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Abstract

We compute the Newton polyhedron in the natural coordinates of the
discriminant of a germ of complex analytic mapping (C3 × C, 0) →
(C3 × C, 0) associated by the polar hypersurface construction to the
degeneration of a plane analytic branch with two characteristic pairs
to the monomial curve with the same semigroup. The result shows
that the jacobian Newton polyhedron is not in general constant in
an equisingular family of complete intersection branches (whereas it
is constant in an equisingular family of plane branches). However, in
this case the information that it contains, namely the semigroup, is
constant and only the encoding changes.

Introduction

To any germ of an isolated complex analytic hypersurface singularity defined
by a convergent power series equation f(u0, . . . , un) = 0, one can associate
its jacobian Newton polygon, which is the Newton polygon in the coordinates
(t0, t1) of the discriminant of the map

(`, f) : (Cn+1, 0) −→ (C2, 0)

given by t0 = `(u0, . . . , un), t1 = f(u0, . . . , un), where ` is a sufficiently general
linear form. We say that a family of hypersurfaces with isolated singularities is
equisingular if the singular locus of the total space of the family is a stratum of
the minimal Whitney stratification of that total space. For a family of germs
of plane complex analytic curves, this is equivalent to the usual definitions
of equisingularity, and in particular to the constancy of the local embedded
topological type.
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The discriminants associated in the way just described to the members
fv = 0 of an equisingular family of equations for germs do not in general form
an equisingular family; the numbers of their branches may vary. It is therefore
remarkable that their Newton polygons in the coordinates (t0, t1), which are
the jacobian Newton polygons, are constant (see [6]).

Thanks to a result of Merle ([5]), it is even true that the jacobian Newton
polygon of a plane branch is a complete invariant of its equisingularity type;
it determines and is determined by the Puiseux characteristic (see §2). In
particular the jacobian Newton polygon has g compact edges, where g + 1 is
the number of Puiseux characteristic exponents, and they can be computed
from the Puiseux exponents; we call this the decomposition theorem.

In the case of a plane curve C defined by f(u0, u1) = 0, the information
contained in the jacobian Newton polygon concerns the possible contacts with
C at 0 of the germs of analytically irreducible components (the branches) of
the relative polar curve ∂f

∂u1
+τ ∂f

∂u0
= 0 for a general value of τ . The invariants

extracted from the jacobian Newton polygon appear in many different types
of objects related to the singularity. For example in the JSJ decomposition of
the complement in the sphere S3

ε (of radius ε centered at 0) of a small tubular
neighborhood of the knot S3

ε ∩C for small enough ε. In fact, alternative proofs
of the topological invariance of the inclinations of the edges of the jacobian
Newton polyhedron mentioned above have been given using this fact (see
[4]). They also appear in the description of the asymptotic behaviour of the
Lipschitz-Killing curvature (as a real surface) of the Milnor fiber B4

ε∩f−1(t) ⊂
B4

ε for 0 < |t| � ε � 1 (see [3]), in the  Lojasiewicz exponent at 0 of f(u0, u1)
and so on. The constancy of the jacobian Newton polygon then appears as
a tool to understand how the local topology determines geometric structures
such as the JSJ decomposition, or even metric information.

It seems therefore interesting to examine whether this phenomenon of
constancy of the jacobian Newton polygon in an equisingular family extends
to other equisingular families of curves, for example those which are local
complete intersections.

There is a particularly interesting such family, which is the specialization
of a given plane branch to the monomial curve with the same semigroup (see
[7]). The general fiber of this family is the plane branch suitably reimbedded
in affine (g + 1)-dimensional space, where g is the number of its Puiseux
exponents.

In this paper, we compute the jacobian Newton polyhedra of the jacobian
discriminants of the fibers of such a family of complete intersections in the
case of a branch with two characteristic pairs, and we obtain the following
information:

• The jacobian Newton polyhedron is not constant, although the family
is Whitney-equisingular.
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• However, the information contained in the jacobian Newton polyhedra
of the special and general fibers is the same, and is equivalent to the
topology of the branch.

It is interesting to verify on this example that although the equations of the
discriminants which we consider are, as usual, rather complicated, the method
of computation by Fitting ideals makes it possible to determine at least their
Newton polyhedron.

The interested reader will also note that the system of equations which we
study is degenerate with respect to its Newton polyhedron in the usual sense
for v 6= 0, so that the generic methods of computation of Newton polyhedra of
discriminants à la Gel’fand-Kapranov-Zelevinski (see [2]) do not apply. This
system of equations becomes non degenerate for v = 0, of course with respect
to a different Newton polyhedron.

This work has a strongly computational flavour, and computer algebra
tools did play a role in computing the first examples which led to conjecture
the general shape of the result. Although Singular was not used, we are
happy to dedicate it to Gert-Martin Greuel, who did so much to develop
computer algebra tools for singularists.

1 Plane Branches, Semigroups and Monomial

Curves

(A reminder)

For us, a branch is an irreducible germ of a complex analytic curve. A plane
branch is given by a convergent power series f(u0, u1) ∈ C{u0, u1} which is
not a unit and is irreducible in that ring. The branch is the germ at 0 of the
set of solutions of f(u0, u1) = 0. By the theorem of Newton, after possibly
a change of coordinates to achieve that u0 = 0 is transversal to it at 0, the
branch C can be parametrized near 0 as follows

u0(t) = tn

u1(t) = amtm + am+1t
m+1 + · · · + ajt

j + · · · with m ≥ n.

Let us now consider the following grouping of the terms of the series u1(t): set
β0 = n and let β1 be the smallest exponent appearing in u1(t) which is not
divisible by β0. If no such exponent exists, it means that u1 is a power series
in u0, so that our branch is analytically isomorphic to C, hence non singular.
Let us suppose that this is not the case, and set e1 = (n, β1), the greatest
common divisor of these two integers. Now define β2 as the smallest exponent
appearing in u1(t) which is not divisible by e1. Define e2 = (e1, β2); we have
e2 < e1, and we continue in this manner. Having defined ei = (ei−1, βi), we
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define βi+1 as the smallest exponent appearing in u1(t) which is not divisible
by ei. Since the sequence of integers

n > e1 > e2 > · · · > ei > · · ·

is strictly decreasing, there is an integer g such that eg = 1. At this point, we
have structured our parametric representation as follows:

u0(t) = t
n

u1(t) = ant
n+a2nt

2n+ . . .+ aknt
kn+aβ1t

β1 +aβ1+e1t
β1+e1 + . . .+ aβ1+k1e1t

β1+k1e1

+aβ2t
β2 + aβ2+e2t

β2+e2 + . . . + aβq
t
βq + aβq+eq−1t

βq+eq−1 + . . .

+aβg
tβg + aβg+1t

βg+1 + . . .

where, by construction, the coefficients of the tβi for i ≥ 1 are not zero.
The integers (n = β0, β1, . . . , βg) are called the Puiseux characteristic

exponents of the branch.
Let C{u0, u1}/(f(u0, u1)) = O be the analytic algebra of a germ of an-

alytically irreducible curve C, and let O be its normalization; we have an
injection O ↪→ O, in fact given by u0 7→ tn, u1 7→ u1(t), which makes O
an O-module of finite type, and O is a subalgebra of the fraction field of O.
Since O is isomorphic to C{t}, the order in t of the series defines a mapping
ν : C{t} \ 0 → N which satisfies

i) ν(a(t)b(t)) = ν(a(t)) + ν(b(t)) and

ii) ν(a(t) + b(t)) ≥ min(ν(a(t)), ν(b(t))) with equality if ν(a(t)) 6= ν(b(t));

in other words, ν is a valuation of the ring C{t}.

We consider the valuations of the elements of the subring O, i.e., the
image Γ of O \ {0} by ν; in view of i), it is a semigroup contained in N. The
fact that O is a finite O-module implies that N \ Γ is finite.

Now, we seek a minimal set of generators of Γ as a semigroup: Let β0 be
the smallest nonzero element in Γ, let β1 be the smallest element of Γ which
is not a multiple of β0, let β2 be the smallest element of Γ which is not a
combination with non negative integral coefficients of β0 and β1, i.e., is not
in the semigroup

〈

β0, β1

〉

, and so on. Finally, since N \ Γ is finite, we find in
this way a minimal set of generators:

Γ =
〈

β0, β1, . . . , βg

〉

.

This set of generators is uniquely determined by the semigroup Γ, and of
course determines it.

Let us take the notations introduced for the Puiseux pairs; it is easy to
check that if we set β0 = n, the multiplicity, then β0 = β0 = n, β1 = β1. After
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that is becomes more complicated. Zariski ([9], Th. 3.9) proved the following
recursive formula: β0 = β0 = n, β1 = β1 and for q ≥ 2,

βq = nq−1βq−1 − βq−1 + βq,

where the integers ni are defined inductively by e0 = n and ei−1 = niei,
where the ei are the successive greatest common divisors introduced at the
beginning of the section, so that we have

n = β0 = β0 = n1 . . . ng.

Thus, the datum of these generators, or of the semigroup, is equivalent to the
datum of the Puiseux characteristic of (X, 0), or of its topological type. The
proof relies on a formula of Max Noether which computes the contact exponent
(C,D)0
m0(D)

of two analytic branches at the origin in terms of the coincidence of
their Puiseux expansions in fractional powers of x.
The semigroups coming from plane branches are characterized among all semi-
groups of analytically irreducible germs of curves by the following two prop-
erties:

1) niβi ∈
〈

β0, . . . , βi−1

〉

2) niβi < βi+1 .

That the semigroups of plane branches have these properties follows from the
induction formula and the inequalities βi < βi+1. The converse can be proved
by the construction outlined below (see [7]).

Conversely, given a semigroup Γ in N with finite complement, we can asso-
ciate to it an analytic (in fact algebraic) curve, called the monomial curve
associated to Γ. If Γ =

〈

β0, β1, . . . , βg

〉

, the monomial curve CΓ is described
parametrically by

u0 = tβ0 , u1 = tβ1 , . . . , ug = tβg .

On the other hand, the relations 1) above mean that there exist natural

numbers `
(j)
i satisfying

1′)

n1β1 = `
(1)
0 β0 ,

n2β2 = `
(2)
0 β0 + `

(2)
1 β1 ,

...

njβj = `
(j)
0 β0 + · · · + `

(j)
j−1βj−1

...

ngβg = `
(g)
0 β0 + · · · + `

(g)
g−1βg−1 .
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These relations translate into equations for the curve CΓ ⊂ Cg+1; since ui =
tβi, our curve satisfies the g equations

fj = uni

j − u
`
(j)
0

0 u
`
(j)
1

1 . . . u
`
(j)
j−1

j−1 = 0, 1 ≤ j ≤ g,

and it can be shown that they actually define CΓ ⊂ Cg+1, so that if Γ is the
semigroup of a plane branch, CΓ is a complete intersection.

The relations 1′) are not uniquely determined, but there is a canonical

choice: dividing each `
(j)
k by nk we can request that for every k ≥ 1 we have

`
(j)
k < nk; it is the choice we shall make in the sequel.

Remark that if we give to ui the weight βi, the i-th equation is homoge-
neous of degree niβi.

The connection between a plane curve C having semigroup Γ and the
monomial curve is much more precise and interesting than the formal relation
we have just seen; by small deformations of the monomial curve one obtains
all the branches with the same semigroup. In fact the best way to understand
all branches with semigroup Γ is to consider the not necessarily plane curve
CΓ (CΓ is plane if and only if C has only one characteristic exponent).

By definition of Γ, there are elements ξq ∈ O with ν(ξq) = βq. We can
write these elements in C{t} as

ξq = tβq +
∑

j>βq

γq,jt
j.

Let us consider the one-parameter family of parametrizations

u0 = tm , u1 = tβ1 +
∑

j>β1

vj−β1γ1,jt
j , . . . , ug = tβg +

∑

j>βg

vj−βgγg,jt
j .

The reader can check that for v 6= 0, the curve thus described is isomorphic
to our original curve C. (hint: make the change of parameter t = vt′ in the ξq

and the change of coordinates uj = vβju′

j, and remember the definition of the
ξj). For v = 0, we have the parametric description of the monomial curve.

So we have, in fact. described a map C × C → Cg+1 × C which induces
the identity on the second factors (with coordinate v). The image of this map
is a surface, which is the total space of a deformation of the monomial curve,
all of its fibers except the one for v = 0 being isomorphic to our plane curve
C. It follows that the monomial curve is a specialization, in this family, of our
plane curve. In this specialization the multiplicity and the semigroup remain
constant; in a rather precise sense it is an equisingular specialization, or one
may say that the plane curve is an equisingular deformation of the monomial
curve with the same semigroup.
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The same phenomenon can be also observed in the language of equa-
tions rather than parametrizations. Let us consider a one parameter family
of equations for curves in Cg+1, of the form

F1 = un1
1 − u

`
(1)
0

0 − vu2 = 0 ,

F2 = un2
2 − u

`
(2)
0

0 u
`
(2)
1

1 − vu3 = 0 ,
...

...

Fg−1 = u
ng−1

g−1 − u
`
(g−1)
0

0 u
`
(g−1)
1

1 . . . u
`
(g−1)
g−2

g−2 − vug = 0 ,

Fg = u
ng
g − u

`
(g)
0

0 u
`
(g)
1

1 . . . u
`
(g)
g−1

g−1 = 0 .

For v = 0 we get the equations of the monomial curve, and for v 6= 0 we get a
curve which has semigroup Γ; this is a general heuristic principle of equisingu-
larity: we have added to each equation of the monomial curve, homogeneous
of degree niβi, a perturbation of degree βi+1 > niβi, and this should not
change the equisingularity class (the perturbation is ”small” compared to the
equation).

Notice that for each fixed v 6= 0 the curve described by the above equa-
tions is a plane curve: for simplicity take v = 1; then use the first equation to

compute u2 = un1
1 −u

`
(1)
0

0 , substitute this in the next equation, and use this to
compute u3 as a function of u0, u1, and so on. Finally, the last equation gives
us the equation of a plane curve of the form
(

· · ·
(

(

un1
1 − u

`
(1)
0

0

)n2
− u

`
(2)
0

0 u
`
(2)
1

1

)
n3

− · · ·

)ng

− u
`
(g)
0

0 u
`
(g)
1

1

(

un1
1 − u

`
(1)
0

0

)`
(g)
2 · · · = 0 .

The first consequence (see [7]) is that we can produce explicitely the equation
of a plane curve with given characteristic exponents: compute the semigroup
and its generators, and then write the equation above.

A more important fact is that one can show (loc. cit) that any plane
curve with a given semigroup appears up to isomorphism as a fiber in a
deformation depending on a finite number of parameters: it is a deformation
of the monomial curve obtained by adding to the j-th equation a polynomial
in the ui’s of order > njβj, where uj+1 appears linearly if j < g, and these
polynomials can in principle be explicitely computed.

In fact it is shown in [7] that we can in this manner produce equations
for all branches having the same semigroup (or equisingularity type) up to
an analytic isomorphism.
In view of the constancy of the jacobian Newton polygon for equisingular fam-
ilies of plane branches, the special family above represents all degenerations
of plane branches to the associated monomial curve, as far as the variation
of jacobian Newton polyhedra are concerned. We shall therefore make com-
putations for this family.
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2 The Discriminant

Set v = (v1, . . . , vg−1), and consider the map

φ : Cg+1 × Cg−1 −→ Cg+1 × Cg−1

(u0, . . . , ug, v) 7−→ (u0, F1, . . . , Fg, v)

in the coordinates (t0, . . . , tg, v) on the right-hand copy of Cg+1 × Cg−1.
Let us first verify that the morphism φ is flat. We shall see below that

we have even better. Indeed, it is a map between two non singular spaces,
whose fiber over 0 is a complete intersection. The flatness follows. Since the
special fiber has an isolated singularity at the origin, the critical subspace C
of φ is finite over its image in Cg+1×Cg−1, at least locally, by the Weierstrass
preparation theorem. This image (or at least its germ at 0) is then a complex
analytic space which is by definition the discriminant of the map φ ([6], §1).

Let us now compute the discriminant of the mapping φ as the image of
critical subspace using the Fitting ideal of the algebra of the critical subspace
C as in [6].

The critical subspace is defined by the ideal generated by the coefficients
of the differential form

dF1 ∧ · · · ∧ dFg ∧ dt0 ∧ dt1 · · · ∧ dtg ∧ dv1 · · · ∧ dvg−1.

Since Fi = uni

i − u
`
(i)
0

0 · · ·u
`
(i)
i−1

i−1 − viui+1 for j < g and Fg = u
ng
g − u

`
(g)
0

0 · · ·u
`
(g)
g−1

g−1 ,
we see that a generator for the ideal of the critical subspace can ba taken of
the form

C = β0u
n1−1
1 · · ·ung−1

g −
∑

α

cαvα1
1 · · · v

αg−1

g−1 u
m0(α)
0 · · ·umg(α)

g

where each αi is 0 or 1 and (m1(α), . . . , mg(α)) 6= (n1 − 1, . . . , ng − 1).

Lemma 2.1. Giving to the variable ui the weight βi and to vj the (negative)
weight βj − βj+1, the polynomial C is homogeneous of degree

∑g
i=1(ni − 1)βi.

Proof. The statement follows directly from the homogeneity of the polyno-
mials Fi and the computation of C as a jacobian determinant.

Let us denote by IC the ideal of C[u0, . . . , ug, t0, . . . , tg, v1, . . . , vg−1] gener-
ated by (u0 − t0, F1 − t1, . . . , Fg − tg, C). The generators constitute a regular
sequence since their initial forms involve different variables.

Let us consider the C[t0, . . . , tg, v1, . . . , vg−1]-module

OC = C[u0, . . . , ug, t0, . . . , tg, v1, . . . , vg−1]/IC.
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Lemma 2.2. The C[t0, . . . , tg, v1, . . . , vg−1]-module

C[u0, . . . , ug, t0, . . . , tg, v1, . . . , vg−1]/(u0 − t0, F1 − t1, . . . , Fg − tg)

is free and generated by the β0 images of the monomials ui1
1 · · ·u

ig
g with 0 ≤

ik ≤ nk − 1.

Proof. It follows directly for the form of the equations because each of the
equations expresses the corresponding uni

i as a linear combination with coef-
ficients in C[t0, . . . , tg, v1, . . . , vg−1] of our generating monomials.

If we identify t0 and u0 and set

N = C[t0, . . . , tg, v1, . . . , vg−1, u1, . . . , ug]/(F1 − t1, . . . , Fg − tg),

the C[t0, . . . , tg, v1, . . . , vg−1]-module OC is the cokernel of the map of multi-
plication by C in N . By [6] again we have:

Proposition 2.3. 1. The discriminant Disc(φ) of the morphism φ is (up to
multiplication by a nonzero constant) the determinant of the matrix M of the
multiplication in the free C[t0, . . . , tg, v1, . . . , vg−1]-module N by the equation
C of the critical subspace.

2. Giving to the variable tj the weight njβj and to vk the (negative)
weight βk − βk+1, the polynomial ∆ = Disc(φ) ∈ C[t0, . . . , tg, v1, . . . , vg−1] is
homogeneous of degree

deg∆ = β0(

g
∑

i=1

(ni − 1)βi).

Proof. The first part of the assertion follows directly from §1 of [6]. For
the second part, first note that if we give to ui the weight βi, the free
C[t0, . . . , tg, v1, . . . , vg−1]-module N is graded when the variables are given
the weights of the proposition since the equations Fi are homogeneous.

We now apply Lemma 1 of §1 of [6]; in view of Lemma 2.1, if we want
the morphism of multiplication by C to be homogeneous of degree 0, setting
A = C[t0, . . . , tg, v1, . . . , vg−1] and di1,...,ig =

∑g

k=1 ikβk, we may write the first
copy of N as

N =
⊕

i1,...,ig

A[di1,...,ig ],

where A[s] is the A-module A regraded (shifted) by giving 1 the degree s,
and then we must write the second copy of N as

N =
⊕

i1,...,ig

A[di1,...,ig −

g
∑

k=1

(nk − 1)βk]
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where 0 ≤ ik ≤ nk − 1. The result follows immediately from loc.cit. which
states that the degree of the determinant is the sum of the differences of the
shifts in the first and second copies over all values of i1, . . . , ig.

Remark 2.4. • In what follows, we shall constantly use the fact that the
Fitting image definition of the discriminant commutes with base change and
in particular with restriction over subspaces of the target space (see [6]).

• We denote by τi the exponent of ti in a monomial, and by υj the exponent
of vj; then Proposition 2.3 means that all the monomials appearing in the
equation of the discriminant satisfy (setting n0 = 1):

g
∑

i=0

niβiτi +

g−1
∑

j=1

(βj − βj+1)υj = β0(

g
∑

i=1

(ni − 1)βi).

3 Curves with Two Characteristic Pairs

The purpose of this section is the computation of the Newton polyhedron in
the coordinates (t0, t1, t2) of the discriminant of the morphism φ in the case
of two characteristic pairs, both for v = 0 and v nonzero.

If g = 2 the morphism φ is defined by the equations

u0 − t0 = 0 , un1
1 − u

`
(1)
0

0 − vu2 − t1 = 0 , un2
2 − u

`
(2)
0

0 u
`
(2)
1

1 − t2 = 0 . (1)

Identifying u0 with t0, we have the equations

un1
1 − t

`
(1)
0

0 − vu2 − t1 = 0 , un2
2 − t

`
(2)
0

0 u
`
(2)
1

1 − t2 = 0 ,

and the equation of the critical subspace is

C = β0u
n1−1
1 un2−1

2 − `
(2)
1 vt

`
(2)
0

0 u
`
(2)
1 −1

1 = 0 .

In view of Proposition 2.3, we have to compute the matrix of multiplication
by C in the basis ei,j = ui

1u
j
2, 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1 for the

C[t0, t1, t2, v]-module N = C[t0, t1, t2, v, u1, u2]/(F1 − t1, F2 − t2).

Remark 3.1. If `
(2)
1 = 0, which is the case for example if Γ = 〈6, 8, 27〉, the

critical subspace is C = β0u
n1−1
1 un2−1

2 , and the computation is simpler but

has to be conducted a little differently, introducing B = t
`
(2)
0

0 + t2 and the
conclusion is the same. We will present the computations in the case where
`
(2)
1 ≥ 1.
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In order to write down the matrix of a presentation of the C{t0, t1, t2, v}-
module OC, we have to compute modulo the ideal (F1 − t1, F2 − t2) the effect
of the multiplication by C on the generators ei,j. The matrix can be presented
by blocks, each block corresponding to a fixed value of j. Our matrix is
constructed as an n2 × n2 matrix of blocks of size n1; when j is fixed and we
fix also the block j ′ in which we look at the relations, the situation can be
represented by an n1 × n1-matrix Mj,j′ whose elements are indexed by (i, i′).

For j = 0, if i = 0, the relation is the equation C = 0, which we write as

en1−1,n2−1 − (1 − c)vT0e`
(2)
1 −1,0

= 0,

where c = 1 −
`
(2)
1

β0
and we set for simplicity T0 = t

`
(2)
0

0 .

For j = 0 and 1 ≤ i ≤ n1 − 1, we have two cases: if i < n1 − `
(2)
1 + 1, we

obtain the relation:

Aei−1,n2−1 + vt2ei−1,0 + cvT0e`
(2)
1 +i−1,0

= 0,

where we set for simplicity A = t
`
(1)
0

0 + t1.

If i ≥ n1 − `
(2)
1 + 1, we obtain the relation:

Aei−1,n2−1 + vt2ei−1,0 + cvT0Ae
`
(2)
1 +i−1−n1,0

+ cv2T0e`
(2)
1 +i−1−n1,1

= 0.

This gives us our first line of blocks: For j = 0 the relations involve elements
in the blocks j ′ = 0, j ′ = 1 and j ′ = n2 − 1.

For j ′ = 0 the matrix is:

M0,0 =































0 0 . . . −(1 − c)vT0 0 0 . . . 0
vt2 0 . . . cvT0 0 . . . 0
0 vt2 . . . 0 cvT0 . . .
...

...
...

cvT0

cvAT0 0 . . . vt2 . . . 0 0
...

...
...

0 cvAT0 0 . . . . . . vt2 0 0
0 . . . cvAT0 . . . 0 . . . vt2 0































where the nonzero elements are aligned on parallels to the second diagonal,
the first nonzero element of the first line is in column `

(2)
1 and the last and

only nonzero element of the first column is in line n1 − `
(2)
1 + 2.
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For j ′ = 1 the matrix is:

M0,1 =



























0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . .
...

...
...

0
cv2T0 0 0 . . . 0 0

...
...

...
0 cv2T0 0 . . . . . . . . . 0 0
0 . . . cv2T0 . . . 0 . . . 0 0



























where the nonzero elements are aligned on parallels to the second diagonal,
the first and only nonzero element of the last line is in column `

(2)
1 and the

last nonzero element of the first column is in line n1 − `
(2)
1 + 2.

For j ′ = n2 − 1 the matrix is

M0,n2−1 =































0 0 . . . 0 0 0 . . . 1
A 0 . . . 0 0 . . . 0
0 A . . . 0 0 . . .
...

...
...

0
0 0 . . . A . . . 0 0
...

...
...

0 0 0 . . . . . . A 0 0
0 . . . 0 . . . 0 . . . A 0































For 1 ≤ j < n2 − 1, the relations involve elements in the blocks j ′ = j − 1,
j ′ = j and j ′ = j + 1. They are as follows:

• For i = 0, we have

t2en1−1,j−1 + cvT0e`
(2)
1 −1,j

+ AT0e`
(2)
1 −1,j−1

= 0.

• For 0 < i < n1 − `
(2)
1 + 1, we have

At2ei−1,j−1 + vt2ei−1,j + AT0ei+`
(2)
1 −1,j−1

+ cvT0ei+`
(2)
1 −1,j

= 0.

• For i ≥ n1 − `
(2)
1 + 1, we have:

At2ei−1,j−1 + vt2ei−1,j + A2T0ei+`
(2)
1 −n1−1,j−1

+(1 + c)vAT0ei+`
(2)
1 −n1−1,j

+ cv2T0ei+`
(2)
1 −n1−1,j+1

= 0.
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For j ′ = j − 1, the matrix is:

Mj,j−1 =































0 0 . . . AT0 0 . . . 0 t2
At2 0 . . . AT0 0 . . . 0
0 At2 . . . 0 AT0 . . .
...

...
...

AT0

A2T0 0 . . . At2 . . . 0
...
0 0 . . . . . . At2 0 0
0 . . . A2T0 . . . 0 At2 0































where the nonzero elements are aligned on parallels to the second diagonal,
the first nonzero element of the first line is in column `

(2)
1 and the last nonzero

element of the first column is in line n1 − `
(2)
1 + 2.

For j ′ = j, the matrix is:

Mj,j =































0 0 . . . cvT0 0 0 . . . 0
vt2 0 . . . cvT0 0 . . . 0
0 vt2 . . . 0 cvT0 . . . 0
...

...
...

...
cvT0

(c+1)vAT0 0 . . . vt2 . . . 0 0
...

...
0 (c+1)vAT0 0 . . . . . . vt2 0 0
0 . . . (c+1)vAT0 . . . 0 vt2 0































where the nonzero elements are aligned on parallels to the second diagonal,
the first nonzero element of the first line is in column `

(2)
1 and the last nonzero

element of the first column is in line n1 − `
(2)
1 + 2.

For j ′ = j + 1, the matrix is:

Mj,j+1 =



























0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . .
...

...
...

0
cv2T0 0 . . . 0 . . . 0 0

...
0 cv2T0 0 . . . . . . . . . 0 0
0 . . . cv2T0 . . . 0 0 0
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where the nonzero elements are aligned on parallels to the second diagonal,
the first and only nonzero element of the last line is in column `

(2)
1 − 1.

For j = n2 − 1, the relations involve elements in the blocks j ′ = n2 − 1,
j ′ = n2 − 2, j ′ = 0 and j ′ = 1. They are as follows:

• For i = 0, we have

t2en1−1,n2−2 + cvT0e`
(2)
1 −1,n2−1

+ AT0e`
(2)
1 −1,n2−2

= 0.

• For i > 0 and i ≤ n1 − `
(2)
1 , we have:

At2ei−1,n2−2 + AT0e`
(2)
1 +i−1,n2−2

+ vt2ei−1,n2−1 + cvT0e`
(2)
1 +i−1,n2−1

= 0.

• For n1 − `
(2)
1 + 1 ≤ i ≤ 2(n1 − `

(2)
1 ), we have:

At2ei−1,n2−2 + A2T0e`
(2)
1 +i−n1−1,n2−2

+ (1 + c)AT0ve
`
(2)
1 +i−n1−1,n2−1

+ vt2ei−1,n2−1 + cv2t2e`
(2)
1 +i−n1−1,0

+ cv2T0e2`
(2)
1 +i−n1−1,0

= 0.

• For i ≥ 2(n1 − `
(2)
1 ) + 1, we have:

At2ei−1,n2−2 + A2T0e`
(2)
1 +i−n1−1,n2−2

+ (1 + c)vAT0e`
(2)
1 +i−n1−1,n2−1

+ vt2ei−1,n2−1 + cv2t2e`
(2)
1 +i−n1−1,0

+ cv2AT0e2`
(2)
1 +i−2n1−1,0

+ cv3T0e2`
(2)
1 +i−2n1−1,1

= 0.

For j ′ = 0, the matrix is:

Mn2−1,0 =

































0 0 . . . 0 0 0
...

... . . .
... . . .
0

cv2t2 0 . . . cv2T0 0
... cv2t2

...
...

0 . . . cv2T0

cv2AT0 . . . . . . 0
...

... . . .
... . . .

0 cv2AT0 . . . cv2t2 0

































where the nonzero elements are aligned on parallels to the second diagonal,
the first line with nonzero entries is the line with number n1− `

(2)
1 +2, and its

last nonzero element is in column `
(2)
1 . The last nonzero element of the first

column is in line 2(n1 − `
(2)
1 + 1).
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For j ′ = 1, the matrix is:

Mn2−1,1 =



























0 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . .
...

...
...

0
cv3T0 0 . . . 0 . . . 0 0

...
0 cv3T0 0 . . . . . . . . . 0 0
0 . . . cv3T0 . . . 0 0 0



























where the first nonzero element of the first column is on line 2(n1 − `
(2)
1 + 1).

For j ′ = n2 − 2, the matrix is:

Mn2−1,n2−2 =































0 0 . . . AT0 0 . . . 0 t2
At2 0 . . . AT0 0 . . . 0
0 At2 . . . 0 AT0 . . . 0
...

...
...

...
AT0

A2T0 0 . . . At2 . . . 0 0
...

...
0 A2T0 0 . . . . . . At2 0 0
0 . . . A2T0 . . . 0 0 At2 0































where the first nonzero element of the first line is in column `
(2)
1 and the last

nonzero element of the first column is in line n1 − `
(2)
1 + 2.

For j ′ = n2 − 1, the matrix is:

Mn2−1,n2−1 =































0 0 . . . cvT0 0 . . . 0
vt2 0 . . . cvT0 0 . . . 0
0 vt2 . . . 0 cvT0 . . . 0
...

...
...

cvT0

(1+c)vAT0 0 . . . vt2 . . . 0
...

...
0 (1+c)vAT0 0 . . . . . . vt2 0 0
0 . . . (1+c)vAT0 . . . 0 vt2 0































where the first nonzero element of the first line is in column `
(2)
1 and the last

nonzero element of the first column is in line n1 − `
(2)
1 + 2.
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Finally, the matrix M of the presentation of the C[t0, t1, t2, v]-module OC is
described by the blocks Mj,j′:

M =























M0,0 M0,1 0 . . . 0 0 M0,n2−1

...
... . . .

... . . .
...

..

.
..
. . . .

..

. . . .
..
.

0 Mj−1,j−2 Mj−1,j−1 Mj−1,j 0
0 Mj,j−1 Mj,j Mj,j+1 0 0
..
.

..

. . . .
..
. . . .

..

.
.
..

.

.. . . .
.
.. . . .

.

..
Mn2−1,0 Mn2−1,1 0 . . . 0 Mn2−1,n2−2 Mn2−1,n2−1























.

We are going to get information about the determinant of the matrix of
relations between the generators ei,j using this decomposition into blocks.

Lemma 3.2. For v = 0, the determinant of the matrix M is given by:

detM = An1−1 (detMj,j−1)
n2−1

Proof. For v = 0 the only nonzero blocks are M0,n2−1 and the Mj,j−1 which
are all equal. By expanding the determinant of M successively along the last
n1 columns, we find that it is equal to An1−1 times the determinant of the
matrix M of size β0−n1 obtained by deleting the first n1 lines and the last n1

columns of M . That matrix is subdivided into blocks Mj,j′, among which the
only nonzero ones are the n2 − 1 blocks Mj,j−1, which are all equal; therefore
they commute and we can compute the determinant of M as the product of
the determinants of the blocks (see [1], §9, Lemme 1). The result follows.

Lemma 3.3. For v = 0 and t2 = 0, the discriminant is equal to

T
n1(n2−1)
0 An2(n1−1)+`

(2)
1 (n2−1).

As a consequence, the Newton polyhedron of the discriminant of φ contains
as an edge the segment joining the two points

P1 = (n1(n2 − 1)`
(2)
0 , n2(n1 − 1) + `

(2)
1 (n2 − 1), 0)

and
P2 = ((n1 − 1)β1 + (n2 − 1)β2, 0, 0).

Proof. The first part of the statement follows directly from Lemma 3.2. Since
the Newton polyhedron of the discriminant is necessarily entirely on one side
of any of the coordinate hyperplanes τi = 0 or υ = 0, its intersection with one
of them is necessarily a face. If, upon intersecting with the other hyperplane,
we find a segment, that segment is necessarily an edge. We apply this to υ = 0
and τ2 = 0 and use the expressions of the niβi in terms of βk with k < i to
compute the coordinates of the points Pi. This proves the second part.
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Lemma 3.4. For v = 0 the Newton polyhedron of the discriminant of φ|v=0

lies entirely on one side of (“above”) the hyperplane

n2τ0 + β1τ1 = (n1 − 1)n2β1 .

Proof. Using the result of Lemma 3.2 and the expression of Mj,j−1, we see that
it suffices to show that the exponents (τ0, τ1) of the monomials appearing in
the determinant of M and arising from the term An1−1tn2

2 in the determinant
of Mj,j−1 satisfy the inequality n2τ0+β1τ1 ≥ (n1−1)n2β1. Indeed all the other
monomials contain higher exponents of t0 or t1. This amounts to studying
the exponents of t0 and t1 appearing in the expansion of An1−1A(n1−1)(n2−1) =

A(n1−1)n2 . But these are terms t
i`

(1)
0

0 tj1 with i + j = (n1 − 1)n2. Substituting in

the equation of our hyperplane and remembering that by definition n2`
(1)
0 =

β1 gives the result.

Lemma 3.5. The Newton polyhedron of the discriminant of φ contains as an
edge the segment joining the two points

P2 = ((n1 − 1)β1 + (n2 − 1)β2, 0, 0) and P3 = ((n1 − 1)β1, 0, n1(n2 − 1)).

Proof. Since the Newton polyhedron of the discriminant is contained in the
hyperplane of homogeneity, its intersection with the coordinate plane τ1 =
0, υ = 0 is contained in a line. By convexity this line is a segment. By the same
argument as above it is an edge of the Newton polyhedron of the discriminant.
We are going to determine its extremities by seeking the points of maximum
and minimum value of τ0. We apply this to υ = 0 and τ1 = 0, which means
that we compute the expression of the discriminant for v = 0 and t1 = 0
using lemma 3.2 and the expression of Mj,j−1 to seek the maximum value of
the exponent of t0, which is obtained by taking the product of the AT0 and
A2T0 in the expansion of the determinant of Mj,j−1, and its minimum value,
obtained by taking the term An1−1tn1

2 in that expansion. Finally we use the
expressions of the niβi in terms of βk with k < i to compute the coordinates
of the points Pi.

Lemma 3.6. The Newton polyhedron of the discriminant of φ contains as an
edge the segment P3P4, where P4 = (0, n2(n1 − 1), n1(n2 − 1)).

Proof. Again, use Lemma 3.2 and observe that for v = t0 = 0 the determinant
of Mj,j−1 is equal to the monomial tn1−1

1 tn1
2 . Use the expressions of the niβi

in terms of βk with k < i to compute the coordinates of the point P4. On the
other hand, it follows from Lemma 3.2 that the Newton polyhedron for v = 0
is entirely on one side of the hyperplane τ2 = n1(n2 − 1). It meets it in the
two points P3, P4 which are in different coordinate planes, therefore along the
edge P3P4.



200. E. Garćıa Barroso and B. Teissier

Lemma 3.7. The segment P1P4 is an edge of the Newton polyhedron of φ
and the plane containing it and parallel to the τ1-axis supports a non-compact
face of the Newton polyhedron.

Proof. The equation of the hyperplane parallel to the t1-axis and containing
P1P4 is:

H : τ0 + `
(2)
0 τ2 = n1(n2 − 1)`

(2)
0 .

The expression given above for the matrix M shows that the products appear-
ing in the expansion of its determinant are all up to a constant factor of the
form vδAαT β

0 tγ2 with β+γ ≥ n1(n2−1). The result follows because this implies
by a direct computation that the Newton polyhedron of the discriminant of
φ is entirely on one side of H.

Proposition 3.8. The Newton polyhedron of the discriminant of the map φ
restricted to v = 0 has one compact face which is is the convex hull of the
points P1, P2.P3, P4 and two non compact faces, the plane parallel to the τ1

axis and containing the segment P1P4 and the plane parallel to the τ2-axis and
containing the segment P3P4.

Proof. It follows from the previous lemmas since we know by Proposition 2.3
that the compact face of the Newton polyhedron for v = 0 is contained in the
plane β0τ0 + n1β1τ1 + n2β2τ2 = β0((n1 − 1)β1 + (n2 − 1)β2).

Lemma 3.9. The convex hull of the points P3, P4, P5, where P5 = (0, 0, β0−1)
is a face of the Newton polyhedron of φ.

Proof. Taking t0 = t1 = 0, the determinant of the matrix M reduces to the

monomial v(n1−1)n2t
β0−1
2 , which corresponds to P5. To prove the lemma it suf-

fices to show that the Newton polyhedron is entirely on one side of (“above”)
the hyperplane β0τ0 + n1β1τ1 + β0β1τ2 − β0(β0 − 1)β1 = 0 determined by the
points P3, P4, P5.

Given a point P with coordinates (τ0, τ1, τ2, υ) satisfying the relation of
homogeneity

β0τ0 + n1β1τ1 + n2β2τ2 + (β1 − β2)υ − β0((n1 − 1)β1 + (n2 − 1)β2) = 0

of Proposition 2.3, we must check that it gives a positive value to

H2(τ0, τ1, τ2) = β0τ0 + n1β1τ1 + β0β1τ2 − β0(β0 − 1)β1.

A short computation using the identities between the βj and βk after eliminat-
ing τ0 and τ1 by substracting the homogeneity relation from H2 and rewriting
(modulo that relation)

H2(τ0, τ1, τ2) = β0((n1 − 1)β1 + (n2 − 1)β2) − β0(β0 − 1)β1

+ (β2 − β1)υ + (β0β1 − n2β2)τ2 ,
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shows that for such a point we have the equality

H2(τ0, τ1, τ2) = (β2 − β1)(β0(n2 − 1) + υ − n2τ2),

so that we have the required inequality if and only if n2τ2 − υ ≤ β0(n2 − 1).
But this is always true since the greatest possible exponent of t2 in the

determinant of M is β0 − 1, corresponding to the terms in the subdiagonal
of M , and by looking again at the matrix one sees that τ2 − υ ≤ n2 − 1 since
there are only n2 − 1 occurrences of t2 without a factor v.

Proposition 3.10. The Newton polyhedron of the discriminant of the map
φ for a fixed v 6= 0 has two compact faces, which are respectively the convex
hulls of P1, P2.P3, P4 and of P3, P4, P5 and one non compact face, which is
that of Lemma 3.7.

Proof. The statement follows from the previous lemmas.

t0

t1

t2

P1

P3

P4

P2

P5

Figure 1: Newton polyhedron of the discriminant of φ.
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Figure 1 gives an idea for the shape of the Newton polyhedron for v 6= 0. The
non-compact face which appears for v = 0 is suggested in thinner lines.

The intersection with τ1 = 0 is the jacobian Newton polygon of the plane
branch.

1. P1 = (n1(n2 − 1)`
(2)
0 , n2(n1 − 1) + `

(2)
1 (n2 − 1), 0),

2. P2 = ((n1 − 1)β1 + (n2 − 1)β2, 0, 0),

3. P3 = ((n1 − 1)β1, 0, n1(n2 − 1)),

4. P4 = (0, n2(n1 − 1), n1(n2 − 1)),

5. P5 = (0, 0, β0 − 1).

4 A Question of Genericity

The linear form u0 is not general with respect to the monomial curve defined

by the vanishing of f1 = un1
1 − u

`
(1)
0

0 and f2 = un2
2 − u

`
(2)
0

0 u
`
(2)
1

1 ; this is attested
by the fact that the critical space of the map (u0, f1, f2) is not reduced,
contradicting a known result on polar varieties (see [8], Chap. IV). Therefore
it could be that the Newton polyhedron that we obtain for v = 0 is not
really the jacobian Newton polyhedron of the monomial curve. We are going
to verify that in fact it is.

The method is to check that considering the critical subspace with respect
to a general linear form u0 + σu1 + τu2 affects the matrix of our presentation
only by adding terms whose effect on the determinant is to possibly add
exponents which can be seen to be above the Newton polyhedron computed
for u0. Therefore those terms do not modify the Newton polyhedron.

A direct computation shows that modulo the equation f1 = 0 we have

df1 ∧ df2 = n1n2u
n1−1
1 un2−1

2 du1 ∧ du2 − `
(1)
0 n2u

`
(1)
0 −1

0 un2−1
2 du0 ∧ du2

+(n1`
(2)
0 + `

(1)
0 `

(2)
1 )u

`
(1)
0 +`

(2)
0 −1

0 u
`
(2)
1 −1

1 du0 ∧ du1 .

In fact, the computation gives

df1 ∧ df2 = n1n2u
n1−1
1 un2−1

2 du1 ∧ du2 − `
(1)
0 n2u

`
(1)
0 −1

0 un2−1
2 du0 ∧ du2

+u
`
(2)
0 −1

0 u
`
(2)
1 −1

1 (n1`
(2)
0 un1

1 + `
(1)
0 `

(2)
1 u

`
(1)
0

0 )du0 ∧ du1,

but modulo f1, we can replace un1
1 by u

`
(1)
0

0 . From this it follows, using the

definitions of the `
(j)
k , that

df1 ∧ df2 ∧ du0 = β0u
n1−1
1 un2−1

2 du0 ∧ du1 ∧ du2,

df1 ∧ df2 ∧ du1 = β1u
`
(1)
0 −1

0 un2−1
2 du0 ∧ du1 ∧ du2,

df1 ∧ df2 ∧ du2 = β2u
`
(1)
0 +`

(2)
0 −1

0 u
`
(2)
1 −1

1 du0 ∧ du1 ∧ du2,
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the last equation being read mod.f1. The equation of our critical subspace
with respect to a general linear form therefore now reads, modulo f1,

β0u
n1−1
1 un2−1

2 + σβ1u
`
(1)
0 −1

0 un2−1
2 + τβ2u

`
(1)
0 +`

(2)
0 −1

0 u
`
(2)
1 −1

1 = 0.

Since σ and τ are now assumed to be “general” constants, we may simplify
this to

un1−1
1 un2−1

2 + σu
`
(1)
0 −1

0 un2−1
2 + τu

`
(1)
0 +`

(2)
0 −1

0 u
`
(2)
1 −1

1 = 0.

Since u0 = t0, this means that we have to study which effect adding the mul-

tiplication by σt
`
(1)
0 −1

0 un2−1
2 + τt

`
(1)
0 +`

(2)
0 −1

0 u
`
(2)
1 −1

1 has on our matrix and its de-
terminant for v = 0.

Using the same method as above, we see that the submatrices Mj,j′ which
are affected are M0,n2−1, which becomes

M̃0,n2−1 =







































σt
`
(1)
0 −1

0 0 . . . 0 0 0 . . . 1

A σt
`
(1)
0 −1

0 . . . 0 0 . . . 0

0 A σt
`
(1)
0 −1

0 0 0 . . .
...

...
...

0
0 0 . . . A . . . 0 0
...

...
...

0 0 0 . . . . . . A σt
`
(1)
0 −1

0 0

0 . . . 0 . . . 0 . . . A σt
`
(1)
0 −1

0







































,

and Mj,j, for j ≥ 0, which becomes (remember that v = 0)

M̃j,j = τ



































0 0 . . . t
`
(1)
0 +`

(2)
0 −1

0 0 . . . 0

0 0 . . . t
`
(1)
0 +`

(2)
0 −1

0 . . . 0
...

...
...

...

t
`
(1)
0 +`

(2)
0 −1

0

At
`
(1)
0 +`

(2)
0 −1

0 0 . . . 0 . . . 0 0
...

...
0 . . . 0 . . . . . . 0 0

0 . . . At
`
(1)
0 +`

(2)
0 −1

0 . . . 0 0 0



































.

(the nonzero elements are aligned on parallels to the second diagonal, the

first nonzero element in the first line is in column `
(2)
1 , and the first nonzero
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element in the first column is in line n1 − `
(2)
1 + 2), and, finally, the matrix

Mj,j−1, which becomes (setting U0 = t
`
(1)
0 −1

0 )

M̃j,j−1 =

























σU0t2 0 . . . AT0 σT0U0 . . . 0 t2
At2 σU0t2 . . . AT0 σT0U0 . . . 0
0 At2 . . . 0 AT0 . . .

...
...

... σT0U0

σt
`
(1)
0

0 T0U0 AT0

A2T0 σt
`
(1)
0

0 T0U0 . . . At2 . . . 0
...
0 0 . . . . . . At2 σU0t2 0

0 . . . A2T0 σt
`
(1)
0

0 T0U0 0 At2 σU0t2

























.

The matrix M̃(0) corresponding to a general linear form and v = 0 has the
following structure: it is described by the blocks M̃j,j′:

M̃(0) =





















M̃0,0 0 0 . . . 0 0 M̃0,n2−1

M̃1,0 M̃1,1 0 0 . . . 0
...

... . . .
... . . .

...

0 M̃j−1,j−2 M̃j−1,j−1 0 0

0 M̃j,j−1 M̃j,j . . . 0 0
..
.

..

. . . .
..
. . . .

..

.
...

... . . .
... . . .

...

0 0 0 . . . 0 M̃n2−1,n2−2 M̃n2−1,n2−1





















.

Let us set E = det M̃0,n2−1 and, using the fact that the matrices M̃j,j and
M̃j,j−1 are in fact independant of j, write D = det M̃j,j and S = det M̃j,j−1.
We can now use the Laplace expansion (see [1, §8]) of the determinant with
respect to the last n1 columns, we obtain (neglecting signs) an expression
±detM̃ = EdetM1 ± DdetN1. Then we notice that we can again use the
Laplace expansion with respect to the last n1 lines or n1 columns, and we
obtain

± det M̃(0) = ESn2−1 ± Dn2.

The discriminant D is easy to compute and equal to

D = τn1A`
(2)
1 −1t

n1(`
(1)
0 +`

(2)
0 −1)

0 .

We can check that the exponent of t0 appearing in Dn2 is larger than an
exponent already appearing in the discriminant for σ = τ = 0. Therefore, it
does not affect the Newton polyhedron.

In the expression that we have seen above in Lemma 3.2 for ` = u0 and
v = 0, the power of t0 which appears is

(n1 − 1)`
(1)
0 + (n2 − 1)

(

n1(`
(1)
0 + `

(2)
0 ) + (`

(2)
1 − 1)`

(1)
0

)

.
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We only have to prove the inequality

n1n2(`
(1)
0 + `

(2)
0 − 1) + n2(`

(2)
1 − 1)`

(1)
0

≥ (n1 − 1)`
(1)
0 + (n2 − 1)

(

n1(`
(1)
0 + `

(2)
0 ) + (`

(2)
1 − 1)`

(1)
0

)

.

After some rewriting, it comes down to

`
(2)
1 `

(1)
0 + n1`

(2)
0 − n1n2 ≥ 0.

But if we remember that we have the equality

`
(2)
0 β0 = n2β2 − `

(2)
1 β1 = (n2 − 1)β2 + β2 − `

(2)
1 β1

and the fact that `
(2)
1 < n1, we get `

(2)
0 ≥ n2, and this suffices to prove our

inequality.
Let us now deal with ESn2−1: The exponent of the diagonal term in E,

equal to σn1t
n1(`

(1)
0 −1)

0 , is larger than the exponent of t
(n1−1)`

(1)
0

0 which appears

in An1−1, because `
(1)
0 > n1. So we can forget about that diagonal term in E.

Next, let us consider Sn2−1: Our polyhedron for v = 0 is bounded by the
three hyperplanes

1. β0τ0 + n1β1τ1 + n2β2τ2 = β0((n1 − 1)β1 + (n2 − 1)β2)

2. n2τ0 + β1τ1 = (n1 − 1)n2β1

3. τ0 + `
(2)
0 τ2 = n1(n2 − 1)`

(2)
0

Calling L1, L2, L3 the linear forms appearing in the left-hand side of these
three equations, for each Li we seek successively in each column of the matrix
M̃j,j−1 the terms which give it the lowest value and which it is possible to
choose in the expansion of the discriminant, and then check that such a choice
gives rise in ESn2−1 to exponents which are above the corresponding support
hyperplane of our polyhedron.

For example, the linear form L1 takes as minimum value in the first `
(2)
1

columns the value β0(2`
(1)
0 − 1 + `

(2)
0 ) which corresponds to σt

`
(1)
0

0 T0U0, and on

the last n1 − `
(2)
1 columns the minimal value β0(`

(1)
0 − 1 + `

(2)
0 ) which corre-

sponds to σT0U0. This gives us a term t
n1(`

(1)
0 −1+`

(2)
0 )+`

(2)
1 `

(1)
0

0 in S and, there-

fore, exponents
(

(n2 − 1)(n1(`
(1)
0 −1+`

(2)
0 ) + `

(2)
1 `

(1)
0 ) + (n1−1− i)`

(1)
0 , i, 0

)

in
the expansion of Sn2−1An1−1.

Since n1β1 = `
(1)
0 β0, it suffices to check the inequality on L1 for i = 0.

This means to verify the inequality

(n2 − 1)
(

(n2 − 1)(n1(`
(1)
0 − 1 + `

(2)
0 ) + `

(2)
1 `

(1)
0 )

)

+ (n1 − 1)`
(1)
0

≥ (n1 − 1)β1 + (n2 − 1)β2 .
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We can now use the equalities β2 = n1`
(2)
0 + `

(1)
0 `

(2)
1 and n2`

(1)
0 = β1 which

follow from the definitions to rearrange the terms on the left into

(n2 − 1)β2 + (n1 − 1)β1 + (n2 − 1)(`
(1)
0 − n1 + 2)

and prove that the inequality follows from `
(1)
0 > n1.

If we now take L2, the term giving the minimal value in each column of
M̃j,j−1 is σU0t2. This gives a term with τ0 = n1(n2−1)(`

(1)
0 −1) + (n1−1)`

(1)
0 ,

which again gives the same value to L2 as all the other terms coming from
An1−1. So we have to prove the inequality

n1n2(n2 − 1)(`
(1)
0 − 1) + (n1 − 1)n2`

(1)
0 ≥ (n1 − 1)n2β1.

Again, using n2`
(1)
0 = β1, we can rearrange the left-hand side of this inequality

into (n1 − 1)n2β1 + (`
(1)
0 − n1)n2(n2 − 1), and the result then follows from

`
(1)
0 > n1. The last case is left to the reader. From these computations one

finally deduces that the Newton polyhedron with respect to the linear form
u0 is indeed the general one for v = 0.

5 The Information is Constant

To conclude let us check that the Newton polyhedra for v = 0 and for v 6=
0 both contain the same information, namely the semigroup of the plane
branch, or equivalently its Puiseux characteristic, its equisingularity type, or
its topological type.

First, it follows from the description of the polyhedra that they are both
determined by the generators of the semigroup; the numbers β i, n1, n2 and

`
(j)
k are all determined by the semigroup. The Newton polyhedron for v 6= 0

contains as a plane section the jacobian Newton polyhedron of the plane
branch which is known to determine the equisingularity type, so that its
datum is equivalent to that of the equisingularity type, or the semigroup. It
is also easy to check directly that its knowledge gives us the generators of the
semigroup: the point P5 gives us β0 = n1n2, so that from the homogeneity
relation of Proposition 2.3 we know n1β1 and n2β2. But once we know β0 the
coordinates of the point P3 give us n1 and n2, and we are done.

It remains to verify that no information is lost when v = 0. Let us collect
the information that we have: First we have the homogeneity relation for
v = 0:

β0τ0 + n1β1τ1 + n2β2τ2 = β0((n1 − 1)β1 + (n2 − 1)β2).

It gives us the coefficients up to a multiplicative rational factor.
The point P4 gives us n1 − n2 = d by difference of its second and third

coordinates. Substituting in the second coordinate we find that it is equal
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to n2(n2 + d − 1), so that we know the product and the difference of n2 and
n2 +d−1. Since d is known, we now know n2, hence also n1 and their product
β0. From the homogeneity equation we can finally deduce β1 and β2.
So the information is indeed constant, with two different encodings.

Questions: It is to be hoped that for any number of characteristic pairs, the
Newton polyhedron for v 6= 0 has exactly g compact faces, which intersect
the plane τ1 = · · · = τg−1 = 0 along the jacobian Newton polygon of the
plane branch, and that the information contained in the Newton polyhedron
for v = 0 is still equivalent to the knowledge of the semigroup of the branch.

More generally, one can hope that given a branch, plane or not, such that
the monomial curve with the same semigroup is a complete intersection, the
jacobian Newton polyhedron associated to the map defined by the equations
of the branch and a general linear form encodes the semigroup.
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