p1). Then

Theorem 1.4. The sum∑
ϕn∈[0,tnyn[

∑
ϕn−1∈[ϕ̃n,ϕ̃n+tn−1yn−1[

· · ·
∑

ϕ1∈[ϕ̃2,ϕ̃2+t1y1[

em0((Pϕ1/P+
ϕ1

)p0)

is bounded for y1, . . . , yn large enough by a function which behaves asymptotically as
Πn

i=0emi((R/pi+1)pi)
Πn

i=1(dim(R/pi+1)pi)!
Πn

i=1y
dim (R/pi+1)pi
i ,

where mi = piRpi for 0 ≤ i ≤ n. We take y1 � y2 � · · · � yn to obtain this asymptotic
behavior.
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Proof. The proof of this formula is by induction on n. We first prove the formula in the
case when n = 1. We apply formulas (2) and (3) - (5) to the ring Rp0 , observe that for
ϕ1 ∈ Γ1,

(Pϕ1)p0 = {f ∈ Rp0 | ν(f) ≥ ϕ1},
and that (Rp0)p1Rp0

∼= Rp1 , to obtain∑
ϕ1∈[0,t1y1[

em0((Pϕ1/P+
ϕ1

)p0) �
em1(Rp1)em0((R/p1)p0)

(dim Rp1)!
y
dim Rp1
1 ,

which is the formula for n = 1.
We now assume that the formula is true for valuations of rank < n. We will derive the

formula for a rank n valuation ν. We apply the formula to the rank n − 1 valuation ν2

which ν is composite with, and the chain of prime ideals

(0) = qn ⊂ qn−1 ⊂ · · · ⊂ q1 ⊂ q0

where qn−1 = pn, . . . , q1 = p2 are the centers on R of the successive valuations νn, . . . , ν2

with which ν2 is composite, and q0 = p1, to obtain
(6) ∑
ϕn∈[0,tnyn[

· · ·
∑

ϕ2∈[ϕ̃3+t2y2[

em1((Pϕ2/Pϕ+
2
)p1) �

∏n
i=1 emi((R/pi+1)pi)∏n

i=2(dim (R/pi+1)pi)!

n∏
i=2

y
dim (R/pi+1)pi
i .

We now apply formulas (1), and (3) − (5) to the ring Rp0 and the valuation ν = ν1, to
obtain

(7)
∑

ϕ1∈[ϕ̃2,ϕ̃2+y1t1[

em0((Pϕ1/P+
ϕ1

)p0) �
em1((Pϕ2/P+

ϕ2
)p1)em0((R/p1)p0)

(dim (R/p2)p1)!
y
dim (R/p2)p1
1 .

Finally, we sum over (7) and (6) to obtain the desired formula for ν. �

2. Amalgamation of valuations

Theorem 2.1. Suppose that Pi ∈ K[X, Y ] are defined for i ∈ N by P0 = X P1 = Y ,

Pi+1 = λiP
mi
i − λi,0Mi −

∑
`′i

λi,`′i
Mi,`′i

for i ≥ 1, where `′i = (`′i,0, . . . , `
′
i,i), Mi =

∏i−1
i′=0 P

`i,i′

i′ , Mi,`′i
=

∏i
i′=0 P

`′
i,i′

i′ with 0 ≤
`i,i′ , `i,i′ < mi′ for 1 ≤ i′ ≤ i, `i,0, `

′
i,0 ≥ 0 arbitrary, and λi, λi,0, λ`′i

∈ K with λi, λi,0 6= 0.
Define γ0 = 1 and by induction on i, γi = 1

mi

∑i−1
i′=0 `i,i′γi′ . Let Γi =< {γi′}0≤i′≤i > be

the group generated by γi′ for 0 ≤ i′ ≤ i. Suppose that

(1)
∑i−1

i′=0 `i,i′γi′ has order mi in Γi−1

miΓi−1
for all i ≥ 1,

(2) γi+1 > miγi for all i ≥ 1, and
(3)

∑i
i′=0 `′i,i′γi′ > miγi for all `′i.

Then
(1) Suppose that f ∈ K[X, Y ] and ` is such that degyf <

∏l−1
j=1 mi. Then f has a

unique finite expansion

(1) f =
∑
α

aα

∏̀
i=0

Pαi
i
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with all α = (α0, . . . , α`) ∈ N`+1, 0 ≤ αi < mi for 1 ≤ i and aα ∈ K,
(2) In the expansion (1), The numbers

∑`
i=0 αiγi are distinct for distinct α,

(3) The rule

ν1(f) = minα

∑̀
i=0

αiγi

where the minimum is computed for the expansion (1), determines a nondiscrete
rational rank 1 valuation ν1 of K(X, Y ), dominating the local ring K[X, Y ](X,Y ).

Theorem 2.2. Suppose that R is a local domain with quotient field K and ν is a valuation of
K which dominates R, with value group Γ. Suppose that {Pi} is a sequence of polynomials
in K(X, Y ) satisfying the assumptions of Theorem 2.1. Define by induction on i, τ0 = 0,
and

τi =
1

mi

i−1∑
i′=0

`i,i′τi′ + ν(λi,0)− ν(λi) ∈ ΓQ = Γ⊗Z Q.

For f ∈ K[X, Y ], define from the expansion (1),

ν(f) = minα{
∑̀
i=0

αi(γi, τi) + (0, ordz(a(z))} ∈ (Q× ΓQ)lex.

Then ν defines a rank 2 valuation on K(X, Y ) which is the composition of ν1 and ν.
Further, ν dominates the local ring A = R[X, Y ]mRR[X,Y ]+(X,Y ), and the center of ν1 on
A is the prime ideal (X, Y ).

Theorem 2.3. Suppose that R is a local domain with quotient field K and ν is a valuation
of K which dominates R, with value group Γ. Suppose that {Pi} is a sequence of poly-
nomials in K(X, Y ) satisfying the assumptions of Theorem 2.1 and {Qi} is a sequence of
polynomials in K(U, V ) satisfying the assumptions of Theorem 2.1, where

Pi+1 = λiP
mi
i − λi,0Mi −

∑
`′i

λi,`′i
Mi,`′i

and
Qi+1 = µiQ

ni
i − µi,0Ni −

∑
`′i

µi,`′i
Ni,`′i

Let ν1 be the valuation on K(X, Y ) defined by the {Pi}, with ν1(Pi) = γi, and let ν2

be the valuation on K(U, V ) defined by the {Qi}, with ν2(Qi) = δi.
Define by induction on i, τ0 = 0, and

τi =
1

mi

i−1∑
i′=0

`i,i′τi′ + ν(λi,0)− ν(λi) ∈ ΓQ = Γ⊗Z Q,

ζ0 = 0, and

ζi =
1
ni

i−1∑
i′=0

`i,i′ζi′ + ν(µi,0)− ν(µi) ∈ ΓQ = Γ⊗Z Q.

Then
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(1) Suppose that f ∈ K[X, Y, U, V ], with degY f <
∏`−1

j=1 mi and degV f <
∏m−1

j=1 ni.
Then f has a unique finite expansion

(2) f =
∑
α,β

aα,β

∏̀
i=0

Pαi
i

m∏
i=0

Qβi
i

with all α = (α0, . . . , α`) ∈ N`+1, 0 ≤ αi < mi for 1 ≤ i, all β = (β0, . . . , βm) ∈
Nm+1, 0 ≤ βi < ni for 1 ≤ i, and aα,β ∈ K.

(2) Suppose that G is a totally ordered abelian group, and h1 : Q → G and h2 : Q → G
are order preserving embeddings. For f ∈ K[X, Y, U, V ], define from the expansion
(2),

ν(f) = minα,β{
∑̀
i=0

αi(h1(γi), τi) +
m∑

i=0

βi(h2(δi), ζi) + (0, ordz(a(z))} ∈ (G× ΓQ)lex.

Then ν defines a valuation on K(X, Y ) which is composite with ν. ν has rank 2
or 3, depending on if the rank of h1(Q) + h2(Q) is 1 or 2. Further, ν dominates
the local ring A = R[X, Y, U, V ]mRR[X,Y,U,V ]+(X,Y,U,V ).

3. Wild behavior of the tilde function

Theorem 3.1. Given any decreasing function f : N → Z, there exists a valuation ν with
value group ( 1

2∞Z × Z)lex which dominates a local ring R of dimension 3, such that for
any valuation v equivalent to ν, with value group ( 1

2∞Z × Z)lex, we have that for all
sufficiently large n ∈ N, there exists λ ∈ 1

2∞Z ∩ [0, n] such that π2(λ̃) < f(n).

Theorem 3.2. Given any increasing function g : N → Z, there exists a valuation ω with
value group ( 1

2∞Z × Z)lex which dominates a local ring R of dimension 3, such that for
any valuation w equivalent to ω, with value group ( 1

2∞Z × Z)lex, we have that for all
sufficiently large n ∈ N, there exists λ ∈ 1

2∞Z ∩ [0, n] such that π2(λ̃) > g(n).

Theorem 3.3. Suppose that f : N → Z is a decreasing function and g : N → Z is an
increasing function. Then there exists a valuation µ with value group (( 1

2∞Z+ 1
2∞Z

√
2)×

Z)lex which dominates a local ring A of dimension 5, such that for any valuation m

equivalent to µ, with value group (( 1
2∞Z+ 1

2∞Z
√

2)×Z)lex, we have that for all sufficiently
large n ∈ N, there exists λ1 ∈ ( 1

2∞Z+ 1
2∞Z

√
2)∩ [0, n] such that π2(λ̃1) > f(n), and there

exists λ2 ∈ ( 1
2∞Z + 1

2∞Z
√

2) ∩ [0, n] such that π2(λ̃2) < g(n).
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