BONNESEN-TYPE INEQUALITIES IN ALGEBRAIC GEOMETRY,
I: INTRODUCTION TO THE PROBLEM

o x
B. Teissier

Introduction

Let KCR? bea compact convex domain bounded by a curve of length
L. The area S of K is subjected to the isoperimetric inequality
L?-47S > 0, which implies that among all such domains with a given
perimeter L, the disk maximizes the area. The most constructive proof
of the fact that the disk is the only domain with this property is in my
opinion that given by T. Bonnesen in ([2], p. 69): Bonnesen shows that if
we consider the greatest radius r of a disk contained in K, and the

smallest radius R of a disk containing K, we have the inequality
@) L2 - 4aS > 7?(R-1)?

and this settles immediately the equality case of the isoperimetric in-
equality. The proof of (1) in fact contains the proof of stronger inequalities
(see [2], p. 60, and compare with p. 123 of L. A. Santald’s magnificent book
[14], and R. Osserman’s beautiful paper [12]):
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Our aim is to investigate the generalization of these inequalities 2) to
compact convex domains in RA for d > 2 in a much broader context.

More precisely, let d be an integer, d>2, and let K; and K, be

two compact convex subsets of Wm . Following Minkowski (see 21, p. 105,

EHQ p. 60) one defines the mixed volumes of K; and K, as the co-
mm?oﬂmaw in the following expression for the volume of the Minkowski sum
SNH + tmﬂm of the homothetics _\HWT thm of Ky and Nm , as vy
and v, range over the nonnegative real numbers R_ . (By definition

v Ky +1v,Ky = M<H+<m“f eviKi, vy mtmﬂmw ) One has then the expression
(see [25], p. 40, 2], p. 106),

d

<o:tHNH+<mva = MA.WV,\H i m i ,
i=0
and the v, € R, sometimes written <QAWL“ NWQILV (0<i<d), arethe
mixed volumes of K; and K,. Note that v = Vol X, and vy =
Vol QAHY and that if K; =K, upto translation, then vy =+ =Vq.
In the special case where K, = B, the unit ball in W& , one finds
that d-v; is equal to Vol (dK,), where Vol(dK,) is the (d-1)-

dimensional volume. Taking in wmnﬁo,amﬁ d = 2, we find that
Vol O\H_w.f\mwc = mtw + Lyjv, + S\m (for v;>0, v >0).

Going back to K, Wm in ﬂa we define two real numbers, the inradius

HQAMMNHV and the outradius WQAMMNHV of K, with respect to Ky, by

Sup{ reR | rK; CK, , upto translation}

Il

HAwaNHv

It

R(K,; K;) Inf {R mWLNm CRK,, upto translation} .

In the case where d =2 and K; = B we find r and R of the
inequalities (1) and (2).
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PROBLEM A. Given two compact convex subsets K; and K, in ma.
give bounds for nQAmw WHV and WGANM K;) in terms of the mixed volumes
v; (0<i<d) of K and K,. These bounds should imply that when
Vo= =Vy, then HQANMWHV =R(,;K;)=1, and therefore K; =K
up to translation.

2

Note that the inequalities (2) answer that problem for d =2 and K; =B.
There is an answer for arbitrary d >2 and K; =B, due to Hadwiger and
Dinghas (see [12], ITIC). There is also a splendid proof by A.D. Alexandrov,
of the fact that the equalities v =+ =vy imply that K; =K,, upto
translation. I give below a proof of the answer, originally due to Flanders

{6 WIH to Problem A for d =2, but my main interest, and the motivation

for this paper, lies in the problems suggested in algebraic geometry by
Problem A when one ‘“‘embeds’ a part of the theory of convex sets into
algebraic geometry as explained below. In other words, I am interested in
the problem in algebraic geometry of which Problem A is an avatar!

The principal new fact contained in this paper is that Problem A can
be deemed to be a rather special case of a problem of algebraic geometry:
to find sufficient numerical conditions for an invertible sheaf to have sec-
tions. This fact is established by associating to integral polyhedra K,
and K, in Rrd algebraic varieties of dimension d -~with two invertible
sheaves L, and L,, the properties of which reflect very well the proper-
ties of K, and K, . Using approximation of arbitrary compact convex
sets by integral ones, we obtain a dictionary which translates problems on
compact convex subsets of mm into problems on invertible sheaves on
some very special algebraic varieties of dimension d (Demazure varieties,
or torus embeddings). This dictionary was used in [19] to show that the
basic inequalities of the isoperimetric problem in dimension d > 2, namely
the Minkowski-Alexandrov-Fenchel inequalities between the mixed volumes

of two compact convex subset of Rd:

2

3 V. | — V.V >0 2<i<d)

-1 i'i-2 < > 1>
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were consequences of the Hodge index theorem in the theory of algebraic
surfaces. In this paper we show that our viewpoint is operative also for
Problem A by giving a proof of the solution for d = 2. This proof relies
on an easy (nowadays) but rather deep result on the geometry of invertible
sheaves on a projective algebraic surface.

A point of interest is that once again this is a quite general result,
the validity of which is not restricted to the Demazure surfaces which we
encounter when starting from convex sets.

On the way, we recall in §1 the construction of our Note {191 and make
precise the general inequalities of algebraic geometry which imply the
inequalities (3). Thus this paper, although it is a continuation of [19],
can be read without prerequisites. In this connection, after the Note [19]
went to press, I learned that Mr. A.G. Hovanski, of Moscow, has indepen-
dently given a construction analogous to that of 8§81 and 2 of that Note,
and, inspired like myself by my inductive proof in {16], has given in a
Note [8] a sketch of a proof of the Alexandrov-Fenchel inequalities which
is very similar to that of [19]. I also point to a recent paper [13] of
D. Rees and R.Y. Sharp showing that the ‘“Minkowski-type inequalities’’
for multiplicities of [16] were valid for arbitrary noetherian local rings.
The range of validity of this type of inequality is therefore large.

I should like to thank Tadao Oda, whose paper [11] influenced the
construction in §1 (or [19]) and Professor Rolf Schneider who, by the
material he has sent to me, has helped me very much to study the beautiful

theory of mizxed volumes.

§1. Alexandrov-Fenchel type inequalities in algebraic geometry

1.1. The construction (after [41,[9], [19]). Let d be an integer, d>2,
and let X (resp. wAz ) be the set of compact convex subsets of RY
(resp. of those which are the convex hull of a finite number of points in
the integral lattice M == 74 c Rd ).

Given Ky, ...LAH in K, each Nw has a support function

a*
H;: R® - R defined by:
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mw?v = min{u(m)/m mxwf H; is a convex function.

If the Nw are in MAE , the mw are piecewise-linear and it is not hard
to see that there exists a decomposition X = Aqgvng of mm* into
rational convex polyhedral cones o, such that:

1) Each face of a o, isa 9B for some B eA.

2) g, N 93 (a,B€A) is aface of g, and of 9B -

3) Foreach i, 1<i<r, Hj is linear on o, forall aeA.

Now to each o, , associate its convex-dual &, = {x mmﬁ::?vw 0, <zmQQW.
H_,_mvmcvmmﬁ mg NM of mm is a submonoid of M, and hence one can
define for any given field, say the field C of complex numbers, the
‘“algebra of the monoid ¥, M M,”” which is the subalgebra O?«m:z; of
the algebra C[M] = OUAT wa ...,xm“NmJ generated by those monomials
which have their exponents in &, N M.

We can glue up the affine varieties Spec OT«QD M] along the

N

N .
Spec O?QD 93 NM] to obtain a compact algebraic variety X = X(Z), the

Demazure variety associated to the decomposition 2. (For all this, see
[4], 84 and [9].) X is a normal, integral and rational variety of dimension
d. The field of fractions of each OT«QDEQ is C(M) and we are going to
recall how to associate to each support function H; .a line bundle L; on
X: Foreach a¢A and i, 1<i<r, consider the sub OT«\QDE%BomEm
of C(M) generated by {m eMju(m) > E%cv for all ue QQW and denote it
by ﬁra. Since H; is linear on o, there exists m; €M such that
mw?v = cABﬁnv on o,, and therefore HLrp is generated by mjq- Now
clearly the Frm glue up together into an invertible sheaf of fractional

ideals Pw , and a basis of IoOﬁ H\wv is given by {m eM|u(m) > Iw?v moH

*
all ueRd | which is exactly K; N M in view of the convexity of K;.
Furthermore, it is proved in (19], pp. 42-44) that for all invertible sheaves
L; obtained in this way from Kj; e wAZ , not only is L; generated by its

global sections (because necessarily my , € ij M ) but also we have

WX, L)=0 for j>1.
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We recall also that there is an operation on X, called the Minkowski
sum: WH + Nm is by definition wwﬂr WMM WH mNT WM mef a special case
of it is the translation K+m by the vector Om . The result is indepen-
dent of the choice of origin O ¢ rd , up to translation. The support func-
tion of NH+ Nm is Hy+ Em and if we took WTWM in wAE. and X as
above, then EH + Em is again linear in each o, , hence we can associate
to K;+ K, aline bundle on X, which is nothing but the tensor product
L,;®L,. In particular to the homothetic v-K; for v ¢ N we associate

v
L7,
e.g., Ommmu then L = @MN

associated to K;+m, for m ¢ M, is isomorphic to Fw.v

where L; is associated to K; as above. (Note that if K is a point,

and therefore more generally the sheaf

1.2. Given Ky,--, K, in K, consider for all v; > 0 the homothetic con-
vex sets SNW and their Minkowski sum vy- Ki+o+ e WH = MxH X €
mm\xH ev Ky, xpevp NHM. By a result of Minkowski-Steiner (cf. 21,

i

ﬁowlv the volume of this set has an expression in terms of the v, which

is a homogeneous polynomial of degree d:

<OHA~\.H.NH+...+~\H.HAHV = Pl ¢4 ~\H PV

The v, which are defined by this expression and sometimes written

o] la,]

<ANH , Nn Iy are called the mixed volumes of the Nw , and they have
the following elementary properties:
1) All the v, are left unchanged by translations on the K; (indeed,
translations on the Nw induce translations on the Mtwww ).
2) The v

to translation) we have:

o are increasing functions of the K;, i.e., if K;C K% (up

la,] la;] la,]
v(K, 1 o Ky K r

o] led el

) < V(K :

)

and if a; =0, we have equality.
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In particular, all the v are > 0.

a
3) For positive \/T we have
la,] la,]

ay
H y

v @k ) A AT

4) Giving X its natural Hausdorff topology (cf. Eovmmgv we have that

the v, are continuous functions on Kr.

1.3. Now given invertible sheaves L,,---,L  onan algebraic variety X

r
of dimension d, Snapper (see [10], Chap. I, §1) has shown that there is a

. ) ) v v
polynomial expression for the coherent Euler-characteristic of PHH ® .- ®H\HﬁV

as follows: for Vi,V in Z , we have
vy v, 1 ay a
(1.3.1) x(X,L;'e--eL") = M Lsyvy v T
aeNT
la|=d

+ polynomial of degree <d-1

and this expression defines integers s, which we may call the mixed

degrees of the invertible sheaves L; (sometimes written

fa,] la,]
s, =deg@L; ~ - L ). -
If we start with K., -, K, in wAZ , and associate to them an ‘‘even-

tail” X, X and the L, as above, we saw that the groups

: v v
EHO?FHH@.:@FHJ are 0 for j>1 and v; >0 and hence we have, for
i2

Y1 Y 0 Y1 Y
XX, L, e-oL 1) = h°X,L 1@ oL ) = #MN (v Ky +- +vK)D)

as we saw, and therefore letting the v. tend to +« and remembering that

i
for any Ke X, we have

Vol(K) = Lim v 4.2MnNv-K)

Vo> 4o0
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we deduce that the mixed degrees of the L; are linked to the mixed

volumes of the K; by the equality :

(1.3.2)

-
Sq dlv, -

1.4. Now let us fix an integer t, 2<t<d, and set Vi=V( ¢ j1,...,1)
and s; = S(i t—i,1, 1) where the sequence 1,:--,1 has d-t terms. In
the note [19] we showed how to use the Hodge index theorem to prove the

quadratic inequalities

(1.4.1) s;°Sy, < ;1) (2<i<t)

1 -
which imply the Alexandrov-Fenchel inequalities

(1.4.2) f.fsmm?ivm for Ky, K eRy (by 1.3.2)

which in turn imply the same Alexandrov-Fenchel inequalities for compact
convex sets Ky,~--, K, in K, by using the continuity of the mixed
volumes, their homogeneity, and a standard approximation procedure using

the following:

1.4.2.1. FacT. For K¢ K, let us denote by K] e wAE the convex hull
of MNK, where M is the integral lattice of Wm. Then, for any K¢ X

we have for large v :
0 < Vol(K - WT\ KD < ﬁv@ where c(K) is a constant.

1.4.3. We emphasize that the result in algebraic geometry is much more
general than what is needed for the Alexandrov-Fenchel inequalities:
Let us define the degree of an invertible sheaf on a complete algebraic
variety X of dimension d by the equality (see {10}, Ch. 1)
d

y(X,LY) = deg L~ mﬁ + polynomial of degree < d-1 in v.

Then we may define the mixed degrees s, of Ly, L by the equality
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v v a a
1 r d! 1 r
o2 IR = —_ .
deg (L eL ") 41 SaV1 v,
aeN'
EQTQ

as a glance at 1.3.1 will show.
Then, choosing an integer t, 0<t<d as in 1.4 and with the same

notations, we have:

1.4.3.1. PROPOSITION. Let X be a proper integral algebraic variety
and let Ly, FH be invertible sheaves on X, generated by their sec-
tions, with deg L; >0 (1 <i< I).

Then we have

1) s, >0

2) Foreach i, 2<i<t, we have the 4lexandrov-Fenchel-type

inequalities )
si1-SSi220-

COROLLARY. Take now t =2, then

d
v v . .
deg FHH®FMM = MAmvmwtwtml

1
i=0

1.4.3.2

and the inequalities (2) above imply easily (see [16]) the inequalities

1.4.3.3 wm > me.mw , 0<i<d.

(The analogue of the classical isoperimetric inequality Vol Amwvm >
mm Vol(B)Vol QOQL is the case i=1.) Inturn 1.4.3.3 implies, in view
of 1.4.3.2

1.4.3.4 deg (L oL /4 > (deg L)' /4 + (deg Ly /d

(compare [16]): this is the analogue of the Briinn-Minkowski inequality
(see [2],[5]) and at least if L, is ample, say, we have equality if and
only if there exist positive integers a,b such that Fw and Fw are

numerically equivalent (see {31, exp. X1III, and compare [17D.
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1.5. REMARK (ubiquitous inequalities). All these analogies between
isoperimetric inequalities and algebraic ones first appeared (see [18]) in
the case of multiplicities of primary ideals ny,n, in a complex analytic

algebra ©, the mixed multiplicities of ny and n, being defined by
v, V d d
Anuﬂnﬂmv = M vamwtmtml where d =dim ) >1.
i=0

and the inequalities which were proved were: (see [16], [17])

1) ww > mm

i-2 =

2) mw < mwlmw

3) mA:H,:mVH /d < mAnHVH A, mA:mVH =

-1

Provided © is normal, there is equality in 3) if and only if there
b

exist positive integers a and b such that :mm and n, have the same
integral closure. These results on multiplicities correspond to the
negative-definiteness of the intersection matrix of the components of the
exceptional divisor in a resolution of singularities of a germ of a normal
surface, and the results on degrees, inspired by these, correspond, as
already explained, to the Hodge Index theorem. It is interesting to note
that the same year 1937 saw the publication by A.D. Alexandrov of his
inequalities (cf. [1]) and the publication by Hodge of his Index theorem
(cf. [7)). Furthermore, Hodge thanks DuVal for the formulation of the
Index theorem, and DuVal himself had a few years before discovered the
negative-definiteness of the intersection matrix (cf. [6]), a fact which is
the local version of the Hodge Index theorem; and is equivalent to the
following statement: Given two curves A and B onagemofa normal
surface (S, 0), their intersection multiplicity defined by Mumford, which
mo(A) - m o(B)
o)

where m, is the multiplicity, and equality must hold if and only if the

is a rational number, must satisfy the inequality Qfmvo >

two curves have no common tangent at 0. See [16].
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§2. The translation
Recall from the Introduction that given K, and K, in K we defined
the inradius of K, with respect to Ky

r(K,; Ky = SupireR /1K; €K, upto translation} .

Our problem as set in the introduction is so symmetric that it is enough to

study one-half of it:

2.0. PROBLEM A". Give bounds for HQA? K;) interms of the mixed

volumes v, of K; and K, am?:mmg

d

ﬁw . 3
Vol (v K, +v,K,) = M A .vftw tm 1 (vy,v, R

i
i=0
?m = Vol QA,HVN V= Vol QAMVV .

We are going to translate this problem into algebraic geometry; we use

the constructions and notations of §1. Here we have

7.1. KEY LEMMA. Let d be an integer, d > 2, let Ky and K, be in
wAE and let the compact algebraic variety X and the line bundles L,
and L, be associated to them as in paragraph I. Then given integers

ab, a>0, b>0, for every integer v >0 there is a bijection
{mel Mla-K, +mCb-K,} & basis of HOX, L2 oLDY) .

Proof. The inclusion a-K;+mC b-K, is equivalent to the inequalities
a-H A:V+c?& >b-H, (W forall ue —wm

That is: u(m) > b-H Acv a-H ?v and this precisely means that if we
have v-m eM, then v-m corresponds to a global section of the invertible
sheaf QLIN@FU% The converse is obtained by reading backwards,
view of the fact that HOX, Arl.m@F,cvtv has a natural M-grading for which

all non-zero homogeneous components are of m:zmsmpon 1.
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2.2. Let X be a complete integral algebraic variety and let L; and L,
be two invertible sheaves on X, of positive degree. Define the inradius

of L, with respectto L,:

r(Ly;L) = Sup ,__w_:oﬁxuﬂmﬁarwii
(a,b)eN

and remark that for all integers v > 0,
r(L;LY) = r(Ly;Ly)

It follows immediately from the equality 1.3.2, the Key Lemma 2.1 and
1.4.2.1 that Problem A”is a special case of the following:

2.2.1. PROBLEM B. Given two invertible sheaves of positive degree L,

and L., generated by their sections, on a complete algebraic variety X,

.M b4
give bounds for r(L,;L,) in terms of the mixed degrees s; of L, and

L, , defined by
d

v v d o
mwmQJ:wﬁmmv = MA.VMWCT\M !
i=0

(sg=degL;, sq=deg L))

2.3. Here we are going to study this problem only in the case where X

is a projective variety, and we assume that L, ®L, is very ample. Indeed,
this is sufficient for the applications to the problem on convex set which

is outlined in the introduction, for the following reason: if we take for X
the coarsest subdivision of Wm* which makes H; and H, linear in

each piece, then by the amplitude criterion given by Demazure (cf. 4], 84,
and also [9], p. 48) we have precisely that L, ®L, is ample and since

we may freely replace L, and L, by Fw\ and Fw\ (r>0), we may

assume that L, ®L, is very ample.
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83. An example: the case d=2 (and a proof of Bonnesen’s inequality)

We shall use the following

3.1. LEMMA (see [10], p. 3.8 and [3], Exp XIII, Appendice, Lemma 7.1.2,
and Exp. X). Let S be an integral projective surface with a very ample
invertible sheaf H = @MAUV. Let L be an invertible sheaf on X. The
following conditions are equivalent:

i) deg L>0 and deg L, >0 (Lp=L® @Uﬁ an invertible sheaf on D)

ii) For sufficiently large v we have
dim HOX, L¥) > e-v? with ¢>0.

(Note: Use [3], Exp. X, to check that deg L = oHCLvm , deg L =

c; L)y (H)).
Let us apply this lemma with L = ﬁMw@Fw ,
are two invertible sheaves of positive degree such that H=L,®L,

a,b eN, where L, and
H\m

is very ample. We have, with the notations introduced above

deg L = mo_um - 2s,ab + mmmm
and using a result in ({10}, Chap. 1), we can compute deg L, as the
coefficient of 2uv in the homogeneous expression of deg (LYeHM),

that is:

deg Aﬁlert@P_u:.{v = s,(bv+ vw + 2s, (bv+p) (—av+p) + s, (—av+ vm
1 2 O\PVTH 1 K K 2 [

where the coefficient of 2uv is
(b(sytsy) - mAmTrmmvv .

Therefore, we have deg L. >0 and deg L >0 if and only if a,b ¢N

satisfy:

2 2
mo_u ;wmwwvlfmmw >0

UAmo+mHv - mAmHermV >0
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but we can remark that

2
MHI lemow

2 %0751
mM e MH.TMM

and therefore, when we let a/b increase starting from -1, as long as we

have

m
mAmHn /\mH|momm
b Sy

which is the smallest root of the polynomial wolmmHH+mmHm =0, we
are sure that HO(X, QLMm®HLthv £ 0 for large enough v.

In other words we have just proved the inequality

f2
S1 ~ VST 505,

Sa

HAHLMwHLHv >

(we note that the Hodge Index theorem has been used to get that

2
S]—SSy 2 0).

On the other hand, using the additivity of Euler characteristics we see

that the mixed degrees are increasing functions of the sheaves, i.e., if

L, C Pm and L, C Pm , then we have

i) | ld-il

deg (L; ", L,

’

) < deguy M Lo 197

and using this and the homogeneity, we obtain immediately an upper bound

for HQLMWFHY namely

n
-

r@L L) < 20 <
2771 T e

wn
N

(The first inequality comes from writing that if IoOm, me®ﬁwv £0, ie.,
ka C HLU , we must have:

as, - a deg Fm:« rW:v - %mxrwg rw_v < %m:rWVE« rW:v - bs,,

IA
IS’
N

i.e.,

oo
0
—
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The second inequality is once again sgs, < mw .

Finally we have proved:

3.2. PROPOSITION. Let HA and L, be two invertible sheaves on a
projective integral surface X, such that deg Ly >0, deg L, > 0 and

L,®L, is ample. Define the mixed degrees s,5{,S, by

2

Yigr V2 2
deg L, ®Fm = §,1] + 2s v v, T soY;

Then
(1] (1] .
1) S, = deg L,, Sy=degL, and s; = deg(L; ", L, ) are positive.

2) The roots of the polynomial
sg+28;T + mM.Hm

are real and negative, hence the roots of the polynomial woimeH+mmHm
are real and positive.

3) We have the inequalities

n
[y

72
S1 — V81 78¢5,

53

So
W M|H W HAHLMMH\HV W

w0
N

A symmetric proof (considering L = Fw@hmv and letting W decrease)

gives symmetric inequalities for
R(L,L,) = inf{2/H°X, LT oL;") £ 0}

namely:

1]

1.2
S S; + VS, —~SAS
4] 1 . 1 1 0~2
5, S < R(LyLy) < H—g—22

[~

Using what we have seen so far, and the easily established fact that
the inradius HQAMM NHV and the outradius WANNM NHV are continuous func-
tions on the product space KxX endowed with the product of Hausdorff

topologies, we obtain:
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3.2.1 CoROLLARY (Flanders EW@ Let K, and K, be two compact
convex domains in R?, with mixed volumes vy = Vol Ky, vy =

Vol QAWL\ WMLV and v, = Vol QAHV. The inradius 1 = HQANLAHV and the
outradius R = R(K,; K{) of K, with respect to K, satisfy the follow-
ing inequalities :

/2 2
Vit VVITVoYy vy Vo vy~ /\<H!<o<M

. >R>gF 25212
2 2 1 2

3.2.2 <m — vV

and when we specialize to the case where WH is the unit disk, we get

the inequalities (1) and (2) of the introduction.

3.3. REMARK. Going back to the case of arbitrary d >2, one can also
use the construction of §1 to obtain results on the measure of the set of
translations sending K; into K,, in the special case where the differ-
ence of the support functions H,-H; is again a convex function: in
this case, thanks to the theorem of (9], pp. 42-44) quoted in §1, we have
Hi(X, L7 eL,) =0 for j>1, and therefore

XX, (L7 e L)) = hOX, (L e L))

from this equality, the Key Lemma 2.1 and approximation, we obtain that:

3.3.1. PROPOSITION (for d > 1, and K, K, in K). If Hy-H; is
convex, the measure of the set of translations sending K, into K, 1is

given by
d

d i U
EQATWHHWMV = M AHV Aluvf\w (or 0 if thisis <0)
i=0

(compare with [14], p. 95).
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84. A problem

I propose to study the following precise form of Problem B:

4.1. PROBLEM C. Determine for which algebraic varieties X of dimen-
sion d > 1 we have that, given any two invertible sheaves L, and L,
on X which satisfy the conditions:

i) Pw is generated by its global sections, 1= 1,2

ii) degL;> 0, i=1,2

iii) L,;®L, is ample.

Then: d
. ifd i -
1) The roots of the polynomial R(T) = M 1) A.Vmwﬁ ¢ ZIT] where
i=0 !
v v d d
the s; are defined by: deg FHH ®Pmm = M Apv mwtwtml , all have
i=0

positive real parts, say 0<p; <p, <--<pg.

2) The following inequality holds (notation of 2.2):

As we have seen above, when d < 2, the answer is: all algebraic
varieties. (For d =2 we used the Index theorem and Lemma 3.1, which
is essentially a consequence of Riemann’s theorem on curves; the case

d =1 follows directly from Riemann’s theorem.) Now we show that:

4.2. PROPOSITION. For any dimension d, the class of algebraic

varieties defined in Problem C contains all abelian varieties.

This is an almost immediate consequence of a remarkable theorem of

Mumford and Kempf:

THEOREM (Kempf-Mumford, see Gwld. Let L and M be invertible
sheaves on an abelian variety X, with L ample. Let Hur z_?v =

X, L®®M). Then:
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i) All the d roots of the polynomial Hur,z are real (d = dim X).
ii) Counting roots with multiplicities :
Iw@? M) =0 for 0O <k < number of positive roots;
EQLACF M) = 0 for 0 <k < number of negative roots;
and if 0 is not a root, exactly one cohomology group is not zero.

We apply this result to our problem, taking L=L,®L, and
M= FMm@Fw. Then, by the properties of line bundles on abelian varieties

(cf., loc. cit.) and the definition of the polynomial R(T), we have the

equality: - 4
- pf2=T\,
P (D) = mA_iav b+ .
a-1;
Therefore, all the roots of R(T) are real, and are of the form P =5
J
where Iy Ty, Ig are the roots of Hub zﬁd. Hence we have
mn,c.}
1 = iﬂ Since the p; depend only upon L, and L,, we see that

taking b =0 and applying the theorem gives 1 + P; >0 for j=1,---,d,
and taking a =0 gives P; >0, j=1,---,d. Furthermore, as long as

a : <

5 j are 0, and
hence, applying the theorem again, Iocﬁ FMm@ﬁwv # 0. This shows that

<p;, the smallest of the py, we have that all the r

HQLMM Li)>py, as desired.

4.3. REMARK. We emphasize that in general the cohomology of line

bundles is much more complicated than in the case d <2 or in the case

of abelian varieties, so that other methods must be used to study Problem C.

4.4. REMARKS. If a polynomial such as R(T) has all its roots real,

then, the coefficients s; must satisfy the inequalities

2<i<d)

N .
ST, T Si"Si >0

as we know (compare with 1.4.3.1).
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One might think that these inequalities and the positivity of the s;
suffice to imply that all the roots of the polynomial R(T) have positive
real parts; this is easily checked for d <5, using the Routh-Hurwitz
criterion. However, it is not true for d > 10: According to a random
search programmed by G. Wanner at the Math. Inst. of the University of
Geneva, it seems that the inequalities imply the positivity of the real
parts of the roots for d <9, but he found a counterexample with d = 10.
I am also very grateful to Douady who suggested a construction of a
counterexample by hand, and to Coray who made the first search of
counterexamples on the Geneva computer, and found one of degree d = 16.

David Mumford has shown to me that the three-dimensional variety
obtained by blowing up a point in P2x P! does not belong to the class
defined in Problem C. [The inequality 2) is not satisfied on some lines in
the affine subspace of NS(X) consisting of classes of divisors of the
form xH + yE + K where H is the total transform of P2x{a}, E is the
exceptional divisor, and K is the total transform of {xPl, 0 beinga
line which contains the point b, and we blow up the point (b,a).] Also,
there are examples showing that if d > 3, the roots of the polynomial
R(T) need not be all real; the first such example was given to me by

Mr. L. Brown of Purdue University: Take K, = _ww\m R3 and for K, a

very close approximation, of positive volume, of B2 CR?CR3.
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