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Abstract

Given an ordered semi-group Γ of rational rank r, with a well-ordered minimal system of
generators of ordinal type at most ωn, which satisfies a positivity and increasing condition, we
construct a valuation centered on the ring of polynomials with r + n + 1 variables such that
the semi-group of the values of the polynomial ring is equal to Γ. The corresponding valuation
is constructed using a generalization of Favre and Jonsson’s version of MacLane’s sequence of
key-polynomials [3].

1 Introduction

Recently the interest for studying the structure of the value semi-groups of the valuations centered on
a noetherian local-ring has raised (see for example [2]). Several worked examples (e.g., plane branches,
irreducible quasi-ordinary hypersurface singularities) suggests that the structure of these semi-groups
contain important information on the local uniformization process of the valuation. What type of
semi-groups can be realized as the semi-group of values of a noetherian local ring dominated by a
valuation ring? Little is known in this respect. We know they are well-ordered of ordinal type < ωh,
for some natural number h ([12], Appendix 3, Proposition 2). Abhyankar’s inequality holds between
numerical invariants of these valuations (see below). And, such semi-groups have no accumulation
point when they are considered as semi-groups of (Rn, <lex) [2].

In this paper we show that given a semi-group Γ of rational rank r, given with a minimal system
of generators which is well-ordered of ordinal type at most ωn, n ∈ N, which satisfies a positivity and
increasing condition (Definition 2.2 and Theorem 7.1), there is a polynomial ring R = k[X1, . . . , Xd]
and a valuation ν, which is positive over R, such that the value semi-group of R, ν(R \ {0}) is equal
to Γ. Moreover, we give a bound for d: d ≤ n + r + 1. It seems that this bound is optimal, i.e., in
general given such a semi-group Γ, the least number of variables which is needed to realize Γ as the
value semi-group of a valuation centered on a polynomial ring is n + r + 1.

Our basic tool is a generalization of Favre and Jonsson’s version of MacLane’s sequence of key-
polynomials ([3], [6]) for polynomial rings with arbitrary number of variables. The technique of
sequences of key-polynomials was first invented by MacLane [6], following ideas of Ostrowski, to
produce and describe all the extensions of a discrete rank one valuation ν of a field K to the extension
field L = K(x). He attached to any extension, say µ, of the valuation ν, a sequence of polynomials
φi(x) of the ring K[x]. By induction one can produce any extension µ to L of the valuation ν
using valuations constructed by key-polynomials (augmented valuations). In [11], Vaquié generalized
MacLane’s method to produce all the extensions of any arbitrary valuation of an arbitrary field K
to L. He showed that given such an extension of a valuation, there may be many ways to produce
such sequences of key-polynomials and augmented valuations. Later Favre and Jonsson showed that
in the case of d = 1 one can consider a rather simple sequence of toroidal-key-polynomials (SKP), to
produce all the pseudo-valuations centered on the ring k[[X0, X1]].

In this text, we give a generalization of the sequence of toroidal-key-polynomials of [3] to produce a
class of valuations of the field k((X0, . . . , Xd)). Our generalization can not generate all the valuations
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centered on the polynomial ring. The construction is explicit enough to describe the value semi-group
ν(k[[X0, . . . , Xd]] \ {0}). And in addition to realize certain semi-groups as value semi-groups.

Here we recall the basic definitions associated to valuations.

Definition 1.1 Fix a valuation ν.

• The rank rk(ν) of ν, is the Krull dimension of the valuation ring Rν .

• The rational rank of ν, r.rk(ν), is the dimension of ν(Frac(Rν )∗)⊗Z Q as a vector space over Q.

• The transcendence degree of ν, tr.deg(ν), is the transcendence degree of the extension of F with
residue field of ν, F ⊆ kν := Rν

mν
.

The principal relation between these numerical invariants is given by Abhyankar’s inequalities:

rk(ν) + tr.deg(ν) ≤ r.rk(ν) + tr.deg(ν) ≤ dimR.

Moreover, if r.rk(ν)+tr.deg(ν) = dimR, then value group is isomorphic (as a group) to Zr.rk(ν). When
rk(ν) + tr.deg(ν) = dimR, the value group is isomorphic as an ordered group to Zrk(ν), endowed with
the lex. order.

Let R be an integral domain with field of fractions K and let ν be a valuation of K such that
its valuation ring Rν contains R, in this case we say the valuation is centered on the ring R. Let
us denote by Φ the totally ordered value group of the valuation ν. Denote by Φ+ the semigroup of
positive elements of Φ and set Γ = ν(R \ {0}) ⊂ Φ+ ∪ {0}; it is the semigroup of (R, ν); since Γ
generates the group Φ, it is cofinal in the ordered set Φ+.

For φ ∈ Φ, set
Pφ(R) = {x ∈ R | ν(x) ≥ φ}

P+
φ (R) = {x ∈ R | ν(x) > φ},

where we agree that 0 ∈ Pφ for all φ, since its value is larger than any φ, so that by the properties of
valuations the Pφ are ideals of R. Note that the intersection

⋂

φ∈Φ+
Pφ = (0) and that if φ is in the

negative part Φ− of Φ, then Pφ(R) = P+
φ (R) = R.

For φ /∈ Γ, Pφ(R) = P+
φ (R). For each non zero element x ∈ R, there is a unique φ ∈ Γ such that

x ∈ Pφ \ P+
φ ; the image of x in the quotient (grνR)φ = Pφ/P+

φ is the initial form inν(x) of x.
The graded algebra associated with the valuation ν was introduced in ([5],[9]) for the very special

case of a plane branch (see [4]), and in [8] in full generality. Later it was extensively used in [10] as a
tool to solve the local-uniformization problem. It is

grνR =
⊕

φ∈Γ

Pφ(R)/P+
φ (R).
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The author is also thankful to the officials of the three universities, as well as the Institute for Studies
in Physics and Mathematics (IPM, Tehran) and the Cultural Section of the French Embassy in Tehran
and Crous de Versailles who were all involved in this issue.

2 The inductive definition of SKP’s

From now on by Φ we mean a totally ordered abelian group of rank d + 1. Let ∆0 = (0) ⊂ · · · ⊂
∆d+1 = Φ be its sequence of isolated subgroups (see [12]). We define the sequence of pre-values
and the sequence of positively generated values. Attached to a sequence of positively generated
values there exists a sequence of key-polynomials (SKP) which are elements of the power series ring
k(d) = k[[X0, . . . , Xd]]

1. First we need a general lemma on abelian groups.

1for any i ≤ d we define k(i) = k[[X0, . . . , Xi]] and k(i) = k((X0, . . . , Xi))
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Lemma 2.1 Let Ψ be an abelian group and Γ = {γ0, γ1, . . . , γα}, α an ordinal number, be a well-
ordered sequence of elements of Ψ. For any ordinal i ≤ α define the subgroups of Ψ, Gi = (γj)j≤i

2,
Gi− = (γj)j<i, ni = [Gi : Gi− ], and set n0 = ∞. Then for any i ≤ α such that ni 6= ∞, we have a
unique representation niγi =

∑

j<i mjγj, such that 0 ≤ mj < nj when nj 6= ∞, and mj ∈ Z when
nj = ∞, and mj = 0 except for a finite number of j. More generally, every element of Gi− has such
a unique representation.

Proof. Let i ≤ α and ni 6= ∞, we have niγi ∈ Gi− (by definition of ni). Thus, there exists a
representation niγi =

∑

j<i pjγj , where pj ∈ Z, and pj = 0 except for a finite number of j. We define,
inductively, a sequence of the elements of the index set α, A : N ′ ⊂ N → {1, . . . , α}, as follows:

Let j0 < i be the greatest ordinal number such that nj0 6= ∞ and pj0 6= 0, the ordinal j0
exists- as there only a finite numbers of non-zero pj . Set A(0) = j0. Using Euclidean division, write
pj0 = qj0nj0 + rj0 , where 0 ≤ rj0 < nj0 . Substituting this for pj0 , and expanding nj0γj0 in terms of
elements of Gj

−
0

, we get niγi =
∑

j<j0
p′jγj + rj0γj0 , where p′j 6= 0 except for a finite number of j.

Now, as before, let j1(< j0) be the first ordinal number such that nj1 6= ∞ and p′j1 6= 0. Set A(1) = j1
and continue as before to obtain niγi =

∑

j<j1
p′′j γj + rj1γj1 + rj0γj0 , where 0 ≤ rj < nj . Continue

this construction.
Either this construction stops after a finite number of steps, say jk, then we have niγi =

∑

j<i mjγj ,
such that mj = 0 except for a finite number of j, and 0 ≤ mj < nj when nj 6= ∞. This shows the
existence part of the claim in this case. Or, the construction continues for ever, in this case we get
a strictly decreasing sequence A : N → α. But this is impossible: It suffices to note that A(N) is a
subset of α without least element, which is impossible (as α is well-ordered). Thus we have proved
the existence part of the claim.

For the uniqueness, if we have two such representation niγi =
∑

j<i mjγj =
∑

j<i m′
jγj then let

j0 be the greatest index such that mj0 6= m′
j0

(as the number of nonzero mj and m′
j is finite this

greatest index exists). Suppose mj0 > m′
j0

then (mj0 −m′
j0

)γj0 =
∑

j<j0
(m′

j −mj)γj ∈ Gj
−
0

which is

a contradiction, because 0 ≤ mj0 − m′
j0

< nj0 . �

Definition 2.2 With the notation of Lemma 2.1, we say the sequence Γ positively generates the
group Ψ, if for any i we have mj ∈ N.

Definition 2.3 A sequence (βi,j ∈ Φ)i=0...d,j=1...α̃i

3, α̃i an ordinal number and α̃0 = 1, is called a
sequence of pre-values if for any i and j we have

• βi,j+1 ≻ ni,jβi,j , where ni,j = min{r ∈ N : rβi,j ∈ (βi′,j′)(i′,j′)<lex(i,j)}

• When j is a limit ordinal then βi,j ≻ βi,j′ , for any j′ < j.

Consider the index set {(i, j)}i=0···d,j=0···α̃i
, ordered by the lex. ordering. As α̃i are ordinals, this

is a well-ordering. According to Lemma 2.1, when ni,j 6= ∞ there exists a unique representation

ni,jβi,j =
∑

(i′,j′)∈Si,j∪Sc
i′,j′

m
(i,j)
i′,j′ βi′,j′ . (1)

where m
(i,j)
i′,j′ = 0, except for a finite number of (i′, j′) <lex (i, j), and Si,j = {(i′, j′) | (i′, j′) <lex

(i, j), m
(i,j)
i′,j′ > 0}, Sc

i,j = {(i′, j′) | (i′, j′) <lex (i, j), m
(i,j)
i′,j′ < 0}. By Lemma 2.1 we have 0 ≤ m

(i,j)
i′,j′ <

ni′,j′ if ni′,j′ 6= ∞, and m
(i,j)
i′,j′ ∈ Z if ni′,j′ = ∞. Thus, if (i′, j′) ∈ Sc

i,j then j′ = αi′ and ni′,αi′
= ∞.

Let Γ = (βi,j ∈ Φ)i=0...d,j=1...α̃i
, ordered by lex ordering, be a sequence of pre-values. Let Φd,α̃d

be the group generated by these elements. We say Γ is a sequence of values if it positively generates
φd,α̃d

. This condition is equivalent to Sc
i,j = ∅, for any i and j.

Definition 2.4 (SKP’s) Given a sequence of values Γ = (βi,j ∈ Φ)i=0...d,j=1...α̃i
, we attach a se-

quence of power series (Ui,j ∈ k(d))i=0...d,j=1...αi
, αi ≤ α̃i to Γ. It is called the sequence of key-

polynomials of the sequence of values Γ. It is defined by induction on i. For i = 0, we set α0 = α̃0 = 1
and U0,1 = X0. Suppose Ui′,j′ and αi′ are defined for i′ < i. We set Ui,1 = Xi. Suppose Ui,j′ are
defined for j′ < j. Then we define Ui,j as follows

2If a1, . . . , an are elements of a group G, by (a1, . . . , an) we denote the subgroup generated by these elements and
by 〈a1, . . . , an〉 the semigroup generated by them.

3By i = 1 · · · d and j = 1 · · · α̃i we mean i = 1, . . . , d and j = 1, . . . , α̃i.
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(P1) If j is not a limit ordinal then

Ui,j = U
ni,j−1

i,j−1 − θi,j−1

∏

(i′,j′)∈Si,j−1

U
m

(i,j−1)

i′,j′

i′,j′ , (2)

where θi,j ∈ k∗. This can be written as Ui,j = U
ni,j−1

i,j−1 − θi,j−1U
m(i,j−1)

.

(P2) If j is a limit ordinal then
Ui,j = lim

j′→j
Ui,j′ ∈ k(i−1)[Xi].

In Proposition 2.8 we prove that this limit exists in the ring k(i−1)[Xi]. If this limit is equal to
zero, then we set αi = j, βi,j = ∞, and we stop the construction of the key-polynomials at this
step, for i. Otherwise, we continue to construct Ui,j′ for j′ > j.

If the construction of Ui,j ’s continues for every j ≤ α̃i then we set αi = α̃i.
We denote an SKP by [Ui,j, βi,j ]i=0...d,j=1...αi

.

Remark 2.5 The following remarks are in order:

(i) Given any SKP as above, if we consider the data [Ui,j, βi,j ]i=0,1,j=0···αi
then it is a Γ−SKP for

the ring k[[X0, X1]] in the sense of [3] for the group Γ = Φ.

(ii) The formula of (P1) can be rewritten in the following way.

Ui,j+1 = U
ni,j

i,j − θi,jU
m

(i,j)
0

0 U
m

(i,j)
1

1 · · ·U
m

(i,j)
i−1

i−1 (U
m

(i,j)
i,1

i,1 · · ·U
m

(i,j)
i,j−1

i,j−1 ),

where m
(i,j)
i′ is equal to (m

(i,j)
i′,1 , . . . , m

(i,j)
i′,αi′

).

(iii) For a fixed i when αi is a limit ordinal:

– If there exists an infinite number of j such that ni,j > 1 then we have

∗ degXi
(Ui,j) → ∞(j → αi).

∗ We have Ui,αi
= limj→αi

Ui,j = 0 (See Lemma 2.12.(ii)).

– Otherwise (we denote this case by writing Ui,αi
6= 0), we have

∗ ni,j = 1, except for a finite number of ordinals j.

∗ There is some ordinal j0 such that degXi
(Ui,αi

) = degXi
(Ui,j) and ni,j = 1, for any

j > j0.

(iv) For any limit ordinal j < αi there are only finitely many j′ < j such that ni,j′ > 1: In contrary,
let j < α be the an ordinal such that there are infinitely many j′ < j such that ni,j′ > 1. The
argument of the proof of Lemma 2.12.(ii), shows that Ui,j = 0. Thus, by construction of SKP,
we must have j = αi which is a contradiction.

Definition 2.6 Let [Ui,j , βi,j ]i=0...d,j=1...αi
be an SKP. We define the semigroups Γi,j and the groups

Φi,j , for i = 0, . . . , d, j = 1, . . . , αi, as follows:

Γi,j = 〈(β0)
α0
1 , . . . , (βi−1)

αi−1

1 , βi,1, . . . , βi,j〉,

Φi,j = (Γi,j),

Φ∗
i,j = Φi,j ⊗Z Q.

Definition 2.7 Consider a power series ring A = k(i). The order of an element M =
∑

m
cmXm of

this ring is ordA(M) = ord(M) = minm,cm 6=0
{
∑i

i′=0 mi′}.

Proposition 2.8 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. Then for any (i, j) we have Ui,j ∈ k(i−1)[Xi].
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Proof. The proof is by induction on i and j. For i = 0 it is obvious. Suppose it is valid for indices less
than i, we prove it for i. When j is not a limit ordinal, formula (P1) represents Ui,j as a polynomial
in terms of previous U ’s and the claim is obvious in this case by induction on j.

It remains the case when j is a limit ordinal. We can assume that j = αi (considering the
SKP [Ui′,j′ , βi′,j′ ]i′=0···j′,j′=1···α′

i′
, where α′

i′ = αi′ for i′ < i and α′
i = j). We must show that

limj′→αi
Ui,j′ ∈ k(i−1)[Xi].

If there is infinite number of j such that ni,j > 1 then by Lemma 2.12.(ii), we have Ui,αi
= 0 ∈

k(i−1)[Xi]. Thus, we can assume ni,j = 1, except for a finite number of j. Then by Lemma 2.12.(i),

we have ordk(i−1)[Xi](U
m(i,j)

) → ∞(j → αi). By Remark 2.5.(iii), we have degXi
(Um(i,j)

) is limited.

Hence ordk(i−1)(Um(i,j)

) → ∞(j → αi). Using this fact and the equality Ui,j+1−Ui,j = −θi,jU
m(i,j)

, for

j ≥ j0 (where ni,j = 1, for j ≥ j0), we have limj→αi
Ui,j = U

ni,j0

i,j0
−

∑

j,j0≤j<αi
θi,jU

m(i,j)

∈ k(i−1)[Xi].
�

Remark 2.9 The proof of the proposition shows that for any arbitrary two ordinals j′ < j′′ such

that ni,j = 1, for j′ < j < j′′, we have Ui,j′′ = limj→j′′ Ui,j = U
ni,j′

i,j′ −
∑

j,j′≤j<j′′ θi,jU
m(i,j)

.

Let [Ui,j, βi,j ]i=0···d,j=1···αi
be an SKP. Fix an i ≤ d. Consider the abelain ordered group Φi,αi

. This
group is order isomorphic to a subgroup of the ordered group (Rn, <lex), for some n (see [1], Proposi-
tion 2.10). Suppose αi is a limit ordinal. Consider the first index t ≤ d, such that #{(βi,j)t}1≤j<αi

=
∞. The index t is called the effective component for i . Notice that this t exists: In contrary, we have
#{(βi,j)t}1≤j<αi,t=1···n < ∞. On the other hand, we have βi,1 <lex βi,2 <lex · · · <lex βi,αi

. But this
is impossible when all the components of βi’s come from a finite set. Thus t is well-defined. In [2], it is
shown that well-ordered semi-groups of ordinal type ≤ ωh, h ∈ N, have no accumulation point in Rn,
in Euclidean topology. We show that the positively generated semi-groups have a stronger property:
The effective component of any sequence of the elements of the semi-group tends to infinity (Lemma
2.11, and Lemma 7.3)

Proposition 2.10 With the notation of the last paragraph we have:

(i) There exists j(i), 1 ≤ j(i) < αi, such that the first (t − 1) components of βi,j are the same
(componentwise), for j ≥ j(i), i.e., (βi,j)t′ = (βi,j′ )t′ , for j, j′ ≥ j(i) and t′ < t.

(ii) For j > j′ > j(i) we have (βi,j)t ≥ (βi,j′ )t.

(iii) If Ui,αi
= 0 then:

(1) t = min{t′| 1 ≤ t′ ≤ n, ∃j < αi : (βi,j)t′ 6= 0}.

(2) (βi,j)t′ = 0, for any j < αi and t′ < t.

(3) (βi,j)t → +∞(j → αi).

Proof. The first item is a direct consequence of the definition. For (ii), by definition of the SKP’s,
we have βi,j >lex βi,j′ . On the other hand, by (i), the first t − 1 components of βi,j and βi,j′ are the
same. Thus (βi,j)t ≥ (βi,j′ )t.

For (iii), set t1 = min{t′| 1 ≤ t′ ≤ n, ∃j < αi : (βi,j)t′ 6= 0}. By definition of t1, we have
(βi,j)t′ = 0, for any j < αi and t′ < t1. So, t1 ≤ t. From the definition of the SKP, we deduce
that βi,j+1 >lex (

∏

j0≤j′≤j ni,j′)βi,j0 . We choose j0 such that (βi,j0)t1 6= 0 (note that necessarily
(βi,j0)t1 > 0). As Ui,αi

= 0, there are infinite number of j > j0 such that ni,j > 1 (j → αi). This
shows that (βi,j)t1 → ∞(j → αi). Thus t = t1. �

Lemma 2.11 Let [Ui,j, βi,j ]i=0···d,j=1···αi
be an SKP. Fix an i ≤ d and let t be the effective component

for i. Suppose αi is a limit ordinal then (βi,j)t → +∞(j → αi′).

Proof. If Ui,αi
= 0, then the claim is the content of Proposition 2.10.(iii). Assume Ui,αi

6= 0.
Then, by definition of Ui,αi

6= 0, there exists j0 such that ni,j = 1 for j > j0. Notice that in this case
there is a finite number of j (in general) such that ni,j 6= 1 (by definition of Ui,αi

6= 0). And we have

(βi,j)t =
∑

(i′,j′)∈Si,j
m

(i,j)
i′,j′ (βi′,j′)t, for j > j0. Define

Ci = {(i′, j′) ∈ Si,j , max{j0, j(i)} ≤ j < αi, (βi′,j′ )t 6= 0}.
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If #Ci = ∞ then there exists some i0 < i and an infinite number of j′ such that (i0, j
′) ∈ Ci, so

we can speak of j′ → ∞. As for such (i0, j
′) (which are infinite in number) we have ni0,j′ > 1, hence

αi0 is a limit ordinal and Ui0,αi0
= 0. Let t′ be the effective component for i0. By definition of Ci

there is at least one j′ such that (βi0,j′)t 6= 0. But Ui0,αi0
= 0, thus by Proposition 2.10.(iii).(2), we

have t′ = t. As (βi0,j′)t → ∞(j′ → ∞), we have (βi,j)t → ∞(j → αi).
If #Ci < ∞ then (βi,j)t’s are elements of the discrete lattice L ⊂ R generated by the finite set of

generators {(βi′,j′)t| (i′, j′) ∈ Ci}. Thus, as any bounded region of R contains only a finite number of
elements of the lattice L, the sequence (βi,j)t(j → αi) can not be contained in any bounded region of
R. On the other hand, by Proposition 2.10.(ii), this sequence is increasing, so, it goes to +∞. �

Lemma 2.12 Consider an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. Suppose αi is a limit ordinal. Then we have

the following:

(i) For any n ∈ N and i < d there exists ordinal j
(i)
n such that ordk(i−1) [Xi](U

m(i,j)

) > n for any

j > j
(i)
n .

(ii) If Ui,αi
= 0 then one can choose the above j

(i)
n such that in addition ordk(i−1)[Xi](Ui,j) > n for

any j > j
(i)
n .

Proof. Suppose both (i) and (ii) are proved for any n′ and i′ < i, and also for n′ ≤ n and i. We
prove them for n + 1 and i. Suppose t is the effective component for i. For any vector V ∈ Rn we
define |V | to be its tth component, i.e., |V | = (V )t. Let

M∗ = max{{|βi′,j′ | : (i′, j′) ∈ Si,j , j′ ≤ j
(i′)
n+1 when i′ < i, j′ ≤ j(i)

n when i′ = i}.

Notice that the cardinality of this set is finite, so M∗ is well-defined.
For (i):

By Lemma 2.11, we have |βi,j | → +∞(j → αi). Hence there exists j
(i)
n+1 such that |βi,j | >

(n + 1)M∗, for j ≥ j
(i)
n+1. The claim is that this number j

(i)
n+1 works. We can assume j(i) < j

(i)
n (see

Proposition 2.10.(ii)). Suppose j > j
(i)
n+1.

If there exists at least one (i, j′) ∈ Si,j such that j′ ≥ j
(i)
n then we are done. Indeed, if

m
(i,j)
i,j′ > 1, since ordk(i−1)[Xi](Ui,j′ ) > n (by induction hypothesis for (ii), in the case n) then

ordk(i−1)[Xi](U
m(i,j)

) > nm
(i,j)
i,j′ > n + 1. If m

(i,j)
i,j′ = 1, since |βi,j′ | < |βi,j | (because ni,j′ > 1 and

βi,j >lex ni,j′βi,j′ , and |.| preserves ordering for j′′ > j(i) ), there should be at least one other

element (i′′, j′′) ∈ Si,j . But ordk(i−1)[Xi](Ui′′,j′′ ) ≥ 1. Therefore, we have ordk(i−1)[Xi](U
m(i,j)

) >
ordk(i−1)[Xi](Ui,j′) + ordk(i−1) [Xi](Ui′′,j′′ ) > n + 1.

If there exists some (i′, j′) ∈ Si,j such that i′ < i and j′ > j
(i′)
n+1 then clearly we are done.

There remains the case that for all (i′, j′) ∈ Si,j :

• If i′ < i then j′ < j
(i′)
n+1.

• If i′ = i then j′ < j
(i)
n .

By definition of M∗ and conditions above, we have |βi′,j′ | < M∗, for any (i′, j′) ∈ Si,j . Hence

|β
i,j

(i)
n+1

| ≤ |βi,j | ≤ ni,j |βi,j | =
∑

(i′,j′)∈Si,j

m
(i,j)
i′,j′ |βi′,j′ | < (

∑

(i′,j′)∈Si,j

m
(i,j)
i′,j′ )M

∗.

Where the first inequality holds because |.| preserves ordering for j′ ≥ j
(i)
n > j(i) (Proposition 2.10.(ii)).

But, by definition of M∗, we have |β
i,j

(i)
n+1

| > (n + 1)M∗. Thus n + 1 <
∑

(i′,j′)∈Si,j
m

(i,j)
i′,j′ . Finally

ordk(i−1)[Xi](U
m(i,j)

) ≥
∑

(i′,j′)∈Si,j

m
(i,j)
i′,j′ > n + 1.

For (ii):

As (i) holds for n + 1 and using induction hypothesis, we can find j
(i)
n+1 such that ord(Ui,j) >

n, ord(Um(i,j)

) > n + 1, for j > j
(i)
n+1. If this j

(i)
n+1 does not work for (ii), find the first j0 > j

(i)
n+1 such
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that ni,j0 6= 1 (as Ui,αi
= 0 this j0 exists) then set j

(i)
n+1 := j0. It is straightforward to check that this

new j
(i)
n+1 works also for (ii). �

Example 2.13 Consider the ring k[X0, X1, X2] and the group Φ = Z3 with reverse lexicographical

order. Consider the valuation ν centered on this ring defined by the SKP (U0,1, U1,1, (U2,j)
ω2

j=1) and
β0,1 = (1, 0, 0), β1,1 = (0, 1, 0), β2,ωn+j = (j, n + 2, 0) for n ∈ N, 0 < j < ω and β2,ω2 = (0, 0, 1). Here
we have the relations

U2,ωn+j+1 = U2,ωn+j − U j
0,1U

n+2
1,1 .

In this example we have n2,j = 1 for any 1 < j < ω2. We see that we can not continue to define
U2,ω2+1 the reason is that (β2,ωn)2 = n + 2 → ∞(n → ∞) and therefore necessarily β2,ω2 /∈ Z2 ⊕ {0}.
Thus, as β0,1, β1,1 ∈ Z2 ⊕ {0} there does not exist any relation between β2,ω2 , β0,1, β1,1 and we are
forced to stop at this step.

Example 2.14 Consider the ring k[X0, X1, X2] and the group Φ = Q with the usual order ≤ .
Consider the valuation ν centered on this ring by the SKP
(U0,1, (U1,j)

ω
j=1, (U2,j)

ω
j=1, βi,j) which is defined as follows: Let {pi}∞i=1 be a sequence of increasing

prime numbers. Define β0,1 = 1, β1,1 = 1
p1

, β1,j = mj + 1
pj

, for j ≥ 2 where m2 = 1 and mj+1 =

pjmj + 1, and β2,j = β1,j , for j ≥ 1. Then after setting θi,j = 1, we have U1,j+1 = U
pj

1,j − U
mj+1

0,1 and
U2,j+1 = U2,j − U1,j .

3 adic expansions

Given an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. In this section we show that any element f of the power series

ring k(d) has a unique expansion in terms of key-polynomials. We give an algorithm for computing
this expansion. The algorithm is based on the notion of acceptable vectors α′ ≤ α attached to
the SKP. Any acceptable vector determines an SKP [Ui,j , βi,j ]i=0···d,j=1···α′

i
. We define the notion

of (U)α′ − adic expansion and show how one can get (U)α′′ − adic expansions for α′′ ≥ α′, using
(U)α′ − adic expansion. In the next section, we use the adic expansion of the elements to define a
valuation, attached to a given SKP.

Lemma 3.1 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. When Ui,j 6= 0 it is of the form

Ui,j = X
di,j

i + ai,j,di,j−1X
di,j−1
i + · · · + ai,j,0

where ai,j,j′ ∈ k(i−1), such that the constant term of ai,j,j′ is zero. Moreover, when j is not a
limit ordinal, we have di,j = ni,j−1di,j−1 for 1 ≤ j < αi. If j is a limit ordinal then there exists
an ordinal j0 < j, which is not a limit ordinal and for any j′ such that j0 ≤ j′ ≤ j, we have
di,j′ = di,j0 = ni,j0−1di,j0−1.

Proof. The proofs are all by induction. We prove the last part. By definition of SKP’s, it is clear

that for any j′ = 1, . . . , j − 1, we have m
(i,j)
i,j′ ∈ Si,j , so we have 0 ≤ m

(i,j)
i,j′ < ni,j′ . By induction we

have ni,j′ = di,j′+1/di,j′ . Hence m
(i,j)
i,j′ + 1 ≤ di,j′+1/di,j′ . So we have

j−1
∑

j′=1

m
(i,j)
i,j′ di,j′ ≤

j−1
∑

j′=1

(
di,j′+1

di,j′
− 1)di,j′ = di,j − 1 < ni,jdi,j .

Hence degXi
(Ui,j+1) = ni,jdi,j . For the last claim we note that when j is a limit ordinal there exists

a j0 such that for any j′, j0 ≤ j′ ≤ j, we have ni,j′ = 1. �

Lemma 3.2 For any SKP [Ui,j , βi,j ]i=0···d,j=1···αi
, if Ui,j 6= 0 we have

degXi
(Ui,j) > degXi

(
∏

j′<j

U
pi,j′

i,j′ ),

when 0 ≤ pi,j′ < ni,j′ . In other words
∑

j′<j pi,j′di,j′ < di,j . Notice that pi,j′ = 0, except for a finite
number of j′.
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Definition 3.3 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. We say that a vector (α′

0, . . . , α
′
d) such that

α′
i ≤ αi is an acceptable vector if for any i = 0, . . . , d and any j = 0, . . . , α′

i and for any (i′, j′) ∈ Si,j

we have (i′, j′) ≤lex (i′, αi′) for i′ < i, and (i′, j′) <lex (i, j) when i′ = i. This means that in the
equation (P1) defining Ui,j in terms of U ’s with smaller indices, one needs only indices from α′, not
necessarily all of α. Notice that an acceptable vector α′ determines an SKP, i.e., [Ui,j , βi,j ]i=0···d,j=1···α′

i

is an SKP.

Given an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
the vector α is an acceptable vector. Moreover, the vector

(1, . . . , 1) ∈ Nd is an acceptable vector for any arbitrary SKP.

Definition 3.4 Given any SKP and any acceptable α′, one can consider the new SKP defined by this
acceptable vector and construct the power series ring k((α′,i)) = k[[(Ui′,j′)i′≤i,j′<α′

i
,ni′,j′ 6=1, (Ui′,α′

i′
)i′≤i]] ⊆

k(d). We have k(i) = k((α,i)).

Given an SKP [Ui,j, βi,j ]i=0···d,j=1···αi
and an acceptable vector α′ = (α′

0, . . . , α
′
d), we want to

expand an arbitrary element f ∈ k(d) in terms of U ’s as an element of the power series ring k((α′,d)).

Definition 3.5 (adic expansions) Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. Let α′ be an acceptable

vector for this SKP. For an element f ∈ k(d) consider the expansion f =
∑

I(J) cI(J)U
I(J) ∈ k((α′,d)),

where I(J) ∈ N1 × · · · × Nα′
i × · · · × Nα′

d , and cI(J) ∈ k. This expansion is called the (U)α′ − adic

expansion of f, when for every monomial U I(J) we have 0 ≤ I(J)i,j < ni,j , for any 0 ≤ j < α′
i and

i = 0, . . . , d. Notice that I(J)i,j = 0, except for a finite number of j.

Definition 3.6 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
and let α′ be an acceptable vector. For any

monomial M(U) = Ua ∈ k((α′,d)), we define

Vdeg(M) = (degX0
(Ua0

0 ), degX1
(Ua1

1 ), . . . , degXd
(Uad

d )) ∈ Nd.

Definition 3.7 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
and let α′ be an acceptable vector. Let M(U) =

cUa be a monomial of the ring k((α′,d)) we say that it is a monomial of adic form if it satisfies the
conditions of monomials of Definition 3.5.

Lemma 3.8 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
and let α′ be an acceptable vector. Let M(U) =

cUa ∈ k((α′,d)) be a monomial of adic form with respect to this SKP. Then Vdeg(M) determines the
vector a.

Proof. This is a simple consequence of Lemma 3.2. If we set n = degXi
(Uai

i ) then we have ai,α′
i
=

[ n
di,α′

i

]. Suppose by induction we obtained ai,α′
i
, . . . ,ai,j+1 then we have: ai,j = [

n−
∑ α′

i
j′=j+1

ai,j′ .di,j′

di,j
].

Note that if ai,j 6= 0 then for any j′ < j such that di,j = di,j′ we have ai,j′ = 0. This shows that in
the case of α′

i be of infinite ordinal type also the number of entries of a computed inductively above,
which are nonzero is finite. �

Corollary 3.9 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. Let α′ be an acceptable vector. For any two

different monomials M, M ′ of the power series ring k((α′,d)), we say M < M ′ if

Vdeg(M) <lex Vdeg(M ′).

This is a total well-ordering on the set of monomials of k((α,d)) of adic form.

The following proposition shows that the adic expansions are well defined elements of the ring
k((α,d)) and they are unique and it gives an algorithm to compute them.

Proposition 3.10 ( Algorithm for getting adic expansions) Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
.

Let α′ and α′′ be two acceptable vectors for this SKP such that α′ < α′′, with respect to the partial
product order of Zd+1. Let f ∈ k(d) and suppose we know its (U)α′ − adic expansion. In order to
obtain its (U)α′′ − adic expansion we do the following:

Starting from (U)α′ − adic expansion of f, for any monomial M(U) in the expansion, and for
any i = 0, . . . , d and j < α′′

i , do the following replacements, and iterate this process on the resulting
expansion as far as possible.
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• If ni,j+1 > 1, replace any occurrence of U
ni,j

i,j in M(U) by its equal binomial by (P1) of Definition
2.4, namely,

U
ni,j

i,j = Ui,j+1 + θi,jU
m(i,j)

.

• If ni,j+1 = 1 then let j + 1 < j0 ≤ α′′
i be the first ordinal such that ni,j0 > 1 or j0 = α′′

i and
replace any occurrence of U

ni,j

i,j in M(U) by its equal expansion given in Remark 2.9, namely,

U
ni,j

i,j = Ui,j0 +
∑

j≤j′<j0

θi,j′U
m(i,j′)

.

The resulting expansion is equal to the (U)α′′ − adic expansion of the element f. Moreover, this
expansion is unique.

Proof. For any element of k((α,d)) we define Mn to be those monomials with ord = n. By Lemma
2.12, we know that #Mn is finite. We do the replacements of the algorithm (staring from α′ − adic
expansion of f) in the n−th step only on the monomials of

⋃

n′≤n Mn′ of the current expansion. Using
Lemma 6.6 of [7], this process terminates after finitely many steps. In this step all the monomials of
⋃

n′≤n Mn′ of the current expansion are of α′′−adic form. Moreover, there exists a number m(n) < n,
where m(n) → ∞(n → ∞), such that in the process of replacements on the monomials of

⋃

n′≤n Mn′

the monomials of
⋃

m′≤m(n) Mm′ does not change (Lemma 2.12). Doing this process as n → ∞ we get

an expansion, which satisfies all the properties of α′′−adic expansion. Thus we obtain a (U)α′′ −adic
expansion of f .

Now, we prove that this expansion is unique. Suppose an element f ∈ k(d) has two different adic
expansions f =

∑

I(J) cI(J)U
I(J) =

∑

I′′(J′′) c′′I′′(J′′)U
I′′(J′′). Assume by induction on d the claim is

valid for the power series ring R⊗k k(d−1), where R = k[[(Ud,j)j<αd,nd,j 6=1, Ud,αd
]] is considered as the

coefficient ring. Consider f as an element of the ring R⊗kk(d−1). The two adic expansions of f give two
adic expansion of f ∈ R ⊗k k(d−1) as follows. Setting U = (U(d−1), Ud) and I(J) = (I(J)(d−1), I(J)d)
we have

f =
∑

I(J)(d−1)
(
∑

I′(J′)d,I(J)(d−1)=I′(J′)(d−1)
cI′(J′)U

I′(J′)d

d )U
I(J)(d−1)

(d−1)

=
∑

I′′(J′′)(d−1)
(
∑

I′(J′)d,I′′(J′′)(d−1)=I′(J′)(d−1)
c′′
I′(J′)U

I′(J′)d

d )U
I′′(J′′)(d−1)

(d−1) .

By induction hypothesis, these two adic expansions are the same. Suppose M be the least monomial
of this expansion, with respect to the ordering of Corollary 3.9, which refers to the indices I0(J0) and
I ′′0 (J ′′

0 ) (respectively). Then equating the coefficient of M in two adic expansions we have

g =
∑

I′(J′)d,I0(J0)(d−1)=I′(J′)(d−1)

cI′(J′)U
I′(J′)d

d =
∑

I′(J′)d,I′′
0 (J′′

0 )(d−1)=I′(J′)(d−1)

c′′I′(J′)U
I′(J′)d

d .

Write g |X0=0,...,Xd−1=0=
∑

α∈Z
cαXα

d . Let α0 be the first α such that cα 6= 0. Then by Lemma
3.1 and 3.8, there is a unique monomial in either of the expansions of g (M and M ′ respectively)
such that Vdeg(M) = Vdeg(M ′) = α (Here Vdeg(M) = degXd

(M)). Hence M = M ′. Thus the
least monomials of two expansions of g (with respect to the ordering of Corollary 3.9) are equal.
Subtracting this monomial from two representations, and iterating the last procedure we deduce that
these two expansions are the same and we are done (A similar argument like the last part works for
the initial of the induction d = 1). �

Remark 3.11 Given an SKP [Ui,j, βi,j ]i=0···d,j=1···αi
, and an element f ∈ k(d) in order to obtain

its (U)α − adic expansion, we can use the algorithm of Proposition 3.10 for the acceptable vectors
α′ = (1, . . . , 1) and α′′ = α. Notice that in this case the (U)α′ − adic expansion of every element
f ∈ k(d) is itself.

We also use the notation of (α′)−adic expansion. When there is no stress on the special acceptable
vector α′ or they are clear, we use the simple notation Ud − adic or adic expansion.

Remark 3.12 The algorithm of Proposition 3.10, can be applied to obtain the adic expansion of an
element f starting from any representation of it. For example, suppose two elements f and g are given
and we know their adic expansions. We can apply the algorithm of Proposition 3.10, to the product
of the expansions of f and g to obtain the adic expansion of the product fg.
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4 Valuations attached to SKP’s

In this section we show that to any SKP one can attach a valuation ν of the field k((X0, . . . , Xd))
centered on the ring k[[X0, . . . , Xd]].

Definition 4.1 Let [Ui,j , βi,j ] be an SKP. For an acceptable vector α′, we define a map

να′ : k(d)\{0} → Φ

by:

• If M is any monomial M(U) with (U)α′ − adic expansion M = c.Up, where c ∈ k then

να′(M) =
d∑

i=0

α′
i∑

j=0

pi,jβi,j .

• If f ∈ k(d) has the (U)α′ − adic expansion f =
∑

I(J) cI(J)U
I(J) then

να′(f) = minI(J){να′(U I(J))}.

For any SKP, we denote the mapping of the definition above by να = val[Ui,j , βi,j ]. We will see that
this mapping is a valuation (Theorem 4.7).

Definition 4.2 Let [Ui,j , βi,j ] be an SKP and f ∈ k(d) an arbitrary element and let (α′) be an
acceptable vector for this SKP. The initial form of f with respect to να′ is defined as:

inνα′ (f) =
∑

I(J0)

cI(J0)U
I(J0),

where f =
∑

I(J) cI(J)U
I(J) is the (U)α′ − adic expansion of f and I(J0) ranges over those indices

with minimal να′−value.

Definition 4.3 Let [Ui,j , βi,j ]i=0···d,j=1···αi
be an SKP and consider the power series ring k((α,d)). For

any monomial M(U) = Ua ∈ k((α,d)) we define the vector of the powers

VP(M(U)) = (ad,αd
,ad−1,αd−1

, . . . ,a0,α0) ∈ Nd+1.

Lemma 4.4 Fix an SKP and suppose that α′ is an acceptable vector for this SKP. Let f ∈ k(d) and
suppose inνα′ (f) =

∑

I(J) cI(J)U
I(J) then the vector of the powers VP(M) of the monomials M of

inνα′ (f) are all different.

Proof. Let cU I(J) and c′U I′(J′) be two monomials of inνα′ (f) with equal vector of the powers. We
show that for any j = 1, . . . , α′

d the powers of the Ud,j in the two monomials are the same. Indeed,
let j′ < α′

d be the greatest index such that I(J)d,j′ 6= I ′(J ′)d,j′ , note that this maximum index exists.
We assume I(J)d,j′ > I ′(J ′)d,j′ . By equating the να′−values of the two monomials

(I(J)d,j′ − I ′(J ′)d,j′)βd,j′ =
∑

(i′′,j′′)<lex(d,j′)

−(I(J)i′′,j′′ − I ′(J ′)i′′,j′′ )βi′′,j′′ ∈ (βi′′,j′′ )(i′′,j′′)<lex(d,j′),

which is clearly a contradiction, because 0 < I(J)d,j′ − I ′(J ′)d,j′ < nd,j′ . Continuing similar argument
for i < d, we deduce that the two monomials are the same. �

Corollary 4.5 Fix an SKP and suppose Ui,αi
= 0, for i = 1 · · ·d. Then for any 0 6= f ∈ k(d) the

initial inνα
(f) consists of just one monomial of adic form.

Lemma 4.6 Fix an SKP [Ui,j , βi,j ] and let α′ be an acceptable vector. For any arbitrary monomial
M(U) ∈ k((α′,d)), where M = c.Ua, we have:

(i) The initial form of M in its (U)α′ − adic expansion is just one monomial M ′ = c′Ua
′

. In other
words, we have inνα′ (M) = M ′.
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(ii) We have a′
d,α′

d
= ad,α′

d
.

(iii) For any two monomials M and M ′ of the power series ring k((α′,d)) with equal να′−values, if
VP(M) <lex VP(M ′) then VP(inνα′ (M)) <lex VP(inνα′ (M

′)).

Proof. For the first claim, let Ui,j be a factor of the M with power greater than ni,j . Replace
U

ni,j

i,j by its expression from the algorithm for getting adic expansion. The claim is that after one
such replacement there exists just one monomial with minimal να′−value. We prove the claim for
the replacements of the first type of algorithm for getting adic expansion. For the second type the
argument is similar. After a replacement of type one we get two monomials with different να′−values:

M = M

U
ni,j
i,j

(Ui,j+1 + θi,jU
m(i,j)

)

= c
Ua.Ui,j+1

U
ni,j

i,j
︸ ︷︷ ︸

+ cθi,j

UaUm(i,j)

U
ni,j

i,j
︸ ︷︷ ︸

.

M2 M1

Then να′(M2) ≻ να′(M1) = να′(M). Therefore, we have inνα′ (M) = inνα′ (M1). We do the same for
M1. Finally we get a monomial M ′ whose adic expansion is itself, this proves (i).

For the second part we notice the that the proof of the first part shows the following general fact:
For the monomial M(U) a replacement on U

ni,j

i,j can not affect the power of Ui′,j′ , for (i′, j′) >lex. (i, j),
of the unique monomial with minimal value of the expansion generated after replacement.

For the last part, suppose M = Ua and M ′ = Ua
′

. Let d′ ≤ d be the first index such that
ad′,α′

d′
< a′

d′,α′
d′

. Then by Lemma 4.4, we have ai,j = a′
i,j for i = d′ + 1, . . . , d and j = 1, . . . , αi.

Thus the algorithm for getting adic expansion for these two monomials for such i and j can be chosen
the same. Hence, without loss of generality we can assume that ai,j < ni,j and a′

i,j < ni,j , for
i = d′ + 1, . . . , d and j < αi. Then because ad′,α′

d′
< a′

d′,α′
d′

, by part (ii) we are done. �

Theorem 4.7 Given any SKP [Ui,j , βi,j ], for any acceptable vector α′, the mapping
να′ : k(d)\{0} → Φ extends trivially to a k−valuation of the field k((X0, . . . , Xd)). Moreover, for any
two acceptable vectors α′ and α′′ such that α′ ≤ α′′ and for any f ∈ k(d) we have να′(f) � να′′(f).

Proof. The extension to the field k((X0, . . . , Xd)) is a trivial task. We need only to prove that given
any f, g ∈ k(d)\{0} we have να′(f + g) � min{να′(f), να′(g)} and να′(f.g) = να′(f) + να′(g). The
first one is a direct consequence of the definition and the uniqueness of the adic expansions. For the
second equality, let in(f) =

∑

I(J) cI(J)U
I(J) and in(g) =

∑

I′(J′) c′
I′(J′)U

I′(J′). Let M = cI(J0)U
I(J0)

(respectively M ′ = cI′(J′
0)U

I′(J′
0)) be the unique (Lemma 4.4) monomial of the expansion of in(f)

(respectively in(g)) with minimal vector of powers, with respect to the lex. order. Then by Lemma
4.6, (iii), we see that in(M.M ′) = M ′′ is the unique monomial of in(f.g) with minimal vector of the
powers. But να′(M ′′) = να′(M) + να′(M ′) = να′(f) + να′(g), by the definition of the mapping να′

we have να′(M ′′) = να′(f.g). For the last part, we note that in the algorithm for getting α′′ − adic
expansion of an element from its α′−adic expansion every time of substitution we replace a monomial
with two new monomials with values equal to or larger than the original monomial. �

Corollary 4.8 Given an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
, all the Ui,j’s are irreducible elements of the

power series ring k(i−1)[Xi].

Proof. We prove the claim for Ud,j. Consider the vector (α′), defined by α′
i = αi, for 0 ≤ i < d, and

α′
d = j. This is an acceptable vector. In this proof all the adic expansions are (U)α′ −adic expansions.

Let Ud,j be reducible and Ud,j = f.g, for some non-unit elements f, g ∈ k(d−1)[Xd]. As the α′ − adic
expansion of Ud,j is itself, we have in(Ud,j) = Ud,j. We can compute this initial in the other way, using
initials of f and g. This gives us Ud,j = in(in(f).in(g)).

On the other hand, βd,j = να′(Ud,j) = να′(f) + να′(g). Thus the monomials of in(f) and in(g))
does not have a factor Ud,j. By Lemma 4.6, (ii), this shows that the monomials in(in(f).in(g)) does
not have a factor Ud,j, which is a contradiction. �

Remark 4.9 One should note that in the definition of the SKP’s for the ring k[[X0, . . . , Xd]] the
ordering of the variables plays an important role. In other words, changing the coordinates of the
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rings (even with a permutation) may change totally the system of SKP’s attached to the valuation, or
even they may not exist. This phenomenon can be seen even in dimension two; For example consider
the valuation ν centered on the ring k[X0, X1] defined by the SKP, [(U0,1, U1,1, U1,2, U1,3), (2, 3, 9, 10)].
Where, we have U1,2 = U2

1,1 − U3
0,1, U1,3 = U1,2 − U3

0,1U1,1. Note that the last two equations are
given to us (up to the knowledge of the corresponding θ’s ) as soon as the sequence of β’s (2, 3, 9)
is known. Now, changing the order of the coordinates, we consider the same ring as k[Y0, Y1] with
Y0 = X1, Y1 = X0. The same valuation is given by the following SKP’s in the new coordinate ν =
val[(V0,1, V1,1, V1,2, V1,3), (3, 2, 9, 10)]. Where the SKP’s are as follows.

V1,2 = V 3
1,1 − V 2

0,1, V1,3 = V1,2 + V 3
0,1.

The relation between two SKP’s is as follows:

V0,1 = U1,1, V1,1 = U0,1, V1,2 = −U1,2.

For V1,3 we have:

V1,3 = V1,2 + V 3
0,1 = −U1,2 + U3

1,1 = −U1,2 + (U3
0,1 + U1,2)U1,1 = −U1,3 + U1,1U1,2.

As this example shows the explicit relation between the U ’s and V ’s is not, in general, trivial.

5 Euclidean expansion and more properties of SKP’s

In this section we give another expansion in the ring k(d−1)[Xd], attached to a SKP of the power
series ring k[[X0, . . . , Xd]] (k(i) := k((X0, . . . , Xi))). We show that the valuation ν attached to this
SKP, can be defined using this new expansion, plus the knowledge of the valuation ν on the field
k(d−1). Moreover, we show that the Euclidean expansion can be obtained directly from the adic
expansion. This is practically interesting, because adic expansion is defined only with substitutions
while Euclidean expansion is defined using divisions.

Definition 5.1 (Euclidean expansion) Fix an SKP [Ui,j , βi,j ]i=0...,j=1...αi
. For any j = 1, . . . , αd we

define the acceptable vector α(j) = (α0, . . . , αd−1, j). Let f ∈ k(d−1)[Xd], and consider the expansion
f =

∑

J cJUJ
d ∈ k(d−1)[Ud] such that 0 ≤ Jj′ < nd,j′ for any 0 ≤ j′ < j. This is called the jth

Euclidean expansion of f .

Proposition 5.2 (Algorithm for getting Euclidean expansion) With the notations of Definition
5.1, do the following:

Consider the greatest index j0 such that degXd
(f) > dd,j0 . Divide f by Ud,j0 in the ring k(d−1)[Xd]

to obtain f = qUd,j0 + r, where q, r ∈ k(d−1)[Xd] and degXd
(r) < dd,j0 . Iterate the same process for

q as far as possible to obtain f =
∑

t ftU
t
d,j0

, where degXd
(ft) < dd,j0 . Iterate the same procedure

for each of the ft’s and the greatest index j′, j′ < j0, such that dd,j′ < dd,j0 . Continue as far as
possible. This process terminates after finitely many steps. The resulting expansion is equal to the jth
Euclidean expansion of f . Moreover, the Euclidean expansion is unique.

Proof. As the Ud’s which appear in the process are among the elements of the finite set {Ud,j′/ nd,j′ 6=
1, and degXd

(f) > dd,j′}, the process stops after finitely many steps. We show that the resulting
expansion is the jth Euclidean expansion of f . Let UJ

d be a monomial generated in the algorithm
above. It is sufficient to show that this monomial is of Euclidean form. Indeed, let j′ be the greatest

index less than j such that Jj′ ≥ nd,j. This means that degXd
(UJ1

d,1 · · ·U
Jj′

d,j′) ≥ dd,j′+1 and we must
divide it (in the monomial in the procedure above) by Ud,j′+1, which is a contradiction.

The uniqueness of Euclidean expansion comes from the fact that (by Lemma 3.8) the degXd
(UJ

d )
of a monomial of Euclidean form determines the vector J . Therefore there is a unique vector J0

such that degXd
(UJ0

d ) = degXd
(f). This monomial (plus its coefficient)is common in all the possible

Euclidean expansions of f . Subtracting this monomial from f , by induction on the degree of f we are
done. �

Lemma 5.3 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
and let f ∈ k[[X0, . . . , Xd]]. The jth Euclidean ex-

pansion of f can be obtained using the (α(j))−adic expansion of it as follows. Let f =
∑

I(J) cI(J)U
I(J)

be the (α(j)) − adic expansion of f . Then the Euclidean expansion of f is equal to

∑

J′

(
∑

I(J),I(J)d=J′

cI(J)
U I(J)

UJ′

d

)UJ′

d .

12



Proof. It is clear that the above expansion satisfies all the properties of the jth Euclidean expansion
of f . Thus, by uniqueness, it is the Euclidean expansion of f . �

Remark 5.4 Using the above lemma, we extend the notion of Euclidean expansion to the power
series ring k(d). An expansion of f ∈ k(d) of the form f =

∑

J cJUJ
d ∈ k(d−1)[[Ud]] which satisfies

the conditions of Definition 5.1 is called the Euclidean expansion of f . The above lemma shows that
such an expansion can be obtained using adic expansion of f . An argument, similar to the proof of
Proposition 3.10, shows that this expansion is unique.

Proposition 5.5 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
and let ν be the k−valuation of the field k(d)

attached to it. Set ν = ν |k(d−1)
. The valuation ν (as a valuation of the field k(d−1)(Xd)) can be

defined using the data [ν, (Ud,j)
αd

j=1, (βd,j)
αd

j=1] as follows. For any f ∈ k(d−1)[Xd] let f =
∑

J fJUJ
d be

its αdth Euclidean expansion then

ν(f) = minJ{ν(fJ) + βd.J}.

Proof. The lemma above shows that the equation of the proposition is just another writing for
ν(f), which is originally the minimum of the values of the monomials in the adic expansion of f . �

Remark 5.6 With the notations of the proposition above, if we write f =
∑

t ftU
t
d,j, with degXd

(ft) <
dd,j. Then with a similar argument we have

ν(f) = min
t
{ν(ft) + tβd,j}.

Proposition 5.7 The graded algebra grνα
k(d−1)[Xd] is a Euclidean domain.

Definition 5.8 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
. We consider the set of acceptable vectors α(j) =

(α0, . . . , αd−1, j), for j = 1, . . . , αd.
For any f ∈ k(d−1)[Xd], and any α(j) we define

δα(j)(f) = max{ℓ : ℓ is power of Ud,j in the monomials of in
να(j) (f)}.

Remark 5.9 Let u ∈ k(d−1) and f ∈ k(d−1)[Xd] then δα(j)(f) = δα(j)(uf).

Lemma 5.10 For any f, g ∈ k(d−1)[Xd] we have

δα(j)(f.g) = δα(j)(f) + δα(j)(g).

Proof. First we find u, v ∈ k(d−1) such that uf, vg ∈ k(d−1)[Xd], this is always possible. Then by
last remark it suffices to prove the lemma for uf and vg, i.e., we can assume f, g ∈ k(d−1)[Xd]. Lemma
4.4 shows that there are unique monomials fJUJ

d and gJ′UJ′

d of in(f) and in(g) (respectively) that
have maximal Ud,j power. Write Euclidean expansion of in(f.g) using the product in(f).in(g) and al-
gorithm for getting adic expansion. We see in(f).in(g) has a unique monomial with Ud,j−degree equal

δα(j)(f) + δα(j)(g), i.e., fJgJ′UJUJ′

. Now, Lemma 4.6, (ii), shows that after getting adic expansion
from this product the Ud,j−powers of the monomials do not change which proves the equality. �

The following lemma is an adaption of the results of [3] in our situation.

Lemma 5.11 Fix an SKP [Ui,j , βi,j ], and let α(j) be defined as in Definition 5.8 then

(i) For f ∈ k(d−1)[Xd], we have δα(j)(f) = 0 iff f is a unit in grν
α(j)

k(d−1)[Xd].

(ii) If f, g ∈ k(d−1)[Xd] then there exists Q, R ∈ k(d−1)[Xd] such that f = Qg+R in grν
α(j)

k(d−1)[Xd]

and δα(j)(R) < δα(j)(g).

(iii) The polynomials U
d,α

(j)
j

, U
d,α

(j)
j+1

are irreducible in grν
α(j)

k(d−1)[Xd].

(iv) If j′ < j then Ud,j′ is a unit in grν
α(j)

k(d−1)[Xd].
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(v) If f =
∑

t ftU
t
d,j, with degXd

(ft) < dd,j and δα(j)(f) < nd,j then f = ftU
t
d,j in grν

α(j)
k(d−1)[Xd]

for some t < nd,j.

Proof. Throughout the proof we fix the expansion f =
∑

t ftU
t
d,j, with degXd

(ft) < dd,j.
(i). If δα(j)(f) = 0 then f = f0 in grν

α(j)
k(d−1)[Xd]. As Ud,j is irreducible and degXd

(f0) < dd,j

the polynomial Ud,j is prime with f0. Hence we can find A, B ∈ k(d−1)[Xd], degXd
(A), degXd

(B) <
dd,j so that Af0 = 1 − BUd,j. Then να(j) (Af0) = να(j) (1) ≺ να(j)(BUd,j). Therefore, Af0 = 1 in
grν

α(j)
k(d−1)[Xd]. So f0 and hence f is a unit in grν

α(j)
k(d−1)[Xd]. Conversely, if f is unit, say Af = 1

in grν
α(j)

k(d−1)[Xd] for some A ∈ k(d−1)[Xd] then δα(j) (f) + δα(j) (A) = δα(j)(1) = 0 so δα(j)(f) = 0.

(ii). Write g =
∑

t gtU
t
d,j. It suffices to prove the claim when gt = 0 for t > M := δα(j) (g) and using (i)

we may assume gM = 1. As degXd
(gt) < dd,j for t ≤ M we have degXd

(g) = Mdd,j. Euclidean division
in k(d−1)[Xd] yields Q, R1 ∈ k(d−1)[Xd] with degXd

(R1) < degXd
(g) so that f = Qg + R1. Write

R1 =
∑

t RtU
t
d,j and set N := δα(j)(R1), R :=

∑

t≤N RtU
t
d,j. Then f = Qg + R in grν

α(j)
k(d−1)[Xd]

and
degXd

(R) = degXd
(RN ) + Ndd,j < Mdd,j = degXd

(f).

Hence N < M and we are done.
(iii). We have δα(j)(Ud,j) = 1 so if Ud,j = fg in grν

α(j)
k(d−1)[Xd] then δν

α(j)
(f) = 0 or δα(j)(g) = 0.

Hence by (i), f or g is a unit in grν
α(j)

k(d−1)[Xd].

For Ud,j+1, we have Ud,j+1 = U
nd,j

d,j − θd,jU
m(d,j)

. Let Ud,j+1 = fg in grν
α(j)

k(d−1)[Xd] with 0 <

δα(j)(f), δα(j) < nd,j. By (v), we can write f = ftU
t
d,j, g = gt′U

t′

d,j. Then Ud,j+1 = ftgt′U
nd,j

d,j

so (1 − ftgt′)U
nd,j

d,j = θd,jU
m(d,j)

. As Ud,j is irreducible and Um(d,j)

a unit, we have ftgt′ = 1 in

grν
α(j)

k(d−1)[Xd]. But then Um(d,j)

= 0 in grν
α(j)

k(d−1)[Xd] which is absurd. So we can assume

δα(j)(f) = nd,j and δα(j) = 0. Hence g is a unit.
(iv). By (i) it suffices to show that δα(j)(Ud,j′) = 0. If dd,j′ < dd,j then this is obvious. If dd,j′ = dd,j

then Ud,j′ = (Ud,j′ − Ud,j) + Ud,j where degXd
(Ud,j′ − Ud,j) < dd,j . Now να(j) (Ud,j′) = βd,j′ < βd,j =

να(j)(Ud,j), so να(j) (Ud,j′ − Ud,j) < να(j)(Ud,j) and δα(j)(U ′
j) = 0.

(v). Suppose να(j)(ftU
t
d,j) = να(j)(ft′U

t′

d,j), where t ≤ t′ < nd,j . Then (t′ − t)βd,j = να(j−1)(ft) −
να(j−1) (ft′). Hence nd,j | t′ − t thus t′ = t. �

Proof of Proposition 5.7: The item (ii) proves the claim. �

Theorem 5.12 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
and let ν be its associated valuation. Consider

0 6= f ∈ k[[X1, . . . , Xd]]. Then initial form of f has a unique decomposition of the form:

(i) If Ud,αd
6= 0, nd,αd

= ∞ then

f = f̃UJ
d , in grνk(d−1)[Xd],

where f̃ ∈ k(d−1) and 0 ≤ Jj < nd,j, for 1 ≤ j < αd.

(ii) If Ud,αd
6= 0, nd,αd

6= ∞ then

f = p(T )U Ĵ
d , in grνk(d),

where p(T ) ∈ k(d−1)[T ] and 0 ≤ Jj < nd,j, for 1 ≤ j ≤ αd, and T = U
nd,αd

d,αd
U−m(d,αd)

. Moreover,
the coefficients of p(T ) has the same ν−value.

(iii) If Ud,αd
= 0 then

f = f̃UJ
d , in grνk(d−1)[Xd],

where 0 ≤ Jj < nd,j, for 1 ≤ j ≤ αd, and Jj = 0, except for a finite number of j.

Proof. (i). Suppose f =
∑

J fJUJ
d is the Euclidean expansion of f (Remark 5.4), where fJ ∈ k(d−1),

and 0 ≤ Jj < nd,j for j < αd . We claim that for any two J and J ′ we have ν(fJUJ
d ) 6= ν(fJ′UJ′

d ).
Indeed, if we have equality, consider the greatest index j0 such that Jj0 6= J ′

j0
. We have (J ′

j0
−

Jj0)βd,j0 = ν(fJ ) − ν(fJ′) +
∑

j < j0(Jj − J ′
j)βd,j . Then as j0 < αd (because nd,αd

= ∞), we have
nd,j0 | Jj0 − J ′

j0
. Thus Jj0 = J ′

j0
which is absurd.
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(ii). We show that any monomial fJUJ
d of the Euclidean expansion of in(f) is of the form f̂JT rαd U Ĵ

d ,

in grνk(d), for a fixed Ĵ such that 0 ≤ Ĵj < nd,j, for any j.

Fix J, and make the Euclidean division Jαd
= rαd

nd,αd
+ Ĵαd

, 0 ≤ Ĵαd
< nd,αd

. And write fJUJ
d =

fJU
Ĵαd

d,αd
T rαd Ua

d , with a := J + rαd
.m

(d,αd)
d . As

U
nd,j

d,j = θd,j(U
m

(d,j)
<d−1

<d−1 )U
m

(d,j)
d

d , in grνk(d−1)[Xd],

making the Euclidean division aj = rjnd,j + Ĵj , (with 0 ≤ Ĵj < nd,j) for the greatest index j such

that aj 6= 0, we get
∏

j′≤j U
aj′

d,j′ = U
Ĵj

d,j

∏

j′<j U
a
′
j′

d,j′ with a′
j′ ∈ N. We finally get by induction, a

representation

fJUJ
d = f̂JT rαd U Ĵ

d ,

where 0 ≤ Ĵj < nd,j, for any j. As ν(T ) = 0, with an argument like in the final part of the case (i) one

can argue to show that Ĵ is the same for all J ’s. Clearly, the coefficients of p has the same ν−value.
(iii). This is similar to (i). �

Corollary 5.13 Let ν be a valuation as above.

(i) If Ud,αd
6= 0, nd,αd

6= ∞ the only irreducible element of grνk(d−1)[Xd] is Ud,αd
.

(ii) If Ud,αd
6= 0, nd,αd

< ∞ and moreover we impose the following strong condition: For every two
monomial of adic form U I , UJ ∈ k(d−1), from ν(U I) = ν(UJ ) one gets U I = UJ . Then the

irreducible elements of grνk(d−1)[Xd] are of the form U
nd,αd

d,αd
− θUm(d,αd)

, for some θ ∈ k.

(iii) If Ud,αd
= 0 then grνk(d−1)[Xd] is a field.

Proof. (i). Assume f ∈ grνk(d−1)[Xd] is irreducible. By (i) of the last theorem, f = f̃UJ
d . But Ud,j

is a unit for j < αd (by Lemma 5.11, (iv)), so Ud,αd
is the only irreducible element in grνk(d−1)[Xd]

(Lemma 5.11, (iii)).
(ii). We use (ii) of the last theorem. There we construct a polynomial p(T ) ∈ k(d−1)[T ]. As we
are working in the graded ring, we can replace the coefficients of p with their initial, which by
assumption is a unique monomial U I0 ∈ k(d−1). Thus P (T ) = U I0p′(T ), where p′(T ) ∈ k[T ]. Factorize
p′(T ) =

∏
(T − θl), modulo unit factors, we hence get

f = U I0U
Ĵαd

−Lnd,αd

d,αd

∏

l

(U
nd,αd

d,αd
− θlU

m(d,αd)

),

where L = deg(p). On the other hand Lemma 5.11, (iii), shows that all the elements of the form

U
nd,αd

d,αd
− θlU

m(d,αd)

are irreducible in grνk(d−1)[Xd]. Thus the decomposition above is the decompo-
sition of f into prime factors in grνk(d−1)[Xd].
(iii). It is a result of (iii) of last theorem and Lemma 5.11, (iv). �

Remark 5.14 Consider a valuation ν as above. The strong condition of Corollary 5.13, (ii), is
satisfied iff for any i = 0, . . . , d − 1 either we have Ui,αi

= 0 or Ui,αi
6= 0 and ni,αi

= ∞.

Theorem 5.15 (Homogeneous decomposition) Let ν be a valuation attached to an SKP. Con-
sider the ring R = k((α,d)) and the induced valuation on it ν. Every element f ∈ R has a unique
decomposition of the form

f = p(Ti1 , . . . , Tid1
)UJ , in grνRν ,

where d1 ≤ d + 1 and A = {i1, . . . , id1}, for any i ∈ A, ni,αi
6= ∞ and Ti = U

ni,αi

i,αi
U−m(i,αi)

. And
0 ≤ Ji′,j < ni′,j , for 1 ≤ j ≤ αi′ . And p(V1, . . . , Vd1) ∈ k[V1, . . . , Vd1 ].

Proof. This is a simple induction on Theorem 5.12. �

Theorem 5.16 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
, such that αd ≥ ω. Suppose there exists an

infinite sequence of ordinals s1 < · · · < sω = αd such that nd,sj
> 1, for any j < ω. Consider the

acceptable vectors α(sj) (see Definition 5.8). For any f ∈ k(d−1)[[Xd]] there exists j∗ ∈ N such that
for any j ≥ j∗ we have

ν
α

(sj)(f) = ν
α

(sj∗
)(f).

Thus the limit limj→ω ν
α

(sj ) is well-defined and is equal to να(sω) = ν.
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Proof. Multiplying f by a suitable factor u ∈ k(d−1) we can assume f ∈ k(d). By assumptions, we
have Ud,αd

= 0. Thus by Corollary 4.5, we have inνα
(f) = cJUJ

d , cJ ∈ k(d−1). Suppose j∗ is the
maximum index such that Jsj∗

6= 0. Then by the algorithm of getting adic expansion, this j∗ works.
�

6 SKP-Valuations and numerical invariants

One of the ways to classify the valuations is through their numerical invariants. In this section we
show how the arithmetic of the SKP’s of an SKP-valuation determines the numerical invariants of the
attached valuation on the field k(d).

Proposition 6.1 Fix an SKP [Ui,j , βi,j ]i=0···d,j=1···αi
and suppose ν be its attached k − valuation.

Let [Ui,j , βi,j ]i=0···d,j=1···α′
i
be its minimal pseudo-SKP. The valuation ν can be defined using the data

[Ui,j , βi,j ]i=0···d,j=1···α′
i
.

Proof. It is sufficient to note that to define the valuation ν it is sufficient to know the adic expansion
of elements. Moreover, in the adic expansion of an element the Ui,j ’s with ni,j = 1 can not appear.
Thus the adic expansion of every element is defined using only the minimal pseudo-SKP associated
to ν. �

The following lemma computes the rank and rational rank and value-semigroup of an SKP valua-
tion in terms of the arithmetic of the SKP.

Lemma 6.2 Consider a centered k−valuation on the ring k(d) such that ν = val[Ui,j , βi,j ]i=0···d,j=1···αi
.

Let ν = ν |k(d−1)
. It is clear that ν = val[Ui,j , βi,j ]i=0···d−1,j=1···αi

.

(i) We have rk(ν)− rk(ν) ∈ {0, 1}. More precisely rk(ν) = rk(ν)+1 iff βd,αd
/∈ ∆ (∆ is the smallest

isolated subgroup of Φ such that Φ∗
d−1,αd−1

⊂ ∆), and rk(ν) = rk(ν) iff βd,αd
∈ ∆.

(ii) We have r.rk(ν) − r.rk(ν) ∈ {0, 1}. More precisely r.rk(ν) = r.rk(ν) + 1 iff βd,αd
/∈ Φ∗

d−1,αd−1
,

and r.rk(ν) = r.rk(ν) iff βd,αd
∈ Φ∗

d−1,αd−1
.

(iii) The semigroup ν(k(d) \ {0}) is equal to Γd,αd
.

We define the notion of pseudo-SKP. It allows us to avoid ordinal numbers greater than ω for αi.

Definition 6.3 For a SKP [Ui,j , βi,j ]i=0···d,j=1···αi
a pseudo-SKP is a subset of U ’s and β’s which

comes from dropping an arbitrary number of U ’s (and associated β’s) for which ni,j = 1 and also one
can not drop Ui,αi

’s. To any SKP is attached a minimal pseudo-SKP which is obtained by dropping
all Ui,j such that ni,j = 1. This minimal attached pseudo-SKP is unique. We denote this minimal
pseudo-SKP by [Ui,j , βi,j ]i=0···d,j=1···α′

i
, where α′

i ≤ ω (using the same notation as SKP’s).

Theorem 6.4 Consider a centered k−valuation on the ring k[[X0, X1, X2]], ν, which is defined by an
SKP, i.e., let ν = val[Ui,j , βi,j ]i=0,1,2,j=1···αi

. Moreover, we suppose β0,1 ∈ ∆1. Then we can compute
the numerical invariants of this valuation using the arithmetic of its minimal pseudo-SKP. This is
summarized in Table 1.

Proof. The computation of the rank and the rational-rank is a simple task. The only nontrivial task is
the computation of the transcendence degree or the dimension of valuation. It is a direct calculation
using Theorem 5.15. For example in the case (I), pick f, g ∈ k(d−1) with ν(f) = ν(g). Then by

Theorem 5.15 we have in(f) = p(T1, T2)U
J and in(g) = q(T1, T2)U

J′

. Using the properties of J and
J ′ in the theorem, we see that J = J ′. Thus f/g = p(T1, T2)/q(T1, T2). This shows kν = Rν/mν =
k(T1, T2). We show that T1 and T2 are algebraically independent in kν . If T2 is algebraic over k(T1),
then there is a polynomial 0 6= p(T ) ∈ k(T1)[T ] such that p = p(T2) =

∑

i ciT
i
2 = 0 in kν . Regarding

T1 and T2 as elements of Rν , we have p(T2) =
∑

i ciT
i
2 ∈ mν . Note that T1 =

U
n1,α1
1,α1

Um. and T2 =
U

n2,α2
2,α2

Um .

Multiplying p with a suitable power of Um.+m, say n, we can assume that Un(m.+m)p ∈ k((α,2)). The
condition p ∈ mν implies that the cancelation should occur between initail monomials of monomials
of Un(m.+m)p in the course of getting the adic expansion. We show that this is impossible.
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Arithmetic of minimal pseudo-SKP of the valuation ν rk r.rk tr.deg
(I) α′

1 < ∞, α′
2 < ∞ βi,j ∈ Qβ0,1 1 1 2

(II)1
(II)2

α′
1 < ∞, α′

2 < ∞
α′

1 < ∞, α′
2 < ∞

βi,j ∈ ∆1, β1,α′
1
∈ Qβ0,1, β2,α′

2
∈ ∆1\Qβ0,1

βi,j ∈ ∆1, β1,α′
1
∈ ∆1\Qβ0,1, β2,α′

2
∈ Qβ0,1

1 2 1

(III)1
(III)2

α′
1 = ∞, α′

2 < ∞
α′

1 < ∞, α′
2 = ∞

βi,j ∈ Qβ0,1

βi,j ∈ Qβ0,1
1 1 1

(IV) α′
1 < ∞, α′

2 < ∞ β1,α′
1
∈ ∆1\Qβ0,1, β2,α′

2
∈ ∆1\(β0,1, β1,α′

1
) ⊗ Q 1 3 0

(V)1
(V)2

α′
1 = ∞, α′

2 < ∞
α′

1 < ∞, α′
2 = ∞

β2,α′
2
∈ ∆1\Qβ0,1

β1,α′
1
∈ ∆1\Qβ0,1

1 2 0

(VI) α′
1 < ∞, α′

2 < ∞ max{βi,α′
i
} ∈ ∆2\∆1, β1,α′

1
∈ (β0,1, β2,α′

2
) ⊗ Q 2 2 1

(VII)1
(VII)2

α′
1 < ∞, α′

2 < ∞
α′

1 < ∞, α′
2 < ∞

β1,α′
1
∈ ∆2\∆1, β2,α′

2
∈ Φ\∆2

β2,α′
2
∈ ∆2\∆1, β1,α′

1
∈ Φ\∆2

3 3 0

(VIII)1
(VIII)2

α′
1 = ∞, α′

2 < ∞
α′

1 < ∞, α′
2 = ∞

β2,α′
2
∈ ∆2\∆1

β1,α′
1
∈ ∆2\∆1

2 2 0

(IX) α′
1 < ∞, α′

2 < ∞ max{βi,α′
i
} ∈ ∆2\∆1, β1,α′

1
∈ ∆2\(β0,1, β2,α′

2
) ⊗ Q 2 3 0

(X) α′
1 = ∞, α′

2 = ∞ 1 1 0

Table 1: Numerical invariants via arithmetic of SKP of the valuation

Write p =
∑

i,j ri,jT
i
1T

j
2 , ri,j ∈ k. Then Un(m.+m)p =

∑

i,j ri,jU
n[i,j]U i

1,α1
U j

2,α2
. By Lemma

4.6.(ii) no cancelation can occur between initial monomials of monomials of Un(m.+m)p with different
j’s (notice that index (2, α2) does not occur in Um[i,j]). It remains to show that no cancelation can
occur for a sum of the form qj =

∑

i ri,jU
n[i,j]U i

1,α1
U j

2,α2
. Notice that the power of U2,’s, are the same

for different monomials of q and the power of U1,α1 are different for any two monomial of q. Now,
the proof of Lemma 4.6.(ii) shows that in the course of getting the adic expansion of the monomials
of q the power of U1,α1 in the initial monomials remain diffrent, for any two monomial of q. Thus no
cancelation can occur between the initial monomials of q. �

7 Realization of certain class of semi-groups as value semi-

groups of polynomial rings

In this section we give a result on the realization of a semi-group as the semi-group of values which
takes a valuation on a polynomial ring.

Theorem 7.1 Let Γ be a semigroup of an ordered abelian group (Ψ,≺), given by a minimal system
of generators {γj}j≤α ⊆ Φ+, α = ωn + j∗, n, j∗ ∈ N (we denote this by o.t(Γ)=n). Suppose that
Γ is positively generated (Definition 2.2), and γj+1 ≻ njγj when nj 6= ∞. set G = (Γ) and d =
r.rk(G) + o.t(Γ) + 1. Then there exists a valuation ν of the field k(X1, . . . , Xd), centered on the
polynomial ring k[X1, . . . , Xd], such that its value-semigroup is equal to Γ.

Proof. We give special names for those indices of the γ’s that are not rationally independent
to the previous ones γst

t′
. Introducing a new variable for every γst

t′
+1, we construct a set of key-

polynomials of this new variable with values equal to γ, up to γst
t′+1

. Then, we need to define a new

variable. However, the situation differs in the case of limit ordinal: If st
t′+1 is a limit ordinal then

the limit key-polynomial which is available is zero and can not take γst
t′+1

as its value. Thus, we are

forced to define a new variable for taking value γst
t′+1

. The precise definition is as follows.

Set {γj′}j′≤α = {γs1
1
} ∪ {γst

t′
+j}t∈T,t′∈T ′

t∪{ft+1},j∈Jt,t′
, where T = {1, . . . , n + 1}, T ′

t = {1, . . . , ft}

for t ∈ T . ft ∈ N, for t ∈ T , f0 := 0, ft+1 := ∞. Jt,t′ = {1, . . . , st
t′+1 − st

t′}, for t ∈ T and t′ < ft.
For t ≤ n: Jt,ft

= {j : 1 ≤ j < ω}, and for t = n + 1, Jt,ft
= {j : 1 ≤ j ≤ j∗}, where α = ωn + j∗,

j∗ ∈ N (for the simplicity of notation we assume fn+1 < j∗). Jt,ft+1 = {0}, and γst
ft+1

= γst+1
1

, for

t ≤ n. And finally, for t ∈ T we have γst
1

= γω(t−1) and the finite set {γst
t′
}t′∈T ′

t
are all those γ,

γω(t−1) ≤ γ < γω(t), with nst
t′

= ∞ (see Lemma 2.1, for definition of n).

Then, by Lemma 7.3, we have r.rk(G) = f0 + . . . + fn+1.
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For t ∈ T and t′ ∈ T ′
t set it,t′ = f0 + . . .+ ft−1 + t+ t′, and it,t′ = f0 + . . .+ ft + t+1, for t′ = ft+1.

Notice that for any t and t′ we have it,t′ > 1. Thus the total number of i’s which has been defined d,
is equal to (we give here the formula without assumption fn+1 < j∗):

d =

{
f0 + . . . + fn+1 + n = r.rk(G) + ot(Γ) : j∗ = fn+1

f0 + . . . + fn+1 + n + 1 = r.rk(G) + ot(Γ) + 1 : j∗ > fn+1

Set β1,1 = γs1
1
. It is straightforward to check that the sequence {β1,1, βit,t′ ,j

:= γst
t′

+j}it,t′=2···d,j∈Jt,t′

is a sequence of values (note the index i starts from 1). The key-polynomials of the SKP attached to
this sequence of values are all polynomials of the ring k[X0, . . . , Xd−1]. The valuation ν attached to
this SKP has value semi-group Γ. �

Remark 7.2 The following remarks are in order:

• The positivity condition is quite restrictive in general. However, it is well-known that in the
case we restrict to the value semi-groups of polynomial rings of two variables, all the value
semi-groups are positively generated.

• It seems that the bound d obtained for the number of the variables of the polynomial ring is
the best possible. More precisely: Given any semi-group Γ it can not be realized as a value
semigroup of a polynomial ring with < d variables.

Lemma 7.3 With the notation of Theorem 7.1, for any limit ordinal ω(i+1) ≤ α we have rk(Gω(i+1)) =
rk(Gω(i+1)′−) + 1. In particular, nω(i+1) = ∞.

Proof. We extend the notion of effective component to this situation. Consider an order embedding
(Φ,≺) ⊆ (Rn, <lex) such that Γ ⊆ Rn

≥les0. By definition, the effective component for the limit ordinal
ωi is the first index t ≤ n such that #{(γj)t}ωi≤j<ω(i+1) = ∞. Like in the case of effective components,
one can prove t is well-defined. Note that (γj)t′ = 0, for t′ < t and j < ω(i + 1). Moreover, one
can show that the content of Proposition 2.10.(i) and (ii) hold in this case. Suppose the effective
component for ωi is t. Then an argument similar to the proof of Proposition 2.10.(iii), shows that
(γj)t → +∞(j → ω(i + 1)). But γω(i+1) >lex γωi+j , for j ∈ N. This is possible only if (γω(i+1))t′ > 0,
for some t′ < t. �
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