Non-commutative desingularizations and partial resolutions

Lieven Lebruyn

We start from the (partial) resolution of singularities

$$G - Hilb \mapsto \mathbb{C}^n/G$$

of the quotient singularity by means of the Hilbert scheme of G-clusters and generalize this to the following setting. Let (Q, R) be a quiver Q with relations R and let α be a dimension vector of a simple representation of (Q, R). We assume that there is a stability structure θ such that the set $\operatorname{rep}_{\alpha}^{\theta}(Q, R)$ of all θ -semistable representations of (Q, R) is a smooth variety and consider the projective morphism

 $\operatorname{moduli}_{\alpha}^{\theta}(Q,R) \longmapsto \operatorname{iss}_{\alpha}(Q,R)$

from the moduli space of θ -semistable representations to the quotient variety of semi-simple representations of (Q, R). In the above case, (Q, α) is the McKay quiver-setting, R the set of commuting matrix-relations and θ a suitable stability structure. We show that there is a sheaf of smooth noncommutative algebras \mathcal{A} over moduli $_{\alpha}^{\theta}(Q, R)$ such that its non-commutative variety

spec
$$\mathcal{A} \longmapsto \text{moduli}^{\theta}_{\alpha}(Q, R) \longmapsto \text{iss}_{\alpha}(Q, R)$$

can be viewed as a non-commutative desingularization of $iss_{\alpha}(Q, R)$. However, the central scheme $moduli^{\theta}_{\alpha}(Q, R)$ may still have singularities. We classify the types of singularities with can occur for a given dimension n of $iss_{\alpha}(Q, R)$. If n = 2 there are none, if n = 3 there is just one type (the conifold), for n = 4 there are three, for n = 5 ten etc.