Module theoretic interpretation of quantum minors JAN SCHRÖER (Leeds)

Let Λ be a the preprojective algebra of type \mathbb{A}_n , and let \mathcal{B}^* be the dual canonical basis of the associated quantized algebra U_v^- . The elements in \mathcal{B}^* are indexed by multisegments **m**.

To each quantum minor $b_{\mathbf{m}}^* \in \mathcal{B}^*$ we associate a Λ -module $L_{\mathbf{m}}$ (this is a laminated module in the sense of Ringel [3]). Our main result is the following:

Theorem. Let $b_{\mathbf{m}}^*$ and $b_{\mathbf{n}}^*$ be quantum flag minors. Then the following are equivalent:

- (1) $b_{\mathbf{m}}^*$ and $b_{\mathbf{n}}^*$ are multiplicative, i.e. $b_{\mathbf{m}}^* b_{\mathbf{n}}^* \in v^{\mathbb{Z}} \mathcal{B}^*$; (2) Ext¹(*L*, *L*) = 0
- (2) $\operatorname{Ext}^{1}_{\Lambda}(L_{\mathbf{m}}, L_{\mathbf{n}}) = 0.$

The proof of this theorem uses a combinatorial criterion due to Leclerc, Nazarov and Thibon [2] for two quantum flag minors to be multiplicative. For all missing definitions we refer to [1], [2] and [3].

References

- A. Berenstein, A. Zelevinsky, String bases for quantum groups of type A_r. I.M. Gelfand Seminar, 51–89, Adv. Soviet Math. 16, Part 1, Amer. Math. Soc., Providence, RI (1993).
- B. Leclerc, M. Nazarov, J.-Y. Thibon, Induced representations of affine Hecke algebras and canonical bases of quantum groups. Preprint arXiv:math.QA/0011074 (2000), 1–33.
- [3] C.M. Ringel, The multisegment duality and the preprojective algebras of type A. AMA Algebra Montp. Announc. 1999, Paper 2, 6pp.