
A construction for a class of valuations of the field

k(X1, . . . , Xd, Y ) with large value group

Mohammad Moghaddam

Department of Mathematics, University of Tehran,

P.O. Box 14155-6455, Tehran, Iran

and
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Abstract

Given any algebraically closed field k of characteristic zero and any group G, totally ordered by
a suitably chosen ordering, of rational rank less than or equal to d, we construct a valuation of the
field k(X1, . . . , Xd, Y ) with value group G. In the case of rational rank equal to d this valuation
is induced by a transcendental hypersurface in affine (d + 1)−space. It is naturally approximated
by a sequence of quasi-ordinary hypersurfaces. The value semigroup ν(k[X, Y ] \ 0) is the union
of the semigroups associated to these quasi-ordinary hypersurfaces.

1 Introduction

Let k be an algebraically closed field of characteristic zero and d an integer. For each commutative
group G of rational rank less than (or equal to) d, we construct a zero-dimensional valuation of
the field k(X1, . . . , Xd, Y ) whose value group is G. Note that in the case of valuations of the field
k(X1, . . . , Xd, Y ) of rational rank equal to d + 1 we are in the equality case of Abhyankar’s inequality
([Bou64]) and the value group has to be Zd+1.

The problem of the existence of the valuations with a given value group and residual extension
has been solved by ”arithmetical” methods, see [Kuh04]. However, our approach is different and more
geometric. For example, with this approach question of representing the valuation rings corresponding
to these valuations as limits of blowing up algebras of the ring k[X1, . . . , Xd, Y ] seems to be more
accessible.

The construction of the valuation is based on generalizing the notion of quasi-ordinary hyper-
surface singularities ([Lip65], [Lip83]); this is done in Definition 2.1. This generalization gives us a

transcendental element ζ(X) ∈ k[[XQd
<0 ]], X = (X1, . . . , Xd). As a set k[[XQd

<0 ]] is the set of formal
power series in X1, . . . , Xd with rational exponents, in which the set of exponents is well-ordered with
respect to a total monomial ordering 4 which refines the partial ordering ≤ on Qd (A good ordering,
see Definition 3.4). This is in fact a ring ( see [Bou64], Chap. 6, Section 3, n◦ 4, Exemple 6). By a
process of truncation of this element ζ(X), we get the developments ζ(i)(X). These ζ(i)’s parametrize
quasi-ordinary hypersurfaces f (i)’s in Ad+1(k) (Definition 2.3). Later, in Section 6, following the ideas
of Teissier in [Tei03] and [Tei86], we give a way to compute the f (i)’s.

One of the difficulties to construct a valuation with value group in Qd is that there is no natural
ordering on Qd. In Section 3, we introduce and study the properties of the good orderings on Qd.

In the next section using the valuation ring k[[XQd
<0 ]] we show that there exists an injective

morphism Θζ : k[X, Y ] → C[[XQd
<0 ]] (see Definition 4.2). With the help of this injection we get the

desired valuation ν of the field k(X, Y ). We study the properties of this valuation and the semigroup
Γζ attached to it. We show that there is a close relation between the semigroup which [GP03] attaches
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to a quasi-ordinary hypersurface and the semigroup of the valuation Γζ . More precisely, if we denote
by Γi the semigroups which are attached to the truncated quasi-ordinary hypersurfaces f (i)’s, then

we have Γζ = limi Γi of an inductive system Γi

×ni+1
−→ Γi+1 for specific integers ni. Moreover, we show

that given any subgroup of rational rank d there is a transcendental element ζ such that the value
group of the valuation attached to this element is G.

In section 5, we show that the f (i)’s constitute a sequence of key polynomials in the sense of
MacLane ([Mac36]). In order to prove this, we give another way of constructing the valuation ν
(Proposition 5.6). This new construction is carried out by a direct introduction of a sequence of
valuations νi’s which approximates the valuation ν. Moreover, the value group of νi is equal to the
group generated by Γi.

In the final section we study an embedding of the spaces SpecR, where R = k[[X ]][ζ(X)] and
Spec(C[XΓζ ]) in an infinite dimensional regular space Speck[[X ]][U ], where U = (U1, U2, . . .). We
study the ideals defining these embeddings and the relation between them. Moreover, we show that
the result of truncating the equations of the embedding SpecR →֒ Speck[[X ]][U ] is a set of equations
which gives an embedding of the quasi-ordinary hypersurfaces f (i) = 0 in Speck[[X ]][U ]. Using the
constructions of this section and some ideas of [Tei6] and [Tei05], we are able to construct a rational
valuation with value group G, for any totally ordered group G of rational rank less than d.

Acknowledgments: This work has been carried out during my Ph.D. work as a cotutelle student at
Institut Mathematiques de Jussieu, in coordination with Universite Paris Sud (Orsay) and University
of Tehran. I am grateful to my advisor Bernard Teissier for suggesting the problem and many useful
conversations, to Rahim Zaare-Nahandi and Laurent Clozel for their cooperation on this program .
The author is also thankful to the officials of the three universities, as well as the Institute for Studies
in Physics and Mathematics (IPM, Tehran) and the Cultural Section of the French Embassy in Tehran
and Crous de Versailles who were all involved in this issue.

2 The transcendental hypersurface and its approximations

Generalizing the classical definition of the quasi-ordinary hypersurface singularities (see [Lip88],
[Lip65] ) we define a transcendental quasi-ordinary hypersurface singularity in the following man-
ner:

Definition 2.1 Fix an element ζ(X) =
∑

cλXλ =
∑∞

i=1 pi, pi ∈ k[X
1

m(i) ], where X = (X1, . . . , Xd)

and X
1
m = (X

1
m

1 , . . . , X
1
m

d ). The m(i)’s are integers which tend to infinity; they will be described more
precisely in Definition 2.4 . We impose the following conditions:

• All the exponents of pi, i.e., λ’s of the monomials of pi, are ordered with respect to the partial
product order ≤ on Qd, with minimum equal to λi.

• The partial order on Qd induces a total order on the set {λi}∞i=1, i.e., λ1 < λ2 < . . . .

• We define inductively a sequence of subgroups of Qd by Q0 = Zd, Qj = Zd +
∑

λi<λj+1
Zλi, for

j ∈ N. We impose the condition λj /∈ Qj−1.

• If cλXλ is a term of pj then λ ∈ Qj.

The above definition is a generalization of [Tei03], subsection 4.4, where a ”natural valuation”
attached to a ”transcendental plane curve”, studied through a series of examples from different per-
spectives: the sequence of point blow ups, the semigroup, the graded valuation ring, . . . . Moreover,
the relations between these approaches studied. In this text we follow the same approach.

Note that if we define Λ = {λ : cλ 6= 0} then λ ∈ pi

⋂
Λ iff λi ≤ λ � λi+1. We call λi’s

the characteristic exponents of the transcendental hypersurface defined by Y = ζ(X), see the next
proposition. This terminology is justified in Definition 2.3, in which we define for any i ∈ N, an
irreducible quasi-ordinary hypersurface (see [GP03] or [Lip88] ) which is parametrized by X = X, Y =
ζ(i)(X) where ζ(i)(X) is a fractional power series with characteristic exponents λ1, . . . , λi.

For any good ordering 4 we have the inclusions:

k[[X ]] ⊂ k̃[[X ]] = lim
N→∞

k[[X
1
N ]] ⊂ k[[XQ

d
<0 ]].
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Proposition 2.2 The element ζ(X) is transcendental over the ring k[X, Y ]. In other words, if f ∈
k[X, Y ] then f(X, ζ(X)) 6= 0.

Proof. Assume the contrary and let ζ(X) be the root of an irreducible polynomial f ∈ k[X, Y ].

Consider the algebraically closed field k((XQd
<0)), (see [Bou64], Chap. 6, Section 3, n◦ 4, Exemple

6). We have ζ(X) ∈ k((XQd
<0)). In the sequence λr of the characteristic exponents the denominators

tend to infinity. Therefore, there is an index i such that the denominators of λr,i tend to infinity with

r. We can assume that this index is d. Consider the algebraically closed field k′ = k((X
′Q

d−1
<0 )), where

X
′

= X1, . . . , Xd−1. We can regard f(X, Y ) as a polynomial in the ring k′[Xd, Y ] and ζ(X) as an

element of the ring k′[[X
Q<0

d ]]. By the Newton-Puiseux theorem all the roots of f(X, Y ) are in the

ring ˜k′[[Xd]]. It implies that ζ(X) ∈ ˜k′[[Xd]] which is absurd. �

A variant of this proof gives us the following statement: Given any f ∈ k[X, Y ], there does not

exist a root η(X) ∈ k[[XQd
<0 ]] of f, such that the denominators of the terms of η tend to infinity (By

denominator of a term cβXβ of η we mean: the least natural number n such that n.β ∈ Nd.).

We introduce a sequence of quasi-ordinary hypersurfaces f (i), which approximates the original
element ζ(X).

Definition 2.3 Set f (0)(X, Y ) = Y, and for any i ∈ N define an irreducible quasi-ordinary hypersur-
face f (i)(X, Y ) ∈ k[[X ]][Y ] (for the definition of the quasi-ordinary singularities see [Lip83] and for
the irreducibility see [GP03]) by the following parametrization:

Y = ζ(i)(X) =

i∑

j=1

pj + p(i),

where pi+p(i)

Xλi
∈ k[[XQd

<0 ]] and the exponents of the monomials of p(i) are in Qi, and the first exponent

of p(i) is greater than λi+1.

Definition 2.4 We define for 1 ≤ j ≤ i ∈ N : nj = [Qj : Qj−1] and m(0) = 1, m(i) = n1 . . . ni. It can
be proved that m(i) = degY (f (i)) (see [GP03] or [Lip88]). Moreover, we define the following vectors
(originally defined and studied in [GP00]):

γ1 = λ1, γj = nj−1γj−1 + λj − λj−1, j > 1.

By R(f), for a quasi-ordinary f, we mean the set of the roots of f in k̃[[X ]]. Following [PP01], we
define the notion of the intersection index of two ”comparable” quasi-ordinary hypersurfaces.

Definition 2.5 For any two quasi-ordinary hypersurfaces f, g, we say that they are comparable if for
any η ∈ R(f) and µ ∈ R(g) we have η − µ = Xα.unit, where α ∈ Qd

≥0. The intersection index of two
such hypersurfaces is defined as follows:

(f, g) = υX(ResY (f, g)) ∈ Zd.

For any two arbitrary root η ∈ R(f) and ξ ∈ R(g) of two irreducible comparable quasi-ordinary
hypersurfaces the coincidence order of η and ξ is by definition the vector κ(η, ξ) = νX(η − ξ) ∈ Qd

≥0.
The exponent of contact of such f and g is defined as follows:

κ(f, g) = max{κ(η, ξ), η ∈ R(f), ξ ∈ R(g)}.

Proposition 2.6 [PP01] Let g be an irreducible unitary quasi-ordinary hypersurface which is compa-
rable with f (i). We have:

(f (i), g)

deg(f (i)).deg(g)
=

γiκ

n1 . . . niκ−1
+

κ − λiκ

n1 . . . niκ

.

Here κ is the exponent of contact of f (i) and g. Note that κ is an exponent in the parametrization of
f (i), and iκ is the index of the greatest characteristic exponent λj of f (i) such that λj ≤ κ.
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We recall the notion of the semi-roots in our context:

Definition 2.7 We say that g ∈ k[[X ]][Y ] is a jth−semi-root of f (i), 0 ≤ j ≤ i, if the following two
conditions are satisfied:
a) g(0, Y ) = Y n1...nj .

b) g(X, ζ(i)(X)) = Xγj+1ε
(i)
j , where ε

(i)
j is a unit in k̃[[X ]].

We have the following lemma (see also [GP00]):

Lemma 2.8 For any j ≤ i ∈ N, the quasi-ordinary singularity f (j) is a jth-semi-root of f (i).

Proof. In the case j = 0, by definition we have f (0)(X, Y ) = Y. This gives f (0)(X, ζ(i)(X)) =

ζ(i)(X) = Xγ1.unit. For j > 0, we use Proposition 2.6. Here iκ = j+1, and we have (f(i),f(j))
deg(f(i)).deg(f(j))

=
γj+1

n1...nj
. We notice that deg(f (j)) = n1 . . . nj, which shows that (f (i), f (j)) = m(i)γj+1. �

We need another result (see [GP03] and [PP01]) which allows a (f (0), . . . , f (i))−adic representation
of any element of k[X, Y ].

Lemma 2.9 Given g ∈ C[[X ]][Y ], there exists i0 such that for i ≥ i0, g can be uniquely written as
a finite sum g =

∑
cl0...li(f

(0))l0 . . . (f (i))li , with cl0...li ∈ C[[X ]], the (i + 1)−tuples (l0 . . . li) ∈ Ni+1

verifying 0 ≤ lr ≤ nr+1 − 1, for all r ∈ {0, . . . , i}.

Proof. ([PP04]) Make the Euclidean division of g by f (i), by induction we get the f (i) − adic
representation of g which is of the form g =

∑
cli(f

(i))li . Then iterate this process on the coeffi-
cients, making at each step the f (j−1) − adic expansions of the coefficients clj ,...,li . This gives us the
claimed adic representation. The uniqueness comes from the fact that the Y −degrees of the terms
cl0...li(f

(0))l0 . . . (f (i))li are pairwise distinct (see Lemma 7.2 of [PP04]). The only thing which remains
to prove is the inequality 0 ≤ li ≤ ni+1−1. This is because if i is chosen so large that m(i) > degY (g),
then f (i) (which is of degree m(i)) can not appear in the expansion of g, i.e., li = 0. So, we choose i0
to be the least i such that m(i) > degY (g). �

The preceding expansion is called the (f (0), . . . , f (i))−adic, expansion of g. The finite set {(l0 . . . li),
cl0...li 6= 0} is called the (f (0), . . . , f (i)) − adic support of g. We set (f[i]) = (f (0), . . . , f (i)) so we can

speak of the (f[i]) − adic expansion of an element. We write cℓ(f[i])
ℓ for cl0...li(f

(0))l0 . . . (f (i))li . For
a fixed set of functions {g1, . . . , gn} the next lemma says that for sufficiently large values of i and
arbitrary j ∈ N the (f[i])− adic expansion of each gk is the same as its (f[i+j])− adic expansion, so in
this case for sufficiently large values of i we can speak of (f[∞])− adic expansion of gk’s. For example

note that the (f[∞]) − adic expansion of f (i) is itself.

Lemma 2.10 With the notations of the last lemma, for sufficiently large values of i and any j ∈ N
the (f[i]) − adic expansion of g and (f[i+j]) − adic expansion of g coincide.

Proof. For the i0 chosen in the proof of the last lemma, we have for any j ≥ 0, li0+j = 0. �

Definition 2.11 For any element η ∈ k̃[[X ]], we define its Newton polyhedron NX(η) to be the
convex hull in Rd of the set SuppX(η) + Rd

≥0, where SuppX(η) denotes the support of η as a series in
the variables X.

The expansion of Lemma 2.10 allows us to compute in an effective way the Newton polyhedron of
g(ζ), where ζ is a root of f (i) = 0 (We write R(f) for the set of roots of f = 0). This computation is
explained by the following two lemmas of [PP01]:

Lemma 2.12 If g =
∑

cℓ(f[i])
ℓ, is the (f[i])−adic expansion of g ∈ k[[X ]][Y ], then for every ζ ∈ R(f),

the sets of vertices of the Newton polyhedra NX(cℓ(f[i])
ℓ), for varying ℓ, are pairwise disjoint.

Lemma 2.13 If g1, . . . , gi ∈ k̃[[X ]] and the sets of vertices of Newton polyhedra NX(g1), . . . ,NX(gi)
are pairwise disjoint, then NX(g1 + . . .+ gi) is the convex hull of the union of NX(g1)

⋃
. . .

⋃
NX(gi).

In particular, each vertex of NX(g1 + . . .+ gi) is a vertex of one of the polyhedra NX(g1), . . . ,NX(gi).
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3 The ordering and the semigroup

Definition 3.1 We associate to ζ ∈ k[[XQd
≥0 ]], satisfying the conditions of the Definition 2.1, the

sequence of the semigroups:

Γi = Zd
≥0 + γ1.Z≥0 + . . . + γi.Z≥0, for i ∈ N.

And the semigroup:
Γζ = Zd

≥0 + γ1.Z≥0 + γ2.Z≥0 + . . . .

Later, when we attach to the element ζ the valuation ν we will see that:

ν(k[X, Y ] \ 0) = Γζ .

We need the following two lemmas from [GP00]:

Lemma 3.2 1) The order of the image of γj in the group
Qj

Qj−1
(see Definition 2.1) is equal to nj

for j ∈ N.
2) We have γj > nj−1γj−1, for j ≥ 2.
3)The vector njγj belongs to the semigroup Γj−1 (j ∈ N). Moreover, we have a unique relation:

njγj = α(j) + l
(j)
1 γ1 + . . . + l

(j)
j−1γj−1

such that 0 ≤ l
(j)
k ≤ nk − 1, and α(j) ∈ Zd

≥0, for j ∈ N.

Lemma 3.3 For any j ∈ N the (f[∞]) − adic expansion of (f (j−1))nj is of the following form:

(f (j−1))nj = cjf
(j) +

∑

c
(j)
l0,...,lj−1

(f (0))l0(f (1))l1 . . . (f (j−1))lj−1 ,

where cj ∈ k∗. We have 0 ≤ lr ≤ nr+1 − 1, for r = 0, . . . , j − 1. The coefficient c
(j)

l
(j)
1 ,...,l

(j)
j−1,0

appears,

and it is of the form Xα(j)

.unit, where the integers l
(j)
1 , . . . , l

(j)
j−1 and the exponent α(j) are given in

Lemma 3.2. Moreover, if Xα′

appears on the coefficient c
(j)
l0,...,lj−1

then:

njγj ≤ α′ + l0γ1 + . . . + lj−1γj ,

and equality holds iff (l0, . . . , lj−1) = (l
(j)
1 , . . . , l

(j)
j−1, 0).

In order to define the valuation we need to fix a total well-ordering on Zd which extends to a total
ordering on Γζ . This ordering should verify certain conditions.

Definition 3.4 We say a total ordering 4 on Qd is a good ordering if:

• It is a monomial ordering on Qd, i.e., for any γ, γ′, γ” ∈ Qd from γ ≺ γ′ one has γ+γ” ≺ γ′+γ”.

• It refines the partial ordering ≤ on Qd, i.e., if u, v ∈ Qd and u < v then u ≺ v

The following proposition shows that every suitably chosen ordering on Zd can be expanded to a
good ordering on Qd.

Proposition 3.5 Every monomial total ordering on Zd which refines the partial ordering ≤ on Zd

can be expanded to a good ordering on Qd.

Proof. Let 4 be such an ordering. Expand this ordering on Qd as follows: For γ, γ′ ∈ Qd : γ ≺ γ′

iff there exists n ∈ N such that nγ, nγ′ ∈ Zd and nγ ≺ nγ′. The next lemma shows that we have
the following equivalent definition: We have γ ≺ γ′ iff for any n ∈ N such that nγ, nγ′ ∈ Zd then
nγ ≺ nγ′. It is clear that 4 is a total ordering on Qd. We show that it is a monomial ordering.
Suppose this is not the case. Then there is γ, γ′, γ′′ ∈ Qd such that γ ≺ γ′ but γ + γ′′ ⊀ γ′ + γ′′

then γ + γ′′ ≻ γ′ + γ′′. By the next lemma and the definition, we can find an n ∈ N such that
nγ, nγ′, nγ′′ ∈ Zd and nγ + nγ′′ ≻ nγ′ + nγ′′. This gives γ ≻ γ′, a contradiction.
This ordering refines the partial ordering on Qd. Let γ < γ′ and take a natural number n such that
nγ, nγ′ ∈ Zd

≥0. By definition of the good ordering nγ ≺ nγ′. By the discussion in the first step of the
proof we have γ ≺ γ′. �
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Lemma 3.6 Let 4 be a monomial total ordering on Zd which refines the partial ordering ≤ on Zd.
For every a, b ∈ Zd, if a ≺ b then for any p ∈ Q≥0 such that pa, pb ∈ Zd we have pa ≺ pb.

Proof. By the monomial ordering property for every p ∈ N we have pa ≺ pb. It suffices to prove the
lemma for p−1, where p ∈ N. If p−1a ≻ p−1b then p.p−1a ≻ p.p−1b so a ≻ b, a contradiction. �

Remark 3.7 The ordering introduced in Proposition 3.5, is no longer a well-ordering on Qd. For
example take the set A = {ui = (1, . . . , 1, 1

i
)}∞i=1. The property that 4 refines the partial ordering ≤

shows that the set A does not have a smallest element.

Here is a concrete example of a good ordering.

Example 3.8 Consider the ≤d.lex. ordering on Zd which is defined as follows:
For any a, b ∈ Zd we have a <d.lex. b iff (deg(a) =

∑d

i=1 ai < deg(b) or (deg(a) = deg(b) and
a <lex. b)).
This ordering verifies all the conditions of Definition 3.4. It expands to a good ordering, denoted by
≤d.lex. on Qd.

One way to introduce a monomial ordering 4 on a group G is to introduce a subset of the group
as the subset of the positive elements, G≻0 = {g ∈ G : 0 ≺ g}. For example we have

G>d.lex.0 = {u ∈ Q2 : u1 + u2 > 0}
⋃

{u ∈ Q2 : u1 > 0, u1 + u2 = 0}.

Lemma 3.9 Consider the ordering 4 on Qd. We have:
1) It refines the partial ordering ≤ iff Qd

>0 ⊂ Qd
≻0.

2) It is a total ordering iff for any u ∈ Qd : {u,−u}
⋂

Qd
≻0 6= ∅.

3) Its restriction on Zd
≥0 is a well-ordering iff this restriction refines the partial ordering ≤ on Zd

≥0.

proof. The items 1) and 2) are easy to prove. For a proof of 3) we refer to [GP02]. �

As a corollary one can give another characterization of the good orderings.

Corollary 3.10 The ordering 4 on Qd is a good ordering if Qd
>0 ⊂ Qd

≻0 and for any u ∈ Qd we have
{u,−u}

⋂
Qd

≻0 6= ∅.

As another corollary we can give another description of the construction given in Proposition 3.5.

Corollary 3.11 Given a monomial well-ordering 4 on Zd. It has a natural expansion to a good
ordering on Qd, which we denote it with the same notation. We define this expansion with the set of
its positive elements: Consider the positive cone in Rd based on the set of positive elements of 4 in
Zd. The set of positive elements will be the intersection of this cone with Qd. Moreover, this expansion
coincides with the expansion defined in Proposition 3.5.

Definition 3.12 For any two orderings 4 and 4′ on a group G, we define the set

G+(4, 4′) = (G≻0 − G≻′0)
⋃

(G≻′0 − G≻0).

We say the sequence {4k}∞k=1 of orderings on the group G converges to the ordering 4 iff

G+(41, 4) ⊃ G+(42, 4) ⊃ . . . and

∞⋂

k=1

G+(4k, 4) = ∅.

In this case we write limk→∞ 4k=4 .

Example 3.13 For any ω ∈ R>0 define a good ordering 4ω on Q2 by

Q2
≻ω0 = {u ∈ Q2 : u1 + ω.u2 > 0}

⋃

{u ∈ Q2 : u1 + ω.u2 = 0, u1 > 0}.

One can easily prove that this ordering verifies the conditions of the last corollary and it is a good
ordering.
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Example 3.14 Take a sequence {ωr}∞r=1 of positive irrational numbers that are increasing and con-
vergent to −1. According to the last example, construct the sequence of orderings {4ωr

}∞r=1. This is
a sequence of good orderings. Then it is easily seen that

lim
r→∞

4ωr
=≤d.lex. .

It is interesting to note that Q2 with the ordering 4ωr
does not have non-trivial isolated subgroups.

In contrary if G is such an isolated subgroup then take 0 ≺ωr
g ∈ G. The group G should contain all

the rational points in the section between the line joining the origin to the point g, in the plane, and
the line u1 +ω.u2 = 0. The group generated by this last set is Q2. In Example 4.6 we see that Q2 with
ordering ≤d.lex. has a nontrivial isolated subgroup. As a result we have constructed a sequence of
orderings on Q2 with rank(Q2

4ωr
) = 1 which converges to the ordering ≤d.lex. with rank(Q2

≤d.lex.
) = 2.

Alternatively, in the above example one could take the ωr’s to be rational numbers and define the
same constructions and the same limit. Everything is the same as the argument given in Example 4.6
except that rank(Q2

4ωr
) = 2.

4 The valuation and the examples

Given any good ordering 4, we define the ring k[[XQd
<0 ]], which is the ring of power series z(X) ∈

k[[XQd
<0 ]], in which the set of exponents are well-ordered with respect to 4 . This is in fact a valuation

ring (see [Bou64], Chap. 6, Section 3, n◦ 4, Exemple 6). We denote this valuation by ν.

Lemma 4.1 There is an injective morphism of the rings

Θζ : k[X, Y ] →֒ k[[XQd
<0 ]]

X 7→ X
Y 7→ ζ(X).

Proof. This is clearly a morphism, the injectivity is a result of Proposition 2.2. �

Now, we define the valuation induced by the transcendental element ζ(X) on the ring k[X, Y ],
with respect to a good ordering, 4, fixed on Qd :

Definition 4.2 We define a mapping ν : k[X, Y ] \ {0} −→ Qd
≥0 by:

ν(f) = ν(Θζ(f)).

This mapping is a valuation on the ring k[X, Y ].

The next proposition shows that this valuation is approximated by the intersection indices of the
quasi-ordinary hypersurfaces f (i).

Proposition 4.3 For any unitary irreducible quasi-ordinary g ∈ k[[X ]][Y ], which is comparable with
f (i)’s, we have:

ν(g) = lim
i→∞

(f (i), g)

degY (f (i))
.

Proof. We notice that if i is chosen so large that κ < λi (with the notations of the Proposition 2.6)
then for any j > i we have:

(f (i), g)

degY (g).degY (f (i))
=

(f (j), g)

degY (g).degY (f (j))
.

As a result, the limit is well defined. For the equality, it suffices to note that:

N (g(X, ζ(i)(X))) = N (

m(i)
∏

r=1

g(ζ(i)
r )) = degY (f (i)).N (g(ζ(i))) = N (ResY (f (i), g)),
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where ζ
(i)
r ’s are all the m(i) roots of f (i) = 0. �

The following proposition gives an effective way to compute the value ν(g), for an arbitrary g ∈
k[X, Y ]. It also gives essentially another definition of this valuation. We extend the definition of ν to
the ring k[[X ]][Y ] by the same formula.

Proposition 4.4 We have:
1) For any g ∈ k[X, Y ], with the (f[∞])−adic expansion g =

∑
cℓ(f[∞])

ℓ, the values of the monomials

of the (f[∞]) − adic expansion of g are distinct elements of Qd
≥0. Therefore, we have:

ν(g) = minℓ{ν(cℓ(f[∞])
ℓ)}.

2) We have:
ν(f (i)) = γi+1.

3) We have:

ν((f (j−1))nj ) = α(j) + l
(j)
1 γ1 + . . . + l

(j)
j−1γj−1,

where the l
(j)
k ’s and α(j) are defined in the Lemma 3.2. Moreover, there is exactly one term in

the (f[∞]) − adic expansion of (f (j−1))nj with this value, if ℓ∗ is the index of this term then ℓ∗ =

(l
(j)
1 , . . . , l

(j)
j−1, 0).

proof. The first claim is a direct consequence of Lemma 2.12 and the properties of the good or-
derings. The second one is a consequence of Proposition 4.3. The third one is a consequence of
the last step and Lemma 3.3. Alternatively, we can prove the third result directly and as a conse-
quence, yield another proof of Lemma 3.3; We note that by Lemma 2.8, we have N ((f (j−1))nj ) =

α(j) + l
(j)
1 γ1 + . . .+ l

(j)
j−1γj−1 + Rd

≥0, which gives the first claim of 3). By 1) there is a unique term, say

with index ℓ∗, in the (f[∞])− adic expansion of (f (j−1))nj such that ν((f (j−1))nj ) = ν(cℓ∗(f[∞])
ℓ∗) =

α(j) + l
(j)
1 γ1 + . . . + l

(j)
j−1γj−1. Using the uniqueness of the representation of the elements of Γj−1, one

can show that ℓ∗ is of the claimed form. �

We note that the monomial which appears in the first case of the above proposition is not necessarily
a vertex of the Newton polyhedron of g(ζ).

Corollary 4.5 The semigroup ν(k[X, Y ] \ 0) of the valuation is equal to Γζ . The value group is equal
to the subgroup of Qd generated by Γζ . We denote this value group by Φζ .

The next example shows that for suitably chosen ζ the value group will be Qd. In order to simplify
the notations, the example is stated in the case d = 2.

Example 4.6 In the set of natural numbers start from s1 = 2 and pick up all the numbers that are
power of a prime. Denote by {si}∞i=1 the resulting sequence. The first elements are:

s1 = 2, s2 = 3, s3 = 4, s4 = 5, s5 = 7, s6 = 8, . . . .

We define:

γ1 = (
1

s1
, 1), γ2 = (s2, s2 +

1

s1
),

and for i ≥ 1 :

{

γ2i+1 = (s2 . . . s2i+1 + 1
si+1

, s2 . . . s2i+1)

γ2i+2 = (s2 . . . s2i+2, s2 . . . s2i+2 + 1
si+1

).

One then defines the exponents λi’s using the inductive formula of Definition 2.4. These λi’s satisfy
the conditions of Definition 2.1: By the construction and the computation of ni’s, which is given in the
following, we have γj > nj−1γj−1. This last inequality gives us λj > λj−1. The condition λj /∈ Qj−1

is a consequence of the fact that the components of the elements of Qj−1 have, as denominators, only
s1, . . . , sj−1. When si is a power of the prime p, we have ni = p. As a result m(i) = Πqq

αq , where
q runs through all the primes less than or equal to si and αq is by definition the greatest power of
q such that qαq ≤ si. By Definition 4.2, the series ζ(X) =

∑
Xλi defines a valuation of k[X, Y ].
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We see, by induction, that ( 1
si

, 1), (1, 1
si

) are in the value group Φζ of this valuation. Therefore, by

definition of si’s we have Φζ = Q2. If we give Q2 the order ≤d.lex., this valuation is of rank two:
Define G = {(a,−a) : a ∈ Q}, this is a subgroup of Q2. It is an isolated subgroup (see [Bou64] for the
definition of the isolated subgroups and its relation to the rank of a valuation), since if we take an
arbitrary element 0 <d.lex. (a,−a) ∈ G then for any u = (u1, u2) ∈ Q2 from 0 <d.lex. u <d.lex. (a,−a)
we deduce deg(u) = 0 and then u ∈ G.

Remark 4.7 Consider the sequence of orderings introduced in Example 3.14. If we denote the
semigroups that are attached to the valuations associated by the above example to each of these
orderings by Γζ,4ωr

then as the choice of good ordering does not have any effect on the resulting
semigroup, we have Γζ,4ωr

= Γζ,≤d.lex.
. Therefore, we have a sequence of orderings which converge to

another one. All of these orderings impose the same semigroup but the dimension of the valuation
ring for the elements of the sequence is one and the dimension of the valuation ring to which they
converge is two.

Example 4.8 We generalize an example of Zariski in [Zar39] and Example 4.22 of [Tei03]. Take
c1, . . . , cd ∈ N

⋃
{∞} such that at least one of them is ∞ and take d sequence of natural numbers

{s
(q)
j }

cq

j=1, where s
(q)
j > 1 (for q = 1, . . . , d), and complete these sequences by setting s

(q)
cq+j = 1, for

j = 0, . . . . Define the following vectors:

γ1 = γ0 +
1

s
(1)
1

e1,

Now, for i ∈ N set i = dj + l, where j ∈ N
⋃
{0} and l = 2, . . . , d + 1 then define:

γi = s
(l−1)
j+1 γi−1 +

1

s
(l)
1 . . . s

(l)
j+1

el,

where γ0 is an arbitrary element of Zd
≥0 and the el’s are the transposes of the standard basis of the

vector space Qd. By the definition of the γi’s it is clear that ni = s
(l)
j+1. Drop the γi’s for which ni = 1.

As the above example construct the vectors λi’s. We have γi − ni−1γi−1 = 1

s
(l)
1 ...s

(l)
j+1

el > 0, therefore

λi > λi−1, and λi is not in the group Qi−1 of the Definition 2.4. Consider the element ζ =
∑

Xλi ,
and the valuation attached to it by Definition 4.2. We see, by induction, that 1

s
(l)
1 ...s

(l)
jl

el is in the value

group of this valuation, Φζ . Therefore, we have:

Φζ = {(
p1

s
(1)
1 . . . s

(1)
j1

, . . . ,
pd

s
(d)
1 . . . s

(d)
jd

) : p1, . . . , pd ∈ Z, j1 ≤ c1, . . . , jd ≤ cd}.

If we set sq
j = j, for q = 1, . . . , d and j ∈ N, the resulting value group is Φζ = Qd.

One may ask whether concerning the value groups the last example is the general situation? More
precisely, let ζ be an element which verifies the conditions of Definition 2.1 and consider the valuation
induced by it, as in Definition 4.2, with value group Φζ . Does there exist another element ζ

′

which
comes from the construction of Example 4.8 such that Φζ = Φζ

′ ? The answer is no if d ≥ 2. Here is
an example:

Example 4.9 Let e = e1 + . . . + ed, where ek’s are the standard vectors of the vector space Qd. For
i ∈ N we set:

γ0 = e, γi = 2γi−1 +
1

2i
e,

As in the last two examples construct the vectors λi. One can show that these vectors verify the
conditions of Definition 2.1 (here ni = 2). So, we can consider the element ζ attached to them. We
show there is no element ζ

′

, which comes from a construction as in Example 4.8, such that Φζ = Φζ
′ .

In contrary, let ζ
′

be such an element and consider the first vector of the construction of ζ
′

, in Example
4.8, i.e., γ′

1 = γ′
0+ 1

r
e1, where γ′

0 ∈ Zd
≥0 and r ∈ N\{1}. Then we have γ′

1 ∈ Φζ which implies that there

exists a natural number n and integers a1, . . . , an and a vector b ∈ Zd such that:
∑n

j=1 aj .γj +b = γ′
1.
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The γi’s can be written in the form: γi = hie + li
2i e, hi, li ∈ N, where li is an odd number and li < 2i.

So, the above equation implies: 1
r
e1 − pe ∈ Zd, where p =

∑n
j=1

aj lj
2j ∈ Q. When d > 1 this implies

that p, p − 1
r
∈ Z, which is impossible. In fact, the semigroup Φζ , can be given explicitly as follows:

Φζ = {b +
ai

2i
e : b ∈ Zd, ai ∈ Z, i ∈ N}.

For d = 1, there will be no contradiction. Because in this case e = e1, therefore, 1
r
e1 − pe ∈ Zd

only implies p − 1
r
∈ Z. We can construct the value group which it generates via the construction of

Example 4.8. It suffices to set s
(1)
j = 2, for j ∈ N.

On the other hand, the following proposition shows that the transcendental elements are general
enough to produce any totally ordered group G of rational rank d.

Proposition 4.10 Suppose G is a totally ordered group of rational rank d with an ordering 4 which
refines the partial order ≤ on G for an arbitrary chosen embedding G ⊆ Qd (a good ordering on G).
Then there is an element ζ which verifies the conditions of Definition 2.1, such that either G = Φζ ,
or for some i, G = Qi (Definition 2.1).

Proof. By our assumption on G, we have Zd ⊆ G ⊆ Qd, notice that the inclusion Zd ⊆ Qd is
not necessarily canonical one, however, we do not need the canonicity. Consider a set of generators
of G, say S = {si}u

i=1, such that S ⊂ Qd
≥0, where u ∈ N

⋃
{∞}. Let s′1 be the first element of S

which is not in G0 = Zd and set γ1 = s′1, G1 = G0 + Zγ1, n1 = [G1 : G0]. Assume we have defined
the elements {γj, s

′
j , nj , Gj}i

j=1. Let s′i+1 be the first vector of S \ {s′1, . . . , s
′
i} which is not in Gi

and set γi+1 = niγi + s′i+1, Gi+1 = Gi + Zγi+1, ni+1 = [Gi+1 : Gi]. Either, this process terminates
after finitely many steps, in this case complete the set of γi’s arbitrarily subject to the conditions
of Lemma 3.2, or, it goes on for ever. As in the examples above construct the vectors λi. Using the
inductive formula of Definition 2.4 and γi+1−niγi = s′i+1 we see that: λi = s′1 + . . .+s′i. These vectors
verify the conditions of Definition 2.1. Hence they define an element ζ, which is the desired element. �

5 The sequence of key polynomials

In the last section, the construction of the valuation ν on the field k(X, Y ) was based on a given
valuation, again denoted by ν, on the field k(X). Moreover, this last valuation was induced by fixing

a good ordering 4, defining the valuation ring k[[XQd
<0 ]] and considering the valuation induced on

the field k(X) from the inclusion k(X) ⊂ k((XQd
<0)). In this section we explain the relation between

the construction of the valuation ν and MacLane’s method to expand a given valuation ν on the field
k′ to the field k′(Y ) via a sequence of key polynomials ([Mac36]). In our case k′ will be the field
k(X). In fact, we show that the quasi-ordinary hypersurfaces f (i)’s which attached to the valuation
ν are a sequence of key polynomials in MacLane’s terminology (Theorem 5.5). In order to prove
this result, we give another way of defining the valuations νi’s (Proposition 5.6) which appear in the
MacLane’s construction and prove several properties of these valuations including their equivalence
with MacLane’s construction.

Throughout this section the value group Φω is a sub-group of a totally ordered group G and the
ordering on Φω (as value group) is the same as that induced by the ordering on G. Consider an
arbitrary valuation ω and a subring R of Rω. We set Γ = ω(R \ {0}) ⊂ Φω+

⋃
{0}; It is the semigroup

of (R, ω). For φ ∈ Φω set:
Pφ(R) = {x ∈ R : ω(x) ≥ φ}

P+
φ (R) = {x ∈ R : ω(x) > φ}.

The graded algebra associated to (R, ω) is defined by:

grωR =
⊕

φ∈Γ

Pφ(R)

P+
φ (R)

.

It can be represented (see [Tei03], Proposition 4.1) as a quotient of an infinite dimensional polynomial
ring by a binomial ideal, so it is ”essentially toric” (see [Tei03], Subsection 4.2).
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Definition 5.1 Given a valuation ω on a field k′, and given a ring R ⊂ Rω, for any a, b ∈ R, we
say they are equivalent if their image in grωR is the same. In this case we write a ∼ b. We say b is
equivalence-divisible in ω by a if there exists a c ∈ R such that b ∼ ca.

Definition 5.2 A key polynomial θ(Y ) 6= 0 for a valuation ω of k′[Y ] is one which satisfies the
following conditions:

• Irreducibility. If a product is equivalence-divisible in ω by θ(Y ) then one of the factors is
equivalence-divisible by θ(Y ).

• Minimal degree. Any non-zero polynomial equivalence-divisible in ω by θ(Y ) has a degree in Y
not less than the degree of θ(Y ).

• The leading coefficient of θ(Y ) is 1.

Using such key polynomials MacLane introduces a new valuation based on ω : If ω is a valuation of
k′[Y ] and θ(Y ) is a key polynomial over ω then choose an arbitrary element µ ∈ G such that µ > ω(θ)
and set ω1(θ) = µ. For any element g ∈ k′[Y ] with the θ − adic expansion g =

∑

i giθ
i define:

ω1(g) = mini[ω(gi) + iµ].

Theorem 5.3 ([Mac36]) With the notations above, the mapping ω1 is a valuation on k′[Y ]. The
valuation ω1 is called an augmented valuation and is denoted by

ω1 = [ω, ω1(θ) = µ].

Definition 5.4 ([Mac36]) An ith stage inductive valuation ωi is any valuation of k′[Y ] obtained by
a sequence of valuations ω0 = ω, ω1, . . . , ωi, where for j = 1, . . . , i we have ωj = [ωj−1, ωj = µj ].
Furthermore, for j = 2, . . . , i, the key polynomials θj must satisfy:

• θ1(Y ) = Y

• deg θj(Y ) ≥ deg θj−1(Y ).

• θj(Y ) ≁ θj−1(Y ) in ωj−1.

We can symbolize this valuation thus:

ωi = [ω0, ω1(θ1) = ω1, ω2(θ2) = µ2, . . . , ωi(θi) = µi].

In the special case that for any g ∈ k′[Y ] there exists some i such that for any j ≥ i we have
ωj(g) = ωi(g), one can define the limit augmented valuation:

ω∞(g) = lim
i→∞

ωi(g).

The relation with the construction of the valuation ν of the last section is as follows:

Theorem 5.5 Consider the valuation ν of the last section and suppose the transcendental element
which is attached to this valuation (Definition 2.1) be ζ and the f (i)’s be the quasi-ordinary hyper-
surfaces attached to it. Then the sequence {θi = f (i−1)}∞i=1 is a sequence of key polynomials for the
sequence of inductive valuations

νi = [ν0 = ν, ν1(θ1) = γ1, ν2(θ2) = γ2, . . . , νi(θi) = γi].

Moreover, the limit valuation limi→∞ νi(g) exists and is equal to ν. Here ν0 is a valuation which comes
from fixing a good ordering 4 on the group Qd.

We define the valuations νi’s of Theorem 5.5 in another way which reflects the relation between
different adic representations and also the relation between the valuations νi’s and ν. Using the
properties of this new definition we are able to prove Theorem 5.5.
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Proposition 5.6 Define the mapping νi : k[X, Y ] \ 0 → Qd as follows; For any g ∈ k[X, Y ], with the
(f[i−1]) − adic expansion g =

∑
cℓ(f[i−1])

ℓ, set:

νi(g) = minℓ{ν(cℓ(f[i−1])
ℓ)}.

1) The mapping νi defines a valuation.
2) For any j < i, we have: νi(f

(j)) = ν(f (j)).
3) For any g ∈ k[X, Y ], we have: ν1(g) 4 ν2(g) 4 . . . 4 ν(g). Moreover, for this g there exists an i
such that νi(g) = ν(g). Therefore, for any j ≥ i, we have: νj(g) = ν(g).
4) The value semigroup of νi is: νi(k[X, Y ] \ 0) = Γi.
5) The valuations νi’s which are defined in this proposition are equal to the corresponding valuations
defined in the Theorem 5.5.

Proof. For 1), we show that for any g, h ∈ k[X, Y ] \ 0 we have νi(g + h) < νi(g) + νi(h) and
νi(gh) = νi(g)+νi(h). The first one is a direct consequence of the definition and the uniqueness of the
(f[i−1]) − adic representation. For the second one, we show that the monomials in the (f[i−1]) − adic
representations of g and h, with minimum value, can not cancel each other in the product g.h,
through the process of getting the (f[i−1]) − adic representation of g.h from this product. Let g =
∑

t ut(f
(i−1))ni.t and h =

∑

t u′
t(f

(i−1))ni.t be the unique representations of g and h in grνi
k[[X ][Y ],

which comes from Lemma 5.9. Now, consider the product g.h =
∑

t′′

∑

t,t′

t+t′=t′′

ut.u
′
t′(f

(i−1))ni.t
′′

. We

do the replacements using Lemma 3.3, in each monomials of g.h, for those f (j)’s that their power
is greater than nj, where j < i − 1. By Lemma 5.10, such a replacement cannot change the power
of f (i−1) of the uniquely generated monomial with minimal value in grνi

k[[X ][Y ]. Therefore, these
replacements for the unique minimum t′′0 , which in turn refers to the unique minimums t0 and t′0,
produces a monomial in the (f[i−1]) − adic representation of g.h in grνi

k[[X ]][Y ] with value equal to
νi(g) + νi(h).
For 2), we note that it is a direct consequence of Proposition 4.3.
For 3), it is sufficient to note that we can write the (f[i+1]) − adic representation of an element from
its (f[i])− adic representation, using the equations given in Lemma 3.3. Moreover, in this process the
value of the monomials in the representation can not decrease. As we noted earlier these equations
do not change the minimum value.
The two last claims are clear. �

Remark 5.7 The comparison of the propositions 4.4, 4.3, and 5.6 gives us two interpretations of the
fact that the valuation ν is the limit of valuations νi. The first by associating each νi to a specific
truncation of the series ζ(X), the second by associating it to the adic expansion in terms of the f (i).
The next section unify these interpretations.

Now, we can give a generalization of Proposition 4.10:

Corollary 5.8 Given any totally ordered subgroup G of rational rank d, ordered by a good ordering,
there is an element ζ(X) which verifies the conditions of Definition 2.1 such that for a unique i ∈
N

⋃
{∞} we have G = Φνi

, where νi’s are those of Theorem 5.5.

For the following two lemmas we use the notation of Theorem 5.5. Notice that θ[i] = f[i−1].

Lemma 5.9 Let g =
∑

ℓ cℓ(θ[i])
ℓ be the (θ[i]) − adic representation of g ∈ k[X, Y ]. Set inνi

(g) =
∑

ℓ′ cℓ′(θ[i])
ℓ′ which are the monomials of the (θ[i]) − adic representation of g that have minimum

νi−value. Then the power of θi in these monomials is a power of ni and for any t ∈ N there exists at
most one monomial in inνi

(g) such that the power of θi for it is ni.t. In the other words, we can write

inνi
(g) =

∑

t

utθ
ni.t
i ,

where t ∈ N
⋃
{0}. Here for every t there is a unique ℓ such that ni.t = ℓi and ut.θ

ni.t
i = cℓ.(θ[i])

ℓ.

Proof. It is sufficient to note that if νi(cℓ1(θ[i])
ℓ1) = νi(cℓ2(θ[i])

ℓ2) then ni | ℓ1,i−ℓ2,i and if ℓ1,i = ℓ2,i

then ℓ1 = ℓ2. �
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Lemma 5.10 Let M = cℓ(θ[i])
ℓ be an arbitrary monomial. For an arbitrary j < i with ℓj > nj ,

we replace θ
nj

j by its adic expansion from Lemma 3.3. Let g be the resulting element then we have

inνi
(g) = cℓ′(θ[i])

ℓ′ , such that ℓ′i = ℓi.

Proof. It is sufficient to note that after replacement the monomials which change the power of
θi have a greater νi−value than M. Moreover, there is exactly one unique monomial with minimal
νi−value which is the same as the νi−value of M. �

Proposition 5.11 With the notations of Theorem 5.5, the element θi+1 is irreducible in grνi
k[[X ]][Y ].

Proof. By Lemma 3.3, we have ci+1θi+1 = θni

i − sXα(i)

(θ[i−1])
l(i) , for some s ∈ k in grνi

k[[X ]][Y ].
Suppose that θi+1 = a.b in grνi

k[[X ]][Y ], for some a, b ∈ k[X, Y ]. Then by Lemma 5.9, we have

a =
∑P

t=0 ut.θ
ni.t
i and b =

∑Q

t=0 u′
tθ

ni.t
i in grνi

k[[X ]][Y ]. From νi(a) + νi(b) = νi(θi+1) = niγi we
deduce that P +Q = 1. Hence, without loose of generality, we can assume that P = 1 and Q = 0. But
then a.b = u0u

′
0+u1u

′
0θ

ni

i in grνi
k[[X ]][Y ]. By Lemma 5.10, the element u1u

′
0 is a unit in grνi

k[[X ]][Y ],
therefore, b is a unit in grνi

k[[X ]][Y ]. �

Proposition 5.12 If θi+1 | g in grνi
k[[X ]][Y ] for some g ∈ k[X, Y ] then degY (g) ≥ degY (θi+1).

Proof. We have g = hθi+1 in grνi
k[[X ]][Y ] for some h ∈ k[X, Y ]. By Lemma 5.10, we can write

g =
∑P

t=0 ut.θ
ni.t
i in grνi

k[[X ]][Y ]. Note that degY (g) ≥ degY (uP ) + ni.P.degY (θi). If degY (g) <
degY (θi+1) = ni.degY (θi), we have two possibilities: Either, we have P = 1 and u1 = 1, which is im-
possible because by Lemma 5.10, this implies that h = 1 in grνi

k[[X ]][Y ], or, we have P = 1; this is also

impossible, because by Lemma 5.10, the product hθi+1 is of the form
∑Q

t=0 u′
tθ

ni.t
i , such that Q ≥ 1. �

Proof of Theorem 5.5. By induction, suppose that we have proved νi is a valuation. We prove
that θi+1 is a key polynomial for νi and then by Theorem 5.3 the mapping νi+1 is a valuation. The
irreducibility is a result of Proposition 5.11, the minimal degree property is a result of Proposition
5.12. Moreover, the sequence {θi} satisfies the conditions of Definition 5.4, hence, it is a sequence
of key polynomials. Notice that the condition θi+1 ≁ θi (in νi) is a consequence of the fact that
νi(θi+1) = niνi(θi) 6= νi(θi). �

6 Specialization to the graded valuation ring

Through this section we fix an element ζ(X) as defined in Definition 2.1 and a sequence of elements
ζ(k)(X) attached to it (Definition 2.3 ). Following [Tei03], subsection 4.4 and [GP03], in this section we
give a geometric interpretation of the construction of the valuation ν and the element ζ(X) attached
to it. Take an infinite sequence of indeterminates U = (U1, U2, . . .). Consider the infinite dimensional
space A = Spec(k[[X ]][U ]), this will play the role of a regular ambient space. Note that for every
element h ∈ k[[X ]][U ] there is an i ∈ N such that h ∈ k[[X ]][U1, . . . , Ui]. We embed the variety
S = Spec(R), R = k[[X ]][ζ(X)], in A and give natural equations for this embedding in terms of the
relations given in Lemma 3.3. Moreover, we give an embedding of the quasi-ordinary hypersurfaces
f (r)(X, Y ) = 0, defined in Definition 2.3, in the ambient space A such that the equations of this
embedding come from truncating the equations of the embedding S →֒ A. A specialization of the
variety S to the toric variety Spec(grνR) (see [Tei03], subsection 4.2 ) will be given via a suitable
filtration on the ring k[[X ]][U ]. This filtration is naturally induced from the valuation ν.

The embedding of S in A comes from the following morphism:

Ψ : k[[X ]][U ] → R
X 7→ X

Ui 7→ f (i−1)(X, ζ(X)).

Note that Ψ is surjective, because U1 7→ f (0)(X, ζ(X)) = ζ(X).

The valuation ν on k[[X ]][Y ] (see Definition 4.2) induces a weight on any element of the ring
k[[X ]][U ] : For any monomial XβUν we define ω(XβUσ) = ν(Ψ(XβUσ)) = β +

∑
σiγi = β + γ.σ. For
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any ω ∈ Γζ we define the ideal Iω (res. I+
ω ) of the ring k[[X ]][Y ] which contains all the elements with

weight greater than or equal to (res. strictly greater than) ω. The sequence of the ideals {Iω}ω∈Γζ

is a filtration. Note that the ordering on the index set Γζ of this sequence is the fixed good ordering
defined the valuation ν.

Proposition 6.1 The morphism Ψ induces a surjective morphism of k[X ]−algebras:

grΨ : grωk[[X ]][U ] = k[X, U ] → grνR = k[XΓζ ]
X 7→ X

Ui 7→ f (i−1)(X, ζ(X)).

Moreover, with the notations of Lemma 3.2, we have ker(grΨ) =< h1, h2, . . . >, where:







h1 := Un1
1 − d1X

α(1)

,

h2 := Un2
2 − d2X

α(2)

U
l
(2)
1

1 ,
. . . . . . . . . . . . . . .

hi := Uni

i − diX
α(i)

U
l
(i)
1

1 . . . U
l
(i)
i−1

i−1 ,
. . . . . . . . . . . . . . .

Proof. In coordinate free terms the morphism grΨ is defined by grΨ(a) = Ψ(a), for a ∈ k[[X ]][U ].
The equality grωk[[X ]][U ] = k[X, U ] is clear from the definition of the filtration on k[[X ]][U ] and the
equality grνR = k[XΓζ ] follows from the Proposition 4.4. The proof of the Proposition 38 of [GP03]
could be adapted to give a proof of the second part. �

The above proposition shows that ZΓζ := Spec(k[XΓζ ]) is embedded in the infinite dimensional
space A. Moreover, the equations defining this embedding are binomial. This is also a general fact,
see [Tei03], section 4.

Proposition 6.2 The kernel of the map Ψ : k[[X ]][U ] → R has the following generators:







H1 := Un1
1 − d1X

α(1)

+ c1U2 + r1(U1),

H2 := Un2
2 − d2X

α(2)

U
l
(2)
1

1 + c2U3 + r2(U1, U2),
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Hi := Uni

i − diX
α(i)

U
l
(i)
1

1 . . . U
l
(i)
i−1

i−1 + ciUi+1 + ri(U1, . . . , Ui),
. . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ N. The elements ci are defined in Lemma 3.3 and di’s are defined in the previous proposition.
For any j ∈ N the weight of a term XβUν appearing in rj(U) is strictly greater than njγj . The terms
appearing in the expansion of rj(U) are determined explicitly by Lemma 3.3.

Proof. The Hi’s are analogous to the equations given in Lemma 3.3. Therefore, < Hi >⊂ KerΨ.
We notice that inω(Hi) = hi, on the other hand, by the last proposition < hi >= Ker(grΨ). This
gives us Ker(grΨ) ⊂ gr(KerΨ), therefore, Ker(grΨ) = gr(KerΨ). Let g = g(U1, . . . , Ui0) ∈ KerΨ, we
show that g ∈< Hi > . We write g in the form g =

∑

(β1,β2)
Xβ1Uβ2 . For any i such that (β2)i > ni

replace Uni

i with Hi + Xα(i)

U
ℓ
(i)
1

1 . . . U
ℓ
(i)
i−1

i−1 − ciUi+1 − ri(U1, . . . , Ui), by Lemma 6.6, this terminates

after finitely many steps and we get a representation g = f(H1, . . . , Hk) +
∑

(β1,β2)
Xβ1Uβ2 , where

f is a polynomial with coefficients in k[[X ]][U ] and f(0) = 0, moreover, (β2)i < ni. Then we have
∑

(β1,β2)
Xβ1Uβ2 = g − f(H1, . . . , Hk) ∈ KerΨ. If

∑

(β1,β2)
Xβ1Uβ2 = 0 we are done, otherwise,

inω(
∑

(β1,β2)
Xβ1Uβ2) ∈ gr(KerΨ) = Ker(grΨ), which is impossible because inω(

∑

(β1,β2)
Xβ1Uβ2) =

Xβ∗
1 Uβ∗

2 , for a unique pair (β∗
1 , β∗

2), and grΨ(Xβ∗
1 Uβ∗

2 ) = Xγ.β∗
2+β∗

1 6= 0. �

Remark 6.3 Notice that, unlike what is done in [GP03], it is not possible to arrange the situation so
that di = 1, because we start from a fixed system of semi-roots. Moreover, the equality inω(Hi) = hi

shows that the ideal defining the embedding S →֒ A specializes through the filtration to the ideal of
the embedding ZΓζ →֒ A.
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Consider a monomial M = U q1

1 . . . U
qj

j . . . , and define V (M) = (q1, . . . , qj , . . .), W2(M) = q1

n1
+ q2,

Wj+1(M) =
Wj(M)

nj
+ qj+1. After one replacement for some term Uj (qj ≥ nj) in M the monomials

generated are of the form M ′ = U q1+m1u1

1 . . . U
qj−1+mj−1u1

j−1 U
mju1

j U
qj+1+u2

j+1 U
qj+2

j+2 . . . , such that mh <

nh (h ≤ j) and u1 + u2 = [
qj

nj
]. For h < j we have qh+mhu1

nh
≤ u1 −

u1

nh
.

Lemma 6.4 With the notations above, for the monomials M ′ obtained from M after a sequence of
replacements for Uj’s ( for a fixed i and j ≤ i) we have: [Wi+1(M

′)] ≤ [Wi+1(M)]. The inequality is
strict if in at least one of the replacements u1 6= 0. Moreover, the maximum exponent possible of Ui+1

in these M ′’s exists and is less than or equal to [Wi+1(M)].

Proof. It is sufficient to prove it just for one such replacement and use induction. So, if M ′ is one
of the monomials obtained from M by one replacement on Uj (j ≤ i) and V (M ′) = (q′1, . . . , q

′
j , . . .)

then for some u1, u2 ∈ Z≥0 such that u1 + u2 = [
qj

nj
], we have

Wi+1(M
′) ≤ Wi+1(M) − qj

nj ...ni
+ (

u1 − (u1

n1
)

n2 . . . ni

) + . . . + (
u1 − (u1

nj
)

nj+1 . . . ni

) + (
u2

nj+1 . . . ni

).

︸ ︷︷ ︸

A

We note that nj+1 . . . ni.A ≤ u1 + u2 − u1

n1...nj
, therefore, A ≤

qj

nj ...ni
− u1

n1...ni
. This proves the first

and the second claim of the lemma. For the last part: suppose it is proved for i, we prove it for
i + 1. Suppose an strategy of the replacements on Uj, for j ≤ i, generate a maximum power for Ui+1.
Then every replacement on a Uj can only change the power of Up, for p ≤ j + 1. Therefore, in the
course of the above strategy there is some step where the power of Ui is maximized. By induction
this maximum is equal to [Wi(M)]. But in this step any replacement on Uj, for j < i, can not change
the power of Ui, and as a result the power of Ui+1. Therefore, in this step without loose of generality

we can suppose that the generated monomial is M ′′ = U
[Wi(M)]
i U

qi+1

i+1 . Now, by the proof of the first
part of the lemma, no matter how the strategy continues the maximum power of Ui+1 that can be

generated is [Wi(M)]
ni

+ qi+1. �

Corollary 6.5 The greatest term Ui0 that can be generated by the replacements in the monomial M
exists and is equal to the largest index j such that Wj(M) 6= 0.

Lemma 6.6 For any monomial M after finitely many replacements all the monomials M ′ that are
generated are such that q′j < nj.

Proof. We use induction on the first index i, such that qi ≥ ni. We prove this index can be
shifted, after finitely many replacements, one step to the right and then by the corollary above we
are done. So, let M = M(U1, . . . , Ui, . . .) be a monomial such that qj < nj (j < i), we use another
induction on qi. We have Wi+1(M) = qi

ni
+ qi+1. Consider a monomial M ′ which is obtained by just

one replacement from M. If u1 = 0 then for any j ≤ i we have q′i < qi, so, we are done in this case.

Otherwise, by Lemma 6.4 we have [Wi+1(M
′)] = [Wi(M

′)
ni

+ q′i+1] < [Wi+1(M)] = [ qi

ni
+ qi+1], but

q′i+1 ≥ qi+1, therefore, [Wi(M
′)] < qi. So, by induction hypothesis after finitely many replacements in

all the monomials M ′′ that are generated we have q′′i < ni. �

Remark 6.7 Fix a good ordering 4 . Using some ideas of [Tei6] and [Tei05], we can give for any
d′ ≥ d+1 and for any rational group G of rank d a valuation ν′ of the field k(X1, . . . , Xd, U1, . . . , Ut−1),
where d′ = d + t − 1 and t ≥ 2, with value group G. Let γi’s be the generators of the group G which
are constructed in the proof of Proposition 4.10 and the relations between γi’s which are explained
in Lemma 3.2. Using the form of the equations introduced in Proposition 6.2, we define a morphism

Ψ′ : k[X1, . . . , Xd][U ] → k[X1, . . . , Xd, U1, . . . , Ut−1] given by Ut+i−1 7→ Uni

i − Xα(i)

U
l
(i)
1

1 . . . U
l
(i)
i−1

i−1 +
r′i(U1, . . . , Ui), for i ≥ 1, where r′i(U1, . . . , Ui) ∈ k[X, U1, . . . , Ui] and they satisfy formally the same
conditions of the ri’s of Proposition 4.10 (when we give the weight γi to Ui). Then the kernel of this
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morphism is generated by:






H ′
1 := Un1

1 − Xα(1)

+ r′1(U1) + Ut

H ′
2 := Un2

2 − Xα(2)

U
l
(2)
1

1 + r′2(U1, U2) + Ut+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

H ′
i := Uni

i − Xα(i)

U
l
(i)
1

1 . . . U
l
(i)
i−1

i−1 + r′i(U1, . . . , Ui) + Ut+i−1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

The construction of the valuation ν′ is as follows: We set ν′(Xi) = ei, where ei’s are the elements of
the standard basis of the vector space Qd, and ν′(Ui) = γi. We can consider Ψ′ as a graded morphism
by the grades which come from the ν′−values. For any g(X, U1, . . . , Ut−1) ∈ k[X, U1, . . . , Ut−1] we
use the H ′

i’s and the Lemma 6.6 to represent g in the form g =
∑

α,β cα,βXαUβ(modH ′
i), such that

for any β and j ∈ N : βj < nj . This representation is unique it is a consequence of the fact that
KerΨ′ =< H ′

i > (see [Tei6]). We say this is the U − adic representation of g subject to the conditions
H ′ = 0. Then the valuation is defined as:

ν′(g) = minα,βν′(XαUβ).

The proof of Proposition 6.2 shows that this minimum exists and there is only a unique monomial
with this minimum exponent. Moreover, for any g, h we have: ν′(g + h) < min{ν′(g), ν′(h)} and
ν′(gh) = ν′(g)+ν′(h). The first one is a direct consequence of the definition and the uniqueness of the
U − adic representation. The second one is also a direct consequence of uniqueness and the fact that
each replacement, using some relation H ′

i = 0, in a monomial does not change the minimum value.

Remark 6.8 The equations H ′
i = 0’s of the last remark can be viewed as a sequence of key poly-

nomials. Transferring the Ut+j ’s to the other side of the equations we get a set of equations which
introduce the Ut+j’s as polynomials in k[X, U1, . . . , Uj+1]’s. Using the results of the last section we
see that they are a sequence of key polynmials (with respect to the weights γi) and there is a sequence
of valuations νi’s attached to this sequence.

We can unify the content of the last remarks and Corollary 5.8 in the following theorem:

Theorem 6.9 Given any rational group G totally ordered by a good ordering, of rational rank less
than or equal to d, there exists a valuation of the field k(X1, . . . , Xd, Y ) with value group G and with
residue field k. This valuation is build from grading a suitably chosen sequence of key polynomials in
the ring k[X, Y ].

In the next proposition we give the explicit embedding of the sequence of the quasi-ordinary
hypersurfaces f (r)(X, Y ) = 0 in the space A, and the relation between these equations and the
equations of the embedding in Proposition 6.2. The equations of the embedding come from the
truncation of the equations of Proposition 6.2.

Proposition 6.10 There exists an embedding of the quasi-ordinary hypersurface f (r)(X, Y ) = 0 (Def-
inition 2.3) in the the space Spec(k[[X ]][U1, . . . , Ur]), in such a way that a set of generators for the
ideal of this embedding can be given by a process of truncation of the equations of the embedding S →֒ A
which is given in the Proposition 6.2.

Proof. Consider the embedding:

Ψr : k[[X ]][U1, . . . , Ur] → k[[X]][Y ]

f(r)(X,Y )

X 7→ X
Uj 7→ f (j−1)(X, ζ(r)(X)).

Consider the Hi’s introduced in Proposition 6.2. Fix a natural number j and truncate Hi’s at the jth
step in the following sense: Keep H1, . . . , Hr−1 and in the equation of Hr delete the term crUr+1 and
drop all the next Hi’s.

Now, the proof of Proposition 6.2 could be repeated to give: The ideal of the embedding Ψr is
generated by the truncated elements, i.e.,

H
(r)
1 = H1, . . . , H

(r)
r−1 = Hr−1, H

(r)
r = Hr − crUr+1.
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The point is that the equations of Hj ’s, given in the proof of Proposition 6.2, come from the adic
expansion of the (f (j−1))nj in Lemma 3.3. These expansions are independent of the parametrizations

ζ(i)(X)’s. These equations give us exactly H
(r)
j ’s. For j = r notice that by definition we have

f (r)(X, ζ(r)(X)) = 0, hence, the adic expansion of (f (r−1))nr which gives the equation Hr = 0

translates to H
(r)
r = 0. �
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