Minimal Prime Ideals of Ore Extensions over Commutative Dedekind Domains

Amir Kamal Amir^{1,2}, Pudji Astuti¹ and Intan Muchtadi-Alamsyah¹

 ¹ Algebra Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no.10, Bandung 40132, Indonesia.
² Department of Mathematics, Hasanuddin University,

Jl. Perintis Kemerdekaan Km.10 Tamalanrea,

Makassar, Indonesia.

January 22, 2010

Background

- Various linear systems can be defined by means of matrices with entries in non commutative algebras of functional operators. An important class of such algebras is Ore extensions.
- Irving and Leroy-Matczuk consider primes of Ore extensions over commutative Noetherian rings.
- Chin, Ferrero-Matczuk, Passman consider prime ideals of Ore extensions of derivation type.
- Amir-Marubayashi-Wang consider minimal prime ideals minimal prime rings of Ore extensions of derivation type.

Aim: To extend the result of Amir-Marubayashi-Wang to general Ore extensions of automorphism type, in order to study the structure of the corresponding factor rings.

Definitions

A (left) skew derivation on a ring D is a pair (σ, δ) where σ is a ring endomorphism of D and δ is a (left) σ -derivation on D; that is, an additive map from D to itself such that

 $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$ for all $a, b \in D$.

Let D be a ring with identity 1 and (σ, δ) be a (left) skew derivation on the ring D.

The Ore Extension $D[x; \sigma, \delta]$ over D with respect to the skew derivation (σ, δ) is the ring consisting of all polynomials over D with an indeterminate x, $D[x; \sigma, \delta] = \{f(x) = a_n x^n + \cdots + a_0 : a_i \in D\}$ satisfying the following equation:

 $xa = \sigma(a)x + \delta(a)$ for all $a \in D$.

Example

Let k be the real or complex numbers \mathbb{R} or \mathbb{C} . The Weyl Algebra A(k) consists of all differential operators in x with polynomial coefficients

$$f_n(x)\partial_x^n + \dots + f_1(x)\partial_x + f_0(x).$$

Let's write $y = d/dx$. What should xy-yx be?

Apply this operator to x^n .

$$xy(x^n) = x. d/dx(x^n) = nx^n.$$

 $yx(x^n) = d/dx(x^{n+1}) = (n+1)x^n.$

So $xy - yx(x^n) = x^n$ again. That is xy - yx is the identity operator or xy - yx = 1.

Definition Let Σ be a set of map from the ring D to itself (e.g. $\Sigma = \{\sigma\}, \Sigma = \{\delta\}$ or $\Sigma = \{\sigma, \delta\}$). A Σ -ideal of D is any ideal I of D such that $\alpha(I) \subseteq I$ for all $\alpha \in \Sigma$.

A Σ -prime ideal is any proper Σ -ideal I such that whenever J, K are Σ -ideals satisfying $JK \subseteq I$, then either $J \subseteq I$ or $K \subseteq I$.

Teorema 1 (Amir-Marubayashi-Wang) Let

 $R = D[x, \sigma]$ be a skew polynomial ring over a commutative Dedekind domain D, where σ is an automorphism of D and let P be a prime ideal of R. Then

1. *P* is a minimal prime ideal of *R* if and only if either $P = \mathfrak{p}[x; \sigma]$, where \mathfrak{p} is either a nonzero σ -prime ideal of *D* or $P \in Spec_0(R)$ with $P \neq (0)$.

2. If $P = \mathfrak{p}[x; \sigma]$, where \mathfrak{p} is a non-zero σ -prime ideal of D, then R/P is a hereditary prime ring. In particular, R/P is a Dedekind prime ring if and only if $\mathfrak{p} \in Spec(D)$.

3. If $P \in Spec_0(R)$ with P = xR, then R/P is a Dedekind prime ring. If the order of σ is infinite, then P = xR is the only minimal prime ideal belonging to $Spec_0(R)$.

4. If $P \in Spec_0(R)$ with $P \neq xR$ and $P \neq (0)$, then R/P is a hereditary prime ring if and only if P is not a subset of M^2 for any maximal ideal M of R.

4

Setting let *D* be a commutative Dedekind domain and $R = D[x; \sigma, \delta]$ be the Ore extension over *D*, for (σ, δ) is a skew derivation, $\sigma \neq 1$ is an automorphism of *D* and $\delta \neq 0$.

Teorema 2 (Goodearl) If \mathfrak{p} is any ideal of Dwhich is (σ, δ) -prime, then $\mathfrak{p} = P \cap R$ for some prime ideal P of R and more specially $\mathfrak{p}R \in$ Spec(R) where Spec(R) denotes the set of all prime ideal in R.

Lema 3 If $P = \mathfrak{p}[x; \sigma, \delta]$ is a minimal prime ideal of R where \mathfrak{p} is a (σ, δ) -prime ideal of D, then \mathfrak{p} is a minimal (σ, δ) -prime ideal of D.

Result

Teorema 4 Let *P* be a prime ideal of *R* and $P \cap D = \mathfrak{p} \neq (0)$. Then *P* is a minimal prime ideal of *R* if and only if either $P = \mathfrak{p}[x; \sigma, \delta]$ where \mathfrak{p} is a minimal (σ, δ) -prime ideal of *D* or (0) is the largest (σ, δ) -ideal of *D* in \mathfrak{p} .

Proof

 \Rightarrow By [Goodearl, Theorem 3.1], there are two cases:

Case 1: \mathfrak{p} is a (σ, δ) -prime ideal of D. Then $\mathfrak{p}R \in \operatorname{Spec}(R)$ ([Goodearl, Theorem 3.1]). So, $\mathfrak{p}R = P$ because $\mathfrak{p}R \subseteq P$ and P is a minimal prime ideal. Since $\mathfrak{p}R = \mathfrak{p}[x; \sigma, \delta]$, then $P = \mathfrak{p}[x; \sigma, \delta]$ and \mathfrak{p} is a minimal (σ, δ) -prime ideal of D, by Lemma 3.

Case 2: \mathfrak{p} is a prime ideal of D and $\sigma(\mathfrak{p}) \neq \mathfrak{p}$. Let \mathfrak{m} be the largest (σ, δ) -ideal contained in \mathfrak{p} and assume that $\mathfrak{m} \neq (0)$. Then by primeness of \mathfrak{p} it can be shown that \mathfrak{m} is a (σ, δ) prime ideal of D. So, $\mathfrak{m}R$ is a prime ideal of R ([Goodearl, Proposition 3.3]). On the other hand, since $\sigma(\mathfrak{p}) \neq \mathfrak{p}$, we have $\mathfrak{m} \subsetneq \mathfrak{p}$. So, $\mathfrak{m}R \subsetneq \mathfrak{p}R \subseteq P$, i.e, P is not a minimal prime. This is a contradiction. So, (0) is the largest (σ, δ) -ideal of D in \mathfrak{p} .

6

For the case $P = \mathfrak{p}[x; \sigma, \delta]$, where \mathfrak{p} is a minimal (σ, δ) -prime ideal of D, by [Goodearl, Theorem 3.3], $P = \mathfrak{p}[x; \sigma, \delta]$ is a prime ideal of R. Let Q be a prime ideal of R where $Q \subseteq P$. Set $\mathfrak{q} = Q \cap D$, then $\mathfrak{q} = Q \cap D \subseteq P \cap D = \mathfrak{p}$. By [Goodearl, Theorem 3.1] we have two cases

 \Leftarrow

Case 1: q is a (σ, δ) -prime ideal of D. Suppose q is a (σ, δ) -prime ideal of D. Then q = p because $q \subseteq p$ and p is a minimal (σ, δ) -prime ideal of D. So, $P = p[x; \sigma, \delta] = q[x; \sigma, \delta] \subseteq Q$. This implies P = Q.

Case 2: q is a prime ideal of *D*. Then q = p because *D* is a Dedekind domain. So, $P = p[x; \sigma, \delta] = q[x; \sigma, \delta] \subseteq Q$. This implies P = Q.

For the case (0) is the largest (σ, δ) -ideal of D in \mathfrak{p} , let Q be a prime nonzero ideal of R satisfying $Q \subseteq P$. Set $\mathfrak{q} = Q \cap D$, then $\mathfrak{q} = Q \cap D \subseteq P \cap D = \mathfrak{p}$. We have two cases:

1. q is a (σ, δ) -prime ideal of D. But if this happens, because of (0) being the largest (σ, δ) ideal of D in p, q = (0) implying a contradiction $Q \cap D = 0$. (see [Goodearl-Warfield, Lemma 2.19]

2. q is a prime ideal of D with $\sigma(q) \neq q$. Then q = p. So $Q \cap D = P \cap D$, which, according to [Goodearl-Warfield, Proposition 3.5], implies Q = P. Thus P is the minimal prime ideal of R. QED

Reseach on going: Structure of factor rings (generalization of Theorem 1).

References

- W. Chin, Prime ideals in differential operator rings and crossed product of infinite groups, J. Algebra 106 (1987), 78-104.
- M. Ferrero, J. Matczuk, *Prime ideals in skew polino-mial rings of derivation type*, Comm. Algebra 18 (3) (1990), 689-710.
- K.R. Goodearl, Prime ideals in skew polinomial ring and quantized Weyl algebras, J. of Algebra 150, (1992), 324-377
- K.R. Goodearl, R.B. Warfield, JR An Introduction to Noncommutative Noetherian rings, London Mathematical Society Student Text, 16 (1989).
- R.S. Irving, Prime ideals of Ore extension over commutative rings, J. Algebra 56 (1979), 315-342
- A. Leroy, J. Matczuk, *The extended centeroid and Xinner automorphism of Ore extensions*, J. Algebra 145 (1992), 143-177.
- A.K. Amir,H. Marubayashi, Y. Wang, *Prime factor rings* of skew polynomial rings over a commutative Dedekind domain, (submitted).
- D.S. Passman, *Prime ideals in enveloping rings*, Trans. Amer. Math. Soc. 302(2) (1987), 535-560.