Derived equivalence induced by infinitely generated n-tilting modules

Silvana Bazzoni

(Joint work with Francesca Mantese and Alberto Tonolo)

Università di Padova

Trieste, February 1-5, 2010
Outline

- Why Infinitely generated n-tilting modules?
- Equivalences induced by a classical n-tilting module.
- Derived equivalences in the infinitely generated case.
- Application to module categories.
Why infinitely generated modules?

- “Generic modules”

“Generic” modules appear in the Ziegler closure of direct limits of finitely generated modules. They parametrize families of finite dimensional modules, (Crawley-Boevey, Ringel, Krause, Herzog)

- Approximation theory

Classical notion: covariantly or contravariantly finite classes of finitely generated modules approximations via preenvelopes or precovers allowing infinitely generated modules are somehow easier to handle.

Application: tilting classes are always preenveloping.
Why infinitely generated modules?

- Finitistic dimension conjectures
 (Angeleri, Trlifaj '02)
 The little finitistic dimension of a noetherian ring is finite if and only if there is a tilting module representing the category of finitely generated modules of finite projective dimension.

 Even in the case of finite dimensional algebra it may happen that such a tilting module cannot be chosen to be finitely generated.

- \(n \)-tilting classes are of finite type
 (B, Herbera, Šťovíček '07)
 Every tilting class is determined by finitely presented data: it is the right Ext-orthogonal of a set of finitely presented modules.
Infinitely generated \(n \)-tilting modules

\(R \) associative ring with 1.

Definition
A right \(R \)-module \(T \) is \(n \)-tilting module, if

1. **(T1)** there exists a projective resolution of right \(R \)-modules
 \[0 \to P_n \to \ldots \to P_1 \to P_0 \to T \to 0; \]
2. **(T2)** \(\text{Ext}^i_R(T, T^{(\alpha)}) = 0 \) for each \(i > 0 \) and each cardinal \(\alpha \);
3. **(T3)** there exists a coresolution of right \(R \)-modules
 \[0 \to R \to T_0 \to T_1 \to \ldots \to T_m \to 0, \text{ with } T_i' \text{ in } \text{Add } T. \]

- \(T \) is a classical \(n \)-tilting module if \(P_i \)'s in (T1) are finitely generated.

\[\mathcal{T} = \{ M \in \text{Mod-}R \mid \text{Ext}^i_R(T, M) = 0, \forall i > 0 \} \]

is called the \(n \)-tilting class.
Classical equivalences for the case $n = 1$

Theorem [Brenner-Butler ’80, Colby-Fuller ’90]

T_R classical 1-tilting module. $S = \text{End}_R(T)$

$T = \text{Gen} T = \text{Ker}(\text{Ext}^1_R(T, -))$, \quad $\mathcal{F} = \text{Ker}(\text{Hom}_R(T, -))$.

(T, \mathcal{F}) a torsion pair in $\text{Mod-} R$

$\mathcal{Y} = \text{Ker}(\text{Tor}_1^S(-, T))$ \quad $\mathcal{X} = \text{Ker}(- \otimes_S T)$

$(\mathcal{X}, \mathcal{Y})$ torsion pair in $\text{Mod-} S$

\[
\begin{array}{ccc}
T & \overset{\text{Hom}_R(T, -)}{\leftarrow} & \mathcal{Y} \\
& \downarrow{\otimes _S T} & \\
& \mathcal{Y} & \overset{\text{Ext}^1_R(T, -)}{\leftarrow} \mathcal{F} \\
& \downarrow{\text{Tor}_1^S(-, T)} & \\
\mathcal{F} & \overset{\text{Hom}_R(T, -)}{\leftarrow} & \mathcal{X}
\end{array}
\]
Classical equivalences for $n > 1$

T_R a classical n-tilting module. $S = \text{End}_R(T)$

$$KE_i = \bigcap_{0 \leq j \neq i} \text{Ker}(\text{Ext}^j_R(T, -)) \quad 0 \leq i \leq n$$

$$KT_i = \bigcap_{0 \leq j \neq i} \text{Ker}(\text{Tor}^j_S(-, T)) \quad 0 \leq i \leq n$$

Theorem [Miyashita, ’86]

There are equivalences:

$$\begin{align*}
\text{Ext}^i_R(T, -) & \quad \text{KE}_i & \quad \text{KT}_i & \quad 0 \leq i \leq n \\
\text{Tor}^i_S(-, T) & \quad & &
\end{align*}$$

If T_R is infinitely generated, the equivalences can be generalized at the cost of intersecting with particular subcategories of $\text{Mod-}S$.
The classical derived equivalences

Theorem [Happel ’87, Cline-Parshall-Scott ’87]

T_R a classical n-tilting module with endomorphism ring S. There is a derived equivalence:

$$
\mathcal{D}^b(R) \xrightarrow{\mathbb{R}\text{Hom}_R(T, -)} \mathcal{D}^b(S) \\
\mathcal{D}^b(S) \xleftarrow{- \otimes_S T} \mathcal{D}^b(R)
$$
Good n-tilting modules

T_R and T'_R n-tilting modules are equivalent if they induce the same n-tilting class, or if $\text{Add } T' = \text{Add } T$.

Definition

An n-tilting module T_R with endomorphism ring S is good if condition (T3) can be replaced by

$$[(T3')] \ 0 \to R \to T_0 \to T_1 \to \ldots \to T_n \to 0$$

where the T_i’s are in $\text{add } T$.

Each classical n-tilting module is good.

Proposition

Every n-tilting module admits an equivalent good n-tilting module.
Proposition
Let T_R be a good n-tilting module, $S = \text{End}_R(T)$. Then,

(T1) there exists $0 \to Q_n \to \ldots \to Q_0 \to S \cdot T \to 0$

Q_i finitely generated projective left S-modules,

(T2) $\text{Ext}^i_S(T, T) = 0$ for each $i \geq 0$, and $R \cong \text{End}(S \cdot T)$.

Thus, $S \cdot T$ is a partial classical n-tilting S-module.

Lemma Miyashita
Let T_R be a good n-tilting module with endomorphism ring S.

Then, for each injective module I_R

- $\text{Hom}_R(T, I) \otimes_S T \cong I$;

- $\text{Hom}_R(T, I)$ is an $(- \otimes_S T)$-acyclic right S-module;

For each projective right S-module P_S

- $P \otimes_S T$ is an $\text{Hom}_R(T, -)$-acyclic right R-module.
Generalization of the derived equivalence

- T_R R-module, $\text{End}(T) = S$.
- $\mathcal{D}(R)$, $\mathcal{D}(S)$ derived categories of $\text{Mod-}R$ and $\text{Mod-}S$.
- The adjoint pair

$$H = \text{Hom}_R(T, -): \text{Mod-}R \leftrightarrow \text{Mod-}S: G = - \otimes_S T$$

induces an adjoint pair of total derived functors

$$\mathbb{R}H = \mathbb{R}\text{Hom}_R(T, -): \mathcal{D}(R) \leftrightarrow \mathcal{D}(S): \mathbb{L}G = - \otimes_S T$$
Theorem

T_R a good n-tilting module, $\text{End}(T) = S$.

$\mathcal{R}H = \mathcal{R}\text{Hom}_R(T, -)$, \hspace{0.5cm} $\mathcal{L}G = - \otimes_S T$

The following hold:

1. The counit of the adjunction $\psi: \mathcal{L}G \circ \mathcal{R}H \to \text{Id}_{\mathcal{D}(R)}$ is invertible.

2. There is a triangle equivalence $\Theta: \mathcal{D}(S)/\text{Ker}(\mathcal{L}G) \to \mathcal{D}(R)$

3. Σ: system of morphisms $u \in \mathcal{D}(S)$ such that $\mathcal{L}G(u)$ is invertible in $\mathcal{D}(R)$. Σ admits a calculus of left fractions and

\[\mathcal{D}(S)[\Sigma^{-1}] \cong \mathcal{D}(S)/\text{Ker}(\mathcal{L}G) \]
The key fact is that the counit of the adjunction

\[\psi : \mathbb{L}G \circ \mathbb{R}H \to \text{Id}_{D(R)} \]

is invertible.

Obtained by using:

the functors \(\text{Hom}_R(\, T, -) \) and \(- \otimes_S T \) have finite homological dimension
and their total derived functors can be computed on complexes with acyclic components.

\[\mathbb{R}\text{Hom}(\, T, I^\bullet) \mathbb{L} \otimes_S T = \text{Hom}(\, T, I^\bullet) \otimes_S T, \]

\(I^\bullet \) complex whose terms are injective right \(R \)-modules.

\[\mathbb{R}\text{Hom}(\, T, P^\bullet \mathbb{L} \otimes_S T) = \text{Hom}(\, T, P^\bullet \otimes_S T), \]

\(P^\bullet \) complex whose terms are projective right \(S \)-modules.

The rest follows by Proposition 1.3 in Gabriel-Zisman’s book.
The perpendicular subcategory

\[\phi : 1_{\mathcal{D}(S)} \to \mathbb{R}H \circ \mathbb{L}G \] the unit of the adjunction

\[\psi : \mathbb{L}G \circ \mathbb{R}H \to 1_{\mathcal{D}(R)} \] the counit of the adjunction is invertible.

Proposition

The functor \(L := \mathbb{R}H \circ \mathbb{L}G : \mathcal{D}(S) \to \mathcal{D}(S) \) is a Bousfield localization.

So the kernel \(L \), i.e. \(\mathcal{E} = \text{Ker}\mathbb{L}G \) is a localizing subcategory, and if \(\mathcal{E}_\perp \) is the perpendicular category

\[\mathcal{E}_\perp := \{ X \in \mathcal{D}(S) : \text{Hom}_{\mathcal{D}(S)}(\mathcal{E}, X) = 0 \} \]

\(L \) factorizes as

\[
\mathcal{D}(S) \xrightarrow{q} \mathcal{D}(S)/\text{Ker}\mathbb{L}G \xrightarrow{\rho} \mathcal{E}_\perp \xleftarrow{j} \mathcal{D}(S)
\]

where \(q \) is the canonical quotient functor and \(\rho \) is an equivalence.
Theorem

Let T_R be a good n-tilting R-module and $S = \text{End}(T)$. Let \mathcal{E} be the kernel of $\mathbb{L}G$ we have triangle equivalence:

$$
\mathcal{D}(R) \xrightarrow{\mathbb{R}H} \mathbb{L}G \xrightarrow{\mathbb{L}G} \mathcal{E}_\perp
$$

($\mathbb{R}H$ and $\mathbb{L}G$ corestriction and restriction) and we have a commutative diagram:

$$
\begin{array}{ccc}
\mathcal{D}(R) & \xrightarrow{\mathbb{R}H \cong} & \mathcal{E}_\perp \\
\downarrow \cong & & \downarrow \rho \\
\mathcal{D}(S) & \xrightarrow{\Theta} & \mathcal{D}(S) / \text{Ker}\mathbb{L}G
\end{array}
$$

Silvana Bazzoni

Derived equivalence induced by n-tilting modules
Proposition

The following are equivalent.

- T_R is a classical n-tilting module;
- $\mathcal{E} = 0$ or equivalently $\mathcal{E}_\perp = \mathcal{D}(S)$;
- the class \mathcal{E} is **smashing**, i.e. \mathcal{E}_\perp is closed under direct sums.
Using the canonical embeddings
\[\text{Mod-} R \to \mathcal{D}(R) \quad \text{Mod-} S \to \mathcal{D}(S) \]

we have a generalization to \textit{infinitely generated} \(n \)-tilting modules of Brenner-Blutler, Colby-Fuller and Miyashita equivalences:

\[
\begin{array}{ccc}
\text{KE}_i & \leftrightarrow & \text{KT}_i \cap \mathcal{E}_\perp \\
\text{Ext}_R^i(T, -) & \leftrightarrow & \text{Tor}_S^i(-, T)
\end{array}
\]