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Introduction

In recent years the progress and applications of valuation theory have brought to light
the importance of understanding the semigroups of values which a Krull valuation ν of
some field takes on a noetherian local ring (R,m) contained in the ring (Rν ,mν) of the
valuation. Only two general facts are known:
The first is that these semigroups are well ordered subsets of the positive part of the
value group, of ordinal type at most ωh, where ω is the ordinal type of the well ordered
set N and h is the rank of the valuation (see [16], Appendix 3, Proposition 2). Being
well ordered, each value semigroup of a noetherian ring has a unique minimal system of
generators, indexed by an ordinal no greater than ωh.
The second is, in the case where mν

⋂

R = m and R and Rν have the same field of
fractions, the Abhyankar inequality

rr(ν) + trkkν ≤ dimR,

between the rational rank of the group of the valuation, the transcendence degree over
the residue field of R of the residue field of Rν and the dimension of R. If equality holds
the group of the valuation is isomorphic to Nrr(ν) (see [16], Vol. 2, Appendix 2). If in
addition the rank h is equal to one, the ν-adic and m-adic topologies of R coincide (see
[14], Proposition 5-1).

Examples, starting with plane branches (see [15] and [14]), and continuing with quasi-
ordinary hypersurfaces (see [7]) suggest that the structure of the semigroup contains im-
portant information on the process of local uniformization.

In this paper we shall consider mostly valued noetherian local rings (R,m) ⊂ (Rν ,mν)
such that R and Rν have the same field of fractions, the equality mν

⋂

R = m holds
and the residual extension R/m → Rν/mν is trivial. We call such valuation rational
valuations of R. In this case, the finite generation of the semigroup is equivalent to the
finite generation over kν = Rν/mν of the graded algebra associated to the valuation

grνR =
⊕

γ∈Γ

Pγ/P+
γ ,

where

Pγ = {f ∈ R|ν(f) ≥ γ}, P+
γ = {f ∈ R|ν(f) > γ}

and Γ is the value group of the valuation.
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program of the University of Missouri at Columbia.

1



This equivalence is true because each homogeneous component Pγ/P+
γ is non zero exactly

if γ is in the value semigroup S = ν(R\{0}), and then it is a one-dimensional vector space
over R/m = Rν/mν (see [14], section 4).

If the semigroup is finitely generated, it is not difficult to find a valuation of a local
noetherian domain which has it as semigroup: the semigroup algebra with coefficients in
a field K is then a finitely generated algebra. We can define a weight on its monomials by
giving to each generator as weight the generator of the semigroup to which it corresponds.
Then we define a valuation by deciding that the valuation of a polynomial is the smallest
weight of its monomials.

The simplest example is that of a subsemigroup of N; it is necessarily finitely generated
(see [12], Th. 83 p. 203) and by dividing by the greatest common divisor we may assume
that its generators γ1, . . . , γg are coprime, so that it generates the group Z. It is the semi-
group of values of the t-adic valuation on the ring K[tγ1 , . . . , tγg ] ⊂ K[t] of the monomial
curve corresponding to the semigroup.

In section 2 we give an example of a semigroup of values of a valuation on a polynomial
ring L[x, y, z] over a field which generates the group Z2 but is not finitely generated as
a semigroup. Moreover, the smallest closed cone in R2 with vertex 0 containing the
semigroup is rational.

If the semigroup is not finitely generated, very little is known about its structure.
While we know that all totally ordered abelian groups of finite rational rank appear as
value groups of valuations of rational function fields centered in a polynomial ring, we do
not know any general condition implying that a well ordered sub-semigroup of the positive
part of a totally ordered group of finite rational rank appears as semigroup of values of
a noetherian ring. We shall see in section 4 a characterization of those well-ordered sub-
semigroups of Q+ which are the semigroups of values of a K-valuation on K[X,Y ](X,Y ),

but no general result is known for subsemigroups contained in the positive part Q2
<0 of

Q2 for some total ordering <.
We show in section 3 that a sub-semigroup S of the positive part of a totally ordered

abelian group of finite rational rank, such that S has ordinal type < ωω, has no accumu-
lation points, and S has ordinal type ≤ ωh, where h is the rank of the group generated by
S. These are properties which are held by the semigroup of a valuation on a noetherian
ring.

Even if one could solve the problem of determining which semigroups of a totally ordered
group of (real) rank one come from noetherian rings, an induction on the rank would meet
serious difficulties, and one of the questions which appear naturally is that of the position
of the generators of the semigroup in regard to the valuation ideals of the valuations with
which the given valuation is composed.

More precisely, let ν be a valuation taking non negative values on the noetherian local
domain R, let Ψ be the convex subgroup of real rank one in the group Γ of the valuation,
and let P be the center in R of the valuation ν1 with values in Γ/Ψ with which ν is
composed. The valuation ν induces a residual valuation ν on the quotient R/P and when
the image q(γ) of γ in Γ/Ψ by the canonical quotient map q : Γ → Γ/Ψ is γ1 we have
inclusions of the valuation ideals corresponding to ν and ν1:

P+
γ1

⊂ Pγ ⊂ Pγ1
,

Since R is noetherian, the quotients Pγ1
/P+

γ1
are finitely generated R/P -modules for

all γ1 ∈ Γ/Ψ. Each is endowed by the filtration F(γ1) by the (Fγ = Pγ/P+
γ1

)γ∈q−1(γ1)
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with a structure of filtered R/P -module with respect to the filtration F(0) of R/P by its
valuation ideals (Pδ)δ∈Ψ, where Pδ = PδR/P = Pδ/P .

One could hope (see [14]) that the associated graded module

grF(γ1)Pγ1
/P+

γ1
=

⊕

γ∈q−1(γ1)

Pγ/P+
γ

is finitely generated over the associated graded ring

grνR/P =
⊕

δ∈Ψ+

Pδ/P
+
δ .

For rational valuations, this would be equivalent to the fact that for each γ1 > 0 only
finitely many new generators of the semigroup appear in Pγ1

\ P+
γ1

. It would set a drastic
restriction on the ordinal type of the minimal set of generators of the semigroup ν(R\{0}).

In sections 7 and 8, we give examples showing that this is not at all the case, and that
in fact the cardinality of the set of new generators may vary very much with the value of
γ1. One might have hoped that this lack of finiteness is due to some transcendence in the
residual extension from R/P to Rν/mν1

and disappears after some birational extension of
R to another noetherian local ring contained in Rν which absorbs the transcendence. In
one of the examples (section 8) there is no residual extension.

The conclusion is that the semigroups of values of noetherian rings do not seem to be
subject to more constraints than the two stated at the beginning.

1. A criterion for finite generation

Given a commutative semigroup S, a set M is endowed with a structure of an S-module
by an operation S×M → M written (s,m) 7→ s+m such that (s+s′)+m = s+(s′ +m).
Recall that M is then said to be a finitely generated S-module if there exist finitely many
elements m1, . . . ,mk in M such that M =

⋃k
i=1(S + mi).

Proposition 1.1. Keeping the notations of the previous section, suppose that K is a field
and R is a local domain with residue field K dominated by a valuation ring Rν of the field
of fractions of R. Assume that the residual extension R/m → Rν/mν is trivial. Then for
γ1 ∈ Γ/Ψ, The associated graded module

grF(γ1)Pγ1
/P+

γ1

is a finitely generated grνR/P -module if and only if

Fγ1
= {ν(f) | f ∈ R and ν1(f) = γ1}

is a finitely generated module over the semigroup F = ν(R/P \ {0}).

Proof. Let us first remark that since Pγ1
/P+

γ1
is an R/P -module, the set Fγ1

is an F -
module.

We know from ([14], 3.3-3.5, 4.1) that the non zero homogeneous components of the
graded algebra grνR =

⊕

γ∈Γ Pγ/P+
γ are one-dimensional K-vector spaces whose degrees

are in bijection with F = ν(R \ {0}), and that F = F
⋂

Ψ.
The grνR/P -module grF(γ1)Pγ1

/P+
γ1

is nothing but the sum of the components of grνR

whose degree is in q−1(γ1). Since we are dealing with graded modules whose homogeneous
components are one-dimensional K-vector spaces, this module is finitely generated if and
only if there exist finitely many homogeneous elements e1, . . . , er ∈ grF(γ1)Pγ1

/P+
γ1

such

that each homogeneous element of grF(γ1)Pγ1
/P+

γ1
can be written xei with x ∈ R/P ; this
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is equivalent to an assertion on degrees, which is exactly that the F -module Fγ1
is finitely

generated. �

2. An example with value group Z2 and non finitely generated semigroup.

Let K be a field. Let r be a positive natural number such that the characteristic of K
does not divide r, and let aij for 0 ≤ i ≤ 2 and 1 ≤ j ≤ r be algebraically independent
over K. Let M be the field

M = K ({aij | 0 ≤ i ≤ 2 and 1 ≤ j ≤ r}) .

Let G ∼= Zr be the subgroup of the permutation group Sr generated by the cycle (1, 2, . . . , r).
For σ ∈ G, define a K automorphism of M by σ(aij) = ai,σ(j). Let L = MG be the fixed
field of G. We have an étale, Galois morphism

Λ : P2
M → P2

L
∼= P2

M/G.

Let x0, x1, x2 be homogeneous coordinates on P2
K . Define pi = (a0i, a1i, a2i) ∈ P2

M for
1 ≤ i ≤ r, and let q = Λ(p1). Since {p1, . . . , pr} is an orbit of Λ under the action of G, we
have that q = Λ(pi) for 1 ≤ i ≤ r, and IqOP2

M
= Ip1

· · · Ipr .

Let ν be the m-adic valuation of OP2
L

,q.

(1) Γ(P2
L,OP2(d) ⊗ In

q ) = {F (x0, x1, x2) ∈ Γ(P2
L,OP2(d)) | ν(F (1,

x1

x0
,
x2

x0
)) ≥ n}.

Since M is flat over L,

(2) Γ(P2
L,OP2(d) ⊗ In

q ) ⊗L M = Γ(P2
M ,OP2(d) ⊗ ((Ip1

· · · Ipr)
n)).

Let ν1 be the m-adic valuation on R = L[x0, x1, x2](x0,x1,x2). The valuation ring Rν1

of ν1 is L[x0,
x1

x0
, x2

x0
](x0), with residue field Rν1

/mν1
∼= L(x1

x0
, x2

x0
). The inclusion of the

valuation ring Rν of ν into its quotient field L(x1

x0
, x2

x0
) determines a composite valuation

ν = ν1 ◦ ν on the field L(x0, x1, x2), which dominates R. The valuation ν is rational and
its value group of ν is Z × Z with the Lex order.

For f ∈ L[x0, x1, x2], let Lf (x0, x1, x2) be the leading form of f . Lf is a homoge-
neous form whose degree is the order ord(f) of f at the homogeneous maximal ideal of
k[x0, x1, x2]. The value of f is

ν(f) = (ord(f), ν(Lf (1,
x1

x0
,
x2

x0
))) ∈ N × N.

For (d, n) ∈ N × N, we have L module isomorphisms

P(d,n) ∩ L[x0, x1, x2] ∼= Γ(P2
L,OP2(d) ⊗ In

q )
⊕

(

⊕

m>d

Γ(P2
L,OP2(m))

)

,

and

(3) P(d,n)/P
+
(d,n)

∼= Γ(P2
L,OP2(d) ⊗ In

q )/Γ(P2
L,OP2(d) ⊗ In+1

q ).

Proposition 2.1. Suppose that r = s2 where s ≥ 4 is a natural number. Then for n 6= 0

(4) P(d,n)/P
+
(d,n)

= 0 if d ≤ ns

and if s′ is a real number such that s′ > s, then there exist natural numbers d, n such that
d < ns′ and

(5) P(d,n)/P
+
(d,n) 6= 0.
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Proof. We have that Γ(P2
M ,OP2(d) ⊗ ((Ip1

· · · Ipr)
n)) = 0 if d ≤ ns by (1) of Proposition

1 of [10]. Thus (4) is true by formulas (2) and (3).
Suppose that s′ is a real number greater than s. Using the Riemann Roch Theorem

and Serre Duality on the blow up of P2
L at q, as in the proof of (2) of Proposition 1 of

[10], we compute that

dimL(Γ(P2
L,OP2(d) ⊗ In

q ) ≥
d(d + 3)

2
− r

n(n + 1)

2
+ 1 > 0

if
d(d + 3)

2
≥ r

n(n + 1)

2
.

Fixing a rational number λ with s′ > λ > s, we see that we can find natural numbers d
and m with d

m
= λ and

dimL(Γ(P2
L,OP2(d) ⊗ Im

q ) 6= 0.

Let n ≥ m be the largest natural number such that

dimL(Γ(P2
L,OP2(d) ⊗ In

q )) 6= 0.

Then d < ns′ and P(d,n)/P
+
(d,n) 6= 0 by (3). Thus (5) holds. �

The following result follows from Proposition 2.1

Proposition 2.2. Suppose that s ≥ 4 is a natural number. Then there exists a field
M , a rational function field M(x0, x1, x2) in 3 variables, and a rank 2 valuation ν of
M(x0, x1, x2) with value group Z × Z with the Lex order, which dominates the regular
local ring

R = M [x0, x1, x2](x0,x1,x2)

such that
⊕

(d,n)∈N×N

P(d,n)/P
+
(d,n)

is not a finitely generated R/mR
∼= M algebra.

The semigroup Γ = ν(R \ {0}) is not finitely generated as a semigroup. Further, the
closed rational cone generated by Γ in R2 is the rational polyhedron

{(d, n) ∈ R2 | n ≥ 0 and d ≥ ns}.

3. semigroups of ordinal type ωh

Suppose that G is an ordered abelian group of finite rank n. Then G is order isomorphic
to a subgroup of Rn, where Rn has the lex order (see Proposition 2.10 [1]). If G is the
value group of a valuation ν dominating a Noetherian local ring R, and S is the semigroup
of values attained by ν on R, then it can be shown that S has no accumulation points in
Rn.

In this section we prove that this property is held by any well ordered semigroup S
of ordinal type ≤ ωh, which is contained in the nonnegative part of Rn. The proof
relies on the following lemma. The heuristic idea of the proof of the lemma is that the
semigroup generated by a set with an accumulation point has many accumulation points,
accumulations of accumulation points, and so on.
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Lemma 3.1. Let A be a well ordered set, which is contained in the nonnegative part of
R. Suppose that A has an accumulation point in R, for the Euclidean topology. For m a
positive integer, let

mA = {x1 + x2 + · · · + xm | x1, . . . , xm ∈ A}.

Then mA contains a well ordered subset of ordinal type ωm.

Proof. Let λ be an accumulation point of A. Since A is well ordered, there exist λi ∈ A
for i ∈ N, such that λi < λj for i < j and limi7→∞ λi = λ. Let T1 = {λi}i∈N. T1 ⊂ A is
well ordered of ordinal type ω.

For m ≥ 2 we will construct a well ordered subset Tm of mA which has ordinal type
ωm.

For a1 ∈ N, choose σm
1 (a1) ∈ N such that

λa1
+ λ < λa1+1 + λσm

1
(a1).

Now for a2 ∈ N, choose σm
2 (a1, a2) ∈ N such that

λσm
1

(a1)+a2
+ λ < λσm

1
(a1)+a2+1 + λσm

2
(a1,a2).

We iterate for 2 ≤ i ≤ m to choose for each ai ∈ N, σm
i (a1, a2, . . . , ai) ∈ N such that

λσm
i−1

(a1,...,ai−1)+ai
+ λ < λσm

i−1
(a1,...,ai−1)+ai+1 + λσm

i (a1,...,ai).

Let Tm be the well ordered subset of mA which is the image of the order preserving
inclusion Nm → mA where Nm has the reverse lex order, defined by

(am, . . . , a1) 7→ λa1+1 +

(

m
∑

i=2

λσm
i−1

(a1,...,ai−1)+ai+1

)

.

By its construction, Tm has ordinal type ωm. �

Theorem 3.2. Let S be a well ordered subsemigroup of the nonnegative part of Rn (with
the lex order) for some n ∈ N. Suppose that S has ordinal type ≤ ωh for some h ∈ N.
Then S does not have an accumulation point in Rn for the Euclidean topology.

Proof. We prove the theorem by induction on n. For n = 1, the theorem follows from
Lemma 3.1. Suppose that the theorem is true for subsemigroups of Rn−1.

Suppose that S ⊂ Rn has an accumulation point α.
Let π : Rn → Rn−1 be projection onto the first n − 1 factors. For x, y ∈ Rn, we have

that x ≤ y implies π(x) ≤ π(y). Thus the set π(S) is a well ordered semigroup, which
has ordinal type ≤ ωh and is contained in the nonnegative part of Rn−1. Let α = π(α).
By the induction assumption, π(S) has no accumulation points. Thus α ∈ π(S), and
there exists an open neighborhood U of α in Rn−1 such that U ∩ π(S) = {α}. Thus
π−1(U) ∩ S = π−1({α}) ∩ S, and α is an accumulation point of π−1({α}) ∩ S.

Projection on the last factor is a natural homeomorphism of π−1({α}) to R which is
order preserving. Let A ⊂ R be the image of π−1({α}) ∩ S. Since A is a well ordered set
which has an accumulation point, by Lemma 3.1, mA has a subset which has ordinal type
ωm for all m ≥ 1. Now projection onto the last factor identifies a subset of π−1({mα}) ∩
S with mA for all m ≥ 1. Thus the ordinal type of S is ≥ ωm for all m ∈ N, a
contradiction. �

A variation of the proof of Theorem 3.2 proves the following corollary.
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Corollary 3.3. Let S be a well ordered subsemigroup of the nonnegative part of Rn (with
the lex order) for some n ∈ N. Suppose that S has ordinal type ≤ ωh for some h ∈ N.
Then S has ordinal type ≤ ωn.

Proof. We prove the theorem by induction on n.
We first establish the theorem for n = 1. Suppose that S ⊂ R has ordinal type > ω.

To the ordinal number ω there corresponds an element a of S. There are then infinitely
many elements of S in the closed interval [0, a], so that S has an accumulation point. By
Theorem 3.2, this is impossible.

Now suppose that S ⊂ Rn and the theorem is true for subsemigroups of Rn−1. By
Theorem 3.2, S has no accumulation points.

Let π : Rn → Rn−1 be projection onto the first n − 1 factors. The set π(S) is a well
ordered semigroup, which has ordinal type ≤ ωh and is contained in the nonnegative part
of Rn−1. By the induction assumption, π(S) has ordinal type ≤ ωn−1. For x ∈ π(X),
π−1({x}) ∩ S is a well ordered subset of R which has no accumulation points, and thus
has ordinal type ≤ ω. Since this is true for all x ∈ π(S), the ordinal type of S is
≤ ωn−1ω = ωn. �

4. Subsemigroups of Q+

Let S be a well ordered subsemigroup of Q+. Let (γi)i∈I be its minimal system of
generators. The set of the γi may or may not be of ordinal type ω.

For example let us choose two prime numbers p, q and consider the positive rational
numbers γi = 1 − 1

pi for 1 ≤ i < ω and γi = 2 − 1
qi−ω+1 for ω ≤ i < ω2. These numbers

form a well ordered subset of Q+ of ordinal type ω2 and generate a certain semigroup Sp,q

which in turn is well ordered by a result of B.H. Neumann (see [11] and [13], Theorem
3.4). Because of the way their denominators grow with i, the γi are a minimal system of
generators of Sp,q. Using the first k prime numbers one can build in the same way well
ordered semigroups in Q+ with minimal systems of generators of ordinal type ωk for any
k < ω.

Remark: Since we assume S ⊂ Q+, if it is a semigroup of values for some valuation, that
valuation is of rank one and by the result quoted in the Introduction, if the semigroup S
comes from a noetherian ring it is of ordinal type ≤ ω.
The semigroup Sp,q is therefore an example of a well ordered subsemigroup of a totally
ordered group of finite rank which cannot be realized as the semigroup of values of a
noetherian ring. Using Theorem 3.2 we see that the semigroup Sp generated by the

γi = 1 − 1
pi , 0 < i < ω cannot be realized either since it has an accumulation point.

Note that by Corollary 3.3 the ordinal type of Sp or Sp,q is ≥ ωω. One can ask what is the
relationship between the ordinal type of the minimal set of generators of a well ordered
subsemigroup S of Q+ and the ordinal type of S.

We shall from now on in this section consider only semigroups S ⊂ Q+ whose minimal
system of generators (γ1, . . . , γi, . . .) is of ordinal type ≤ ω. If the γi have a common
denominator, S is isomorphic to a subsemigroup of N, and finitely generated (for a short
proof see [12], Th. 83 p. 203).

Let us therefore assume that there is no common denominator. Let us denote by Si the
semigroup generated by γ1, . . . , γi and by Gi the subgroup of Q which it generates. We
have S =

⋃∞
i=1 Si. Set also ni = [Gi : Gi−1] for i ≥ 2. It is convenient to set n1 = 1. The

products Πk
i=1ni tend to infinity with k.
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By definition we have niγi ∈ Gi−1 and the image of γi is an element of order ni in
Gi/Gi−1. For each i ≥ 1 let ri be the positive rational number such that riγ1, riγ2, . . . , riγi

generate the group Z. Since the semigroup ri−1Si−1 generates Z as a group, it has a finite
complement (see [12], Th. 82) and some positive multiple of ri−1niγi is contained in it.
Thus, we know that there exists a smallest integer si such that siγi ∈ Si−1 and that it is
an integral multiple of ni.

Definition 4.1. Let S be a well ordered subsemigroup of the semigroup of positive ele-
ments of a totally ordered abelian group of finite rank. Let (γ1, . . . , γi, . . .) be a minimal
system of generators of S indexed by some ordinal α and for each ordinal β ≤ α define Sβ

to be the semigroup generated by the (γi)i≤β. Given an integer d we say that S has stable
asymptotic embedding dimension ≤ d if for each β < α the semigroup Sβ is isomorphic to
the semigroup of values which a valuation takes on an equicharacteristic noetherian local
domain of embedding dimension ≤ d whose residue field is algebraically closed. We say
that S has stable embedding dimension ≤ d if it is isomorphic to the semigroup of values
of a valuation on an equicharacteristic noetherian local domain of embedding dimension
≤ d whose residue field is algebraically closed.

Proposition 4.2. Let S be a well ordered subsemigroup of Q+ which is not isomorphic
to N and whose minimal system of generators (γ1, . . . , γi, . . . ) is of ordinal type ≤ ω. The
following are equivalent:
1) For each i ≥ 2 we have si = ni and γi > si−1γi−1.
2) The stable asymptotic embedding dimension of S is two.
3) The stable embedding dimension of S is two.

Proof. The conditions of 1) are known to be equivalent to the fact that each semigroup Si

is the semigroup of values of the natural valuation of a plane branch, which is of embedding
dimension 2 since S 6= N (see [15], Appendix, for characteristic zero, and [2] for what is
necessary to extend to positive characteristic). This shows that 1) is equivalent to 2).

Given a sequence of γi satisfying 1), we can associate to it a sequence of key polynomials
(SKP) as in ([6], Chapter 2, Definition 2.1) over any algebraically closed field K. That is,
a sequence P0 = x, P1 = y, . . . , Pi, . . . of polynomials in K[x, y] such that the conditions
ν(Pi) = γi for all i determine a unique valuation ν of the regular local ring K[x, y](x,y) or,
if the sequence of γi is finite, of a one-dimensional quotient K[x, y](x,y)/(Q(x, y)), which
is of embedding dimension 2 since S 6= N. The semigroup of values of ν is the semigroup
generated by the γi (see loc.cit., Theorem 2.28). So we see that 1) implies 3). Finally, if
the semigroup S comes from a noetherian local ring of embedding dimension 2, since for
valuations of rank one the semigroup does not change under m-adic completion (see [14],
§5), we may assune that this ring corresponds either to a branch or to a two-dimensional
complete equicharacteristic regular local local ring. If S is the semigroup of values of
a plane branch, condition 1) is satisfied, as we have seen above and if it comes from
a valuation ν of K[[x, y]], by ([6], Theorem 2.29), there exists a SKP associated to ν,
and again condition 1) is satisfied. One should note that [6] is written over the complex
numbers, but the results of Chapter 2 are valid in any characteristic. �

Remark: One may ask whether a subsemigroup of Q+ of ordinal type ω is always of
bounded stable asymptotic embedding dimension or of bounded stable embedding dimen-
sion.

8



5. The semigroups of noetherian rings are not always rationally finitely

generated

Using the results of [6], Chapter 2, one can check that for the semigroup S = 〈γ1, . . . , γi, . . .〉
of a valuation of the ring K[x, y](x,y) there always exist a finite set of generators γ1, . . . γℓ

which rationally generate the semigroup S in the sense that for any generator γj there
is a positive integer sj such that sjγj ∈ 〈γ1, . . . , γℓ〉. This fails for polynomial rings of
dimension ≥ 3, as is shown by the following example taken from [14].

Let us give Z2 the lexicographic order and consider the field K((tZ
2
lex)) endowed with the

t-adic valuation with values in Z2
lex. Let us denote by K[[tZ

2
+ ]] the corresponding valuation

ring. Choose a sequence of pairs of positive integers (ai, bi)i≥3 and a sequence of elements

(λi ∈ K∗)i≥3 such that bi+1 > bi, the series
∑

i≥3 λiu
bi

2 is not algebraic over K[u2], and

the ratios ai+1−ai

bi+1
are positive and increases strictly with i. Let R0 be the K-subalgebra

of K[[tZ
2
+]] generated by

u1 = t(0,1), u2 = t(1,0), u3 =
∑

i≥3

λiu
−ai

1 ubi

2 .

There cannot be an algebraic relation between u1, u2, and u3, so the ring R0 = K[u1, u2, u3]

is the polynomial ring in three variables. It inherits the t-adic valuation of K[[tZ
2
+ ]]. One

checks that this valuation extends to the localization R = K[u1, u2, u3](u1,u2,u3); it is a
rational valuation of rank two and rational rank two. Let us compute the semigroup S
of the values that it takes on R. We have γ1 = (0, 1), γ2 = (1, 0), γ3 = (b3,−a3) ∈ S.

Set S3 = 〈γ1, γ2, γ3〉. Then we have ua3

1 u3 − λ3u
b3
2 =

∑

i≥4 λiu
a3−ai

1 ubi

2 ∈ R, so that

γ4 = (b4, a3−a4) is in S. It is easy to deduce from our assumptions that no multiple of γ4 is

in S3, and that it is the smallest element of S which is not in S3. We set u4 = ua3

1 u3−λ3u
b3
2 ,

and continue in the same manner: ua4−a3

1 u4 − λ4u
b4
2 = u5, ..., u

ai−ai−1

1 ui − λiu
bi

2 = ui+1,...
with the generators γi = ν(ui) = (bi, ai−1 − ai) for i ≥ 4. Finally we have:

S = 〈γ1, γ2, . . . , γi, . . .〉,

the initial forms of the ui constitute a minimal system of generators of the graded K-
algebra grνR, and the equations (setting a2 = 0)

u
ai−ai−1

1 ui − λiu
bi

2 = ui+1, i ≥ 3

above describe R0 as a quotient of K[(ui)i≥1]; it is clear that from them we can reconstruct
the value of u3 as a function of u1, u2 by (infinite) elimination. The binomial equations
defining grνR = grνR0 as a quotient of K[(Ui)i≥1] are the

U
ai−ai−1

1 Ui − λiU
bi

2 = 0, i ≥ 3,

showing that all the Ui for i ≥ 3 are rationally dependent on U1, U2. From our assumption
on the growth of the ratios we see moreover that no multiple of γi is in Si−1 = 〈γ1, . . . , γi−1〉.
In fact γi is outside of the cone with vertex 0 generated by Si−1 in R2.

6. A criterion for a series z to be transcendental

In this section, we will use the following notation. Let K be a field, and Γ a totally
ordered abelian group. Let K((tΓ)) be the field of formal power series with a well ordered
set of exponents in Γ, and coefficients in K. Let ν be the t-adic valuation of K((tΓ)).
Suppose that R ⊂ K((tΓ)) is a local ring which is essentially of finite type over K (a
localization of a finitely generated K-algebra). and that ν dominates R.
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Let d = dim(R). Write R = AP where A ⊂ Rν is of finite type over K, and R = AP

where P is the center of ν on A.
By Noether’s normalization theorem (Theorem 24, Section 7, Chapter VIII [16]), there

exist x1, . . . , xd ∈ A, which are algebraically independent over K, such that A is a finite
module over the polynomial ring B = K[x1, . . . , xd]. Thus there exist b1, . . . , br ∈ A for
some finite r, such that A = Bb1 + · · · + Bbr.

Let A[z] be a polynomial ring over A. For n ∈ N, define a finite dimensional K vector
space Dn by

Dn = {f ∈ A[z] | f = f1b1+· · ·+frbr where f1, . . . , fr ∈ K[x1, . . . , xd, z] have total degree ≤ n}.

Lemma 6.1. Suppose that w ∈ K((tΓ)) has positive value and n ∈ N. Then the set of
values

En = {ν(f(w)) | f ∈ Dn and f(w) 6= 0}

is finite.

Proof. For τ ∈ Γ+, let

Cτ = {f ∈ Dn | ν(f(w)) ≥ τ}.

Cτ is a K subspace of Dn. Since Cτ1 ⊂ Cτ2 if τ2 ≤ τ1, En must be a finite set. �

Lemma 6.2. Suppose that w ∈ K((tΓ)) has positive value. Let

τ = max{ν(f(w)) | f ∈ Dn and f(w) 6= 0}.

Choose λ ∈ Γ such that λ > τ and h ∈ K((tΓ)) such that ν(h) = λ.
Suppose that 0 6= f ∈ Dn. Then f(w + h) 6= 0.

Proof. Suppose that 0 6= f ∈ Dn. Let m = degz(f). We have 0 < m ≤ n (the case m = 0
is trivial). Write

f = amzm + am−1z
m−1 + · · · + a0

where am 6= 0 and each ai has an expression

ai = ci1b1 + · · · + cirbr

where cij ∈ K[x1, . . . , xd] is a polynomial of degree ≤ n for all i, j. Subsituting w + h for
z, we have

f(w + h) = hmdm(w) + hm−1dm−1(w) + · · · + d0(w)

where di(z) ∈ Dn for all i and dm(z) = am, so that hmdm(w) 6= 0.
Suppose that i < j, hidi(w) 6= 0, hjdj(w) 6= 0 and ν(hidi(w)) = ν(hjdj(w)). Then

iλ + ν(di(w)) = jλ + ν(dj(w)),

which yields

(j − i)λ = ν(di(w)) − ν(dj(w)).

But

ν(di(w)) − ν(dj(w)) ≤ τ < λ ≤ (j − i)λ,

a contradiction. Thus all nonzero terms hidi(w) of f(w + h) have distinct values. Since
at least one of these terms was shown to be non zero, f(w + h) has finite value, so
f(w + h) 6= 0. �
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Theorem 6.3. Suppose that K is a field, Γ is a totally ordered abelian group, R ⊂ K((tΓ))
is a local ring which is essentially of finite type over K and which is dominated by the
t-adic valuation ν of K((tΓ)).

Suppose that zi ∈ K((tΓ)) are defined as follows:
Let

(6) τ1 = max{ν(f) | f ∈ D1 and f(0) 6= 0}.

Choose α1 ∈ Γ+ with α1 > τ1 and h1 ∈ K((tΓ)) such that ν(h1) = α1. Set z1 = h1.
Inductively define αi ∈ Γ+, hi ∈ K((tΓ)) and zi = zi−1 + hi with ν(hi) = αi for 2 ≤ i

so that if

(7) τi = max{ν(f(zi−1)) | f ∈ Di and f(zi−1) 6= 0},

then

αi > τi.

Then z = limi7→∞ zi ∈ K((tΓ)) is transcendental over the quotient field L of R.

Proof. Since {αi} is an increasing sequence in Γ with ν(hj −hi) = αi+1 for j > i, we have
that the limit z = limi7→∞ zi exists in K((tΓ)).

Assume that z is not transcendental over L. Then there exists a nonzero polynomial
g(z) ∈ A[z] such that g(z) = 0. Let m = degz(g) ≥ 1. Expand

g(z) = amzm + am−1z
m−1 + · · · + a0

with ai ∈ A for all i. Each ai has an expansion

ai = ci1b1 + · · · + cirbr

where cij ∈ K[x1, . . . , xd] for all i, j. Let n ∈ N be such that n ≥ deg(cij) for 1 ≤ i ≤ m
and 1 ≤ j ≤ r, and n ≥ m.

By our construction, we have

zn = zn−1 + hn with ν(hn) = αn > τn.

By Lemma 6.2, g(zn) 6= 0. In K((tΓ)), we compute

g(z) = g(zn + z − zn) = g(zn) + (z − zn)e

with ν(e) ≥ 0. We have

ν(z − zn) = ν(hn+1) = αn+1 > τn+1 ≥ ν(g(zn)).

Thus ν(g(z)) ≤ τn+1 < ∞, so that g(z) 6= 0, a contradiction. �

Corollary 6.4. Suppose that K is a field, Γ is a totally ordered abelian group, R ⊂
K((tΓ)) is a local ring which is essentially of finite type over K and which is dominated
by the t-adic valuation ν of K((tΓ)). Then there exists z ∈ K((tΓ)) such that z is tran-
scendental over the quotient field of R.

Remark 6.5. The conclusions of the theorem may fail if R is Noetherian, but not essen-
tially of finite type over K. A simple example is Γ = Z and R = K[[t]], since K((tΓ)) is
the quotient field of R.
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7. An example where all grF(γ1)Pγ1
/P+

γ1
are not finitely generated grνR/P

modules

Let K be an algebraically closed field. Let K(x, y) be a two dimensional rational
function field over K. Let A = K[x, y](x,y). In Example 3 of Chapter VI, Section 18 of
[16] a construction is given of a valuation ν of K(x, y) which dominates A, and such that
the value group of ν is Q. There is an embedding K(x, y) ⊂ K((tQ)) of K algebras, where
K((tQ)) is the formal power series field with a well ordered set of exponents in Q, and
coefficients in K, by Theorem 6 of [8], since K is algebraically closed and Q is divisible.

Let Q+ denote the positive rational numbers.
Let

(8) F0 = {ν(f) | f ∈ A and f 6= 0}

be the semigroup of the valuation ν on A.
We will use the criterion of Theorem 6.3 to construct a limit z = limi→∞ zi in K((tQ))

which is transcendental over the quotient field of A.
Let z be a transcendental element over K[x, y] and let

Di = {f ∈ K[x, y, z] | the total degree of f is ≤ i}.

In our construction, we inductively define zi ∈ K((tQ)). Then for n ∈ N, we may define
F0 = ν(A \ {0}) modules Mn

i by

Mn
i = {ν(a0 + a1zi + · · · + anzn

i ) | a0, . . . , an ∈ K[x, y]}.

Let

Ai = A[zi](x,y,zi).

The local ring Ai is dominated by ν, so the semigroup Γi of ν on Ai is topologically
discrete. It follows that there are arbitrarily large elements of Q+ which are not in Γi.

We first choose λ1 ∈ Q+ such that λ1 6∈ F0 and λ1 > τ1 where τ1 is defined by (6). Set
α1 = λ1. Choose f1, g1 ∈ K[x, y] such that

ν

(

f1

g1

)

= α1.

We then inductively construct λi ∈ Q+, αi ∈ Q+, fi, gi ∈ K[x, y] and τi ∈ Q+ such
that λi 6∈ Γi−1, τi is defined by (7), and

λi > max{λi−1 + ν(g1 · · · gi−1), τi + ν(g1 · · · gi−1)}.

We define

αi = λi − ν(g1 · · · gi−1)

and choose fi, gi ∈ K[x, y] so that

ν

(

fi

gi

)

= αi.

Let

zi = zi−1 +
fi

gi
.

The resulting series z = limi→∞ zi is transcendental over K(x, y) by Theorem 6.3, since
αi > τi for all i > 1.

Let B = A[z](x,y,z). Since z ∈ K((tQ)) is transcendental over K(x, y) the embedding

A ⊂ K((tQ)) which appears at the beginning of the section extends to an embedding
12



B ⊂ K((tQ)) so that the three dimensional local ring B is dominated by the t-adic
valuation ν of K((tQ)).

Lemma 7.1. a) With the above notation, for n ∈ N, define a F0 module

T n = {ν(a0 + a1z + · · · + anzn) | a0, a1, · · · , an ∈ K[x, y]}.

Then for all n > 0, T n is not finitely generated as a F0 module.
b) With the notations just introduced, let T∞ = ν(B \ {0}) be the semigroup of the
valuation ν on B. Then T∞ is not a finitely generated F0 module.

Proof. Suppose that n ≥ 1. We will show that T n is not finitely generated as a F0 module.
We compute

ν(z) = ν

(

f1

g1

)

= λ1,

and for i ≥ 2,

ν (g1 · · · gi−1z − (f1g2 · · · gi−1 + f2g1g3 · · · gi−1 + · · · + fi−1g1 · · · gi−2))

= ν
(

g1 · · · gi−1
fi

gi

)

= ν
(

fi

gi

)

+ ν(g1 · · · gi−1)

= λi.

Thus λi ∈ T n for all i.
The F0 modules Mn

i introduced above are subsets of Q for all i. We compare the
intersections of the Mn

i with various intervals [0, σ) in Q. Since ν(z1) = α1, we have that

Mn
1 ∩ [0, α1) = F0 ∩ [0, α1),

and since

zi = zi−1 +
fi

gi

with

ν

(

fi

gi

)

= αi,

we have that

Mn
i ∩ [0, αi) = Mn

i−1 ∩ [0, αi)

for all i ≥ 2.
We further have that

(9) T n ∩ [0, αi) = Mn
i ∩ [0, αi)

for i ≥ 1.
Suppose that n ≥ 1 and T n is a finitely generated F0 module. We will derive a con-

tradiction. With this assumption, there exist x1, . . . , xm ∈ T n such that every element
v ∈ T n has an expression v = y + xj for some y ∈ F0, and for some xj with 1 ≤ j ≤ m.

There exists a positive integer l such that xj < αl for 1 ≤ j ≤ l. Thus x1 . . . , xm ∈ Mn
l

by (9). It follows that T n ⊂ Mn
l since Mn

l is a F0 module. But λn+1 6∈ Mn
l by our

construction, as Mn
l ⊂ Γl. This gives a contradiction, since we have shown that λl+1 ∈ T n.

The proof that T∞ =
⋃∞

n=0 T n is not a finitely generated F0 module is similar. �
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Proposition 7.2. Suppose that K is an algebraically closed field, and K(x, y, u, v) is a
rational function field in 4 variables. Then there exists a rank 2 valuation ν = ν1 ◦ ν of
K[x, y, u, v] with value group Z×Q with the Lex order, which dominates the regular local
ring

R = K[x, y, u, v](x,y,u,v),

with R/P ∼= K[x, y](x,y) where P is the center of ν1 on R, such that the associated graded
module

grF(n)Pn/P+
n

is not a finitely generated grνR/P module for all positive integers n.

Proof. Since the z we have just constructed is transcendental over K(x, y), the association
z → z defines an embedding of K algebras K(x, y, z) → K((tQ)) which extends our
embedding K(x, y) → K((tQ)). We identify ν with the induced valuation on K(x, y, z),
which by our construction has value group Q and residue field K.

Let R be the localization

R = K[x, y, u, v](x,y,u,v)

of a polynomial ring in four variables. Let ν1 be the (u, v)-adic valuation of R. The
valuation ring of the discrete, rank 1 valuation ν1 is

Rν1
= K

[

x, y, u,
v

u

]

(u)
.

The residue field of Rν1
is the rational function field in three variables

Rν1
/mν1

= K(x, y, z)

where z = v
u
. Let ν be the composite valuation ν1 ◦ ν on K(x, y, u, v).

For i ∈ N, we have

Fi = {ν(f) | f ∈ R and ν1(f) = i}.

F0 is the semigroup F0 = ν(R/P \ {0}), and Fi are F0 modules for all i.
We have that mν1

∩ R = (u, v), so that F0 = Γ0, the semigroup of (8). From our
construction of ν, we have that Fn is isomorphic to T n as a Γ0 module. Thus for all n ≥ 1,
Fn is not finitely generated as a F0 module.

By Proposition 1.1,

grF(n)Pn/P+
n

is not a finitely generated grνR/P module for all positive integers n.
�

Remark 7.3. In the example of Proposition 7.2, the residue field Rν1
/mν1

is transcenden-
tal over the quotient field of R/P , a fact which is used in the construction. In Proposition
8.4 of the following section, an example is given where Rν1

/mν1
is equal to the quotient

field of R/P .

Remark 7.4. We can easily construct a series z ∈ K((tQ)) such that the modules T n

and T∞ of the conclusions of Lemma 7.1 are all finitely generated Γ0 modules, and thus
the modules

grF(n)Pn/P+
n

are finitely generated grνR/P module for all positive integers n. To make the construction,
just take z ∈ K[[x, y]] to be any transcendental series.
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8. An example with no residue field extension

Suppose that K is an algebraically closed field, and A = K[x, y](x,y). We will define a

valuation ν on L = K(x, y) which dominates A, with value group
⋃∞

i=0
1
2i Z.

Define β0 = 1 and βi+1 = 2βi + 1
2i+1 for i ≥ 0. We have

βi =
1

3
(2i+2 −

1

2i
)

for i ≥ 0, and

2βi = βi−1 + 2i+1β0

for ≥ 1.
Define groups

Γi =

i
∑

j=0

Zβj =
1

2i
Z

for i ≥ 0.
For i ≥ 1, let

xi =
2i+1βi−1 + 1

2i−1
,

and let mi = 2.
Since 2i+1βi−1 is an even integer for all i, xi has order mi = 2 in Γi−1/miΓi−1 and

βi = xi

mi
.

By our construction, for i ≥ 1, βi+1 > miβi. By the irreducibility criterion of [3],
Remark 7.17 [5], or Theorem 2.22 [6], there exists a valuation ν of L dominating A and a
(minimal) generating sequence P0, P1, · · · , Pi, · · · for ν in K[x, y] of the form

P0 = x
P1 = y
P2 = y2 − x5

P3 = P 2
2 − x8y

...

Pi+1 = P 2
i − P 2i+1

0 Pi−1
...

with βi = ν(Pi) for all i. The semigroup M0 of ν on A is

M0 =

∞
∑

i=0

Nβi.

Let z = y
x
∈ L, and define for n ∈ N,

Wn = {a0 + a1z + · · · + anzn | a0, . . . , an ∈ K[x, y]}.

Define M0 modules Mn by

Mn = {ν(f) | 0 6= f ∈ Wn}.

Lemma 8.1. For all i ≥ 0. we have an expression Pi = xihi with hi ∈ Wi.
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Proof. The statement is clear for i = 0 and i = 1. Suppose, by induction, that the
statement is true for j ≤ i, so that Pj = xjhj with hj ∈ Wj for j ≤ i. Write

Pi+1 = P 2
i − P 2i+1

0 Pi−1.

P 2
i = xi+1

[(

Pi

xi

)(

Pi

xi

)

xi−1

]

with
(

Pi

xi

)(

Pi

xi

)

xi−1 ∈ W2i−(i−1) = Wi+1.

Further,

P 2i+1

0 Pi−1 = x2i+1

xi−1hi−1 ∈ xi+1Wi−1 ⊂ xi+1Wi+1.

Thus Pi+1 = xi+1hi+1 with hi+1 ∈ Wi+1. �

For n ∈ N, let

Un = {λ ∈ Mn | λ =
n−1
∑

j=0

ljβj for some li ∈ Z}.

Lemma 8.2. For n ≥ 1,

Mn = Un

⋃





⋃

j≥n

((βj − n) + M0)



 .

Proof.
Pj

xj ∈ Wj for all j ≥ 0 implies

Pj

xn
=

(

Pj

xj

)

xj−n ∈ Wn

for j ≥ n. Thus βj − n ∈ Mn for j ≥ n.
Now suppose that λ ∈ Mn. λ = ν(a0 + a1z + · · · + anzn) for some a0, . . . , an ∈ K[x, y].

Set τ = ν(a0x
n +a1x

n−1y + · · ·+anyn) ∈ M0. We have λ = τ −n. τ =
∑

ljβj = ν(
∏

P
lj
j )

for some lj ∈ N. Suppose lk 6= 0 for some k ≥ n. Then

λ = ν









∏

j 6=k

P
lj
j



P lk−1
k

Pk

xn



 = (βk − n) + ν









∏

j 6=k

P
lj
j



P lk−1
k



 .

Now suppose that lk = 0 for k < n. Then

λ =

n−1
∑

j=1

ljβj + (l0 − n)β0 ∈ Un.

�

Lemma 8.3. Suppose that n ≥ 1. Then Mn is not a finitely generated M0 module.
Let B = K[x, y

x
](x,

y

x
). B is a regular local ring which birational dominates A =

K[x, y](x,y). Let M∞ = ν(B \ {0}). Then M∞ is not a finitely generated module over
Γ0 = ν(A \ {0}).
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Proof. For i ≥ 0, define Ψi to be the M0 module generated by Un and {βj −n | i ≥ j ≥ n}.
For i ≥ n we have

Ψi = Un

⋃





⋃

i≥j≥n

((βj − n) + M0)



 ⊂
1

2i
N.

Thus βi+1 − 1 6∈ Ψi for i ≥ n.
We will now show that Mn is not a finitely generated M0 module.
Suppose that Mn is finitely generated as an M0 module. Then Mn is generated by a

set a1, . . . , ar, b1, . . . , bs, where

ai = (βσ(i) − n) + λi

with σ(i) ≥ n and λi ∈ M0 for 1 ≤ i ≤ r and bi ∈ Un for 1 ≤ i ≤ s.
Let m = max{σ(i)}. Then M1 ⊂ Ψm, which is impossible since βm+1 − n 6∈ Ψm.
The proof that M∞ is not a finitely generated Γ0 module is similar. �

Proposition 8.4. Suppose that K is an algebraically closed field, and K(x, y, u, v) is a
rational function field in 4 variables.

Suppose that Γ is a totally ordered Abelian group and α ∈ Γ is such that 1 and α are
rationally independent and 1 < α.

Then there exists a rank 2 valuation ν = ν1 ◦ ν of K(x, y, u, v) with value group

(Z + αZ) ×

(

∞
⋃

i=0

1

2i
Z

)

in the Lex order, which dominates the regular local ring

R = K[x, y, u, v](x,y,u,v)

such that

(1) Rν1
/mν1

∼= R/P ∼= K[x, y](x,y) where P is the center of ν1 on R.
(2) The associated graded module

grF(n)Pn/P+
n

is not a finitely generated grνR/P module for n ∈ N.
(3) The associated graded module

grF(nα)Pnα/P+
nα

is a finitely generated grνR/P module for n ∈ N.

Proof. We use the notation developed earlier in this section. Define a valuation ν1 on the
rational function field L(u, v) in 2 variables by the embedding of L algebras

L(u, v) → L((tΓ))

induced by

u 7→ t, v 7→ v(t) =
y

x
t + tα.

Let ν = ν1◦ν be the composite valuation on K(x, y, u, v). ν dominates R = K[x, y, u, v](x,y,u,v).
The center of ν1 on R is the prime ideal P = (u, v). We have L = (R/P )P = Rν1

/mν1

and K = Rν/mν .
For i ∈ N,

Fi = {ν(f) | f ∈ R and ν1(f) = i}.
17



Suppose that f ∈ K[x, y, u, v]. Expand

f =
∑

aiju
ivj

with aij ∈ K[x, y]. We have

f(t, v(t)) = a00 + (a10 + a01
y

x
)t + higher order terms in t.

We see that ν1(f) = 0 if and only if a00 6= 0. Thus F0
∼= M0 as semigroups.

ν1(f) = 1 if and only if a00 = 0 and a10 + a01
y
x
6= 0. Thus F1

∼= M1 as F0 modules, so
that F1 is not finitely generated as an F0 module.

To see that Fn
∼= Mn as an F0 module for all n ≥ 0, we expand

f(t, v(t)) =
∑∞

k=0

∑

i+j=k aijt
iv(t)j

=
∑∞

k=0

∑k
j=0 ϕjkt

(k−j)+jα

where

ϕjk =
k
∑

i=j

ak−i,i

(

i

j

)

(y

x

)i−j

.

We have (k1 − j1) + j1α = (k2 − j2) + j2α implies j1 = j2 and k1 = k2. Thus

ν1(f) = min{(k − j) + jα | ϕjk 6= 0}.

We further have for fixed k, j1 < j2 implies

(10) (k − j1) + j1α < (k − j2) + j2α.

Suppose that ν1(f) = n ∈ N. Then

f(t, v(t)) = ϕ0ntn + higher order terms in t

with

ϕ0n = a0n + an−1,1
y

x
+ · · · + a0n

(y

x

)n

6= 0.

Further, by (10), we see that for n ∈ N and an0, an−1,1, . . . , a0n ∈ K[x, y],

ν1(an0u
n + an−1,1u

n−1v + · · · + a0nvn) = n

if and only if

an0 + an−1,1
y

x
+ · · · + a0n

(y

x

)n

6= 0.

Thus for n ∈ N,
Fn

∼= {ν(h) | h ∈ Wn and h 6= 0}

which is isomorphic to Mn as an M0 module. Since Mn is not finitely generated as an M0

module, we obtain (2) of the conclusions of the Proposition from Proposition 1.1.
Let us now consider the polynomial

Φjk(W ) =
k
∑

i=j

ak−i,i

(

i

j

)

W i−j,

and remark that we have the equalities

∂jΦ0k(W )

∂W j
= j!Φjk(W ).

In order for the series f(t, v(t)) to be of order nα, all the ϕjk must be zero for (k−j)+jα <
nα, while ϕnn = a0n must be non zero. In particular, ϕjn must be zero for j < n.
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In view of the equalities we have just seen, the n conditions ϕjn = 0, 0 ≤ j ≤ n − 1
are equivalent to the fact that y

x
is a root of order n of the polynomial Φ0n(W ), so that

Φ0n(W ) = a0n(W − y
x
)n. From this it follows that the an−j,j for j < n are determined and

the only condition on a0n is that xn divides a0n. The elements of Fnα coincide with the
values of ν on K[x, y] translated by n, so that for each n ∈ N we have Fnα = n+F0

∼= F0.
Thus (3) of the conclusions of the Proposition follows from Proposition 1.1. �
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