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Abstract We give a method to construct a partial embedded resolutionof a nonnecessarily normal
affine toric variety Z� equivariantly embedded in a normal affine toric variety Zρ . This
partial resolution is an embedded normalizationinside a normal toric ambient space and a
resolution of singularities of the ambient space, which always exists, provides an embedded
resolution. The advantage is that this partial resolution is completely determined by the
embedding Z� ⊂ Zρ . As a by-product, the construction of the normalization is made
without an explicit computation of the saturation of the semigroup � of the toric variety (see
[3]). This result is valid for a base field k algebraically closed of arbitrary characteristic. To
cite this article: P.D. González Pérez, B. Teissier, C. R. Acad. Sci. Paris, Ser. I 334 (2002)
379–382.  2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Résolution plongée d’une variété torique non nécessairement normale

Résumé Nous présentons une méthode de construction d’une résolution plongée partielled’une
variété torique affine non nécessairement normale Z� plongée de manière équivariante
dans une variété torique affine normale Zρ . Cette résolution partielle est une normalisation
plongéede Z� dans un espace ambiant torique normal et une résolution des singularités
de l’espace ambiant, qui existe toujours, fournit une résolution plongée des singularités.
L’avantage est que cette résolution partielle est entièrement déterminée par le plongement
Z� ⊂ Zρ . Une conséquence est la construction de la normalisation sans calcul de la
saturation du semigroupe � de la variété torique (voir [3]). Ce résultat est valide sur un corps
k algébriquement clos de caractéristique quelconque. Pour citer cet article : P.D. González
Pérez, B. Teissier, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 379–382.  2002 Académie
des sciences/Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The existence of a resolution of singularities of any variety was proved by Hironaka in characteristic
zero and is still open in positive characteristic. For the class of toric varieties the situation is much simpler.
We can find resolutions of singularities of normal toric varieties which are toric morphisms and these
toric resolutions admit a completely combinatorial description independent of the characteristic of the
algebraically closed base field (see[6] and [1]).
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In this Note we will consider an affine (non necessarily normal) toric variety Z� equivariantly embedded
in an affine normal toric variety Zρ , i.e., the embedding is compatible with the actions of their tori. For
instance we have monomial curves, the affine curves defined by monomial parametrizations, (see[4] for
their resolutions). This Note deals with embedded toric resolutionsof Z� ⊂ Zρ , roughly speaking, toric
resolutions of Zρ that provide resolutions of Z� . If the dimension of Zρ is > 2 there are many different
toric resolutions and no generalization of the minimal toric resolution existing in the two-dimensional
case. For this reason, we introduce the notion of partial resolution(inspired by some ideas of Lejeune and
Reguera in a different context (see[7])). A partial resolution of Z� is completely characterized by a simple
combinatorial property of the embedding, and it defines an embedded normalizationof the variety Z� as a
transversal sectionof a normal toric variety Z� , i.e., any toric resolution of Z� provides also an embedded
resolution of Z� . We give an example for a monomial surface.

The results of this Note are included in a work of the first author on quasi-ordinary singularities of
hypersurfaces and their embedded resolutions (see[5], Proposition 5) and in a work of the second author
which deals with local uniformization of a valuation of a noetherian local integral domain by using a
geometric specialization of this ring to the graded ring determined by the valuation and the tools of toric
geometry (see[10], Proposition 6.4).

2. A reminder of toric geometry

We give some definitions and notations (see[3,2] and [8] for proofs). If N ∼= Zd+1 is a lattice we denote
by M the dual lattice, by NR the real vector space spanned by N and by Nσ the lattice spanned by σ ∩N

for σ a cone in NR. In what follows a conemean a rational convex polyhedral cone: the set of non negative
linear combinations of vectors a1, . . . , a2 ∈N . The cone σ is strictly convexif σ contains no linear subspace
of dimension > 0; the cone σ is regular if the primitive integral vectors defining the 1-dimensional faces

belong to a basis of the lattice N . We denote by
◦
σ the relative interiorof a cone σ . The dualcone σ∨ (resp.

orthogonalcone σ⊥) of σ is the set {w ∈MR | 〈w,u〉 � 0 (resp. 〈w,u〉 = 0) ∀u ∈ σ }. A fan� is a family
of strictly convex cones in NR such that any face of such a cone is in the family and the intersection of any
two of them is a face of each. The supportof the fan � is the set

⋃
σ∈� σ ⊂NR. The fan � is regular if all

its cones are regular; it is compatiblewith �⊂NR if σ ∩ � ∈�, ∀σ ∈�.
A non necessarily normal affine toric variety is of the form Z� = Speck[�] where � is a sub-semigroup

of finite type of a lattice (� − �) which it generates as a group. The normalizationof the variety Z� is
obtained from the semigroup inclusion � → τ ∩ (�−�) where τ is the cone spanned by the elements of �
(see[6]). In particular, if σ is a cone in the fan �, the semigroup σ∨ ∩ M is of finite type, it spans the
lattice M and the variety Zσ∨∩M , which we denote also by Zσ,N or by Zσ when the lattice is clear from
the context, is normal.

If σ ⊂ σ ′ are cones in the fan � then we have an open immersion Zσ ⊂ Zσ ′ ; the affine varieties Zσ

corresponding to cones in a fan � glue up to define the toric varietyZ� . The torus (k∗)d+1 is an open
dense subset Z{0} of each chart Zσ acting on Zσ ; these actions paste into an action on Z� which extends
the action of the torus on itself by multiplication. General toric varieties are defined by this property (see
[9]). The toric varieties which can be defined using fans are precisely the normal ones (see[6]). The toric
variety Z� is nonsingular if and only if the fan � is regular. We define for each σ ∈ �, the closed subset
Oσ of Zσ defined by the ideal (Xw/w ∈ (σ∨ − σ⊥) ∩ M) of k[σ∨ ∩ M]. The coordinate ring of Oσ is
k[σ⊥ ∩ M]. The map that applies a cone σ in the fan � to the set Oσ ⊂ Z� is a bijection between the
cones of the fan and the orbits of the torus action, each Oσ being the orbit of the special pointoσ defined
by Xu(oσ ) = 1 for all u ∈ σ⊥ ∩ M . We say that a fan �′ is a subdivisionof the fan � if both fans have
the same support and if every cone of �′ is contained in a cone of �; this subdivision defines the toric
modificationπ�′ : Z�′ → Z� which is equivariant and induces an isomorphism between the tori.
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3. Partial embedded resolution of toric varieties

A resolution of singularitiesof a variety Z is a smooth variety Z′ with a modification Z′ → Z which is
an isomorphism outside the singular locus of Z. Toric resolutions of singularities of normal toric varieties
have a completely combinatorial description: given any fan �, there is a regular fan �′ subdividing �,
which contains the regular cones of �. The associated toric morphism Z�′ → Z� is then a resolution of
singularities of the variety Z� (see[1], Theorem 5.1). We call such a fan �′ a resolutionof the fan �.

Let � be any fan supported on ρ defining the modification π� : Z� → Zρ . Let V be a subvariety of
Zρ such that the intersection with the torus is a nonsingular dense open subset of V . The strict transform
V� ⊂ Z� is the subvariety of π−1

� (V) such that the restriction V� → V is a modification. If the fan � is
regular, we say that the toric map π� : Z� → Zρ is an embedded pseudo-resolutionof V if the restriction
V� → V is a modification such that the strict transform V� is nonsingular and transversal to the orbit
stratification of the exceptional locus of Z� (see[4]). The modification π� is an embedded resolutionof
V if in addition the restriction of the map π� to the strict transform V� → V is an isomorphism outside
the singular locus of V (see[4]). For a general fan �, we say that π� : Z� → Zρ is a partial embedded
pseudo-resolution(resp. partial embedded resolution) of V if for any resolution �′ of the fan � the map
π�′ ◦π� is an embedded pseudo-resolution (resp. embedded resolution) of the variety V . Any fan � admits
resolutions (see[6] and [1]), so that any partial embedded resolution in our sense extends to an embedded
resolution.

Let � be a semigroup as above, we will suppose that the cone τ is strictly convex so that there is a unique
0-dimensional orbit in Z� . An embedding Z� ⊂ Zρ is equivariant if Z{0} ∩ Z� is the torus of Z� and
the actions of the two tori coincide on Z� . In this case the embedding Z� ⊂ Zρ is defined by a surjective
homomorphism of semigroups:

ρ∨ ∩M → � (1)

which extends to a lattice homomorphism ψ : M → (� − �). The ideal of Z� in Zρ is generated by a
finite set of binomials {Xui −Xvi }i∈I such that ui, vi ∈ ρ∨ ∩ M and ψ(ui ) = ψ(vi ) (see[9], Chapter 4).
The linear subspace � orthogonal to Ker(ψ) is completely determined by the embedding and coincides
with the intersection of the linear subspaces (NR)⊃ �i : 〈ui − vi,w〉 = 0 for i ∈ I , since the set of vectors
{ui − vi}i∈I generates the kernel of ψ . Our main result is the following:

THEOREM 3.1. – Let� be a subdivision ofρ containing the coneσ0 := ρ ∩ �.
(1) The strict transformZ�

� ofZ� by the morphismπ� is contained inZσ0 , it is isomorphic toZσ0,Nσ0
and

the restrictionπ�|Z�
� :Z�

� → Z� is the normalization map.
(2) The morphismπ� is a partial embedded resolution ofZ� ⊂Zρ .

4. An example

We give an example of this construction for a monomial surfacein A4
k . The monomial parametrization

U1 = T 2
1 , U2 = T 2

2 , U3 = T 3
1 , U4 = T 7

1 T2 defines an equivariant embedding of a toric surface in A4
k , where

the affine space is considered as toric variety. The semigroup homomorphism Z4
�0

→ � corresponding to
the embedding (see(1)) is defined by: e1 �→ γ1 = (2,0), e2 �→ γ2 = (0,2), e3 �→ γ3 = (3,0), e4 �→ γ4 =
(7,2), for {ei}4

1 the canonical basis and {γi}4
1 generating the semigroup �. The ideal of the embedding of

the monomial surface is generated by h1 := U2
3 − U3

1 , h2 := U2
4 − U4

1U2U
2
3 . The subdivision � of R4

�0
defined by the linear subspaces: �1 : 3u1 − 2u3 = 0, �2 : 4u1 + u2 + 2u3 − 2u4 = 0 contains the cone
σ0 := R4

�0 ∩ �1 ∩ �2. By Theorem 3.1, the morphism π� defines a partial embedded resolution of the

surface Z� and the open set Zσ0 contains the strict transform Z�
� of Z� .

We describe now a resolution �′ of the fan � and we show that the map π�′ ◦ π� is an embedded
resolution of the monomial surface. We do not define all the cones of the fan �′ but just the regular cones
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of dimension four containing σ0. The reason is that we can define a suitable fan �′ in many different ways
but in any case the orbits corresponding to cones in � which are not contained in σ0 do not intersect the
strict transform of the monomial surface.

Remark1. – In this example the cone σ0 above is generated by the the vectors a1 = (0,2,0,1) and
a2 = (2,0,3,7); it is a regular cone and therefore it must belong to �′. Geometrically this means that
the normalization of Z� is smooth. In general we have to find a regular subdivision of σ0; in this
two-dimensional situation there exists a unique minimal regular subdivision of σ0 which corresponds
geometrically to the minimal resolution of the normalization of Z� , and this subdivision can be determined
algorithmically from the pair (σ0,Nσ0) (see[8]).

The intersection of �1 with R4
�0 is the regular cone generated by the vectors: (2,0,3,0), (0,1,0,0),

(0,0,0,1). With respect to this basis the equation of the plane �1 ∩ �2 is 14s1 + s2 − 2s3 = 0. This equation
allows us to choose one vector in each half-space (�1 ∩ �2)

± of �1, such that each of them defines, with a1

and a2, a basis of the lattice �1 ∩ Z4. We can take for instance c1 := (0,3,0,1) and c2 = (0,1,0,1). The
intersection of �2 with R4

�0 is the regular cone generated by the vectors: (0,0,1,1), (1,0,0,2), (0,2,0,1).
With respect to this basis the equation of the plane �1 ∩ �2 is 2t1 − 3t2 = 0. This equation allows us to
choose one vector in each half-space (�1 ∩ �2)

± of �2, such that each of them defines, with a1 and a2, a
basis of the lattice �2 ∩ Z4. We can take for instance d1 := (1,0,2,4) and d2 = (1,0,1,3). We can verify
that the cones θij := 〈a1, a2, ci, dj 〉 are regular for i, j = 1,2 and they are part of a resolution �′ of the
fan �. The toric morphism π�′ ◦ π� is defined on the chart Zθ11 by:

U1 =W 2
2W4, U2 =W 2

1W
3
3 , U3 =W 3

2W
2
4 , U4 =W 1W 7

2W3W
4
4 .

The total transform of h1 = 0 (resp. of h2 = 0) on this chart is defined by W 6
2W

3
4 (W4 − 1) = 0 (resp.

by W 2
1W

14
2 W 2

3W
8
4 (1 −W3) = 0). The strict transform of the monomial surface is defined in this chart by

W4 = 1 and W3 = 1. We remark immediately that it is smooth and transversal to the canonical stratification
of the exceptional divisor (defined by Wi = 0, for i = 1, . . . ,4 in this chart).
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