The McKay Correspondence

Alastair King

For a finite subgroup G of $SL(n, \mathbb{C})$ one may consider the ordinary (commutative) geometry of crepant resolutions of the quotient singularity \mathbb{C}^n/G and also the (mildy non-commutative) G-equivariant geometry of \mathbb{C}^n itself. The McKay correspondence — first observed for \mathbb{C}^2 , but now much studied for \mathbb{C}^3 — describes the relationship between these two.

This mini-course will survey some of the history of the correspondence from Gonzalez-Sprinberg and Verdier's K-theoretic interpretation of McKay's original observation, to the more modern interpretation as an equivalence of derived categories of sheaves on the resolution and of equivariant sheaves on \mathbf{C}^n .

The course will also describe some more recent progress, including Craw & Ishii's result that all projective crepant resolutions of abelian quotients of \mathbf{C}^3 can be realised as moduli of equivariant sheaves and Logvinenko's theory of *G*-equivariant divisors.