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Let O € XO C € be a representative of a germ of a reduced complex

analytic surface, defined by f(x,,x.,x.) =0, f eff‘ = C{x,,%¥,,% } - We consider
3 5 1772773 3 1772773
projections p : € - € described by :
x X = x, + : u xA
1 1 1,A
2 g [Alg N
(>|<)N for each N 2 2.
x¥=x_+ L___.N u xA
2 2 2,A
2 g !A jg N
and the space with coordinates (ul,A' u2,A) is denoted by Uy
. . - X 3 2
Thus, we obtain a projection p : € x UN > € x UN

X X% . 5 5 X X 2
(xl,xz,x3,g) - (X1'X2’E')' and its restriction T to Xox UN, T 2 Xox UN - € x UN

; 2 - g
has a discriminant which is a hypersurface A*C €™ x UN containing {O }x UN since
0 ‘€ XO is a singular point.

~t

We now consider the Nash modification vy : Xo > Xo of Xo’ which in this

case is nothing but the blowing up on XO of the ideal generated in O;( o~ @'3/(f)
0,0
by the three partial derivatives of f. This ideal, and therefore its blowing up,

are independent of the choice of coordinates and of the generator of the ideal

£ 6’,%. Considering v as this blowing-up, we have a diagram
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where P denotes the projective space of 2-planes through the origin in ¢3, with
homogeneous coordinates (a:b:c) such that the hypersurface corresponding to the

point (a:b:c) is ax1-+ bx2+-cx3 = 0.

= -
We have the inequality dim v (0) £ 1 since Vv 1(O) is contained in the

. . . _1 iy 2
exceptionnal divisor of v . Furthermore, we see that v " (0) € P ".

Let us consider the subset B of v_l(O) defined as follows

1

" - - =4
A point x € VvV " (0) belongs to B if either x is an isolated point of v ~(0), i.e.,

. -1 _ . -1 _ b - -1
d1m§ v (0) =0, or dlmk v “(0) =1, but Xo is not eguisingular along Vv (O)red

at X in the following sense:

Definition : A reduced complex space Z of pure dimension k is said to be equisingular
along a subspace Y C Z of dimension k-1 at a point y € ¥ if

1) Y is non-singular at y

2) Z is equisaturated along Y at y, i.e. the saturation Zs-—f—9Z has the

property that z° is locally an analytic product by Y at the point sml(y)

By the theory of saturation, this is eguivalent to saying that for a
. . . . k+1 . . . .
generic linear projection Z —E-+¢ , the image of Z is a hypersurface which is

Zariski-equisingular along 7™ (Y) at the point T (y).

Let us denote by L C P 8 the projective line composed of the points

of i>2 which represent planes in ¢3 containing the line X, =%, = 0

As we see, the datum of a linear procjection ¢3_*_,¢ (in the coordinates
X

: . -
be x3) is equivalent to the datum of such a line in P~ . We can now state .

1" =27
Theorem : If the line L C f’z corresponding to the projection (Xl’XZ) does

not contain any point of the set B C v_l(O) defined above, and in addition is

transversal in f’z to v_l(o)red, then, for every integer N > 2, the hypersurface
*
AN C ¢2><UN is equisingular along {O}XUN at the point {0} x {0}.

Remark that B contains all the singular points of v_l(O) , and is a

red
finite set of points. The condition on L is therefore realized for a Zariski

.2
open dense subset of the set E’z of lines in P .

Proof : Let us consider the Nash modification of XOX UN ; by its definition, it
— ot
Y 1dU
is naturally isomorphic to VN g Xox UN-MW~-° Xo><UN and therefore we have a

diagram :
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Let us consider the hypersurface P in € X P = X UN defined by

voa b o

* * X |

0%, 3x1 Bxl

&t % B B O

1 2 3
X X X

sz 3x2 8X2.

8x1 8x2 8x3,

We remark that the induced projection P ’UN is flat and that furthermore

in view of the form of the equations(*}N the fibre over O of this induced projection
3
is L X ¢ & ﬁ’2><¢3. Therefore the map Prww_éuN is smcoth (= flat and with non-

singular fibres) over a neighbourhood of O in UN.

If L satisfies the conditions of the theorem, since B contains the
: ; -1 . s
intersection of v " (0) with the strict transforms by v of the components of the
singular locus of Xo' we have that :

The closure of the part of the critical locus C of the projection

X

X
T = XO><UN~~>¢2><UN which is not contained in the singular locus of XOX UN is
_ ~ (@) e e s iy Wy
the image by Vv of (XOX UN)r7 P. In fact if we set C x = C % 51ng(XOX UN) we have
m m

(ﬁ;x UN) N P is the strict transform by Vv of CO* 3
m

Now I claim that (§;X UN) N P is equisingular along a finite number of
subspaces Wi’ each of which is locally isomorphic to UN.

7 -1 ; ; - 5§
Let X€ v "(0) [l By the assumption on L, X, is equisingular along

L.
& v ; g i =1
Y (O)red at X. Therefore, XOX UN is equisingular along V (O)redx UN at

g: 2 3 -1 .
¥ x {0} and since we know that L X CB is transversal in P "X ¢ to Vv (O)red at- ix,

= . 3
we have that the hypersurface P is transversal to Vv (O)redx UN in ¢x P ><'UN.



-1
In other words, if we set W = (Vv ~(O) X UN) N P, we have that in a neighbourhood

red
. y -1 . .
of each of the points x € L -+ vV "(0), W induces a non-singular subspace WX, trans-
versal intersection of \)_1(0)red X UN with P, and furthermore the induced map
W, - . Uy is a local isomorphism at ¥

From the theory of saturation, it follows that (XOX UN)f?P is equisingu-
lar along W at each of the points X € L 7 v_l(o). (Remark : if » [ vﬁl(o) = @,

which happens if dim v_l(o) = O, this means that (X X Uy) TPp=g).

In particular, (i;x UN)f! P has a strong simultaneous resolution along
W, hence CO* has at least a weak simultaneous resolution. Since A; is the
union of tge images of co* and Sing(xox UN) by ﬂ* , we deduce that A: has at
least a weak simultaneousﬂresolution along {0} x UN. In my algebraic proof of
" 1 constant = equisingularité" I proved in particular that for hypersurfaces,

S8

weak simultanecus resolution in codimension 1 implies equisingularity (and hence

also strong simultaneous resolution). This completes the proof of the
theorem.

To complete the proof of the fact that dimensionality type can be computed
by generic linear projections, one then proceeds as follows : take xt C Cr+1,
and Y C Xr, of codimension £ 2. Take a linear projection X - Cr which is
"generic" in the sense of the theorem above with respect to all the slices of X by
some foliation of ¢r+1 by 3-planes which are transversal to Y, and move it as above
to obtain a truly generic projection. By the Theorem, we obtain a family of discrimi-
nants (in which the image of Y is of codim 1) the slices of which by 2-planes on c*
transversal to the image of Y are equisingular. The result now follows from the
fact that in codimension 1, Zariski equisingularity can be tested by looking at

slices (= considering the total space as a family of curves).

Some steps towards the end of the proof in arbitrary codimension

Let X° C ¢N ; 1f we no longer assume N = r+ 1 we can still define the Zariski

dimensionality type of X at x € X as follows : Consider r+ 1 series
X X
X, = s v, XA where X = (X,,..-,X) and 1 £ 1 £ r+1 ; Set k = C(v. _) .
g iA 1 N i,A
0< |a
. X X X ¥l -
Define dtm(X,x) = et *(X ;X ) where X C A % is the image of X by the map
k k
N X+ ’
:ﬂ1* —_— Ak* defined by the X, -
k

Then hopefully one can prove the existence of a stratification of X by

dimensionality type, along the lines of Zariski.



r+l1 .
Now we consider X C € and the Nash modification v : X. - .«X . We
- = W o = 3 ;
look at the decomposition vy ~ (0) =LJAi where Ai = (X)i: v  (0) andu(x)i is the

stratification of X by dimensionality type.

Given Y C X, we can also consider the partition v_l(Y) = U Si defined
in the same manner. It is natural to conjecture that Zariski equisingularity implies
the following :
1) X is equisingular along each of the Si

2) The natural morphism Si_»w_;Y is a submersion.

Now if this is true in any dimensions we can proceed as follows :

r r+l : ; ;
Let again XO cce and consider projections described by

Mo S P Bvevemcws W 74 (g g )

X XU et ®e, [ X P XU
o} N
l v
X
XO UN
where £° is the projective space with coordinates (a1 R ar+1) such that the
corresponding hyperplanes X ax, = 0
., ¥ 2
Let P CC x P :<UN be the hypersurface defined by
al, ............ ’ ar+1 1
X x
Bxl 8x1
75§ AR £ E 3 .
det axl o8 | o
X X
ox ox
ax S

. 1 r+1
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3 g . . Y+
and choose the direction of projection €

r
e ey, (T (xl,....,x )p———y(xl,...,xr)

r+l
in such a way that the corresponding hypersurface L C B is transversal to all the

-1 : ) .
strata Ai C v "(0). such a linear projection we call strongly transversal.

Then if X is Zariski equisingular along Y, L is also transversal to the
Si and therefore the induced map P [ (SiX UN)___a.UNX Y is a submersion, having

fibre over O equal to L N (Ai).

~/
Since Xo>< UN is "equisingular" along SiX U we have that (XO>< UN) ne

NI
X
is "equisingular" along (Six UN)DIP and therefore the discriminant A C ¢r><UN is

equisingular along Y><UN at least in the sense of weak simultaneous resolution.

The difficulty which remains here is to prove that this discriminant has
in fact a strong simultaneous resolution. Essentially this amounts to showing that
the map C*.,E,_,A* from the critical locus to the discriminant A*Cicrx UN is
a "generic projection" for C* in the sense that the image is equisingular (in the
sense of hypersurfaces, i.e. Zariski's sense) with the image of the generic
projection of C* . More precisely if we consider a projectio:
™ 5 ¢r+1><UNX ¢____,¢r><UN><¢ such that ﬂ* |¢r+1><UN><{O} = T* , then we want the

. X X
image by T of C X € to be equisingular along OXOX®€ , at OX0OXQ .

If we can prove that the equisingularity of X along Y at O implies the
equisingularity of A* along Y X UN' and also that the equisingularity of X along Y
in the sense of linear projections implies the equisingularity of A* along Y X UN,
then we have proved that equisingularity in the sense of Zariski and equisingula-
rity in the sense of linear projections coincide.

There is also a sketch of proof by similar methods of the following

+
fact. Let X C ¢r 1 and YC X, and assume that Y is non singular at O € Y. Let us

r+1 ;
choose a local retraction r : € ——>Y at 0, and a system of coordinates Zl""’zr+1—d
r+1-4

- +
on r 1(0) at O. Then we can identify ¢ 1 with ¥YxX ¢ ; O and we may restrict our
r+1- id,, X =
choice of projections to those which are of the form : YXC(C d %y oY X ¢ d
(and iterate this).

That is, we consider only those projections which are compatible

+ +1-
with a product decomposition ¢t L vy x ¢° 4 d.

Now assume that X is equisingular along Y at O in the sense of linear
projections. Then,supposing that we can prove that this implies that the
stratification of v_1(Y) is smooth over Y, we prove by the same method as above
that the discriminant of idy><ﬂo is equisingular along Y X {0} at O, that is, X

is also equisingular in the sense of restricted linear projections. The converse



should be proved by essentially the same method again ; the idea is that if there

are many linear projections with respect to which the discriminant is equisingular,
there are many hyperplanes transversal to the equisingularity strata cf v_l {y}

and that should suffice to show that these equisingularity strata specialize to
equisingularity strata in v_l(o). Same idea for Zariski equisingularity, using the
fact that to compute the dimensionality type along v_l(o) of ﬁ; we may extend

the base field to k* = k( u',s) and then our prdjection is linear in the coordinates

X -
X, - (Here we have to use the fact that V 1(O) is independent of the choice of

coordinates. There must be a short and elegant argument).
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