Introduction aux groupes et algèbres de Lie

Cours de Bernhard Keller

Décembre 2001
Table des matières

1 Groupes de Lie
 1.1 Définition et exemples ... 5
 1.1.1 Variétés différentielle réelles 5
 1.1.2 Morphismes de variétés .. 5
 1.1.3 Produit de variétés, groupes de Lie 5
 1.1.4 Variétés holomorphes et groupes complexes 6
 1.1.5 Groupes d’éléments inversibles 6
 1.1.6 Le groupe G_0 .. 6
 1.2 Algèbre de Lie d’un groupe de Lie ... 7
 1.2.1 Vecteurs tangents ... 7
 1.2.2 Application tangente .. 9
 1.2.3 Sous-variétés et sous-groupes 10
 1.2.4 Fibre tangent, champs de vecteurs 11
 1.2.5 Champs de vecteurs invariants 12
 1.2.6 Algèbres de Lie (définition et premières propriétés) 13
 1.2.7 Algèbres de Lie et champs de vecteurs 14
 1.3 L’application exponentielle .. 16
 1.3.1 Équations différentielles et sous-groupes à un paramètre 16
 1.3.2 L’exponentielle .. 17
 1.3.3 Sous-groupes continus à un paramètre 21
 1.3.4 Le théorème de Von Neumann 21
 1.4 La représentation adjointe .. 23
 1.5 La différentielle de l’exponentielle 27
 1.5.1 Le calcul ... 27
 1.5.2 Expression de la multiplication en terme de crochet 29
 1.6 Sous-groupes et sous-algèbres .. 31
 1.7 Des algèbres aux groupes ... 33
 1.7.1 Relèvement local ... 33
 1.7.2 Relèvement global ... 34

2 Algèbres de Lie semi-simples complexes 39
 2.1 Algèbres nilpotentes .. 39
 2.1.1 Les théorèmes d’Engel ... 41
 2.2 Algèbres résolubles .. 42
 2.3 Le critère de Cartan .. 44
 2.3.1 Décomposition de Jordan ... 44
 2.3.2 Théorème de Cartan ... 45
 2.4 Algèbres de Lie semi-simples .. 46
 2.5 Semi-simplicité des modules de dimension finie sur une algèbre semi-simple ... 48
 2.5.1 Opérateur de Casimir .. 50
 2.5.2 Conséquences .. 52
 2.6 Représentations de dimension finie de $sl(2,k)$ 52
 2.7 Sous-algèbres de Cartan .. 53
TABLE DES MATIÈRES

2.7.1 Éléments réguliers ... 54
2.7.2 La sous-algèbre de Cartan associée à un élément régulier 54
2.7.3 Unicité à conjugaison près .. 55
2.7.4 Décomposition de Jordan dans les algèbres semi-simples 56
2.7.5 Propriétés des sous-algèbres de Cartan dans les algèbres semi-simples 58
2.7.6 Le système de racines associé à un algèbre de Lie semi-simple 58

2.8 Systèmes de racines (abstrait) (houlà, ça va être dur alors) 59
2.8.1 Symétries ... 59

2.9 Le système de racines associé à une algèbre de Lie semi-simple complexe 60

2.10 Suite de l'étude des systèmes de racines 60
2.10.1 Position relatives de deux racines 60
2.10.2 Bases ... 61
2.10.3 Propriétés des bases .. 62
2.10.4 Génerateurs et relations pour les algèbres de Lie semi-simples complexes 62
2.10.5 Classification des systèmes de racines 63
Chapitre 1

Groupes de Lie

1.1 Définition et exemples

1.1.1 Variétés différentiable réelles

Définition 1.1.1.1. Soit M un espace topologique et n un entier. Une carte de dimension n est un homéomorphisme $\varphi : U \rightarrow V$ avec U un ouvert de M et V un ouvert \mathbb{R}^n. On dit que φ_1 et φ_2 sont compatibles si $U_1 \cap U_2 = \emptyset$ ou si $x \mapsto \varphi_2 \circ \varphi_1^{-1}(x)$ est un difféomorphisme de $\varphi_1(U_1 \cap U_2)$ vers $\varphi_2(U_1 \cap U_2)$. Un atlas de M est une famille de cartes, compatibles deux à deux et telles que les domaines de définition recouvrent M.

Une variété différentiable (en \mathcal{C}^∞, ou encore lisse) est un espace topologique séparé muni d’un atlas et admettant une base dénombrable d’ouverts. Une carte d’une variété est une carte compatible avec toutes les cartes de l’atlas.

Remarque 1.1.1.2. La condition séparé \emptyset permet d’avoir l’unicité de solutions pour certaines équations différentielles.

Exemple 1.1.1.3. Un ouvert M de \mathbb{R}^n est une variété. $S^n \subset \mathbb{R}^{n+1}$ est une variété. L’espace projectif réel de dimension n est une variété.

1.1.2 Morphismes de variétés

1.1.3 Produit de variétés, groupes de Lie

Définition 1.1.3.1. Soient M et M' deux variétés. La variété produit de M par M' est l’espace topologique $M \times M'$ muni de l’atlas formé des homéomorphismes $\varphi \times \varphi'$ où φ est une carte de M et φ' une carte de M'.

Remarque 1.1.3.2. On montre que G est le produit dans la catégorie des variétés \mathcal{C}^∞.

Définition 1.1.3.3. Un groupe de Lie est une variété différentiable G munie d’une structure de groupe telle que la multiplication $G \times G \rightarrow G$ et l’inversion $G \rightarrow G$ soient \mathcal{C}^∞.

Définition 1.1.3.4. Un morphisme de groupes de Lie est un morphisme de variétés et un morphisme de groupes.

Remarque 1.1.3.5. On peut montrer que la différentiabilité de l’inversion résulte de celle du produit en prouvant que $(g, h) \mapsto (g, gh)$ est un difféomorphisme.

Exemple 1.1.3.6.

1. $G = GL(n, \mathbb{R})$ muni de la multiplication des matrices est un groupe de Lie qui n’est pas connexe.
2. Tout groupe fini ou dénombrable muni de la topologie discrète est un groupe de Lie de dimension nulle.
3. $(\mathbb{R}^n, +)$ est un groupe de Lie.
4. (\mathbb{R}_+^*, \times) est un groupe de Lie. L’exponentielle de \mathbb{R} dans \mathbb{R}_+^* est un isomorphisme de groupes de Lie.
1.1.4 Variétés holomorphes et groupes complexes

Définition 1.1.4.1. Une variété holomorphe est un espace topologique séparé muni d’un atlas dont les cartes sont à valeurs dans un ouvert de \mathbb{C}^n et dont les changements de carte sont biholomorphes et admettant une base dénombrable d’ouverts.

Définition 1.1.4.2. Un groupe de Lie complexe est une variété holomorphe G qui possède une structure de groupe et pour laquelle la multiplication et l’inversion sont holomorphes.

Exemple 1.1.4.3. Les groupes suivants sont des groupes de Lie complexes:
 1. $S^1 \subset \mathbb{C}$ avec la multiplication classique
 2. $(\mathbb{C}, +)$
 3. (\mathbb{C}^*, \times)
 4. $GL(n, \mathbb{C})$

Remarque 1.1.4.4. Toute variété complexe est une variété réelle. Tout groupe de Lie complexe est un groupe de Lie réel.

Remarque 1.1.4.5 (Théorème de Whitney). Toute variété différentiable de dimension n se plonge dans \mathbb{R}^{2n}.

1.1.5 Groupes d’éléments inversibles

Soit $K = \mathbb{R}$ ou \mathbb{C}.

Définition 1.1.5.1. Une K-algèbre est un K-espace vectoriel muni d’une application K-bilinéaire $A \times A \to A$.

Exemple 1.1.5.2. L’ensemble \mathbb{H} des quaternions est une \mathbb{R}-algèbre associative, non commutative. On a une injection de \mathbb{R}-algèbres de \mathbb{C} dans \mathbb{H} mais \mathbb{H} n’est pas une \mathbb{C}-algèbre.

Lemme 1.1.5.3. Soit A une K-algèbre associative unitaire, de dimension finie. Alors A^\times est un groupe de Lie.

Regardons l’exemple suivant:

Soit $F = \mathbb{R}$, \mathbb{C} ou \mathbb{H}. Soit V un F-espace vectoriel à droite de dimension finie. Alors, $End_F(V)$ est une \mathbb{R}-algèbre associative unitaire de dimension finie. $(End_F(V))^\times$ est donc un groupe de Lie. Soit (e_1, \ldots, e_n) une base de V sur F. $End_F(V)$ est alors isomorphe à $M(n, F)$. Cet isomorphisme de \mathbb{R}-algèbres induit un isomorphisme de groupes de Lie entre G et $GL(n, F)$. Si on choisit une base de V sur \mathbb{R}, on a un isomorphisme de $GL(V)$ vers le sous-groupe fermé de $GL(nd, \mathbb{R})$ où $d = \dim F$ formé des matrices A telles que $f_A : V \to V$ commute avec $v \mapsto \lambda v$ pour tout $\lambda \in F$. Par exemple:

$$
\begin{pmatrix}
GL(1, \mathbb{C}) & \to & GL(2, \mathbb{R}) \\
x + iy & \mapsto & \begin{pmatrix} x & -y \\ y & x \end{pmatrix}
\end{pmatrix}
\text{ et }

\begin{pmatrix}
GL(1, \mathbb{H}) & \to & GL(4, \mathbb{R}) \\
a_0 + a_1i + a_2j + a_3k & \mapsto & \begin{pmatrix} a_0 & -a_1 & -a_2 & -a_3 \\ a_2 & a_1 & a_3 & a_0 \\ -a_3 & a_2 & a_1 & a_0 \\ a_1 & -a_2 & -a_3 & a_0 \end{pmatrix}
\end{pmatrix}
$$

Remarque 1.1.5.4. On obtient certains sous-groupes fermés de $GL(n, \mathbb{R})$. On verra plus tard que tout sous-groupe fermé de $GL(n, \mathbb{C})$ est un sous-groupe de Lie mais que la réciproque est fausse.

1.1.6 Le groupe G_0

Définition 1.1.6.1. Soit X un espace topologique. On dit que X est connexe si l’on ne peut pas l’écrire comme la réunion disjointe de deux ouverts non vides. On dit que X est connexe par arcs si étant donnés deux points quelconques de X il existe un chemin continu qui les relie.

Remarque 1.1.6.2. Un espace connexe par arcs est connexe. Si A est connexe (resp. connexe par arcs), son adhérence l’est également.

Remarque 1.1.6.3. Si $(A_i)_{i \in I}$ est une famille de parties connexes (resp. connexes par arcs) d’un espace topologique telle que $\bigcap_{i \in I} A_i \neq \emptyset$, alors $\bigcup_{i \in I} A_i$ est connexe (resp. connexe par arcs).
1.2. ALGÈBRE DE LIE D’UN GROUPE DE LIE

Ceci permet de poser la définition suivante :

Définition 1.1.6.4. Soit X un espace topologique. Tout $x \in X$ se trouve dans une partie connexe (resp. connexe par arcs) maximale. On l’appelle la composante connexe de x. Elle est toujours fermée.

Définition 1.1.6.5. Une espace topologique est dit **localement connexe** (resp. **localement connexe par arcs**) si tout voisinage d’un point contient un voisinage connexe (resp. connexe par arcs).

Exemple 1.1.6.6. Toute variété différentiable est localement connexe.

Proposition 1.1.6.7. Si X est localement connexe (resp. connexe par arcs), alors les composantes connexes (resp. connexes par arcs) de X sont ouvertes.

Proposition 1.1.6.8. Si X est localement connexe par arcs et connexe alors il est globalement connexe par arcs. En particulier, si X est localement connexe par arcs, la notion de connexité équivalant à celle de connexité par arcs.

Exemple 1.1.6.9. $GL(n, \mathbb{R})$ n’est pas connexe (regarder l’image par le déterminant). Il a exactement deux composantes connexes qui sont $GL(n, \mathbb{R})^+ = \text{det}^{-1}(\mathbb{R}^*_+)$ et $GL(n, \mathbb{R})^- = \text{det}^{-1}(\mathbb{R}^*_-)$.

Définition 1.1.6.10. Soit G un groupe topologique (le multiplication et inversion sont continues). On note G_o ou G^o la composante connexe de l’élément neutre $e \in G$.

Exemple 1.1.6.11. $GL(n, \mathbb{R})^+ = GL(n, \mathbb{R})^+$

Lemme 1.1.6.12. G_o est un sous-groupe fermé de G, stable par tous les automorphismes (les morphismes de groupes et homéomorphismes) intérieurs de G. En particulier G_o est distingué dans G. Si G est localement connexe, G_o est ouvert et fermé et le quotient G/G_o est un groupe discret.

Démonstration. L’image de $G_o \times G_o$ par la multiplication est un connexe contenant e donc inclus dans G_o, ce qui prouve la stabilité par multiplication. De même, on démontre la stabilité par passage à l’inverse. Ainsi G_o est bien un sous-groupe de G. La stabilité par automorphismes intérieurs se démontre de la même façon. \(\checkmark \)

Remarque 1.1.6.13. Si G est un groupe de Lie, alors G est localement connexe et G_o est un sous-groupe de Lie ouvert de G donc lui-même un groupe de Lie. On a alors la suite exacte suivante de groupes de Lie :

\[
1 \longrightarrow G_o \longrightarrow G \longrightarrow G/G_o \longrightarrow 1
\]

Exemple 1.1.6.14. On a les décompositions :

\[
1 \longrightarrow GL^+(n, \mathbb{R}) \longrightarrow GL(n, \mathbb{R}) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 1
\]
\[
1 \longrightarrow SO(n, \mathbb{R}) \longrightarrow O(n, \mathbb{R}) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 1
\]

1.2 Algèbre de Lie d’un groupe de Lie

1.2.1 Vecteurs tangents

\mathbb{K} désigne soit le corps \mathbb{R}, soit le corps \mathbb{C}.

Soit M un variété différentiable (resp. holomorphe). Soient $P \in M$ et s une fonction différentiable (resp. holomorphe) de M dans \mathbb{R} (resp. \mathbb{C}). Le **germe de s en P** est la classe d’équivalence de s pour la relation d’équivalence qui coïncider sur un voisinage de P à z. On le note \hat{s}. L’anneau des germes en P est noté \mathcal{O}_P. Il est local, d’idéal maximal $m_P = \{ \hat{s} \in \mathcal{O}_P \mid s(P) = 0 \}$.

Définition 1.2.1.1 (Première définition de l’espace tangent). Un vecteur tangent en P est une forme linéaire $D : \mathcal{O}_P \rightarrow \mathbb{K}$ telle que $D(fg) = D(f)g(P) + f(P)D(g)$ pour tous f et g dans \mathcal{O}_P (le D est une dérivation partielle en P). On note T_PM l’ensemble de ces vecteurs tangents; c’est l’espace tangent à M en P.

Étudions le cas particulier où M est un ouvert de \mathbb{K}^n et $P = 0 \in \mathbb{K}^n$.
Soit $v \in \mathbb{K}^n$. On peut alors définir la dérivation partielle D_v par $D_v (s) = \frac{d}{dt} (s (tv)) \bigg|_{t=0}$.

Alors l’application $\left(\mathbb{K}^n \rightarrow T_P M \atop v \mapsto D_v \right)$ est bijective.

Démonstration. Montrons la surjectivité. Soient donc $D \in T_0 M$ et $f \in O_0$. On calcule :

\[
f (x) = f (0) + \int_0^1 \left(\frac{d}{dt} f (tx) \right) dt = f (0) + \sum_{i=1}^n x_i \int_0^1 \left(\frac{\partial f}{\partial x_i} (tx) \right) dt
\]

\[
= f (0) + \sum_{i=1}^n x_i \int_0^1 \left(\frac{\partial f}{\partial x_i} (0) + \cdots \right) dt \equiv f (0) + \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i} (0) \mod m_P
\]

D’autre part, on voit facilement que D s’annule sur m_P et donc on trouve :

\[
Df = \sum_{i=1}^n D (x \mapsto x_i) \frac{\partial f}{\partial x_i} (0) = D_v f
\]

où $v = (D (x \mapsto x_1), \ldots, D (x \mapsto x_n))$.

Pour l’injectivité, on remarque que si $D_v = 0$, alors $D_v (x \mapsto x_i) = v_i = 0$ et donc $v = 0$.

Étudions maintenant le cas général. Soient M une variété différentiable, P un point de M et $\varphi : U \rightarrow V \subset \mathbb{K}^n$ une carte d’un voisinage ouvert de P telle que $\varphi (P) = 0$ (sans perte de généralité). On note encore, par abus, $x_i = pr_i \circ \varphi$ les coordonnées locales autour de P.

φ induit un isomorphisme entre anneaux locaux $O_M, P \sim \sim O_V, 0$ qui est l’application qui à f associe $f \circ \varphi^{-1}$, ce qui donne un isomorphisme $T_P M \sim \sim T_0 V = \mathbb{K}^n$.

On note $\left(\frac{\partial}{\partial x_i} \right)_P$ le vecteur correspondant au i-ième vecteur de la base canonique de $T_0 V$. Ainsi :

\[
\left(\frac{\partial}{\partial x_i} \right)_P (f) = \left. \frac{\partial}{\partial x_i} (f \circ \varphi^{-1}) \right|_{x=0}
\]

Remarque 1.2.1.2. On a dim $T_P M = \dim_P M$.

Définition 1.2.1.3. On définit l’espace cotangent en P comme étant $T^*_P M = (T_P M)^* = \text{Hom} (T_P M, \mathbb{K})$.

On a une application linéaire $d : (m_P \rightarrow T_P^* M)$.

Elle induit un isomorphisme $m_P / m_P^2 \sim T_P^* M$ d’où une deuxième définition de l’espace tangent :

Définition 1.2.1.4 (Deuxième définition de l’espace tangent). $T_P M = (m_P / m_P^2)^*$.

Soit (x_1, \ldots, x_n) un système de coordonnées locales au voisinage de P. On a :

\[
(dx_i)_P \left(\frac{\partial}{\partial x_j} \right)_P = \delta_{ij}
\]

ie $((dx_i)_P)_{1 \leq i \leq n}$ est la base de $T^*_P M$ duale de $\left(\frac{\partial}{\partial x_i} \right)_{1 \leq i \leq n}$.

Définition 1.2.1.5. Soient I_1 et I_2 deux ensembles de \mathbb{K} contenant 0. Pour $i = 1, 2$, on considère $\gamma_i : I_i \rightarrow M$ un morphisme de variétés (une courbe) tel que $\gamma_i (0) = P$. On dit que γ_1 et γ_2 sont tangents en P si :

\[
\forall s \in \mathcal{O}_{M,P}, \quad \left. \frac{d}{dt} (s \circ \gamma_1 (t)) \right|_{t=0} = \left. \frac{d}{dt} (s \circ \gamma_2 (t)) \right|_{t=0}
\]
1.2. ALGÈBRE DE LIE D’UN GROUPE DE LIE

Lemme 1.2.1.6. L’application :
\[
\left\{ \begin{array}{l}
\gamma : I \to M, O \in I, I \text{ ouvert de } \mathbb{K} \\
\gamma \text{ morph. de var., } \text{tq } \gamma(0) = P
\end{array} \right\} \xrightarrow{\text{Tangence}} T_PM
\]
\[
[\gamma] \mapsto \left(s \mapsto \frac{d}{dt}(s \circ \gamma(t)) \bigg|_{t=0} \right)
\]
est bijective.

Démonstration. On se ramène au cas d’un ouvert de \(\mathbb{K}^n \).
\(\square \)

Définition 1.2.1.7. Soit \(G \) un groupe de Lie. L’espace vectoriel sous-jacent à son algèbre de Lie est, par définition, \(\text{Lie}(G) = T_eG \).

Exemple 1.2.1.8. \(\text{Lie}(GL(n, \mathbb{K})) = M(n, \mathbb{K}) \) (car \(\text{GL}(n, \mathbb{K}) \) est un ouvert de \(M(n, \mathbb{K}) \)).

1.2.2 Application tangente

Définition 1.2.2.1. Soit \(f : M \to N \) un morphisme de variétés. Soit \(P \in M \). L’application tangente, ou encore la différentielle, de \(f \) en \(P \) est :
\[
(df)_P = T_P f : T_PM \to T_{f(P)}N \\
D \mapsto (s \mapsto D(s \circ f))
\]

On a clairement \(T_P(Id_M) = Id_{T_PM} \) et \(T_P(f \circ g) = T_{g(P)}f \circ T_{Pg} \), d’où un foncteur covariant de la catégorie des variétés pointées dans la catégorie des espaces vectoriels. En particulier, on a un foncteur de la catégorie des groupes de Lie dans la catégorie des espaces vectoriels qui est le foncteur \(\text{Lie} \).

Si \(v \in T_PM \) est donné par une courbe \(\gamma : I \to M \), alors \(T_Pf(v) \) est donné par \(f \circ \gamma : I \to N \).

Soit \(f : M \to M' \) un morphisme de variétés qui envoie \(P \) en \(P' \). Soient \(U \) un ouvert de \(M \) contenant \(P \) et \(U' \) un ouvert de \(M' \) contenant \(f(U) \). Soient \(\varphi : U \to V \subset \mathbb{K}^n \) et \(\varphi' : U' \to V' \subset \mathbb{K}^n \) des cartes. On définit alors \(\tilde{f} \) et les \(\tilde{f}_i \) par le diagramme commutatif suivant :

\[
\begin{array}{ccc}
U & \xrightarrow{f} & U' \\
\downarrow \varphi & & \downarrow \varphi' \\
V & \xrightarrow{\tilde{f}} & V'
\end{array}
\]

On a ainsi \(\varphi' \circ \tilde{f} \circ \varphi^{-1}(x_1, \ldots, x_n) = (\tilde{f}_1(x), \ldots, \tilde{f}_n(x)) \).

Par rapport aux bases \(\left(\frac{\partial}{\partial x_i} \right)_P \) pour \(T_PM \) et \(\left(\frac{\partial}{\partial y_i} \right)_{f(P)} \) pour \(T_{f(P)}M' \), l’application \((df)_P\) est donnée par la matrice \(\left(\frac{\partial \tilde{f}_i}{\partial x_j} \right) \) car cette matrice décrit \((df)_{\varphi(P)}\) par rapport aux bases canoniques de \(T_{\varphi(P)}V \) et \(T_{\varphi'(f(P))}V' \).

Remarque 1.2.2.2. Soient \(M \) et \(N \) deux variétés. Soient \(P \) un point de \(M \) et \(Q \) un point de \(N \). Alors les projections \(pr_1 \) et \(pr_2 \) induisent un isomorphisme \(T_{(P,Q)}(M \times N) \simeq T_PM \times T_QN \).

Démonstration. On se ramène à des ouverts de \(\mathbb{K}^n \).
\(\square \)
1.2.3 Sous-variétés et sous-groupes

Définition 1.2.3.1. Soit M une variété et N une partie de M. On dit que N est une sous-variété de M si pour tout $P \in N$, il existe un voisinage ouvert U de P dans M et une carte $\varphi : U \rightarrow V \subset \mathbb{K}^n$ telle que $\varphi(P) = 0$ et un entier $p \leq n$ vérifiant :

$$N \cap U = \{ y \in U \mid x_1(y) = \ldots = x_p(y) = 0 \}$$

On munit N d’une structure de variété avec les restrictions des cartes de M.

Rappel 1.2.3.2. On note x_i l’application $p_{r_i} \circ \varphi$.

Remarque 1.2.3.3. N est alors localement fermée dans M.

Remarque 1.2.3.4. Notons $i : N \hookrightarrow M$. Alors $f : X \rightarrow N$ est un morphisme de variétés si et seulement si $i \circ f : X \rightarrow M$ en est un. En particulier, si G est un groupe de Lie et $H \subset G$ est un sous-groupe et une sous-variété, alors H est un groupe de Lie.

D’autre part, i fournit une injection $T_pN \hookrightarrow T_pM$ pour tout $P \in N$. En particulier, si G est un groupe de Lie et $H \subset G$ un sous-groupe et une sous-variété alors $\text{Lie}(H) \hookrightarrow \text{Lie}(G)$.

Théorème 1.2.3.5 (Fonctions implicites). Soient M une variété, P un point de M et $\varphi_1, \ldots, \varphi_p$ des fonctions différentiables (resp. holomorphes) sur un voisinage ouvert de P. On suppose que la famille $((d\varphi_1)_p, \ldots, (d\varphi_p)_p)$ est libre dans T_pM. Alors il existe des fonctions $\varphi_{p+1}, \ldots, \varphi_n$ différentiables (resp. holomorphes) (où $n = \dim_p M$) définies sur $U' \subset U$ telles que $(\varphi_1, \ldots, \varphi_n)$ forme un système de coordonnées de U'.

Corollaire 1.2.3.6. Soient M une variété et $\varphi_1, \ldots, \varphi_r : M \rightarrow \mathbb{K}$ des fonctions différentiables (resp. holomorphes). On pose $N = \{ x \in M \mid \varphi_1(x) = \ldots = \varphi_r(x) = 0 \}$. On suppose que $(d\varphi_1)_p, \ldots, (d\varphi_r)_p$ sont linéairement indépendants pour tout $P \in N$. Alors N est une sous-variété de M et pour tout $P \in N$, on a :

$$T_pN = \{ x \in T_pM \mid (d\varphi_1)_p(x) = \ldots = (d\varphi_r)_p(x) = 0 \}$$

Soit $N = SL(n, \mathbb{K}) \subset M = M(m, \mathbb{K})$. Montrons que N est une sous-variété (et donc un groupe de Lie). $SL(n, \mathbb{K})$ est défini par l’annulation de $\varphi : A \mapsto \det A - 1$. On calcule donc :

$$(d\det)_X = \sum_{i,j} C_{i,j}^X (dx_{ij})_X$$

où $C_{i,j}^X$ est le cofacteur de X correspondant à (i, j)

On obtient ainsi :

$$(d\varphi)_A = \sum_{i,j} \tilde{a}_{ij}(dx_{ij})_A$$

Or $\det A \neq 0$ donc il existe un couple (i, j) tel que $\tilde{a}_{ij} \neq 0$, ce qui prouve que $(d\varphi)_A \neq 0$.

Ainsi $SL(n, \mathbb{K})$ est bien une sous-variété de M et donc un groupe de Lie. Son algèbre de Lie est, via le fait que $(d\varphi)_c = \text{Tr}$, Lie $SL(n, \mathbb{K}) = \{ X \in M(m, \mathbb{K}) \mid \text{Tr}X = 0 \}$

Corollaire 1.2.3.7. Soient G un groupe de Lie et $\Phi : G \rightarrow \mathbb{K}^n$ un morphisme de variétés tel que $H = \Phi^{-1}(0)$ soit un sous-groupe de G. Alors H est une sous-variété (et donc un groupe de Lie) si Φ est submersive en tout point de H (ie. pour tout $h \in H$, $d\Phi_h$ est surjective).

Exemple 1.2.3.8.

1. $SL(n, \mathbb{K})$.
2. $U = \{ z \in \mathbb{C} \mid |z| = 1 \} = S^1 \subset \mathbb{C}^*$. $\Phi(x + iy) = x^2 + y^2 - 1$ montre que S^1 est un groupe de Lie.
3. $S^3 = \{ x \in \mathbb{H} \mid xx = 1 \} \subset \mathbb{H}$. $\Phi(x) = xx - 1$ montre que S^3 est un groupe de Lie.

Remarque 1.2.3.9. On peut montrer que S^1 et S^3 sont les seules sphères qui sont des groupes de Lie.

4. $O(n, \mathbb{R}) \subset GL(n, \mathbb{R})$ est un groupe de Lie. En effet, considérons $\Phi : GL(n, \mathbb{R}) \rightarrow \text{Sym}(n, \mathbb{R})$ définie par $\Phi(A) = A^tA - I_n$ et on montre que le critère du rappel précédent s’applique.

5. $SO(n, \mathbb{R})$ est aussi un groupe de Lie. C’est par exemple la composante connexe du neutre de $O(n, \mathbb{R})$. On a $\text{Lie} SO(n, \mathbb{R}) = \text{Lie} O(n, \mathbb{R}) = \text{Ker} (d\Phi)_e = \{ \text{Matrices anti-symétriques} \}$.

Lemme 1.2.3.10. Soit G un groupe topologique et H un sous-groupe localement fermé. Alors H est fermé.

Démonstration. H est ouvert dans H donc aH est ouvert dans H. Or $\hat{H} = \bigcup aH$ (union disjointe). Ceci prouve que H est fermé dans H et donc que $H = \hat{H}$.
1.2.4 Fibré tangent, champs de vecteurs

Définition 1.2.4.1. Soit M une variété. Le fibré tangent de M est l’ensemble $TM = \bigcup_{m \in M} \{m\} \times T_mM$, muni de l’atlas formé des cartes, où $\varphi : U \to V$ est une carte de M :

$$
\left(\bigcup_{m \in U} \{m\} \times T_mM \xrightarrow{\sim} V \times \mathbb{K}^n \right)
(m, v) \mapsto (\varphi(m), (d\varphi)_m(v))
$$

On note $p : TM \to M$ la projection.

Remarque 1.2.4.2. L’atlas de TM détermine sa topologie.

Remarque 1.2.4.3. Tout morphisme de variétés $f : M \to N$ induit un morphisme $Tf : TM \to TN$ défini par $(m, v) \mapsto (f(m), (df)_m(v))$ qui est compatible avec la projection.

Exemple 1.2.4.4.

1. Soit M un ouvert de \mathbb{K}^n. On a alors un isomorphisme $M \times \mathbb{K}^n \xrightarrow{\sim} TM$

$$
(m, (\xi_1, \ldots, \xi_m)) \mapsto \left(m, \xi_1 \left(\frac{\partial}{\partial x_1} \right)_m + \ldots + \xi_n \left(\frac{\partial}{\partial x_n} \right)_m \right)
$$

2. Comme \mathbb{S}^1 est une sous-variété de \mathbb{R}^2, il vient $T\mathbb{S}^1$ est une sous-variété de $T\mathbb{R}^2$.

Définition 1.2.4.5. Un préfibré vectoriel est un morphisme de variétés $p : E \to B$ tel que pour tout $b \in B$, $p^{-1}(b)$ est muni d’une structure d’espace vectoriel. E s’appelle alors l’espace total, B la base. On pose $\text{rg}_b E = \dim p^{-1}(b)$ et $\text{rg} E = \text{rg}_b E$ si cette quantité est indépendante du choix de b.

Remarque 1.2.4.6. Un préfibré vectoriel est en particulier une application surjective.

Définition 1.2.4.7. Un morphisme de préfibrés est un carré commutatif :

$$
\begin{array}{ccc}
E & \xrightarrow{\varphi} & E' \\
p \downarrow & & \downarrow \psi' \\
B & \xrightarrow{\psi} & B'
\end{array}
$$

tel que φ induise une application linéaire de $p^{-1}(b)$ dans $p^{-1}(\psi(b))$ et ce pour tout $b \in B$.

Définition 1.2.4.8. Une préfibré vectoriel $p : E \to B$ est dit trivialisable s’il existe un espace vectoriel V tel que p soit isomorphie au préfibré $p' : B \times V \to B$.

Exemple 1.2.4.9.

1. Le fibré tangent $TM \to M$ est un préfibré vectoriel et tout morphisme de variétés $f : M \to N$ induit un morphisme de préfibrés de TM dans TN.

2. Le fibré tangent de \mathbb{S}^1 est trivialisable. En effet, il suffit de regarder l’application :

$$
\begin{array}{ccc}
\mathbb{S}^1 \times \mathbb{R} & \xrightarrow{\sim} & T\mathbb{S}^1 \\
((x, y), c) & \mapsto & (x, y), c \left(y \left(\frac{\partial}{\partial x} \right)_{x,y} - x \left(\frac{\partial}{\partial y} \right)_{x,y} \right)
\end{array}
$$

Définition 1.2.4.10. Un préfibré vectoriel est localement trivialisable si pour tout $b \in B$, il existe un voisinage ouvert U de b tel que le fibré vectoriel $p^{-1}(U) \to U$ soit trivialisable.

Exemple 1.2.4.11. Le fibré tangent d’une variété est localement trivialisable (par définition de la structure de variété).

Définition 1.2.4.12. Un fibré vectoriel est un préfibré vectoriel localement trivialisable.
Définition 1.2.4.13. Une variété M est dite parallélisable si son fibré tangent est trivialisable.

Exemple 1.2.4.14. S^1 est parallélisable. On peut montrer par contre que S^2 ne l’est pas.

Définition 1.2.4.15. Soit $p : E \to B$ un fibré vectoriel. Une section de p est un morphisme de variétés $s : B \to E$ telle que $p\circ s = \text{id}_B$. On note $\Gamma(B, E)$ l’ensemble des sections de p. C’est un espace vectoriel. Un champ de vecteurs sur M est une section de $TM \to M$.

Un champ de vecteurs sur M est donc la donnée, pour tout $m \in M$, d’un vecteur tangent $X(m) \in T_mM$ qui dépend de m de manière différentiable (resp. holomorphe) z, i.e si x_1, \ldots, x_n sont des coordonnées locales à une carte $\varphi : U \to V \subset \mathbb{R}^n$ de M, alors $X : M \to TM$ est donnée sur U par :

$$X(m) = a_1(m) \left(\frac{\partial}{\partial x_1} \right)_m + \ldots + a_n(m) \left(\frac{\partial}{\partial x_n} \right)_m$$

où les a_i sont différentiables (resp. holomorphes) sur U.

Proposition 1.2.4.16. Un fibré vectoriel $p : E \to B$ de rang r est trivialisable si et seulement s'il existe des sections s_1, \ldots, s_r telles que pour tout $b \in B$, $(s_1(b), \ldots, s_r(b))$ soit une base de $p^{-1}(b)$. En particulier, un fibré vectoriel de rang 1 est trivialisable si et seulement s'il admet une section qui ne s'annule pas.

Proposition 1.2.4.17. Soit G un groupe de Lie. Alors TG est trivialisable (ie G est parallélisable).

Démonstration. Pour $g \in G$, on considère $L_g : G \to G$ l’application de multiplication à gauche par g. On vérifie alors que :

$$G \times TG \to TG \\
(g, v) \mapsto (g, (TL_g)_e(v))$$

et

$$TG \to G \times TG \\
(g, v) \mapsto (g, (TL_g)_e^{-1}(v))$$

sont des isomorphismes inverses l’un de l’autre.

Remarque 1.2.4.18. La trivialisation n’est pas canonique (on aurait pu prendre aussi bien la multiplication à droite par exemple).

Remarque 1.2.4.19. On déduit des deux propositions précédentes et du théorème de la boule chevelue que S^2 n’est pas trivialisable et donc que l’on peut pas mettre de structure de groupe de Lie sur S^2.

1.2.5 Champs de vecteurs invariants

Définition 1.2.5.1. Soient $f : M \to N$ un morphisme de variétés, X un champ de vecteur sur M et Y un champ de vecteurs sur N. On dit que X et Y sont f-liés si $Tf \circ X = Y \circ f$.

Si f est un isomorphisme, pour tout champ de vecteur X sur M, il existe un unique champ de vecteur Y sur N qui lui est f-lié. Il est donné par $Y = Tf \circ X \circ f^{-1}$. On le note f_*X.

Définition 1.2.5.2. Soient G un groupe de Lie, $g \in G$ et X un champ de vecteurs sur G. On définit $g.X = (L_g)_*X$ et $X.g = (R_g)_*X$ (où L_g est la multiplication à gauche par g et R_g la multiplication à droite).

Un champ de vecteurs est dit invariant à gauche si pour tout $g \in G$, on a $g.X = X$. On note $\Gamma(G, TG)^G$ leur ensemble.

Remarque 1.2.5.3. Un champ de vecteurs X est invariant à gauche si et seulement si pour tout g et h dans G, on a $X(gh) = (TL_g)_hX(h)$, si et seulement si pour tout g dans G, on a $X(g) = (TL_g)_eX(e)$.

D’où la proposition suivante :

Proposition 1.2.5.4. Soit G un groupe de Lie. Pour tout $v \in T_eG$, il existe un unique champ de vecteurs invariant à gauche sur G tel que $X(e) = v$. Il est donné par $X : g \mapsto (TL_g)_e v$.

Définition 1.2.5.5. On note $\lambda : T_eG \to \Gamma(G, TG)^G$ cet isomorphisme. De même on définit $\rho : T_eG \to \Gamma(G, TG)$ l’isomorphisme obtenu en regardant la multiplication et les invariances à droite.

Exemple 1.2.5.6.
1.2. ALGÈBRE DE LIE D’UN GROUPE DE LIE

1. Soit \(G = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \) le groupe de Heisenberg. Alors \(\left(\frac{\partial}{\partial x} \right)_0, \left(\frac{\partial}{\partial y} \right)_0 \) et \(\left(\frac{\partial}{\partial z} \right)_0 \) forment une base de \(T_e G \).

Leurs images par \(\lambda \) sont \(\frac{\partial}{\partial x} \), \(\frac{\partial}{\partial y} \) et \(\frac{\partial}{\partial z} \). Leurs images par \(\rho \) sont \(\frac{\partial}{\partial x} + y \frac{\partial}{\partial z} \), \(\frac{\partial}{\partial y} \) et \(\frac{\partial}{\partial z} \).

2. Soit \(A \) une algèbre de dimension finie, associative et unitaire. Considérons \(G = \mathbb{A}^n \) qui est un ouvert de \(A \). Alors on a un isomorphisme :

\[
A \xrightarrow{\sim} T_e G \quad \gamma : \ t \mapsto e + t a
\]

pour \(|t| \) petit.

Le champ de vecteurs invariant à gauche associé à \(X_a \in T_e G \) est alors \(g \mapsto g \gamma a \) où \(g \gamma a : t \mapsto g + t a g \).

Le champ de vecteurs invariant à droite associé à \(X_a \in T_e G \) est alors \(g \mapsto \gamma g \) où \(\gamma g : t \mapsto g + t g \).

Lemme 1.2.5.7. Soit \(f : G \to H \) un morphisme de groupes de Lie et \(X \) un champ de vecteurs invariant à gauche sur \(G \). Alors il existe un unique champ de vecteur invariant à gauche \(Y \) sur \(H \) qui est \(f \)-lié à \(X \). En outre, on a \(Y = \lambda ((T_e f)_e(X(e))) \). L’application qui à \(X \) associe ce \(Y \) est notée \(f_1 \).

Démonstration. L’unicité résulte du fait qu’un champ de vecteur invariant à gauche est uniquement déterminé par la valeur qu’il prend en \(e \) et ici la condition de \(f \)-liaison donne directement \(Y(e) = T f o X(e) \).

Pour l’existence, il suffit de vérifier que \(Y = \lambda ((T_e f)_e(X(e))) \) est \(f \)-lié à \(X \). Pour cela, on calcule, pour \(g \in G \) :

\[
Y \circ f(g) = (T \underline{L} f(g)) \circ ((T f)_e(X(e))) = T (L f(g) \circ f)(X(e)) = T(f \circ L g)(X(e)) = (T f g)(T g)(X(e))
\]

\(\sqrt{\cdot} \)

1.2.6 Algèbres de Lie (définition et premières propriétés)

Soit \(k \) un corps commutatif.

Définition 1.2.6.1. Une algèbre de Lie sur \(k \) est un \(k \)-espace vectoriel \(L \) muni d’une application bilinéaire \([·,·] : L \times L \to L \) vérifiant :

1. \([X, X] = 0 \)
2. \([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 \)

Remarque 1.2.6.2. La condition 1 implique que \([·,·] \) est antisymétrique.

La condition 2 peut se réécrire sous la forme \([X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]], \) ce qui signifie que \(\text{ad} X = [X, ·] \) est une dérivation au sens de la définition suivante :

Définition 1.2.6.3. Soit \(B \) une \(k \)-algèbre. Une dérivation de \(B \) est une application \(k \)-linéaire \(D : B \to B \) vérifiant

\[
D(ab) = (Da)b + a(Db)
\]

Exemple 1.2.6.4 (Algèbres de Lie).

1. Tout espace vectoriel muni de \([X, Y] = 0 \) est une algèbre de Lie. On dit que c’est une algèbre de Lie commutative ou abélienne.

2. Soit \(A \) une algèbre associative. On peut munir \(A \) d’une structure d’algèbre de Lie en posant \([x, y] = xy - yx \).

Supposons que \(A = \text{End}_k(B) \) où \(B \) est une \(k \)-algèbre. Notons \(\text{Der}_k(B) \) le sous-espace de \(A \) des dérivations. Alors \(\text{Der}_k(B) \) est une sous-algèbre de Lie de \(A \), c’est-à-dire que si \(D_1 \) et \(D_2 \) sont deux dérivations, alors \([D_1, D_2] = D_1 \circ D_2 - D_2 \circ D_1 \) est encore une dérivation.

Soit \(M \) une variété réelle et \(A \) l’algèbre \(\mathcal{O}_M(M) = \mathcal{C}^\infty(M) \). Alors \(L = \text{Der}_\mathbb{R}(A) \hookrightarrow \text{End}_\mathbb{R}(A) \) est une algèbre de Lie pour le commutateur. Considérons :

\[
\Phi : \left\{ \begin{array}{ll}
\text{Der}_\mathbb{R}(A) & \rightarrow \Gamma(M, T M) \\
D & \mapsto (m \mapsto D_m : \dot{s} \mapsto (D\dot{s})(m))
\end{array} \right.
\]

où \(\dot{s} \) désigne un prolongement différentiable du germe de fonction \(s \) à \(M \) (ici, on utilise le fait que \(M \) est réelle).

\(\Phi \) est alors bien défini et c’est un isomorphisme. On a ainsi une structure d’algèbre de Lie sur \(\Gamma(M, T M) \) par un calcul local \(\mathcal{Z} \).

Si \(M \) est une variété réelle ou complexe, nous allons définir une structure d’algèbre de Lie sur \(\Gamma(M, T M) \) par un calcul local \(\mathcal{Z} \).
1.2.7 Algèbres de Lie et champs de vecteurs

Soient M une variété (réelle ou complexe) et X un champ de vecteurs sur M. Soit U un ouvert de M et soit $\mathcal{O}_M(U)$ l’ensemble des fonctions différentiables (resp. holomorphes) $U \to \mathbb{K}$. Pour $s \in \mathcal{O}_M(U)$ et $m \in U$, on pose $(Xs)(m) = X(m)(s)$.

Dans des coordonnées locales autour d’un point $m_0 \in U$, on peut écrire :

$$X(m) = a_1(m) \left(\frac{\partial}{\partial x_1} \right)_m + \ldots + a_n(m) \left(\frac{\partial}{\partial x_n} \right)_m$$

et donc

$$(Xs)(m) = \sum_{i=1}^{n} a_i(m) \left(\frac{\partial s}{\partial x_i} \right)_m$$

Ainsi l’on a bien $Xs \in \mathcal{O}_M(U)$. On vérifie en outre que $X(st) = X(s) t + sX(t)$. On obtient ainsi une dérivation $X_U : \mathcal{O}_M(U) \to \mathcal{O}_M(U)$ en associant Xs à s.

D’autre part si U et V sont deux ouverts tels que $V \subset U$, le diagramme suivant commute :

$\begin{array}{ccc}
\mathcal{O}_M(U) & \xrightarrow{X_U} & \mathcal{O}_M(U) \\
\text{restriction} & & \text{restriction} \\
\mathcal{O}_M(V) & \xrightarrow{X_V} & \mathcal{O}_M(V)
\end{array}$

Ceci nous conduit à poser la définition suivante :

Définition 1.2.7.1. On note $\text{Der}(\mathcal{O}_M)$ l’ensemble des familles de dérivations compatibles aux restrictions.

On a ainsi une application $\Gamma(M, TM) \to \text{Der}(\mathcal{O}_M)$. $X \mapsto (X_U)_{U \text{ ouvert}}$. Cette application est bijective. En effet, si $D \in \text{Der}(\mathcal{O}_M)$, on construit un antécédent X à l’aide des coordonnées locales x_1, \ldots, x_n. Plus précisément, on pose $X = a_1 \frac{\partial}{\partial x_1} + \ldots + a_n \frac{\partial}{\partial x_n}$ où $a_i = D(x_i)$.

L’espace $\text{Der}(\mathcal{O}_M)$ est naturellement muni d’une structure d’algèbre de Lie pour le crochet issu des commutateurs sur chaque ouvert. Ainsi $\Gamma(M, TM)$ devient une algèbre de Lie.

Pour X et Y dans $\Gamma(M, TM)$, calculons $[X, Y]$ dans les coordonnées locales x_1, \ldots, x_n. On écrit donc :

$$X = \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i} \quad \text{et} \quad Y = \sum_{j=1}^{n} b_j \frac{\partial}{\partial x_j}$$

Soit maintenant s une fonction différentiable (resp. holomorphe) sur l’ouvert de définition des x_i. On calcule alors

$$[X, Y](s) = \sum_{i,j} a_i \frac{\partial}{\partial x_i} \left(b_j \frac{\partial}{\partial x_j} \right) - \sum_{i,j} b_j \frac{\partial}{\partial x_j} \left(a_i \frac{\partial}{\partial x_i} \right) = \ldots$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(a_i \frac{\partial b_j}{\partial x_j} - b_j \frac{\partial a_i}{\partial x_j} \right) \right) \frac{\partial}{\partial x_i}$$

Remarque 1.2.7.2. L’algèbre de Lie $\Gamma(M, TM)$ est en général de dimension infinie.

Exemple 1.2.7.3. Soit G le groupe de Heisenberg déjà décrit précédemment. On a vu que $(X = \partial x, Y = \partial y + x\partial z, Z = \partial z)$ formait une base de l’espace des champs de vecteurs invariants à gauche. On vérifie que Z commute avec X et Y et que $[X, Y] = \partial(\partial y, \partial y + x\partial z) = \partial z = Z$. Ainsi les champs invariants à gauche sur G forment une sous-algèbre de Lie (de dimension 3) de l’algèbre de Lie $\Gamma(G, TG)$.

Pour les champs de vecteurs invariants à droite, on trouve $X' = \partial x + y\partial z$, $Y' = \partial y$, $Z' = \partial z$, $[Z', X'] = 0$, $[Z', Y'] = 0$ et $[X', Y'] = -Z'$.

Lemme 1.2.7.4. Soit $f : M \to N$ un morphisme de variétés. On considère X et Y des champs de vecteurs de M f-liés à des champs de vecteurs X' et Y' de N. Alors $[X, Y]$ est f-lié à $[X', Y']$.

1.2. ALGÈBRE DE LIE D’UN GROUPE DE LIE

Démonstration. X' est f-lié à X signifie que \(T_f \circ X = X' \circ f \). On en déduit que pour tout \(m \in M \), \((T_f)_m X (m) = X' (f (m)) \). Ceci signifie que pour \(s \) différentiable au voisinage de \(f (m) \), on a \((X \circ (s \circ f))(m) = X' (f (m)) (s) \) soit \(X \circ (s \circ f) = X' \circ (s \circ f) \). Finalement, on trouve \(X \circ Y (s \circ f) = X' \circ Y' (s \circ f) \) et \(Y \circ X (s \circ f) = Y' \circ X' (s \circ f) \), ce qui prouve le résultat annoncé.

Corollaire 1.2.7.5.

a) Si \(f : M \to N \) est un difféomorphisme, alors \(f_* : \Gamma (M, TM) \to \Gamma (N, TN) \) est un morphisme d’algèbres de Lie.

b) Si \(G \) est un groupe de Lie et \(g \in G \), alors \((L_g)_* \) et \((R_g)_* \) sont des morphismes d’algèbres de Lie de \(\Gamma (G, TG) \) dans lui-même et les champs de vecteurs invariants à gauche (resp. à droite) forment une sous-algèbre de Lie de \(\Gamma (G, TG) \).

c) Si \(f : G \to H \) est un morphisme de groupes de Lie, alors le morphisme \(f_* : \Gamma (G, TG)^G \to \Gamma (H, TH)^H \) défini par :

\[
\begin{align*}
T_e G & \sim \Gamma (G, TG)^G \\
\downarrow & \downarrow f_* \\
T_e H & \sim \Gamma (H, TH)^H
\end{align*}
\]

est un morphisme d’algèbres de Lie.

Démonstration.

a) En effet, \(f_* X = T_f \circ X \circ f^{-1} \) est f-lié à \(X \).

b) On a \((L_g)_* [X, Y] = [(L_g)_* X, (L_g)_* Y] \). Donc si \(X \) et \(Y \) sont invariants, \([X, Y] \) l’est aussi.

c) On sait que \(f_* \) envoie un champ \(X \) sur un champ f-lié à \(X \).

Définition 1.2.7.6. Soit \(G \) un groupe de Lie. L’algèbre de Lie associée à \(G \) est \(L (G) = T_e G \) muni du crochet défini par :

\[
[X, Y] = [\lambda (X), \lambda (Y)] (e)
\]

Remarque 1.2.7.7. Lie \((G)\) est également noté \(g. \) Lie \((GL(n, K))\) est également noté \(gl(n, K)\).

Lie est un foncteur de la catégorie des groupes de Lie dans la catégorie des algèbres de Lie. Si \(f : G \to H \) est un morphisme de groupes de Lie, on pose :

\[
L (f) = T_e f : L (G) \to L (H)
\]

C’est un morphisme de groupes de Lie.

Remarque 1.2.7.8. Si on utilise les champs de vecteurs invariants à droite au lieu de ceux invariants à gauche, on obtient une autre structure d’algèbre de Lie sur \(T_e G \) vérifiant \([X, Y]_\text{droite} = - [X, Y] \).

Exemple 1.2.7.9. Soit \(G \) le groupe d’Heisenberg. On a alors Lie \((G) = \mathbb{R}X \oplus \mathbb{R}Y \oplus \mathbb{R}Z \) avec les relations \([X, Y] = Z \) et \([Z, X] = [Z, Y] = 0 \).

Soit \(A \) une algèbre associative, unitaire et de dimension finie. Soit \(G = A^\times \). On sait que \(G \) est un groupe de Lie, que \(A \) est isomorphe à \(T_1 G \) par l’application qui à \(a \) associe le vecteur défini par \(t \mapsto 1 + ta \). On sait également que l’application \(\lambda \) est la suivante :

\[
\begin{align*}
\lambda & : A \sim T_e G \to \Gamma (G, TG)^G \\
\partial_a & \mapsto \partial_a \mapsto (g \mapsto (t \mapsto g + tga))
\end{align*}
\]

En fait, on a \([\partial_a, \partial_b] = \partial_{[a, b]} \) où \([a, b] = ab - ba\). Pour cela, vérifions que \([\lambda (\partial_a), \lambda (\partial_b)] = \lambda (\partial_{[a, b]}) \). Il suffit de le vérifier sur les fonctions linéaires \(f : A \to \mathbb{K} \) car leurs dérivées engendrent l’espace cotangent \((T_aG)^* = (T_aA^\times)^* \). Or on a :

\[
\lambda (\partial_a) (g) (f) = \frac{d}{dt} (f (g + tga)) \bigg|_{t=0} = f (ga)
\]

Ainsi \(\lambda (\partial_a) f = R_a f \) où \(R_a : A^\times \to A^\times \) est défini par \(R_a \varphi = (g \mapsto \varphi (ga)) \).

Donc finalement \([\lambda (\partial_a), \lambda (\partial_b)] (f) = (R_a R_b - R_b R_a) (f) = R_{[a, b]} (f) = \lambda (\partial_{[a, b]}) (f) \).

On en déduit la propriété suivante :

\[
\lambda (\partial_a) f = R_a f \quad \text{pour tout} \quad a, b \quad \text{appartenant à} \quad A^\times
\]

\[
\lambda (\partial_a) f = R_a f \quad \text{pour tout} \quad a, b \quad \text{appartenant à} \quad A^\times
\]

\[
\lambda (\partial_a) f = R_a f \quad \text{pour tout} \quad a, b \quad \text{appartenant à} \quad A^\times
\]
Proposition 1.2.7.10. On a un isomorphisme canonique $A_{\text{Lie}} \xrightarrow{\sim} \text{Lie} (A^\times)$.

En particulier, Lie $(GL (n, \mathbb{K})) = M (n, \mathbb{K})$ muni du commutateur des matrices. En outre, si $G \subset GL (n, \mathbb{K})$ est un sous-groupe est une sous-variété, alors G est un groupe de Lie et l'inclusion $G \hookrightarrow GL (n, \mathbb{K})$ est un morphisme de groupes de Lie qui induit donc un morphisme d’allèles de Lie $\text{Lie} (G) \hookrightarrow \text{Lie} (GL (n, \mathbb{K}))$. Par exemple :

\[
\text{Lie} (SL (n, \mathbb{K})) = \{ A \in M (n, \mathbb{K}) \mid \text{Tr} A = 0 \} \subset M (n, \mathbb{K}) \\
\text{Lie} (O (n, \mathbb{K})) = \{ A \in M (n, \mathbb{K}) \mid I A + A = 0 \} \subset M (n, \mathbb{K})
\]

1.3 L’application exponentielle

Le but de cette partie est de généraliser aux groupes de Lie quelques l’application exponentielle :

\[
\begin{pmatrix} M (n, \mathbb{K}) & \to & GL (n, \mathbb{K}) \\ A & \mapsto & e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k \end{pmatrix}
\]

Pour cela, on remarque que la courbe $\gamma (t) = e^{tA}$ vérifie l’équation différentielle :

\[
\gamma' (t) = e^{tA} A = \lambda (A) (e^{tA}) = \lambda (A) (\gamma (t))
\]

$\gamma_A (t)$ peut donc être définie comme la courbe intégrale du champ $\lambda (A)$ passant par $\gamma_A (0) = e$.

1.3.1 Équations différentielles et sous-groupes à un paramètre

Soit U un ouvert de \mathbb{R}^n et X un champ de vecteurs sur U.

Théorème 1.3.1.1 (Cauchy). Pour tout $P \in U$, il existe γ solution de $\gamma' (t) = X (\gamma (t))$ définie sur un intervalle ouvert contenant 0 telle que $\gamma (0) = P$. Deux telles solutions coïncident sur l’intersection de leurs domaines de définition.

Corollaire 1.3.1.2. Soient M une variété et X un champ de vecteurs sur M. Pour $m_0 \in M$, le problème de Cauchy :

\[
\begin{cases}
\gamma (0) = m_0 \\
\gamma' (t) = X (\gamma (t))
\end{cases}
\]

admet une solution définie sur un intervalle ouvert contenant 0. De plus, deux solutions coïncident sur l’intersection de leurs domaines de définition.

Démonstration. L’existence résulte du théorème de Cauchy (en prenant une carte).

Soient γ_1 et γ_2 deux solutions définies respectivement sur I_1 et I_2. On considère

\[
I = \{ t \in I_1 \cap I_2 \mid \gamma_1 (t) = \gamma_2 (t) \} \subset I_1 \cap I_2
\]

C’est un ensemble non vide (car il contient 0), ouvert (d’après Cauchy) et fermé dans $I_1 \cap I_2$. On conclut alors par connexité.

Remarque 1.3.1.3. Il existe donc une solution maximale au problème de Cauchy. Son domaine de définition I est en général strictement inclus dans \mathbb{R}.

Exemple 1.3.1.4. Prenons $M = \mathbb{R}$, $X (x) = (1 + x^2) \left(\frac{\partial}{\partial x} \right)_x$ et $m_0 = 0$. La solution maximale est alors définie sur $I = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ par $\gamma (t) = \tan t$.

Définition 1.3.1.5. Un champ de vecteurs X est dit complet si pour tout $m_0 \in M$, le problème de Cauchy associé admet une solution sur \mathbb{R} tout entier.
1.3. L’APPLICATION EXPONENTIELLE

Proposition 1.3.1.6. Soient G un groupe de Lie et X un champ de vecteurs sur G invariant à gauche. Alors X est complet.

Démonstration. Pour $g \in G$, on note $\gamma (g, \cdot)$ la solution du problème de Cauchy telle que $\gamma (0) = g$. Les fonctions $\gamma (hg, \cdot)$ et $h \gamma (g, \cdot)$ sont toutes deux solutions de Cauchy correspondant à $\gamma (0) = hg$ (la vérification utilise l’invariance à gauche de X), on en déduit que pour tout t, $\gamma (hg, t) = h \gamma (g, t)$. On pose alors $\gamma (t) = \gamma (e, t)$ et le problème se ramène à montrer que γ est définie sur \mathbb{R}. Notons donc I le domaine de définition de γ et soit $t_0 \in I$, $t_0 \neq 0$. Définissons, pour $t \in t_0 + D$, $\gamma_1 (t) = \gamma (t_0) \gamma (t - t_0)$. γ_1 et γ coïncident par exemple en t_0 et sont toutes deux solutions de l’équation différentielle $\delta (t) = X (\delta (t))$. On en déduit que $I \subset t_0 + I$, et puis que $I \subset I + I$. Finalement $I = \mathbb{R}$. √

Définition 1.3.1.7. Soit G un groupe de Lie. Un sous-groupe à un paramètre de G est un morphisme de groupes de Lie réels $\gamma : \mathbb{R} \rightarrow G$.

Corollaire 1.3.1.8. Soit G un groupe de Lie.

a) Pour tout $X \in \text{Lie} (G)$, il existe un unique sous-groupe à un paramètre $\gamma_X : \mathbb{R} \rightarrow G$ tel que :

$$
\begin{cases}
\gamma_X (0) = e \\
\gamma_X' (t) = \lambda (X) (\gamma_X (t))
\end{cases}
$$

b) L’application $\left(\begin{array}{c}
\text{Lie} (G) \\
X
\end{array} \right) \mapsto \gamma_X$ est bijective.

Démonstration.

b) L’injectivité est essentiellement claire. En effet, si $\gamma_X = 0$, alors $\gamma_X' (0) = 0$.

Pour la surjectivité, considérons $\gamma : \mathbb{R} \rightarrow G$ un sous-groupe à un paramètre. On calcule alors :

$$
\gamma' (t) = \frac{d}{ds} \gamma (s + t) \bigg|_{s=0} = \frac{d}{ds} \gamma (t) \gamma (s) \bigg|_{s=0} = TL_{\gamma(t)} (\gamma' (0)) = \lambda (\gamma' (0)) (\gamma (t))
$$

Ce qui prouve que $\gamma = \gamma_X$ pour $X = \gamma' (0)$. √

Remarque 1.3.1.9. On a donc maintenant trois interprétations de $\text{Lie} (G)$:

$$
\begin{array}{c}
\{\text{Champs de vecteurs invariants à gauche}\} \\
\sim \\
\text{T}_G G \\
\sim
\end{array}
\begin{array}{c}
\lambda (X) \\
X
\end{array}
\begin{array}{c}
\{\text{Sous-groupes à un paramètre}\} \\
\gamma_X
\end{array}
$$

1.3.2 L’exponentielle

Définition 1.3.2.1. Soit G un groupe de Lie. La fonction exponentielle $\text{Lie} (G) \rightarrow G$ est définie par $\exp (X) = \gamma_X (1)$.

Remarque 1.3.2.2.

1. Par l’unicité de la solution au problème de Cauchy, on a $\gamma_X (1) = \gamma_X (t)$, soit $\gamma_X (t) = \exp (tX)$. Ainsi $t \mapsto \exp (tX)$ est le sous-groupe à un paramètre de vecteur tangent X en $t = 0$.

2. Par définition du vecteur tangent à une courbe, on a, pour $g \in G$ et f une fonction différentiable définie au voisinage de g :

$$
\frac{d}{dt} f (g \exp (tX)) \bigg|_{t=0} = (TL_g)_e X (f) = (\lambda (X) f) (g)
$$
3. Soient \(\varphi : G \to H \) un morphisme de groupes de Lie et \(X \in \operatorname{Lie}(G) \). Alors \(t \mapsto \varphi(\exp(tX)) \) est un sous-groupe à un paramètre de \(H \) de vecteur tangent \((T_e\varphi)(X)\) en \(t = 0 \). On a ainsi \(\varphi(\exp(tX)) = \exp(t\operatorname{Lie}(\varphi)(X)) \). Autrement dit le carré suivant commute :

\[
\begin{array}{ccc}
G & \xrightarrow{\varphi} & H \\
\exp & & \exp \\
\downarrow & & \downarrow \\
\operatorname{Lie}(G) & \xrightarrow{\operatorname{Lie}(\varphi)} & \operatorname{Lie}(H) \\
\end{array}
\]

Proposition 1.3.2.3. Soit \(A \) une \(k \)-algèbre associative, unitaire de dimension finie. On prend \(G = A^X \). On a vu que dans ces conditions \(\operatorname{Lie}(G) = A_{\text{Lie}} \). Alors, pour tout \(a \in A \), la série \(e^a = \sum_{k=0}^{\infty} \frac{1}{k!}a^k \) converge normalement et \(\exp(a) = e^a \).

Démonstration. Pour la convergence normale, on choisit sur \(A \) un norme d’algèbre. De même que dans \(\mathbb{C} \), on démontre que si \(a \) et \(b \) commutent \(e^{a+b} = e^a e^b \) (ce qui prouve que \(t \mapsto e^{ta} \) est un sous-groupe à un paramètre) et que \(\frac{d}{dt} e^{ta} \bigg|_{t=0} = a \). On en déduit le résultat annoncé.

En particulier, \(\exp : \mathfrak{gl}(n, \mathbb{C}) \to GL(n, \mathbb{C}) \) est donnée par l’exponentielle matricielle et si \(G \hookrightarrow GL(n, \mathbb{C}) \) est un sous-groupe et une sous-variété, alors l’exponentielle sur \(G \) est aussi donnée par l’exponentielle matricielle, via le carré commutatif suivant :

\[
\begin{array}{ccc}
G^\mathbb{C} & \xrightarrow{\exp} & GL(n, \mathbb{C}) \\
\downarrow & & \downarrow \\
\operatorname{Lie}(G)^\mathbb{C} & \xrightarrow{\exp} & \mathfrak{gl}(n, \mathbb{C}) \\
\end{array}
\]

Théorème 1.3.2.4. Soit \(G \) un groupe de Lie. On pose \(\mathfrak{g} = \operatorname{Lie}(G) \). Alors :

a) L’exponentielle \(\mathfrak{g} \to G \) est un morphisme de variétés.

b) \(T_0 \exp = \operatorname{Id}_{\mathfrak{g}} \).

c) L’exponentielle induit un difféomorphisme ouvert d’un voisinage ouvert de \(0 \in \mathfrak{g} \) dans un voisinage ouvert de \(e \in G \).

Démonstration.

a) \(\gamma_X(t) = \exp(tX) \) est solution du problème de Cauchy :

\[
\left\{
\begin{array}{l}
\gamma_X(0) = 0 \\
\gamma_X'(t) = \lambda(X)(\gamma_X(t))
\end{array}
\right.
\]

d'où le résultat d’après le théorème suivant que nous admettrons :

Théorème 1.3.2.5. Soient \(V \times W \subset \mathbb{R}^p \times \mathbb{R}^q \) et \(F : V \times W \to \mathbb{R}^p \) un morphisme de variétés. Soient \(v_0 \in V \) fixé \(\gamma(t, w) \) la solution du problème :

\[
\left\{
\begin{array}{l}
\delta(0) = v_0 \\
\delta'(t) = F(\delta(t), w)
\end{array}
\right.
\]

Alors le domaine de définition \(D \) de \(\gamma \) est ouvert dans \(\mathbb{R} \times W \) et \(\gamma : D \to V \) est un morphisme de variétés.

b) On a \(\exp \mathfrak{g} \to G \) donc \(T_x \exp : T_x \mathfrak{g} \to T_xG \). Pour \(X = 0 \), on obtient \(T_0 \exp : \mathfrak{g} \to \mathfrak{g} \). D’autre part, par définition, on a :

\[
(T_0 \exp)(X) = \left. \frac{d}{dt} \exp(tX) \right|_{t=0} = X
\]

c) Résulte de b) et du théorème des fonctions implicites.

Remarque 1.3.2.6. En général, \(\exp : \mathfrak{g} \to G \) n’est ni injective, ni surjective. En effet :

Non injective. \(G = \mathbb{C}^* = GL(1, \mathbb{C}) \) ou \(G = GL(2, \mathbb{R}) \).
1.3. L’APPLICATION EXPONENTIELLE

Non surjective. Bien sûr \(\exp(g) \subset G \). Mais même si \(G \) est connexe, l’exponentielle n’est pas surjective en général. En effet, prenons \(G = GL(2, \mathbb{R})^+ \), alors \(\text{Lie}(G) = \mathfrak{gl}(2, \mathbb{R}) \) car \(G \) est ouvert dans \(M(n, \mathbb{R}) \). Cependant montrons que \(g = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \) n’est pas atteint. Pour cela supposons que \(X \in \mathfrak{gl}(2, \mathbb{R}) \) soit tel que \(e^X = g \). Notons \(\lambda_1 \) et \(\lambda_2 \) les valeurs propres complexes de \(X \). On aurait \(e^{\lambda_1} = -1 \) donc \(\lambda_1 \in i \mathbb{R} - \{0\} \) et \(\lambda_1 = \lambda_2 \). Ainsi \(\lambda_1 \neq \lambda_2 \) et puis \(X \) serait diagonalisable puis \(g \) aussi, ce qui est manifestement faux.

On peut aussi prendre \(G = SL(2, \mathbb{C}) \), alors \(\text{Lie}(G) = \mathfrak{sl}(2, \mathbb{C}) = \{ A \in M(2, \mathbb{C}) \mid \text{Tr} A = 0 \} \) et montrer que \(g = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \) n’est pas atteint.

Remarque 1.3.2.7. Par contre, si \(G = GL(n, \mathbb{C}) \), alors l’exponentielle est surjective.

Lemma 1.3.2.8. Soient \(G \) un groupe topologique connexe et \(V \) un voisinage ouvert de \(e \). Alors \(V \) engendre \(G \) comme groupe.

Démonstration. Notons \(\text{inv}(V) \) l’ensemble des inverses des éléments de \(V \). On peut supposer, quitte à remplacer \(V \) par \(V \cap \text{inv}(V) \) que \(V = \text{inv}(V) \). Notons \(H = \bigcup_{n \in \mathbb{N}} V^n \) le sous-groupe engendré par \(V \). Alors \(H \) est ouvert et donc fermé. Comme \(G \) est connexe, \(H = G \).

Corollaire 1.3.2.9. Si \(G \) est un groupe de Lie connexe, \(G \) est engendré par \(\exp(g) \). Autrement dit, tout élément de \(G \) s’écrit sous la forme \(\exp(X_1) \ldots \exp(X_n) \) avec \(X_i \in \mathfrak{g} \).

Exemple d’un groupe de Lie non linéaire.

Soit \(H \) le groupe de Heisenberg. On considère \(\Gamma = \left\{ \begin{pmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} , \ k \in \mathbb{Z} \right\} \). C’est un sous-groupe central et donc distingué de \(H \). Notons:

\[
G = H/\Gamma = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} , \ x, y \in \mathbb{R}, z \in \mathbb{R}/\mathbb{Z} \right\} \sim \mathbb{R} \times \mathbb{R} \times S^1
\]

La projection \(p : H \rightarrow G \) induit un difféomorphisme d’un voisinage de \(e \in H \) dans un voisinage de \(e \in G \), donc \(\text{Lie}(p) : \text{Lie}(H) \rightarrow \text{Lie}(G) \) est un isomorphisme. Ainsi le calcul de \(\exp_G \) se ramène à celui de \(\exp_H \) grâce au carré commutatif suivant:

\[
\begin{array}{ccc}
H & \xrightarrow{p} & G \\
\downarrow{\exp_H} & & \uparrow{\exp_G} \\
\text{Lie}(H) & \xrightarrow{\sim} & \text{Lie}(G)
\end{array}
\]

Ce qui est possible car \(H \) est un groupe de Lie linéaire :

\[
\begin{array}{ccc}
H^C & \xrightarrow{\exp} & GL(3, \mathbb{R}) \\
\downarrow{\exp_H} & & \uparrow{\exp} \\
\text{Lie}(H)^C & \xrightarrow{\sim} & \mathfrak{gl}(3, \mathbb{R})
\end{array}
\]

Proposition 1.3.2.10. Il n’existe pas de morphisme injectif \(\varphi : G \rightarrow GL(n, \mathbb{C}) \) dès que \(n \geq 1 \).

Démonstration. Supposons qu’un tel \(\varphi \) existe. Alors \(\text{Lie}(\varphi) : g \rightarrow \mathfrak{gl}(n, \mathbb{C}) \) est injective. Étudions son image.

Pour cela, on pose \(X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \), \(Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \) et \(Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \), de sorte que \(g = \mathbb{R}X \oplus \mathbb{R}Y \oplus \mathbb{R}Z \).

On appelle \(A, B \) et \(C \) les images respectives de \(X, Y \) et \(Z \) par \(\varphi \). On a ainsi \(\mathbb{R}A \oplus \mathbb{R}B \oplus \mathbb{R}C \subset \mathfrak{gl}(n, \mathbb{C}) \). D’autre part, comme \(\text{Lie}(\varphi) \) est un morphisme d’algèbres de Lie, les matrices \(A, B \) et \(C \) vérifient les mêmes relations de commutation que \(X, Y \) et \(Z \), soit \([A, B] = C \) et \([B, C] = [A, C] = 0 \).
Montrons que C est nilpotente. Pour cela, il suffit de voir que ses valeurs propres sont nulles. Soient donc λ une valeur propre et $V_\lambda \subset \mathbb{C}^n$ l'espace propre associé. V_λ est stable par A, B et C et $C|_{V_\lambda} = \lambda \text{Id}_{V_\lambda}$. On a ainsi :

$$[A|_{V_\lambda}, B|_{V_\lambda}] = C|_{V_\lambda} = \lambda \text{Id}_{V_\lambda}$$

En prenant la trace, on trouve $\lambda = 0$. Donc C est bien nilpotente. La restriction de \exp à $\mathbb{R}C$ est donc bijective, le calcul de l'inverse se faisant en invoquant la série de log $(1 + x)$ tronquée. Il s'ensuit que la restriction de \exp_C à $\mathbb{R}Z$ est injective, ce qui est contradictoire car elle s'identifie à la projection $\mathbb{R} \to \mathbb{R}/\mathbb{Z}$.

\[\text{Loume 1.3.2.11.} \] Soient G un groupe de Lie, $\mathfrak{g} = \text{Lie} (G)$ son algèbre de Lie et X_1, \ldots, X_n une base de \mathfrak{g}. Alors :

a) L'équation $g = \exp (x_1 X_1 + \ldots + x_n X_n)$ définit, dans un voisinage de e, un système de coordonnées locales, dites \textit{coordonnées de première espèce}.

b) L'équation $g = \exp (x_1 X_1) \ldots \exp (x_n X_n)$ définit, dans un voisinage de e, un système de coordonnées locales, dites \textit{coordonnées de seconde espèce}.

\[\text{Démonstration.} \]

a) Résulte du fait que \exp est un difféomorphisme au voisinage de 0.

b) Soit $\psi : \mathbb{R}^n \to G$ l'application :

$$\mathbb{R} \times \ldots \times \mathbb{R} \xrightarrow{\psi_1} G \times \ldots \times G \xrightarrow{} G$$

$$(x_1, \ldots, x_n) \longmapsto (\exp (x_1 X_1), \ldots, \exp (x_n X_n))$$

$$(a_1, \ldots, a_n) \mapsto a_1 \ldots a_n$$

On a alors $(T_0 \psi_1)(x_1, \ldots, x_n) = (x_1 X_1, \ldots, x_n X_n)$ car $T_0 \exp = \text{Id}_\mathfrak{g}$. D'autre part la différentielle de la multiplication est l'addition (voir lemme suivant). On en déduit que $(T_0 \psi_1)(x_1, \ldots, x_n) = x_1 X_1 + \ldots + x_n X_n$ et donc que $T_0 \psi$ est bijective et donc que ψ est un difféomorphisme local au voisinage de 0.

\[\text{Loume 1.3.2.12.} \] Soit G un groupe de Lie et \mathfrak{g} son algèbre de Lie. Notons m la multiplication de $G \times G$ dans G. Alors $T_{e,e} m$ n'est autre que l'addition de $\mathfrak{g} \times \mathfrak{g}$ dans \mathfrak{g}.

\[\text{Démonstration.} \] On a $T_{e} (G \times G) = \mathfrak{g} \times \mathfrak{g}$ et $T_{(e,e)} m$ linéaire. On vérifie alors que $T_{(e,e)} m (u,0) = u$ et $T_{(e,e)} m (0,v) = v$, ce qui permet de conclure.

\[\text{Loume 1.3.2.13.} \] Soient G un groupe de Lie connexe et H un groupe de Lie. Soient $\varphi : G \to H$ et $\varphi' : G \to H$ deux morphismes de groupes de Lie. Si $\text{Lie} (\varphi) = \text{Lie} (\varphi')$, alors $\varphi = \varphi'$.

\[\text{Démonstration.} \] En effet, le diagramme suivant prouve que φ et φ' coïncident sur une partie génératrice :

$$\begin{array}{ccc}
G & \xrightarrow{\varphi, \varphi'} & H \\
\exp_G & & \exp_H \\
\text{Lie} (G) & \xrightarrow{\text{Lie} (\varphi) = \text{Lie} (\varphi')} & \text{Lie} (H)
\end{array}$$

\[\text{Loume 1.3.2.14.} \] Soit $f : G \to H$ un morphisme bijectif de groupes de Lie. Alors f est un isomorphisme.

\[\text{Démonstration.} \] Il s'agit de montrer que f est un difféomorphisme local au voisinage de tout $g \in G$. On se ramène au cas où $g = e$ grâce à l'identité $f = L_{f(g)} \circ f \circ L_{g^{-1}}$. L'exponentielle permet alors de conclure.

\[\text{Exemple 1.3.2.15.} \] Ceci prouve que \mathbb{R} muni de la loi de groupe $x \ast y = \sqrt{x^3 + y^3}$ n'est pas un groupe de Lie.

\[\text{Loume 1.3.2.16.} \] Soit G un groupe de Lie et \mathfrak{g} son algèbre de Lie. Soit $H \subset G$ un sous-groupe et une sous-variété. Alors :

a) $\text{Lie} (H) = \{ X \in \mathfrak{g} \mid \exp_G (\mathbb{R}X) \subset H \}$

b) Si H est connexe, il est engendré par $\exp_G (\text{Lie} (H))$.

1.3. L’APPLICATION EXPONENTIELLE

Démonstration.

a) Soit $X \in \text{Lie}(H)$, alors $\exp_G (tX) = \exp_H(tX) \in H$ et ce pour tout $t \in \mathbb{R}$. Réciproquement, si pour tout $t \in \mathbb{R}$, $\exp_G(tX) \in H$, alors $X = \frac{d}{dt} \exp_G(tX)|_{t=0} \in T_e H = \text{Lie}(H)$.

b) Il suffit de remarquer que $\exp_{GH} = \exp_H$.

Corollaire 1.3.2.17. Soient G un groupe de Lie et $H < G$ un sous-groupe connexe qui est une sous-variété. Alors H est entièrement déterminé par $\text{Lie}(H) \subset \text{Lie}(G)$.

1.3.3 Sous-groupes continus à un paramètre

Proposition 1.3.3.1. Soient G un groupe de Lie et $\gamma : (\mathbb{R}, +) \to G$ un homomorphisme continu. Alors γ est différentiable (et donc γ est un sous-groupe à un paramètre).

Démonstration. Soit $U \subset g$ un voisinage ouvert de 0 tel que l’exponentielle induise un difféomorphisme $U \stackrel{\sim}{\to} V = \exp(U)$. Soit $I \subset \mathbb{R}$ un intervalle ouvert contenant O tel que $\gamma(I) \subset V$. Définissons $\varphi : I \to U$ par $\exp(\varphi(t)) = \gamma(t)$. On veut montrer que φ est linéaire dans un voisinage de 0. Pour cela, on considère un $t_0 \in I$, $t_0 > 0$ et on calcule :

$$\exp\left(2\varphi\left(\frac{t_0}{2}\right)\right) = \exp\left(\varphi\left(\frac{t_0}{2}\right)^2\right) = \gamma\left(\frac{t_0}{2}\right)^2 = \gamma(t_0) = \exp(\varphi(t_0))$$

Ainsi $\varphi\left(\frac{t_0}{2}\right) = \frac{1}{2}\varphi(t_0)$. On en déduit alors que $\varphi\left(\frac{k}{2^m}t_0\right) = \left(\frac{k}{2^m}\right)\varphi(t_0)$. Comme γ est continue, φ l’est également et par un argument de densité, on voit que pour tout $t \in [0, t_0]$, $\varphi(t) = tX$ avec $X = \frac{\gamma(t_0)}{t_0} \in g$. Comme $[0, t_0] \in \mathbb{R}$ engendre \mathbb{R}, on trouve $\gamma(t) = \exp(tX)$ pour tout $t \in \mathbb{R}$.

Corollaire 1.3.3.2. Soit $\varphi : G \to H$ un homomorphisme continu entre groupes de Lie. Alors φ est un morphisme de groupes de Lie réels.

Démonstration. Il s’agit de montrer que φ est différentiable en tout point $g \in G$. Par translation, on peut se ramener à $g = e$. Pour conclure, il suffit alors de remarquer que le lemme précédent prouve que l’application suivante est différentiable :

$$\mathbb{R}^n \sim \mathbb{R}^n \varphi \mathbb{R}^n \to G \varphi \mathbb{R}^n \to H \varphi \mathbb{R}^n$$

Exemple 1.3.3.3. La conjugaison $(\mathbb{C}, +) \to (\mathbb{C}, +)$ est un exemple d’homomorphisme de groupes continu qui n’est pas un homomorphisme de groupes de Lie complexes.

Corollaire 1.3.3.4. Soit G un groupe topologique. Alors G admet au plus une structure de groupe de Lie réel.

Démonstration. On considère $\varphi = \text{Id}_G$ et on applique le corollaire précédent.

Remarque 1.3.3.5. On peut montrer qu’un groupe topologique localement euclidien (le muni d’un recouvrement par des cartes φ_i telles que les $\varphi_i \circ \varphi_j^{-1}$ sont continues) admet une structure de groupe de Lie réel (cf. I. Kaplansky, Lie algebras and locally compact groups, Chicago, 1971).

1.3.4 Le théorème de Von Neumann

Théorème 1.3.4.1 (Von Neumann). Soit G un groupe de Lie et $H < G$ une partie fermée qui est un sous-groupe. Alors H est une sous-variété et donc un groupe de Lie.

Pour démontrer ce théorème, nous aurons besoin des deux lemmes suivants :

Lemme 1.3.4.2. Soit $(X_i)_{i \in \mathbb{N}}$ une suite d’éléments non nuls de $g = \text{Lie}(G)$. On suppose que $X_i \to 0$ et que la suite des droites $(\mathbb{R}X_i)_{i \in \mathbb{N}}$ tend vers une limite $\mathbb{R}X$ dans l’espace projectif. Alors si pour tout $i \in \mathbb{N}$, $\exp(X_i) \in H$, on a $\exp(\mathbb{R}X) \subset H$.

Démonstration. Soit $Y \in RX$, $Y \neq 0$. Alors il existe une suite d’entiers (n_i) tendant vers $+\infty$ telle que n_iX_i tende vers Y. Alors $\exp(Y) = \lim_{x \in H} \exp(n_iX_i) = \lim_{i} (\exp(X_i))^n_i \in H$ car H est fermé.

\[\sqrt{\text{Le lemme 1.3.4.3. Soit } \gamma : \mathbb{R} \to G \text{ une courbe telle que } \gamma (0) = e \text{ et } \varphi (\mathbb{R}) \subset H. \text{ Soit } X = \varphi' (0). \text{ Alors } \exp (tX) \in H \text{ pour tout } t \in \mathbb{R}.} \]

\[\sqrt{\text{Démonstration. Soit } U \subset g \text{ un voisinage de } 0 \text{ tel que } \exp \text{ induise un difféomorphisme } U \to V = \exp (U). \text{ Soit } (t_i)_{i \in \mathbb{N}} \text{ une suite de réels strictement positifs tendant vers } 0 \text{ telle que } \varphi (t_i) \in V \text{ pour tout } i. \text{ On définit alors } X_i \text{ par } \gamma (t_i) = \exp (X_i). (X_i) \text{ est alors une suite d’éléments non nuls de } g \text{ telle que } (RX_i) \text{ tende vers } \varphi (0). \text{ Le lemme précédent permet alors de conclure}.} \]

\[\sqrt{\text{Démonstration. Démontrons à présent le théorème de Von Neumann. Par translation, il suffit de montrer que } H \text{ est une sous-variété au voisinage de } e \in H. \text{ Il s’agit de définir une carte } \varphi \text{ sur un voisinage de } e \text{ qui identifie la trace de } H \text{ avec la trace d’un sous-espace (ce sera l’algèbre de Lie de } H).} \]

\[\text{Définissons } V = \{ X \in g \mid \exp (RX) \subset H \}. \]

\[\text{Montrons que } V \text{ est un sous-espace vectoriel de } g. \text{ } \exp \text{ est stable par multiplication scalaires. Soient } X \text{ et } Y \text{ dans } V. \text{ Définissons pour } t \in \mathbb{R}, \gamma (t) = \exp (tX) \exp (tY). \text{ C’est une courbe contenue dans } H \text{ qui envoie } O \text{ sur } e. \text{ Le lemme précédent prouve alors que } \exp (\gamma (t) (0)) = \exp (\exp (X + Y)) \subset H \text{ et donc que } X + Y \in V. \]

\[\text{Soit } V' \subset g \text{ un supplémentaire de } V \text{ dans } g. \text{ Considérons } \varphi : \left\{ \begin{array}{l}
V \oplus V' \to G \\
(X,Y) \mapsto \exp (X) \exp (Y)
\end{array} \right. \text{, } \varphi \text{ induit un difféomorphisme d’un voisinage ouvert de } 0 \in g \text{ sur un voisinage ouvert de } e \in G. \text{ De plus } \varphi (V) \subset H. \text{ Nous allons alors montrer qu’il existe un voisinage } U \text{ de } 0 \in g \text{ tel que } \varphi \text{ induit un difféomorphisme } U \to \varphi (U) \text{ et que } \varphi (U \cap V) = \varphi (U) \cap H. \text{ Notons tout d’abord que l’inclusion } \varphi (U \cap V) \subset \varphi (U) \cap H \text{ est toujours vérifiée. Supposons qu’un tel } U \text{ n’existe pas. Alors il existerait une suite } (X_i, Y_i) \text{ d’éléments de } V \times V' \text{ telle que :}
\]

1. $X_i + Y_i \to 0$
2. $\varphi (X_i, Y_i) = \exp (X_i) \exp (Y_i) \in H \text{ pour tout } i \in \mathbb{N}$
3. $Y_i \neq 0 \text{ (le } X_i + Y_i \notin V \text{ pour tout } i \in \mathbb{N})$

\[\text{Comme } \exp (X_i) \in H \text{ et } \exp (X_i) \exp (Y_i) \in H, \text{ il vient } \exp (Y_i) \in H \text{ pour tout } i. \text{ Quitte à extraire une sous-suite, on peut supposer que la suite des droites } RX_i \text{ tend vers } RY, Y \neq 0 \text{ (car l’espace projectif est compact). Le lemme 1.3.4.2 montre que } Y \in V. \text{ D’autre part, } Y_i \in V'. \text{ On considère alors comme dans le lemme 1.3.4.2 une suite d’entiers } (n_i) \text{ telle que } \lim n_i Y_i = Y, \text{ ce qui prouve que } Y \in V' \text{ et donc } Y = 0, \text{ ce qui est contradictoire}.} \]

\[\text{Soit } A \text{ une algèbre finie sur } K. \text{ On note } G = GL (A) \text{ l’ensemble des automorphismes de l’espace vectoriel } A \text{ et } H = Aut_K (A) \text{ l’ensemble des automorphismes de l’algèbre } A. \text{ } H \text{ est alors un sous-groupe et une partie fermée de } G \text{ donc } H \text{ est une sous-variété de } G \text{ et un groupe de Lie.}
\]

\[\text{Proposition 1.3.4.4. On a Lie } (H) = \text{Der}_K (A).\]

\[\text{Démonstration. On a vu que Lie } (H) = \{ X \in g \mid \exp (RX) \subset H \}. \]

\[\text{Soit donc } X : A \to A \text{ une dérivation. On montre par récurrence que :}
\]

\[X^n (ab) = \sum_{k=0}^{n} C^n_k X^k (a) X^{n-k} (b) \]

\[\text{On en déduit que } e^{tX} (ab) = e^{tX} (a) e^{tX} (b) \text{ et puis que } e^{tX} \in Aut_K (A) = H. \]

\[\text{Réciproquement, supposons que } e^{tX} \in H. \text{ On a alors } e^{tX} (ab) = e^{tX} (a) e^{tX} (b). \text{ En dérivant et en regardant en } t = 0, \text{ on obtient } X (ab) = X (a) b + a X (b), \text{ ce qui veut bien dire que } X \text{ est une dérivation}. \]

\[\text{Soit } G \text{ un groupe de Lie et } Z \text{ son centre. } Z \text{ est fermé dans } G, \text{ c’est donc une sous-variété et un groupe de Lie. On verrra plus tard que si } G \text{ est connexe, Lie } (Z (G)) = Z (g) = \{ x \in g \mid \forall Y \in g, [X,Y] = 0 \}. \]

\[\text{On peut également utiliser le théorème de Von Neumann pour donner une nouvelle démonstration du théorème suivant :}
\]

\[\text{Rappel 1.3.4.5. Soit } G \text{ un groupe de Lie et } \gamma : (\mathbb{R}, +) \to G \text{ un homomorphisme continu. Alors } \gamma \text{ est différentiable.} \]
1.4. LA PRÉSENTATION ADJOINTE

Démonstration. \(H = \text{Graphde}(\gamma) \) est un sous-groupe fermé. C’est donc une sous-variété. La projection sur \(\mathbb{R} \) est un morphisme de groupes de Lie bijectif donc son inverse aussi et donc \(\gamma \) est \(C^\infty \).

\[
\mathbb{R}^{pr_1^{-1}} \xrightarrow{\gamma} H \xrightarrow{} \mathbb{R} \times G^{pr_2} \xrightarrow{} G
\]

\[\sqrt{}\]

1.4. La représentation adjointe

Le but de cette partie est de préciser le rapport entre le crochet de Lie \((G)\) et la multiplication dans \(G \).

Définition 1.4.0.1. Soient \(G \) un groupe de Lie et \(g \in G \). On note \(c_g = L_g \circ R_{g^{-1}} \) la conjugaison par \(g \). On pose :

\[\text{Lie} (g) = \text{Ad} (g) = T_c c_g \]

\(c_g : G \rightarrow G \) est un automorphisme de groupes de Lie. Donc \(\text{Ad} (g) = \text{Lie} (g) \) est un automorphisme de \(\text{Lie} (G) \) et :

\[\exp (\text{Ad} (g) (X)) = c_g (\exp (X)) = g \exp (X) g^{-1} \]

ce qui peut également s’exprimer par le carré commutatif suivant :

\[
\begin{array}{ccc}
G & \xrightarrow{c_g} & G \\
\exp & & \exp \\
\mathfrak{g} & \xrightarrow{\text{Ad}(g)} & \mathfrak{g}
\end{array}
\]

On a \(c_{gh} = c_g \circ c_h \) et donc \(\text{Ad} (gh) = \text{Ad} (g) \circ \text{Ad} (h) \). Ainsi \(\text{Ad} : G \rightarrow \text{Aut} (\mathfrak{g}) \) est un homomorphisme. Autrement dit, \(\text{Ad} \) est une représentation de \(G \) (au sens de la définition suivante) appelée la représentation adjointe.

Définition 1.4.0.2. Une représentation de \(G \) est un homomorphisme de groupes \(G \rightarrow GL (V) \) où \(V \) est un espace vectoriel.

Soit \(A \) une algèbre associative unitaire de dimension finie sur \(K \). Soit \(G = A^x \). L’application \(c_g : G \rightarrow G \) est induite par l’application linéaire de \(A \), \(a \mapsto g a g^{-1} \). On en déduit que :

\[\forall g \in G, \forall X \in \text{Lie} (G) = A, \quad \text{Ad} (g) (X) = gXg^{-1} \]

La compatibilité avec l’exponentielle s’écrit alors \(g e^X g^{-1} = e^{gX} g^{-1} \).

Calculons la différentielle de la représentation adjointe dans ce cas. Pour \(X \in \mathfrak{g} \), on a :

\[\text{Ad} (\exp (tX)) (Y) = e^{tX} Y e^{-tX} = (1 + tX + O (t^2)) Y (1 - tX + O (t^2)) = Y + t (XY - YX) + O (t^2) \]

et donc :

\[\frac{d}{dt} \text{Ad} (\exp (tX)) \bigg|_{t=0} = [X, \cdot] = \text{ad} X \]

Finalement, on trouve \(T_c \text{Ad} = \text{ad} \). En fait, cette formule reste vraie dans le cas général comme le montre la proposition suivante :

Proposition 1.4.0.3. Soit \(G \) un groupe de Lie. Alors \(T_c \text{Ad} = \text{ad} : \mathfrak{g} \rightarrow \mathfrak{gl} (\mathfrak{g}) \).
Démonstration. Soient X et Y dans \mathfrak{g}. On a $\lambda ([X, Y]) = [\lambda (X), \lambda (Y)] = \lambda (X) \lambda (Y) - \lambda (Y) \lambda (X)$. Or, on a :

$$
(\lambda (Y) f) (g) = \frac{d}{dt} f (g \exp (tY)) \bigg|_{t=0}
$$

d'où :

$$
[\lambda (X) \lambda (Y) - \lambda (Y) \lambda (X)] (f) (g) = \frac{d}{ds} \frac{d}{dt} \left. f (g \exp (sX) \exp (tY)) - f (g \exp (tY) \exp (sX)) \right|_{s=0, t=0}
$$

On a ainsi exprimé $(\text{ad} X) (Y)$. Comparons $(T_e \text{Ad}) (X) (Y)$ avec cette expression :

$$
Z = (T_e \text{Ad}) (X) (Y) = \frac{d}{ds} \frac{d}{dt} \left. \text{Ad} (\exp (sX)) (Y) \right|_{s=0, t=0}
$$

ce qui permet de conclure.

Remarque 1.4.0.4.

On a $\text{Ad} : G \rightarrow \text{Aut} (\mathfrak{g})$ donc $\text{ad} : \mathfrak{g} \rightarrow \text{Der} (\mathfrak{g})$, ce que l'on peut vérifier directement.

2. La fonctionnalité de \exp appliquée à $\text{Ad} : G \rightarrow GL (\mathfrak{g})$ nous donne :

$$
\begin{array}{ccc}
G & \xrightarrow{\text{Ad}} & GL (\mathfrak{g}) \\
\exp & \xrightarrow{\longrightarrow} & \exp, Y \rightarrow e^Y \\
\mathfrak{g} & \xrightarrow{\text{ad}} & \mathfrak{gl} (\mathfrak{g})
\end{array}
$$

Autrement dit, pour tout $X \in \mathfrak{g}$, $e^{\text{ad} X} = \text{Ad} (\exp X)$.

Corollaire 1.4.0.5. Soit G un groupe de Lie. Si $[X, Y] = 0$, alors $\exp X \exp Y = \exp Y \exp X$.

Démonstration. On a $\exp X \exp Y = \exp (Y \exp X)^{-1} = \exp (\text{Ad} (\exp X) (Y)) = \exp (e^{\text{ad} X} Y)$. Or :

$$
e^{\text{ad} X} Y = \sum_{n=0}^{\infty} \frac{\text{ad} X)^n}{n!} Y = Y + [X, Y] + \frac{1}{2} [X, [X, Y]] + \ldots = Y
$$

On en déduit que $\exp X \exp Y = \exp (\exp X)^{-1} = \exp Y$.

La réciproque est fausse en général. Par exemple $\exp \begin{pmatrix} 2i\pi & 0 \\ 0 & 2i\pi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ qui commute à tout contrairement à la matrice sous l’exponentielle.

On a toutefois une réciproque partielle :

\[\text{exp} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \begin{pmatrix} e^a & -b e^{\frac{a}{2}} \\ 0 & e^a \end{pmatrix}\]
1.4. LA REPRÉSENTATION ADJOINTE

Proposition 1.4.0.6. Supposons que \(Y \) est proche de 0 et que, \(\exp(tX) \exp(Y) = \exp(Y) \exp(tX) \) pour tout réel \(t \), alors \([X, Y] = 0 \).

Démonstration. L’hypothèse s’écrit également :
\[\exp(tX) \exp(Y) \exp(-tX) = \exp(e^{tX}Y) = \exp(Y) \]
Comme \(Y \) est proche de 0, on en déduit que pour \(|t| \) petit, on a \(e^{tX}Y = Y \). On obtient alors le résultat souhaité en dérivant par rapport à \(t \) puis en faisant \(u = t \). \(\square \)

Définition 1.4.0.7. Soit \(G \) un groupe. Le centre de \(G \) est \(Z(G) = \{ h \in G \mid \forall g \in G, gh = hg \} \).
Soit \(\mathfrak{g} \) une algèbre de Lie. Le centre de \(\mathfrak{g} \) est \(\mathfrak{z}(\mathfrak{g}) = \{ X \in \mathfrak{g} \mid \text{ad}X = 0 \} \).

Corollaire 1.4.0.8. Soient \(G \) un groupe de Lie et \(\mathfrak{g} \) son algèbre de Lie. Alors \(\text{Lie}(Z(G)) \subseteq \mathfrak{z}(\mathfrak{g}) \). Si \(G \) est connexe, on l’a l’égalité.

Démonstration. Remarquons d’abord que \(Z(G) \) est une sous-variété et un sous-groupe de \(G \). Il est donc légitime de considérer son algèbre de Lie.
Soit \(X \in \text{Lie}(Z(G)) \), alors pour tout \(t \in \mathbb{R} \), on a \(\exp(tX) \subseteq Z(G) \). Donc en particulier \(\exp(tX) \) commute avec \(\exp(Y) \) pour tout \(Y \) suffisamment proche de 0. La proposition précédente prouve alors que pour \(Y \) suffisamment proche de 0, \([X,Y] = 0 \), ce qui prouve que \(X \in \mathfrak{z}(\mathfrak{g}) \) et démontre l’inclusion annoncée.
Supposons désormais \(G \) connexe. Soit \(X \in \mathfrak{z}(\mathfrak{g}) \). Alors pour tout \(t \in \mathbb{R} \), \(\exp(tX) \) commute avec \(\exp(\mathfrak{g}) \). Comme \(\exp(\mathfrak{g}) \) engendre \(G \), on en déduit que \(\exp(tX) \in Z(G) \) et puis que \(X \in \text{Lie}(Z(G)) \). \(\square \)

Exemple 1.4.0.9. Prenons pour \(G \) le groupe des isométries affines de \(\mathbb{R} \). \(G \) est formé de :
- translations : \(T_x : y \mapsto y + x \) pour tout \(x \in \mathbb{R} \),
- symétries : \(S_x : y \mapsto 2x - y \) pour tout \(x \in \mathbb{R} \).
On a les relations de commutation \(T_x \circ T_y = T_y \circ T_x \), \(S_x \circ S_y = T_{2(x-y)} \), \(S_x \circ T_y \circ S_x^{-1} = T_{-y} \) et \(T_x \circ S_y \circ T_{-x} = S_{T_x(y)} \).
\(G \) peut s’écrire sous la forme :
\[G = \{ T_x, x \in \mathbb{R} \} \cup \{ S_x, x \in \mathbb{R} \} \]
\(G = \text{Lie}(G_0) = \{ \text{Lie}(\mathbb{R}) = \mathbb{R} \} \) d’où \(\mathfrak{z}(\text{Lie}(G)) = \mathbb{R} \). On remarque bien que l’inclusion est stricte.

Corollaire 1.4.0.10. Soient \(G \) un groupe de Lie et \(\mathfrak{g} \) son algèbre de Lie. Soient \(X \) et \(Y \) dans \(\mathfrak{g} \) tels que \([X,Y] = 0 \). Alors \(\exp(X+Y) = \exp(X) \exp(Y) \).

Démonstration. Comme \(\exp(tX) \) et \(\exp(tY) \) commutent, la courbe \(t \mapsto \exp(tX) \exp(tY) \) est un sous-groupe à un paramètre. On a par ailleurs :
\[\frac{d}{dt} \exp(tX) \exp(tY) \bigg|_{t=0} = X + Y \]
et donc \(\exp(t(X+Y)) = \exp(tX) \exp(tY) \) par la correspondance entre l’algèbre de Lie d’un groupe de Lie et ses sous-groupes à un paramètre. \(\square \)

Proposition 1.4.0.11. Si \(G \) est un groupe de Lie commutatif, alors \(\text{Lie}(G) \) est commutative. Si \(G \) est connexe, la réciproque est vraie.

Démonstration. On a alors pour tout \(g \in G \), \(c_g = \text{Id}_G \), d’où \(\text{Ad}(g) = \text{Id}_\mathfrak{g} \) et \(\text{ad}(g) = 0 \), ce qui prouve que \(\text{Lie}(G) \) est abélienne.
Si \(G \) est connexe, il est engendré par l’image de l’exponentielle et le corollaire précédent permet de conclure. \(\square \)

Corollaire 1.4.0.12. Soit \(G \) un groupe de Lie réel abélien connexe. Alors il existe des entiers \(p \) et \(q \) uniquement déterminés tels que \(G \cong (\mathbb{S}^1)^p \times \mathbb{R}^q \).

Démonstration. Comme \(G \) est abélien, l’exponentielle \(\mathfrak{g} \to G \) est un homomorphisme de groupes. D’autre part c’est aussi un difféomorphisme au voisinage de 0. On en déduit que son noyau \(\Gamma \) est discret. D’autre part comme \(G \) est connexe, elle est surjective. On en déduit l’isomorphisme \(G \cong \mathfrak{g}/\Gamma \). L’affirmation résulte alors de la proposition suivante. \(\square \)
Proposition 1.4.0.13. Soit \(\Gamma \) un sous-groupe discret de \(\mathbb{R}^N \). Alors il existe \(p \in [0, N] \) uniquelement déterminé et \((e_1, \ldots, e_n) \) une base de \(\mathbb{R}^N \) tels que \(\Gamma = \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_p \). En particulier \(\mathbb{R}^N / \Gamma \cong \left(\mathbb{S}^1 \right)^p \times \mathbb{R}^{n-p} \).

Démonstration. On peut prouver cette affirmation par récurrence sur \(N \). C’est vrai pour \(N = 1 \). Supposons donc \(N > 1 \). Soit \(D \) une droite de \(\mathbb{R}^N \) telle que \(D \cap \Gamma \neq \{0\} \). On a alors \(D \cap \Gamma = \mathbb{Z}e_1 \) pour un certain \(e_1 \neq 0 \). La projection \(\pi : V \to V/D \) s’identifie à \(p_{F_1} : \mathbb{R}^{n-1} \times \mathbb{R} \to \mathbb{R}^{n-1} \). En particulier \(\pi \) est ouverte et \(V/D \) est séparé.

Montrons que \(\pi (\Gamma) \) est un sous-groupe discret de \(\pi (V/D) \). Pour cela, il suffit de voir que l’intersection de \(\pi (\Gamma) \) avec un voisinage ouvert de \(0 \in V/D \) est finie. Soit donc \(B \) un voisinage ouvert de \(0 \) dans \(V \). Nous allons montrer que \(\pi (B) \cap \pi (\Gamma) \subset \pi ((B + [0,1] e_1) \cap \Gamma) \) qui est un ensemble fini. On considère donc un \(v \in \Gamma \) tel que \(\pi (v) \in \pi (B) \cap \pi (\Gamma) \). On écrit alors \(v = b + xe_1 \), avec \(b \in B \) et \(x \in \mathbb{R} \) et \(x = q + r \) avec \(q \in \mathbb{Z} \) et \(r \in [0,1] \). Comme \(v \in \Gamma \), on a \(v - qe_1 = b + re_1 \in \Gamma \). D’autre part \(b + re_1 \in B + [0,1] e_1 \). On voit alors que \(\pi (v) = \pi (v - qe_1) \in (B) \cap \pi (\Gamma) \), ce qui démontre la proposition.

\(p \) est uniquement déterminé car il vaut le rang de \(\Gamma \).

Remarque 1.4.0.14.

1. Un sous-groupe discret d’un groupe topologique séparé est localement fermé donc fermé.

2. On dit que \(\Gamma \) est un réseau si \(p = n \).

Corollaire 1.4.0.15. Soit \(G \) un groupe de Lie complexe compact connexe. Alors

a) \(G \) est abélien et \(G \cong V/\Gamma \) pour un certain \(C \)-espace vectoriel \(V \) et un certain réseau \(\Gamma \) de \(V \) vu comme \(\mathbb{R} \)-espace vectoriel.

b) Tout morphisme de groupes complexes \(V_1/\Gamma_1 \to V_2/\Gamma_2 \) se relève en une unique application \(C \)-linéaire \(V_1 \to V_2 \).

Démonstration.

a) \(G \) est en particulier une variété holomorphe compacte connexe. On peut montrer que toute fonction holomorphe définie sur une variété holomorphe compacte connexe toute entière est constante. Considérons donc \(\text{Ad} : G \to \mathfrak{gl}(g) \). Les coefficients matriciels dans \(\text{Ad} (g) \), \(g \in G \) (dans une base de \(g \)) sont des fonctions holomorphes définies sur \(G \). On en déduit que \(\text{Ad} \) est constante et puis que \(\text{ad} = 0 \), ce qui montre que \(G \) est abélien (car il est connexe).

b) L’exponentielle de \(V_1/\Gamma_1 \) s’identifie à la projection \(V_1 \to V_1/\Gamma_1 \). L’unicité résulte alors du fait que l’exponentielle est un difféomorphisme local, l’existence de sa fonctionnalité :

\[
\begin{align*}
V_1 & \xrightarrow{\text{exp}} \text{Lie}(V_1/\Gamma_1) & \text{Lie}(V_1/\Gamma_1) & \xrightarrow{\text{exp}} \text{Lie}(V_2/\Gamma_2) & \xrightarrow{\sim} V_2 \\
& \downarrow \text{exp} & \downarrow \phi & \downarrow \text{exp} & \\
V_1/\Gamma_1 & \xrightarrow{\sim} V_2/\Gamma_2
\end{align*}
\]

\(\square \)

Définition 1.4.0.16. Une courbe elliptique est un groupe de Lie complexe de dimension complexe 1, compact et connexe.

Nous nous proposons de classifier les courbes elliptiques.

Soit donc \(G \) une courbe elliptique. Les résultats précédents prouvent que \(G \cong C/\Gamma \) où \(\Gamma = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \) où \((e_1, e_2) \) est une \(\mathbb{R} \)-base de \(C \). Le \(b) \) du corollaire précédent prouve que \(C/\Gamma \cong C/\Gamma' \) si et seulement si \(\Gamma' = c\Gamma \) pour un certain \(c \in C^* \). Ainsi il suffit d’étudier les courbes elliptiques de la forme :

\[C/ (\mathbb{Z}1 \oplus \mathbb{Z}z) = C/\Gamma_z \]

où \(z \in H = \{ z \in C \mid \text{Im} z > 0 \} \).

Supposons que \(C/\Gamma_{z_1} \cong C/\Gamma_{z_2} \) où \(z_1 \) et \(z_2 \) sont dans \(H \). Alors il existe \(c \in C^* \) et des entiers \(a', b', c' \) et \(d' \) tels que \(c_{z_2} = a'z + b' \) et \(c_{z_1} = c'z + d' \). Comme \(\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \) est la matrice de passage entre deux bases directes d’un même réseau, elle appartient à \(SL(2, \mathbb{Z}) \).

Ceci montre l’équivalence suivante (la réciproque étant claire) :
On en déduit que l’on a une bijection entre les courbes elliptiques modulo isomorphisme et le quotient $H/SL(2,\mathbb{Z})$. Ceci montre en particulier qu’il existe un nombre fini de courbes elliptiques non isomorphes deux à deux alors que vues comme groupes de Lie réels elles sont toutes isomorphes à $\mathbb{S}^1 \times \mathbb{S}^1$.

1.5 La différentielle de l’exponentielle

1.5.1 Le calcul

Soient G un groupe de Lie et \mathfrak{g} son algèbre de Lie. Soit $X \in \mathfrak{g}$. On se propose de calculer :

$$T_X \exp \longrightarrow T_{\exp X} \exp G \longrightarrow T_e G$$

On considère A une algèbre associative unitaire de dimension finie sur \mathbb{K} et on prend $G = A^\times$. Alors on a vu que son algèbre de Lie est $\mathfrak{g} = A_{\text{Lie}}$ et que l’exponentielle est donnée par $\exp (X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$.

On en développant, on a :

$$(X + H)^k = X^k + X^{k-1}H + X^{k-2}H^2X + \ldots + HX^{k-1} + \ldots$$

d’où :

$$T_X \ (Y \mapsto Y^k) (H) = X^{k-1}H + X^{k-2}H^2X + \ldots + HX^{k-1}$$

La série des dérivées converge donc normalement et on peut ainsi calculer :

$$(T_X \exp) (H) = \sum_{k=0}^{\infty} \frac{1}{k!} (X^{k-1}H + X^{k-2}H^2X + \ldots + HX^{k-1})$$

Notons L_X (resp. R_X) la multiplication par X à gauche (resp. à droite). L’égalité précédente peut alors se réécrire sous la forme :

$$T_X \exp = \sum_{k=0}^{\infty} \frac{1}{k!} (L_X^{k-1} + L_X^{k-2}R_X + \ldots + R_X^{k-1})$$

On les opérateurs L_X et R_X commutent donc en composant à droite par $L_X - R_X$, on obtient :

$$(T_X \exp) \circ (L_X - R_X) = \sum_{k=0}^{\infty} \frac{1}{k!} (L_X^k - R_X^k) = e^{L_X} - e^{R_X} = e^{R_X} (e^{\text{ad}X} - 1)$$

En fait, on peut simplifier par $(L_X - R_X)$ et on trouve :

$$T_X \exp = e^{R_X} \frac{e^{\text{ad}X} - 1}{\text{ad}X}$$

au sens de :

$$T_X \exp = Tr_{\exp} X \sum_{k=0}^{\infty} \frac{(\text{ad}X)^k}{(k+1)!}$$

Pour justifier le \mathfrak{u} en fait \mathfrak{z}, il suffit de remarquer que l’on a l’égalité suivante dans $\mathbb{K}((a,b))$:

$$\sum_{k=0}^{\infty} \frac{1}{k!} (a^{k-1}b + \ldots + ab^{k-1}) = e^b \sum_{k=0}^{\infty} \frac{(a-b)^k}{(k+1)!}$$

e ce qui est clair car ici $(a-b)$ est inversible.
Remarque 1.5.1.1. On a une formule équivalente faisant intervenir la multiplication à gauche :

\[T_X \exp = TL_{\exp X} \sum_{k=0}^{\infty} \frac{(-1)^k (\text{ad} X)^k}{(k + 1)!} \]

Théorème 1.5.1.2. Soient \(G \) un groupe de Lie et \(\mathfrak{g} \) son algèbre de Lie. Alors pour tous \(X \) et \(Y \) dans \(\mathfrak{g} \), on a les formules suivantes :

\[TR_{\exp(-X)} T_X \exp = \frac{e^{\text{ad} X} - 1}{\text{ad} X} = \sum_{k=0}^{\infty} \frac{(\text{ad} X)^k}{(k + 1)!} \]

\[TL_{\exp(-X)} T_X \exp = \frac{1 - e^{-\text{ad} X}}{\text{ad} X} = \sum_{k=0}^{\infty} \frac{(-1)^k (\text{ad} X)^k}{(k + 1)!} \]

Démonstration. La formule à démontrer s’écrit également :

\[\frac{d}{dt} \exp (X + tY) \exp (-X) \bigg|_{t=0} = \frac{e^{\text{ad} X} - 1}{\text{ad} X} (Y) \]

Notons que \(\frac{e^{\text{ad} X} - 1}{\text{ad} X} (Y) = \int_0^1 e^{\text{ad} X} (Y) \, ds \). Nous allons donc prouver que pour tout \(u \in \mathbb{R} \), on a :

\[\frac{d}{dt} \exp (u (X + tY)) \exp (-uX) \bigg|_{t=0} = \int_0^u e^{\text{ad} X} \, ds \]

Pour cela, il suffit de voir que \(\frac{d}{dt} A_0 (t) \bigg|_{t=0} = 0 \) et \(\frac{d}{du} \frac{d}{dt} A_u (t) \bigg|_{t=0} = e^{\text{ad} X} (Y) \)

La première assertion est essentiellement claire. Pour la deuxième, notons que pour \(u \) et \(\delta \) dans \(\mathbb{R} \), on a :

\[\frac{d}{dt} A_{u+\delta} (t) \bigg|_{t=0} - \frac{d}{dt} A_u (t) \bigg|_{t=0} = \frac{d}{dt} \left[A_u (t) \exp (-uX) \right] \bigg|_{t=0} \]

car la différentielle de la multiplication dans \(G \) est l’addition dans \(\mathfrak{g} \).

On calcule donc :

\[A_u (t)^{-1} A_{u+\delta} (t) = \exp (uX) \exp (-u (X + tY)) \exp ((u + \delta) (X + tY)) \exp (- (u + \delta) X) \]

\[= \exp (uX) \exp (\delta (X + tY)) \exp (-\delta X) \exp (-uX) \]

\[= \exp (uX) A_\delta (t) \exp (-uX) = c_{\exp (uX)} (A_\delta (t)) \]

Ainsi :

\[\frac{d}{dt} A_u (t)^{-1} A_{u+\delta} (t) \bigg|_{t=0} = \text{Ad} (\exp (uX)) \frac{d}{dt} A_\delta (t) \bigg|_{t=0} = e^{\text{ad} X} \frac{d}{dt} A_\delta (t) \bigg|_{t=0} \]

et

\[\lim_{\delta \to 0} \frac{1}{\delta} \frac{d}{dt} A_u (t)^{-1} A_{u+\delta} (t) \bigg|_{t=0} = e^{\text{ad} X} (L) \]

où

\[L = \lim_{\delta \to 0} \frac{1}{\delta} \frac{d}{dt} A_\delta (t) \bigg|_{t=0} = \frac{d}{du} \frac{d}{dt} A_u (t) \bigg|_{t=0, u=0} = \frac{d}{dt} \frac{d}{du} A_u (t) \bigg|_{t=0, u=0} = \frac{d}{dt} \exp (u (X + tY)) \exp (-uX) \bigg|_{t=0, u=0} = \frac{d}{dt} (X + tY - X) \bigg|_{t=0} = Y \]

ce qui prouve notre assertion.
1.5. LA DIFFÉRENTIELLE DE L’EXPO"{N}ENTIELLE

Corollaire 1.5.13. Soit G un groupe de Lie et \mathfrak{g} son algèbre de Lie. Soit $X \in \mathfrak{g}$. L’exponentielle est un difféomorphisme au voisinage de X si et seulement si $\det \left(\frac{\exp X - 1}{\exp X} \right) \neq 0$ si et seulement si $\text{ad}X$ n’a aucune valeur propre complexe de la forme $2ik\pi$ avec $k \in \mathbb{Z} - \{0\}$.

Démonstration. La première équivalence est immédiate. Pour la seconde, il faut voir que si $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converge partout alors les valeurs propres de $f'(\lambda)$ où λ parcourt les valeurs propres de $\text{ad}X$ (il suffit par exemple de trigonatiser $\text{ad}X$). Le résultat s’ensuit.

Regardons par exemple ce qui se passe pour $G = GL(n, \mathbb{C})$. On va montrer que si $\lambda_1, \ldots, \lambda_n$ sont les valeurs propres de X, alors les valeurs propres de $\text{ad}X$ sont les $(\lambda_i - \lambda_j)$. En effet, on peut supposer que X se met sous la forme :

$$X = \begin{pmatrix} \lambda_1 & * & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$$

On vérifie qu’alors, on a :

$$\text{ad}X (E_{ij}) = [X, E_{ij}] = \begin{pmatrix} 0 & \cdots & * & 0 & -0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & 0 & -0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \lambda_i - \lambda_j \end{pmatrix}$$

Donc $\text{ad}X$ est triangulaire supérieure avec les $(\lambda_i - \lambda_j)$ sur la diagonale, si on la regarde dans la base $(E_{1,m}, E_{1,m-1}, E_{2,m}, \ldots)$.

Ainsi \exp est un difféomorphisme au voisinage de $X \in \mathfrak{g}(n, \mathbb{C})$ si et seulement si $\lambda - \mu$ n’est pas un multiple entier non nul de $2i\pi$ pour tous λ et μ valeurs propres de X. En particulier, \exp est un difféomorphisme au voisinage de toute matrice hermitienne.

1.5.2 **Expression de la multiplication en terme de crochet**

Soit A un \mathbb{K}-algèbre associative unitaire de dimension finie. On pose $G = A^n$ qui est un groupe de Lie et on appelle $\mathfrak{g} = A_{\text{Lie}}$ son algèbre de Lie. Soient X et Y deux éléments de \mathfrak{g} assez proches de 0. Alors $\exp(X) \exp(Y)$ est assez proche de e. On peut alors définir $H(X,Y)$ par :

$$\exp \left(H(X,Y) \right) = \exp(X) \exp(Y)$$

Pour explicitier H, on utilise la série zêta pour $|z - 1| < 1$ et $|e^z - 1| < 1$ (ie $|z| < \log 2$) :

$$\log(z) = \log(1 + (z - 1)) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (z - 1)^k$$

L’égalité $\log(e^z) \equiv z$ valable dans les séries formelles nous permet d’écrire pour $||X|| = \frac{\log 2}{2}$ et $||Y|| = \frac{\log 2}{2}$:

$$H(X,Y) = \log \left(e^X e^Y \right) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left[\sum_{p=0}^{\infty} \frac{X^p}{p!} \left(\sum_{q=0}^{\infty} \frac{Y^q}{q!} \right) - 1 \right]^k$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sum_{p_1 + \ldots + p_k > 0} \frac{X^{p_1} Y^{q_1} \ldots X^{p_k} Y^{q_k}}{p_1! q_1! \ldots p_k! q_k!}$$

Si on ne regarde que les termes de degré inférieur à 2, on trouve :

$$\log \left(e^X e^Y \right) = X + Y + \frac{1}{2} [X,Y] + \ldots$$
Miracle 1.5.2.1. Tous les termes de degré supérieur ou égal à 2 peuvent se réécrire entièrement à l'aide de combinaisons linéaires de crochets itérés, de façon que le crochet de g détermine la multiplication dans G dans un voisinage de e.

Théorème 1.5.2.2 (Formule de Campbell-Hausdorff). Soient G un groupe de Lie et g son algèbre de Lie.

On définit $\psi(z) = z \ln(z) = z \sum_{k=0}^{\infty} (-1)^k \frac{(z-1)^k}{k+1}$.

Soient X et Y dans g assez proches de 0. On pose $x = \text{ad}X$ et $y = \text{ad}Y$.

Soit $H(X,Y)$ défini par $\exp(H(X,Y)) = \exp(X) \exp(Y)$.

\[
H(X,Y) = X + \int_0^1 \psi(e^{\lambda X} e^{\lambda Y}) (Y) \, dt = X + \sum_{k,p,q \geq 0} \frac{(-1)^k}{k+1} \frac{1}{p!q!k!} x^p y^q x^{p+1} (q + \ldots + q_k + 1)
\]

Démonstration. Soit V un voisinage ouvert de 0 dans g tel que \exp induise un difféomorphisme $V \cong \exp(V)$. Soit $W \subset V$ un voisinage ouvert de 0 tel que W est étalé et $\exp(W) \subset \exp(V)$. Soient X et Y deux éléments de W. On définit pour $t \in \mathbb{R}$, $Z(t)$ par la formule $\exp(Z(t)) = \exp(X) \exp(tY)$.

Alors $Z(0) = X$ et :

\[
\frac{d}{dt} Z(t) = (T_{Z(t)} \exp) (Z'(t)) = TL_{\exp(Z(t))} \frac{1 - e^{-\text{ad}Z(t)}}{\text{ad}Z(t)} (Z'(t))
\]

En utilisant l'autre expression, on obtient :

\[
\frac{d}{dt} Z(t) = \frac{d}{dt} \exp(X) \exp(tY) = TL_{\exp(X)} \frac{d}{dt} \exp(tY) = TL_{\exp(X)} TL_{\exp(ty)} (Y) = TL_{\exp(Z(t))} (Y)
\]

Comme $\text{ad}Z(t)$ est inversible (car $Z(t) \in V$). On obtient :

\[
Y = \frac{1 - e^{-\text{ad}Z(t)}}{\text{ad}Z(t)} Z'(t)
\]

d'où :

\[
Z'(t) = \frac{\text{ad} (Z(t))}{1 - e^{-\text{ad}Z(t)}} Y = \frac{\log (\exp (Z(t)))}{1 - e^{-\text{ad}Z(t)}}
\]

Or :

\[
e^{\text{ad}(Z(t))} = \text{Ad} (\exp (Z(t))) = \text{Ad} (\exp (X) \exp (tY)) = \text{Ad} (\exp (X)) \text{Ad} (\exp (tY)) = e^{\text{ad}X} e^{\text{ad}Y}
\]

d'où $Z'(t) = \psi(e^{\text{ad}X} e^{\text{ad}Y})(Y)$, ce qui démontre le théorème.

\[
\square
\]

Définition 1.5.2.3. Soit $\varphi : U \to \mathbb{R}$ une fonction définie sur un ouvert U de \mathbb{R}^n. On dit que φ est analytique sur U si pour tout $x \in U$, il existe un $R > 0$ tel que pour $\|y\| < R$, on ait :

\[
\varphi(x + y) = \sum_{K_1, \ldots, K_n \in \mathbb{N}} a_{K_1, \ldots, K_n} (x) y_1^{K_1} \ldots y_n^{K_n}
\]

Corollaire 1.5.2.4. L'application $(X,Y) \mapsto H(X,Y)$ est analytique dans un voisinage de 0 en g. Donc la multiplication de G est analytique dans un voisinage de 0 muni de la carte donnée par l'exponentielle.

Démonstration. On observe que $H(X,Y) = Z_{X,Y}(1)$ où $Z_{X,Y}$ est solution du problème de Cauchy suivant :

\[
\begin{cases}
Z(0) = X \\
Z'(t) = \frac{\text{ad} (Z(t))}{1 - e^{-\text{ad}Z(t)}} Y = F(Y, Z(t))
\end{cases}
\]

Comme les conditions initiales et $F(Y,\cdot)$ dépendent de (X,Y) de façon analytique, il en est de même pour $Z_{X,Y}(1)$.
1.6. SOUS-GROUPES ET SOUS-ALGÈBRES

Corollaire 1.5.2.5. Soient G un groupe de Lie et \mathfrak{g} son algèbre de Lie. Si \mathfrak{h} est une sous-algèbre de Lie de \mathfrak{g}, alors pour tous X et Y dans \mathfrak{h}, $H(X,Y) \in \mathfrak{h}$. (A \mathfrak{h} on associe ainsi un \mathfrak{h} germe z de groupe de Lie).

On va déduire du corollaire que toute sous-algèbre de Lie \mathfrak{h} de \mathfrak{g} est l’algèbre de Lie d’un sous-groupe mais qui n’est pas nécessairement une sous-variété. En fait, on aura toujours un morphisme injectif de groupes de Lie de H dans G.

1.6 Sous-groupes et sous-algèbres

Soient G un groupe de Lie et \mathfrak{g} son algèbre de Lie. On considère \mathfrak{h} une sous-algèbre de Lie de \mathfrak{g} et on se demande s’il existe un sous-groupe H de G qui soit également une sous-variété et qui soit tel que Lie (H) = \mathfrak{h}. Remarquons tout d’abord que dans ces conditions, on aura aussi $H = \text{Lie}(H_0)$ où H_0 est la composante connexe du neutre dans H. On peut donc supposer que H est connexe. Mais alors H est engendré par $\exp_H(\mathfrak{h}) = \exp_G(\mathfrak{h})$ qui n’est pas nécessairement une sous-variété.

Par exemple, prenons $G = \mathbb{R}^2/\mathbb{Z}^2$. Alors $\mathfrak{g} = \text{Lie}(G) = \mathbb{R}^2$ et l’exponentielle $\mathfrak{g} \rightarrow G$ s’identifie à la projection. G est abélien donc \mathfrak{g} est abélienne et donc ses sous-algèbres sont les sous-espaces vectoriels de \mathbb{R}^2. Soient $\mathfrak{h} \subset \mathbb{R}^2$ une droite et H le sous-groupe engendré par $\exp(\mathfrak{h})$. Deux possibilités se présentent alors :

a) \mathfrak{h} contient un point $X = (p,q) \in \mathbb{Z}^2 - \{0\}$. On peut alors supposer que p et q sont premiers entre eux. Alors le noyau de $\exp_\mathfrak{h}$ est engendré par X et $H \sim \mathfrak{h}/2X \sim \mathbb{R}/\mathbb{Z}$ qui est compact. Ainsi H est fermé dans G et par le théorème de Von Neumann c’est une sous-variété.

b) Sinon, l’homomorphisme $\exp_\mathfrak{h}$ est injectif et $H \sim \mathbb{R}$ en tant que groupe. H est alors dense dans G et n’est pas une sous-variété.

Remarque 1.6.0.1. Remarquons que H est quand même l’image d’un morphisme injectif de groupes de Lie $i : \mathbb{R} \rightarrow G$. i n’est pas un homéomorphisme sur son image mais par contre c’est une immersion fermée au sens de la définition suivante.

Définition 1.6.0.2. Un morphisme de variétés $\varphi : M \rightarrow N$ est une immersion si pour tout $m \in M$, $T_m\varphi : T_mM \rightarrow T_{\varphi(m)}N$ est injective.

Proposition 1.6.0.3. Soit $\varphi : M \rightarrow N$ une immersion. On a alors :

1. Pour tout $m \in M$, il existe un voisinage U de m tel que $\varphi|_U$ soit l’inclusion d’une sous-variété. (La propriété d’être une immersion locale à la source).

2. La structure différentiable de M est donnée par la topologie de M, l’application φ et la structure différentiable de N.

3. Une application $\alpha : X \rightarrow M$ (où X est une variété) est un morphisme de variétés si et seulement si α est continue et $\varphi \circ \alpha$ est un morphisme de variétés.

Théorème 1.6.0.4. Soient G un groupe de Lie et \mathfrak{g} son algèbre de Lie. Soient \mathfrak{h} une sous-algèbre de Lie de \mathfrak{g} et $H \subset G$ le sous-groupe engendré par $\exp(\mathfrak{h})$. Alors H admet une unique structure de groupe de Lie telle que l’inclusion de H dans G soit une immersion qui induit un isomorphisme Lie (H) = $\sim \mathfrak{h}$.

Démonstration. Montrons tout d’abord l’unicité. Soient donc \mathfrak{h} une sous-algèbre de Lie de \mathfrak{g} et H le sous-groupe de G engendré par $\exp(\mathfrak{h})$. Soient H_1 et H_2 deux structures de groupe de Lie telles que les inclusions $i_1 : H_1 \rightarrow G$ et $i_2 : H_2 \rightarrow G$ soient des immersions et que $\text{Lie}(H_1) \sim \mathfrak{h}$ et $\text{Lie}(H_2) \sim \mathfrak{h}$. On a alors le diagramme commutatif suivant :
Comme l'exponentielle est un difféomorphisme local au voisinage de 0, il s'ensuit que $\text{Id} : H_1 \to H_2$ est un difféomorphisme au voisinage de e. C'est donc un isomorphisme de groupes de Lie.

Pour l'existence, il s'agit de construire une topologie convenable sur H. Elle va alors déterminer une unique structure différentiable sur H telle que l'inclusion de H dans G soit une immersion. Pour cela, on va construire T un voisinage ouvert de 0 dans g et montrer qu'il existe une unique topologie sur H vérifiant :

i) $\exp(T \cap \mathfrak{h})$ est ouvert dans H

ii) $\exp : T \cap \mathfrak{h} \to \exp (T \cap \mathfrak{h})$ est un homéomorphisme.

Dans un voisinage de e (par rapport à la topologie de H), l'inclusion de H dans G s'identifie à celle de \mathfrak{h} dans \mathfrak{g}. Comme celle-ci est un morphisme de groupes, elle sera bien une immersion.

Construisons donc T. Soit $V \subset \mathfrak{g}$ un voisinage ouvert de 0 tel que $\exp : V \to \exp (V)$ soit un difféomorphisme. Soit $U \subset V$ un voisinage ouvert de 0, étoilé et symétrique tel que $\exp (U) \exp (U) \subset \exp (V)$. On aura donc si X et Y sont dans U, $\exp (X) \exp (Y) = \exp (H (X, Y))$ avec $H (X, Y) \in V$. On a même $H (X, Y) \in V \cap \mathfrak{h}$ si X et Y sont dans $U \cap \mathfrak{h}$. Soit $T \subset U$ un voisinage ouvert de 0 symétrique et tel que $\exp (T) \exp (T) \subset \exp (U)$.

Montrons alors qu'il existe une unique structure de groupe topologique sur H (que l'on notera T) qui vérifie les conditions i) et ii). En effet, l'unicité est claire. Pour démontrer l'existence, on construit les ouverts de H. Plus précisément, on dit qu'une partie E de H est un ouvert si elle vérifie la condition suivante :

$$\forall x \in E, \exists W \text{ un ouvert de } T \cap \mathfrak{h} \text{ contenant } 0 \text{ et } x' \in H \mid x \in x' \exp (W) \subset E$$

L'ensemble vide et H sont bien des ouverts. La stabilité par réunion quelconque est claire. Pour montrer la stabilité par intersection finie, il suffit de prouver que si W et W' sont des ouverts de $T \cap \mathfrak{h}$ et si $x \in H$, alors $x \exp (W) \cap \exp (W')$ est un ouvert au sens précédent. On peut supposer que $\exp (W) \cap \exp (W') \neq \emptyset$. Il existe alors A et B dans $T \cap \mathfrak{h}$ tels que $x \exp (A) = \exp (B)$ et donc $x = \exp (B) \exp (-A) = \exp (C)$ où $C = H (B, -A) \in U$ (grâce aux propriétés de T). Ainsi $x \exp (W) = \exp (C) \exp (W) = \exp (H (C, W))$. Or la partie $\exp (H (C, W))$ est ouverte car $H (C, \cdot) : T \to V$ est un homéomorphisme sur son image comme le prouve le diagramme commutatif suivant :

$$\begin{array}{ccc}
\exp (T) & \xrightarrow{L_{\exp (C)}} & \exp (V) \\
\exp & \downarrow & \exp \\
T & \xrightarrow{H (C, \cdot)} & V
\end{array}$$

La bijectivité de $\exp : V \to \exp (V)$ prouve alors que $x \exp (W) \cap \exp (W') = \exp (H (C, W) \cap W')$ et c'est donc bien un ouvert.

Munissons donc H de cette topologie. Il faut encore montrer que H est un groupe topologique et que $\exp : T \cap \mathfrak{h} \to \exp (T \cap \mathfrak{h})$ est continue. Pour cela, il suffit de montrer que $V = \exp^{-1} (x \exp (W) \cap \exp (T \cap \mathfrak{h}))$ est ouvert mais c'est vrai car $V = H (C, W) \cap T \cap \mathfrak{h}$.

Pour montrer que H est un groupe topologique, on aura besoin du lemme suivant :

Lemme 1.6.0.5. Soit H un groupe muni d'une topologie. Alors H est un groupe topologique si et seulement s'il vérifie les trois conditions suivantes :

1. Les translations à gauche sont continues en e.
2. Les conjugaisons sont continues en e.
3. La multiplication et l'inversion sont continues respectivement en (e, e) et en e.

Démonstration. Il suffit de remarquer que pour h_1, h_2, x_1 et x_2 dans H, on a les formules suivantes :

$$x_1 x_2 = h_1 h_2 h_2^{-1} (h_1^{-1} x) h_2, (h_2^{-1}) \quad \text{et} \quad x_1^{-1} = h_1^{-1} h_1 (h_1^{-1} x)^{-1} h_1^{-1}$$

Ici, la condition 1 est vérifiée par construction. Pour montrer la condition 2, il suffit de prouver que les conjugaisons par les éléments de $\exp (\mathfrak{h})$ sont continues en e, ce qui provient de la formule $\exp (X) \exp (Y) \exp (X)^{-1} = \exp (\exp (X) Y)$ valable pour $Y \in T \cap \mathfrak{h}$ et $X \in \mathfrak{h}$. Pour la condition 3, on prend $S \subset T$ un voisinage ouvert de 0 tel que...
exp(S) \cdot \exp(T) et on considère la restriction de la multiplication \exp(S \cap h) \times \exp(S \cap h) \to \exp(T \cap h) qui est continue par définition de la topologie sur H, ce qui fournit le résultat.

Il ne reste plus qu’à voir que la multiplication et l’inverse sont différentes mais ceci provient directement de la troisième partie de la proposition 1.6.0.3.

Le théorème précédent incite à poser la définition suivante :

Définition 1.6.0.6. Soit G un groupe de Lie. Un sous-groupe de Lie de G est un sous-groupe H de G muni d’une structure de groupe de Lie telle que l’inclusion de H dans G soit une immersion.

Corollaire 1.6.0.7. Soit G un groupe de Lie. L’application \(H \mapsto \text{Lie}(H) \) est une bijection de l’ensemble des sous-groupes de Lie connexes de G sur l’ensemble des sous-algèbres de Lie de Lie(G). En outre, si G est complexe, H est un sous-groupe de Lie complexe si et seulement si \(\text{Lie}(H) \) est stable par multiplication par i.

Remarque 1.6.0.8.

1. Pour un sous-groupe de Lie H, on identifie Lie(H) à une sous-algèbre de Lie de g.
2. Un sous-groupe de Lie H est une sous-variété si et seulement s’il est fermé.

Démonstration. En effet, si H est une sous-variété, alors il est localement fermé et donc fermé. La réciproque est le théorème de Von Neumann.

3. Il y a un problème de terminologie. Certains mathématiciens comme Bourbaki appelent un sous-groupe de Lie, un sous-groupe de Lie intégral et un sous-groupe de Lie fermé, un sous-groupe de Lie.

Corollaire 1.6.0.9. Si G est un groupe de Lie et g son algèbre de Lie, on a des bijections inverses l’une de l’autre :

\[
\begin{align*}
\{\text{Sous-groupes de Lie connexes de } G\} & \quad \quad H \quad \quad \{\exp(h)\} \\
\sim & \\
\{\text{Sous-algèbres de Lie de } g\} & \quad \quad \text{Lie}(H) \quad \quad h
\end{align*}
\]

Exemple 1.6.0.10. Soit G = GL(n, C). Alors g = gl(n, C) = M(n, C). Soit h une sous-algèbre de Lie de M(n, C) telle que \(\{\exp(h)\} = GL(n, C) \). Alors h = M(n, C).

Théorème 1.6.0.11. Soit G un groupe de Lie. Alors G peut être muni d’une structure de groupe analytique réelle unique compatible à la structure différentielle donnée.

Démonstration. On choisit des cartes du type \(W \to G, X \to h \exp(X) \) où \(W \subset g \) est un voisinage ouvert de 0 assez petit et \(h \in G \). On vérifie les hypothèses de la version analytique du lemme de la démonstration du théorème sur l’existence d’un sous-groupe de Lie d’algèbre de Lie donnée.

\[
\begin{array}{c}
\text{1.7 Des algèbres aux groupes} \\
\end{array}
\]

1.7.1 Relèvement local

Soient G et H deux groupes de Lie. On considère l’ensemble \(E \) des couples \((V, \varphi)\) où \(V \subset G \) est un voisinage ouvert de \(e \) et \(\varphi : V \to H \) est un morphisme de variétés tel qu’il existe un voisinage de \(e \), \(W \subset V \) qui vérifie les propriétés suivantes :

1. \(W = W^{-1} \) et \(W \cdot W \subset V \)
2. \(\forall g, h \in W, \varphi(gh) = \varphi(g) \varphi(h) \) et \(\varphi(g^{-1}) = \varphi(g)^{-1} \)

On dit que les deux couples \((V, \varphi)\) et \((V', \varphi')\) de \(E \) sont équivalents s’il existe un troisième couple \((V'', \varphi'')\) \(\in E \) tel que \(V'' \subset V \cap V' \) et \(\varphi|_{V''} = \varphi'' = \varphi|_{V''} \).

Définition 1.7.1.1. Une classe d’équivalence pour la relation précédente s’appelle un morphisme local de G vers H. La composition de deux morphismes locaux est le morphisme local identique et l’on obtient ainsi une catégorie.

Exemple 1.7.1.2.
1. Tout morphisme de groupes de Lie est un morphisme local.
2. La projection $\mathbb{R} \to \mathbb{R}/\mathbb{Z}$ est un isomorphisme local dont l'inverse ne se prolonge pas en un morphisme global.
3. Soit G un groupe de Lie. Alors l'inclusion $G_{\circ} \hookrightarrow G$ est toujours un morphisme local.

Remarque 1.7.1.3. Le foncteur de Lie s'étend à la catégorie locale selon le diagramme suivant :

$\{\text{Groupes de Lie & Morphismes de groupes de Lie}\} \xrightarrow{\text{Lie}} \{\text{Groupes de Lie & Morphismes locaux}\} \xrightarrow{\text{Lie}_{\circ}} \{\text{Algèbres de Lie}\}$

Autrement dit, si on a un morphisme local, on connaît son application tangente.

Théorème 1.7.1.4. Le foncteur Lie_{loc} défini précédemment est une équivalence de catégories, c'est-à-dire :

1. Si G et H sont des groupes de Lie, tout morphisme d'algèbres de Lie $f : \text{Lie}(G) \to \text{Lie}(H)$ provient d'un unique morphisme local $G \to H$.
2. Pour tout algèbre de Lie \mathfrak{g} il existe un groupe de Lie G et un isomorphisme Lie $(G) \xrightarrow{\sim} \mathfrak{g}$.

Démonstration. Le 1) résulte du fait que exp est un difféomorphisme local au voisinage de 0 et que pour X et Y dans \mathfrak{g}, $H(X, Y)$ est déterminé par le crochet de \mathfrak{g}.

Pour le 2), on sait que toute sous-algèbre de $\text{gl}(n, \mathbb{R})$ provient d'un sous-groupe de Lie de $GL(n, \mathbb{R})$. La propriété résulte alors du théorème suivant :

Théorème 1.7.1.5 (Ado). Toute algèbre de Lie réelle de dimension finie sur \mathbb{R} est isomorphe à une sous-algèbre de $\text{gl}(n, \mathbb{R})$.

Démonstration. Admis pour l'instant.

Remarque 1.7.1.6. On a vu qu'il existe des groupes de Lie qui ne sont pas isomorphes à un sous-groupe de Lie d'un $GL(n, \mathbb{R})$. Néanmoins le théorème ci-dessus montre que tout groupe de Lie est localement isomorphe à un sous-groupe de $GL(n, \mathbb{R})$.

Remarque 1.7.1.7. Soit \mathfrak{g} une algèbre de Lie. La représentation adjointe $\mathfrak{g} \to \text{gl}(\mathfrak{g})$ induit un isomorphisme de $\mathfrak{g}/z(\mathfrak{g})$ sur une sous-algèbre de Lie de $\text{gl}(\mathfrak{g})$. Si le centre est nul, alors le théorème est facile.

1.7.2 Relèvement global

Définition 1.7.2.1. Un revêtement est une application continue surjective $p : X \to B$ entre espaces topologiques telle que pour tout point $b \in B$, il existe un voisinage ouvert V de b tel que le diagramme suivant commute :

$$
\begin{align*}
V \times J & \xrightarrow{\sim} p^{-1}(V) \xrightarrow{p|_V} X \\
p \downarrow & \quad p \downarrow \\
V & \xrightarrow{p|_V} B
\end{align*}
$$

où J est un espace discret.

On dit que c'est un revêtement de variétés si tous les objets considérés peuvent être choisis comme étant des variétés et toutes les flèches considérées comme étant des morphismes de variétés.

Attention, il existe des morphismes de variétés qui sont des revêtements mais qui ne sont pas des revêtements de variétés. Par l'exemple l'application $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$.

Remarque 1.7.2.2. Tout revêtement de variétés est un difféomorphisme local.

Proposition 1.7.2.3. Soient G et H deux groupes de Lie connexes. Soit $\varphi : G \to H$ un morphisme de groupes de Lie. Les propositions suivantes sont alors équivalentes :

φ est un morphisme de Lie.
φ est un homomorphisme de Lie.
φ est un morphisme local.
φ est un morphisme global.
1.7. DES ALGÈBRES AUX GROUPE

1. \(\varphi \) est un revêtement d’espaces topologiques.
2. \(\varphi \) est un revêtement de variétés.
3. \(\varphi \) est un isomorphisme local.
4. \(\text{Lie}(\varphi) \) est bijective.
5. \(\varphi \) est surjective et \(\text{Ker}\varphi \subset G \) est un sous-groupe discret central.

Démonstration. 1) \(\Rightarrow \) 5). Comme \(\varphi \) est un revêtement, c’est un homéomorphisme local au voisinage de \(e \in G \). Donc \(\text{Ker}\varphi \) est un sous-groupe discret de \(G \). D’autre part pour tout \(x \in \text{Ker}\varphi \), l’application \(G \to \text{Ker}\varphi \), \(g \mapsto gxg^{-1} \) est continue et à une image connexe, ce qui prouve que \(\text{Ker}\varphi \) est central.

5) \(\Rightarrow \) 4). Regardons le diagramme commutatif suivant :

\[
\begin{array}{ccc}
0 & \xrightarrow{\exp} & G \\
\text{Lie}(\varphi) & \downarrow & \\
\mathfrak{h} & \xrightarrow{\exp} & H
\end{array}
\]

Les exponentielles sont des difféomorphismes locaux et \(\text{Lie}(\varphi) \) est injective. Comme \(\varphi \) est surjective et \(G \) est connexe, on a \(H = (\exp(\text{Lie}(\varphi)(g))) \). Donc grâce à la bijection entre sous-groupes de Lie et sous-algèbres de Lie, on a \(\text{Lie}(\varphi)(g) = \mathfrak{h} \) et donc \(\text{Lie}(\varphi) \) est surjective.

4) \(\Rightarrow \) 3). Déjà connu.

3) \(\Rightarrow \) 2). Comme \(\varphi \) est un isomorphisme local, il existe des voisinages \(U \subset G \) et \(V \subset H \) respectivement de \(e_G \) et de \(e_H \) tels que \(\varphi \) induise un difféomorphisme \(U \sim \to V \). En particulier, \(\text{Ker}\varphi \cap U = \{e\} \) et \(\text{Ker}\varphi \) est un sous-groupe discret.

\[
\begin{array}{c}
\text{Ker}\varphi \times V \\
\sim \to \text{Ker}\varphi \times U \xrightarrow{\mu} \varphi^{-1}(V)
\end{array}
\]

Comme \(\varphi \) est un homomorphisme, la structure de \(\varphi : \varphi^{-1}(\varphi(g) V) \to H \) est la même que celle de \(\varphi : \varphi^{-1}(V) \to H \). Donc \(\varphi \) est surjective car \(H \) est engendré par \(\varphi(U) \).

Exemple 1.7.24. Quels sont les groupes dont \(G = SL(n, \mathbb{C}) \) est un revêtement ? Il s’agit en fait de déterminer les sous-groupes discrets centraux de \(G \). Or :

\[
Z(SL(n, \mathbb{C})) = \{g \in SL(n, \mathbb{C}) \mid \forall h \in G, gh = hg\} = \mathbb{C}^{*1n} \cap SL(n, \mathbb{C}) \sim \to \mathbb{Z}/n\mathbb{Z}
\]

La proposition précédente dit alors que les groupes dont \(G \) est un revêtement sont les \(H = SL(n, \mathbb{C})/K \) où \(K \subset Z(SL(n, \mathbb{C})) \), et donc par exemple \(PSL(n, \mathbb{C}) \).

Définition 1.7.25. Soit \(A \) un espace topologique pointé de point base \(a \in A \). Un **lacet** est une application continue pointée de \((S^1, 1) \) dans \((A, a) \).

Définition 1.7.26. On dit que deux lacets \(\gamma_0 \) et \(\gamma_1 \) sont **homotopes** s’il existe une application continue \(H : [0, 1] \times A \to A \) telle que pour tout \(t \in [0, 1] \), \(\gamma(t, \cdot) \) soit un lacet, \(\gamma(0, \cdot) = \gamma_0 \) et \(\gamma(1, \cdot) = \gamma_1 \). L’ensemble des lacets quotienté par la relation d’homotopie forme un groupe que l’on note \(\pi_1(A, a) \).

Définition 1.7.27. On dit que \((A, a) \) est **simplement connexe** s’il est connexe par arcs et si \(\pi_1(A, a) = 1 \).

Remarque 1.7.28.

1. Si \(A \) est simplement connexe, \(A \) est connexe par arcs et donc le \(\pi_1 \) ne dépend pas du choix du point de base.

2. On peut montrer que \(\pi_1(\mathbb{C}^*) \sim \to \mathbb{Z} \). Plus généralement, si \(p_1, \ldots, p_r \in \mathbb{C} \) sont deux à deux distincts, on a \(\pi_1(\mathbb{C} - \{p_1, \ldots, p_r\}) \) est isomorphe au groupe libre à \(r \) générateurs.

3. Si \(A \) et \(B \) sont localement connexes, alors \(\pi_1(A \times B) \sim \to \pi_1(A) \times \pi_1(B) \).

Définition 1.7.29. On dit qu’un espace topologique \(A \) est **contractile** s’il existe \(H : [0, 1] \times A \to A \) tel que pour tout \(a \in A \), \(H(0, a) = a \) et \(a \mapsto H(1, a) \) est une application constante.
Exemple 1.7.2.10. Le segment $[0,1]$ est contractile. Plus généralement, toute partie convexe d’un espace vectoriel réel est contractile.

Remarque 1.7.2.11. Tout espace localement connexe par arcs et contractile est simplement connexe.

Théorème 1.7.2.12. Soient $(X,x) \to (B,b)$ un revêtement et (A,a) un espace topologique pointé simplement connexe. Alors pour tout morphisme $f : (A,a) \to (B,b)$, il existe un unique relèvement \tilde{f} qui fasse commuter le diagramme suivant :

$$
\begin{array}{c}
(X,x) \\
\downarrow \\
(A,a) \\
\downarrow \\
(B,b)
\end{array}
\xrightarrow{f}
\begin{array}{c}
(L,l) \\
\downarrow \\
(M,m)
\end{array}
\xrightarrow{\tilde{f}}
\begin{array}{c}
(L,l) \\
\downarrow \\
(M,m)
\end{array}
\xrightarrow{p}
\begin{array}{c}
(L,l) \\
\downarrow \\
(M,m)
\end{array}
\xrightarrow{\text{Id}}
\begin{array}{c}
(M,m)
\end{array}
$$

Remarque 1.7.2.13. Ce théorème reste vrai dans la catégorie des variétés pointées.

Théorème 1.7.2.14. Soit M une variété connexe. Alors il existe un revêtement de variétés $p : \tilde{M} \to M$, tel que \tilde{M} est simplement connexe.

Corollaire 1.7.2.15. Soit (M,m) une variété connexe. Alors les trois propositions suivantes sont équivalentes :
1. M est simplement connexe.
2. M a la propriété du relèvement.
3. Tout revêtement de variétés $p : L \to M$, où L est connexe, est un isomorphisme.

Démonstration. L’implication $1) \Rightarrow 2)$ a déjà été vue.

Supposons $2)$. L’identité de (M,m) est un morphisme de variétés, donc il existe une application \tilde{f} faisant commuter le diagramme suivant :

$$
\begin{array}{c}
(L,l) \\
\downarrow \\
(M,m)
\end{array}
\xrightarrow{f}
\begin{array}{c}
(L,l) \\
\downarrow \\
(M,m)
\end{array}
\xrightarrow{p}
\begin{array}{c}
(L,l) \\
\downarrow \\
(M,m)
\end{array}
\xrightarrow{\text{Id}}
\begin{array}{c}
(M,m)
\end{array}
$$

f est alors injective. Comme Id et p sont des difféomorphismes locaux, \tilde{f} en est également un. L’image de \tilde{f} est donc ouverte. Elle est également fermée car p est un revêtement, ce qui prouve que \tilde{f} est surjective et démontre $3)$.

Pour l’implication $3) \Rightarrow 1)$, on introduit un revêtement simplement connexe \tilde{M}.

Définition 1.7.2.16. Ceci prouve en particulier qu’un revêtement simplement connexe d’une variété connexe est unique à isomorphisme près. On l’appelle le revêtement universel.

Soit M une variété connexe. On peut également définir le revêtement universel de M par la propriété universelle suivante. Pour toute variété pointée (X,x), tout revêtement $(X,x) \to (M,m)$ se factorise de manière unique de la façon suivante :

$$
\begin{array}{c}
(M,m)
\end{array}
\xrightarrow{\text{(X,x)}}
\begin{array}{c}
(M,m)
\end{array}
$$

Proposition 1.7.2.17. Tout morphisme de variétés pointées connexes $f : (M,m) \to (M',m')$ se relève en un unique $\tilde{f} : (\tilde{M},\tilde{m}) \to (\tilde{M}',\tilde{m}')$ tel que :

$$
\begin{array}{c}
(\tilde{M},\tilde{m}) \\
\downarrow \\
(M,m)
\end{array}
\xrightarrow{f}
\begin{array}{c}
(\tilde{M}',\tilde{m}')
\end{array}
\xrightarrow{\text{p}}
\begin{array}{c}
(M,m)
\end{array}
\xrightarrow{\text{p'}}
\begin{array}{c}
(M',m')
\end{array}
$$
1.7. DES ALGÈBRES AUX GROUPES

Démonstration. On applique la propriété universelle à \(f \circ p \).

On a alors \(\tilde{\text{Id}} = \text{Id} \) et \(f \circ g = \tilde{f} \circ \tilde{g} \). Autrement dit, on a un foncteur de la catégorie des variétés pointées connexes dans la catégorie des variétés pointées simplement connexes.

Remarque 1.7.2.18. Si \((M_1, m_1) \) et \((M_2, m_2) \) sont des variétés connexes, on a un isomorphisme canonique :

\[
\begin{array}{ccc}
(M_1 \times M_2, (m_1, m_2)) & \sim & (\tilde{M}_1, \tilde{m}_1) \times (\tilde{M}_2, \tilde{m}_2) \\
\downarrow & & \downarrow \\
(M_1 \times M_2, (m_1, m_2)) & \text{Id} & (M_1, m_1) \times (M_2, m_2)
\end{array}
\]

Théorème 1.7.2.19. Si \(p : X \to B \) est un revêtement de groupes de Lie et \(A \) un groupe de Lie simplement connexe, alors pour tout morphisme de groupe de Lie \(f : A \to B \) il existe un unique morphisme \(\tilde{f} : A \to X \) le relevant.

Si \(G \) est un groupe de Lie connexe, alors la variété \((\tilde{G}, \tilde{e}) \) admet une unique structure de groupe de Lie telle que \((\tilde{G}, \tilde{e}) \to (G, e) \) soit un morphisme de groupe de Lie.

Démonstration. Laissez au lecteur.

Corollaire 1.7.2.20. Soient \(G \) un groupe de Lie connexe et \(\tilde{G} \) son revêtement universel. Alors on a un isomorphisme \(\pi_1(G) \sim \text{Ker} \left(p : \tilde{G} \to G \right) \).

Démonstration. On définit une action de \(\pi_1(G) \) sur \(\Gamma = p^{-1}(e) \) en relevant les chemins dans le revêtement universel. Comme \(\tilde{G} \) est connexe par arcs, cette action est transitive. Comme \(\tilde{G} \) est simplement connexe, cette action est fidèle. On obtient donc une bijection \(\pi_1(G) \sim \Gamma, \gamma \mapsto \gamma.e \) qui est un morphisme de groupes.

Remarque 1.7.2.21. Ceci prouve en particulier que si \(G \) est un groupe de Lie connexe, \(\pi_1(G) \) est toujours commutatif.

Exemple 1.7.2.22. Si \(G = \mathbb{C}^* \), alors \(\tilde{G} = \mathbb{C} \) et \(p = \exp \) d'où on trouve \(\pi_1(C^*) \sim \mathbb{Z} \). De même, on a \(\pi_1(S^1) \sim \mathbb{Z} \).

Théorème 1.7.2.23. Soient \(G \) un groupe de Lie simplement connexe et \(H \) un groupe de Lie. Alors l’application \(\text{Hom}(G, H) \to \text{Hom}(g, h) \) est bijective, où \(g = \text{Lie}(G) \) et \(h = \text{Lie}(H) \).

Démonstration. Comme \(G \) est connexe, il est engendré par \(\exp(g) \). Donc tout élément de \(g \in G \) s’écrit \(g = \exp(X_1) \ldots \exp(X_n) \) pour des \(X_i \in \mathfrak{g} \). Il s’agit de trouver \(\varphi \) tel que \(\varphi(f) = \exp(f(X)) \) et donc :

\[
\varphi(g) = \varphi(\exp(X_1)) \ldots \varphi(\exp(X_n))
\]

Il suffit donc de montrer que la formule précédente donne un élément bien défini de \(H \) et définit un morphisme de groupes de Lie. Pour cela, on considère le graphe de \(f \) qui est une sous-algèbre de Lie de \(\mathfrak{g} \times \mathfrak{h} \). Il lui correspond donc un sous-groupe de Lie \(\Gamma \) de \(\mathfrak{g} \times \mathfrak{h} \). La projection du graphe de \(f \) dans \(\mathfrak{g} \) est un isomorphisme local et la projection de \(\Gamma \) dans \(G \) est un isomorphisme local. Comme d’autre part c’est un morphisme de groupes de Lie, c’est en fait un revêtement. On a \(G \) est simplement connexe, donc \(\Gamma \to G \) est un isomorphisme et \(\Gamma \) est le graphe d’une application \(\varphi \) qui vérifie bien la condition 1.1 et qui est un morphisme de groupes de Lie.

Exemple 1.7.2.24. Prenons \(G = \mathbb{R} \) qui est simplement connexe et \(H \) quelconque d’algèbre de Lie \(\mathfrak{h} \). Alors toute application \(g = \mathbb{R} \to \mathfrak{h} \) se relève en un morphisme de groupe de Lie \(\mathbb{R} \to H \), c’est-à-dire en un sous-groupe à un paramètre.

Corollaire 1.7.2.25. Le foncteur Lie restreint aux groupes de Lie simplement connexes et à valeurs dans les algèbres de Lie est une équivalence de catégories.

Démonstration. Le théorème précédent prouve que ce foncteur est pleinement fidèle. Soit \(\mathfrak{g} \) une algèbre de Lie. Le troisième théorème de Lie (?) prouve qu’il existe un groupe de Lie \(G_1 \) tel que \(\text{Lie}(G_1) \sim \mathfrak{g} \). Soit \(G \) le revêtement universel de \(G_1 \). Alors \(G \) est simplement connexe et \(\text{Lie}(G) = \text{Lie}(G_1) \sim \mathfrak{g} \).
Remarque 1.7.2.26. Le foncteur qui à une algèbre de Lie g associe le groupe de Lie G construit dans la preuve précédente est noté \hat{G}. Il est adjoint à gauche du foncteur Lie.

Résumons la situation par le diagramme suivant :

$$
\{\text{Groupes de Lie simplement connexes}\} \xleftarrow{\text{Lie}} \{\text{Groupes de Lie}\} \xrightarrow{\hat{G}} \{\text{Algèbres de Lie}\}
$$
Chapitre 2

Algèbres de Lie semi-simples complexes

2.1 Algèbres nilpotentes

On étudie ici la classe d’algèbres de Lie la plus proche de celle des algèbres de Lie commutatives.

Soit k un corps commutatif et g une algèbre de Lie de dimension finie sur k.

Définition 2.1.0.1. On définit $C^1(g) = g$ et pour tout $n \geq 1$, $C^{n+1}(g) = [g, C^n(g)]$. Les $C^n g$ forment ainsi ce que l’on appelle la série centrale descendante d’idéaux de g.

Remarque 2.1.0.2. Un sous-espace vectoriel a de g est un idéal si et seulement si pour tout $A \in a$ et pour tout $X \in g$, $[X, A] \in a$. On note alors $a \triangleleft g$.

Si a et b sont deux idéaux de g, on définit $[a, b]$ comme étant le sous-espace vectoriel de g engendré par les $[X, Y]$ pour $X \in a$ et $Y \in b$. C’est encore un idéal de g comme le montre l’égalité suivante :

$$ [X, [A, B]] = [[X, A], B] + [A, [X, B]] $$

Ainsi les $C^i(g)$ sont des idéaux. Notons que $C^n(g) = [g, [g, \ldots, [g, g] \ldots]]$ (n symboles) est le sous-espace engendré par les $(\text{ad}_{X_n} \text{ad}_{X_{n-1}} \ldots \text{ad}_{X_2})(X_1)$ où les $X_i \in g$.

Si $a \subset g$, l’espace quotient $g/\triangleleft a$ hérite d’une structure d’algèbre de Lie en posant pour X et Y dans g :

$$ [X + a, Y + a] = [X, Y] + a $$

Remarque 2.1.0.3. L’algèbre de Lie $g/\triangleleft a$ est commutative si et seulement si $g, g \subset a$. Plus précisément, si $b \subset g$ est un idéal contenant a, alors $b/\triangleleft a$ est central dans $g/\triangleleft a$ si et seulement si $g, b \subset a$.

$C^i(g)/C^{i+1}(g)$ est central dans $g/C^i+1(g)$. $C^i(g)$ est le plus petit idéal de g vérifiant cette propriété.

Proposition 2.1.0.4. On a pour tous entiers i et j, $[C^i(g), C^j(g)] \subset C^{i+j}(g)$.

Soit V un espace vectoriel et F un drapeau de V, c’est-à-dire une suite de sous-espaces vectoriels $0 = V_0 \subset V_1 \subset \ldots \subset V_n$ telle que pour tout i, dim $V_i = i$. On définit $n(F) = \{ f \in \text{End}_k(V) \mid f(V_i) \subset V_{i-1} \}$. Notons que si (e_1, \ldots, e_n) est une famille telle que pour tout i, (e_1, \ldots, e_i) est une base de V_i, alors $n(F)$ s’identifie aux matrices strictement triangulaires supérieures.

$n(F)$ est une sous-algèbre de Lie de $\text{End}_k(V)_{\text{Lie}}$. Posons :

$$ n_j(F) = \{ f \in \text{End}_k(V) \mid f(V_{i+j}) \subset V_{i-j} \} $$

On a alors $n_j(F) = C^j(n(F))$. En effet, on vérifie tout d’abord que $n(F) n_j(F) \subset n_{j+1}(F)$ et que $n_j(F) n(F) \subset n_{j+1}(F)$, ce qui prouve l’inclusion $[n(F), n_j(F)] \subset n_{j+1}(F)$. Pour l’inclusion réciproque, il suffit de vérifier que pour $i < j$, $[E_{i+j}, E_{i+1,j}] = E_{i,j}$. En particulier, on a $C^j(n(F)) = 0$ pour $j \geq n$.

39
Définissons \(b(F) = \{ f \in \text{End}_k(V) \mid f(V_i) \subset V_i \} \). On a alors pour \(i \geq 2 \), \(C^i \((b(F)) = n(F) \). En effet, si \(X \) et \(X' \) sont triangulaires supérieures strictes et \(D \) et \(D' \) sont diagonales dans \(M(n,k) \), on a :

\[
[D + X, D' + X'] = [D, D'] + [D, X'] + [D', X] + [X, X']
\]

ce qui prouve la première inclusion. Pour la réciproque, on remarque que pour \(i < j \), on a \([E_{i,i}, E_{i,j}] = E_{i,j} \).

Théorème 2.1.0.5. Les trois propositions suivantes sont équivalentes :

1. Il existe \(n \geq 1 \) tel que \(C^n(\mathfrak{g}) = 0 \).
2. Il existe \(n \geq 1 \) tel que pour tout \(X_1, \ldots, X_n \in \mathfrak{g} \), \(\text{ad} X_n \text{ad} X_{n-1} \ldots \text{ad} X_2 (X_1) = 0 \).
3. Il existe une chaîne d'idéaux de \(\mathfrak{g} \), \(\mathfrak{g} = \mathfrak{a}_1 \supset \ldots \supset \mathfrak{a}_n = 0 \) telle que pour tout \(i \), \(\mathfrak{a}_i / \mathfrak{a}_{i+1} \) soit central dans \(\mathfrak{g} / \mathfrak{a}_{i+1} \).

Démonstration. 1) \(\Rightarrow \) 3). On prend \(\mathfrak{a}_i = C^i(\mathfrak{g}) \).
3) \(\Rightarrow \) 2). Par récurrence, on obtient \(\text{ad} X_n \ldots \text{ad} X_2 (X_1) \in \mathfrak{a}_i \).
2) \(\Rightarrow \) 1). On a vu que \(C^n(\mathfrak{g}) \) est engendré par les \(\text{ad} X_n \ldots \text{ad} X_2 (X_1) \in \mathfrak{a}_i \) avec \(X_i \in \mathfrak{g} \).

Définition 2.1.0.6. Une algèbre de Lie qui vérifie les conditions précédentes est dite nilpotente.

Remarque 2.1.0.7.

1. Si \(\mathfrak{g} \) est une algèbre de Lie nilpotente non nulle, alors son centre est non nul. En effet, il existe alors un \(n \) tel que \(C^n(\mathfrak{g}) \neq 0 \) et \(C^{n+1}(\mathfrak{g}) = 0 \). \(C^n(\mathfrak{g}) \) est alors central.
2. Si \(\mathfrak{g} \) est nilpotente, alors tout quotient de \(\mathfrak{g} \) est nilpotent, toute sous-algèbre de Lie de \(\mathfrak{g} \) est nilpotente.

Par contre, si \(\mathfrak{g} \) est une extension de deux algèbres de Lie nilpotentes, \(\mathfrak{g} \) n'est pas forcément nilpotente, comme le montre l'exemple suivant :

\[
0 \longrightarrow n(F) \longrightarrow b(F) \longrightarrow k^n \longrightarrow 0
\]

Néanmoins si on a l'extension

\[
0 \longrightarrow n_1 \longrightarrow b(F) \longrightarrow n_2 \longrightarrow 0
\]

e et que \(n_1 \) est centrale dans \(\mathfrak{g} \), alors \(\mathfrak{g} \) est nilpotente. En effet si \(C^{n_2}(\mathfrak{g}) = 0 \), alors \(C^{n_2}(\mathfrak{g}) \subset n_1 \) et \(C^{n+1}(\mathfrak{g}) = [\mathfrak{g}, C^n(\mathfrak{g})] \subset [\mathfrak{g}, n_1] = 0 \).

La classe des algèbres de Lie nilpotentes est stable par extension centrale. C’est en fait la plus petite classe stable par extension centrale et qui contient les algèbres de Lie commutatives.

Définition 2.1.0.8. Une **représentation de \(\mathfrak{g} \) dans un espace vectoriel \(V \)** est un homomorphisme d’algèbres de Lie \(\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(V) \).

Exemple 2.1.0.9.

1. La **représentation adjointe** \(\mathfrak{g} \rightarrow \mathfrak{gl}(\mathfrak{g}) \), \(X \mapsto \text{ad} X \).
2. Si \(\mathfrak{g} \) est une sous-algèbre de Lie de \(\text{End}_k(V) \), on a la **représentation tautologique** \(\mathfrak{g} \hookrightarrow \text{End}_k(V) \).

Définition 2.1.0.10. Un **\(\mathfrak{g} \)-module** est un espace vectoriel \(M \) muni d’une application bilinéaire \(\mathfrak{g} \times M \rightarrow M \), \((X,m) \mapsto Xm \), vérifiant :

\[
\forall X,Y \in \mathfrak{g}, \forall m \in M, \quad X(Ym) = [X,Y]m + Y(Xm)
\]

Remarque 2.1.0.11. La donnée d’une représentation \(\rho \) de \(\mathfrak{g} \) dans \(V \) définit sur \(V \) une structure de \(\mathfrak{g} \)-module par \(Xv = \rho(X)(v) \). On obtient ainsi une bijection entre l’ensemble des représentations de \(\mathfrak{g} \) dans \(V \) et l’ensemble des structures de \(\mathfrak{g} \)-modules sur \(V \).

Théorème 2.1.0.12 (Critère de nilpotence). Soient \(k \) un corps de caractéristique nulle et \(V \) un \(k \)-espace vectoriel de dimension finie \(d \). Un endomorphisme \(f : V \rightarrow V \) est nilpotent si et seulement si pour tout \(n \geq 0 \), \(\text{Tr}(f^n) = 0 \).
2.1. ALGÈBRES NILPOTENTES

Démonstration. Pour le sens direct, il suffit de trigonaliser f. Pour la réciproque, on considère $P_f(X)$ le polynôme caractéristique de f et $k' \geq k$ un corps de décomposition de P_f. On peut alors écrire $P_f(X) = (X - \lambda_1) \ldots (X - \lambda_d)$ et dans ces conditions on a $\text{Tr} (f^n) = \lambda_1^n + \ldots + \lambda_d^n = 0$. Or on a l’égalité formelle :

$$\prod_{i=1}^{d} (1 - \lambda_i t) = \exp \left(\sum_{i=1}^{d} \ln (1 - \lambda_i t) \right)$$

ce qui permet de montrer que les $\sigma_k(\lambda_1, \ldots, \lambda_d)$ sont nuls et puis que $P_f(X) = X^n$, ce qui permet de conclure.

Remarque 2.1.0.13. Ce résultat devient faux en caractéristique $p > 0$. En effet, si V est de dimension p et $f = \text{Id}_V$, f n’est pas nilpotente mais pourtant pour tout entier n, $\text{Tr} (f^n) = 0$.

2.1.1 Les théorèmes d’Engel

Théorème 2.1.1.1. Soit \mathfrak{g} une algèbre de Lie de dimension finie supérieure à 1 et $\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(V)$ une représentation de \mathfrak{g} de dimension finie. Si pour tout $X \in \mathfrak{g}$, $\rho(X)$ est nilpotent, alors il existe un vecteur non nul $v \in V$ tel que pour tout $X \in \mathfrak{g}$, on ait $Xv = \rho(X)(v) = 0$.

Démonstration. On peut supposer que \mathfrak{g} est une sous-algèbre de Lie de $\text{End}_k(V)$. Remarquons également que si X est nilpotent alors $\text{ad}X$ aussi car il s’écrit comme la somme de deux opérateurs nilpotents qui commutent : $\text{ad}X = L_X - R_X$.

Nous allons procéder par récurrence sur la dimension de \mathfrak{g}. Si $\dim \mathfrak{g} = 1$, alors $\mathfrak{g} = kX$ avec X nilpotent. Le résultat vient alors du fait que l’on peut trigonaliser un opérateur nilpotent.

Si $\dim \mathfrak{g} > 1$, on va construire dans \mathfrak{g} un idéal \mathfrak{h} de codimension 1. Pour cela, on aura besoin du lemme suivant :

Lemme 2.1.1.2. Pour toute sous-algèbre \mathfrak{h} strictement incluse dans \mathfrak{g} le normalisateur :

$$n_{\mathfrak{g}}(\mathfrak{h}) = \{ X \in \mathfrak{g} | \forall H \in \mathfrak{h}, [X, H] \in \mathfrak{h} \}$$

est strictement plus grand que \mathfrak{h}.

Démonstration. On a la suite exacte :

$$0 \rightarrow \mathfrak{h} \rightarrow \mathfrak{g} \rightarrow \mathfrak{g}/\mathfrak{h} \rightarrow 0$$

C’est en fait une suite exacte de représentations de \mathfrak{h} pour la représentation adjointe. Ainsi \mathfrak{h} est représentée dans $\text{End}_k(\mathfrak{g}/\mathfrak{h})$ par des opérateurs nilpotents. Donc par hypothèse de récurrence, il existe $X + \mathfrak{h} \neq 0$ tel que $[X, H + \mathfrak{h}] \subset \mathfrak{h}$ pour tout $H \in \mathfrak{h}$. On a ainsi $X \in n_{\mathfrak{g}}(\mathfrak{h}) - \mathfrak{h}$. \hfill \checkmark

On considère maintenant $\mathfrak{h} \subset \mathfrak{g}$ une sous-algèbre de Lie propre maximale. Alors \mathfrak{h} est un idéal car d’après le lemme précédent, le normalisateur de \mathfrak{h} est une sous-algèbre de Lie de \mathfrak{g} strictement plus grande que \mathfrak{h}. Soit donc D une droite de $\mathfrak{g}/\mathfrak{h}$. C’est une sous-algèbre de Lie de $\mathfrak{g}/\mathfrak{h}$ donc son image réciproque par la projection est une sous-algèbre de Lie de \mathfrak{g} strictement plus grande que \mathfrak{h} et donc égale à \mathfrak{g}. Ceci prouve que \mathfrak{h} est de codimension 1.

On considère maintenant $W = \{ v \in V | \forall H \in \mathfrak{h}, Hv = 0 \}$.

Alors W est stable par \mathfrak{g}. En effet si $v \in W$ et $X \in \mathfrak{g}$, on a :

$$H(Xv) = \sum_{i \in \mathfrak{h}} [H, X]v + X(Hv) = 0$$

D’autre part, par hypothèse de récurrence $W \neq 0$. Soit $Y \in \mathfrak{g}$ tel que $\mathfrak{h} + kY = \mathfrak{g}$. On a alors $Y.W \subset W$ et Y agit sur W par un endomorphisme nilpotent. Donc il existe un vecteur non nul $v \in W$ tel que $Yv = 0$, ce qui prouve le théorème.

Remarque 2.1.1.3. Le théorème montre que si \mathfrak{g} est une sous-algèbre de Lie de $\text{End}_k(V)$ formée d’endomorphismes nilpotents, alors \mathfrak{g} est nilpotente. La réciproque est fausse. Par exemple $\mathfrak{g} = k \text{Id}_V$ est nilpotente mais pas formée d’endomorphismes nilpotents.
Corollaire 2.1.1.4. Soient g une algèbre de Lie de dimension finie et $\rho : g \rightarrow gl(V)$ une représentation de dimension finie de g. On suppose que pour tout $X \in g$, $\rho (X)$ est nilpotent. Alors il existe un drapeau $F : 0 = V_0 \subset V_1 \subset \ldots \subset V_n = V$ tel que :
$$\rho (g) \subset n (F) = \{ f \in \text{End} (V) \mid f (V_i) \subset V_{i-1} \}$$

Démonstration. Procédons par récurrence sur la dimension de V. Si $\dim V = 0$, le résultat est immédiat. Sinon, d’après le théorème précédent, il existe un vecteur non nul v dans V tel que $\rho (X) (v) = 0$ pour tout $X \in g$. On considère alors un tel v et on pose $V_1 = kv$. Dans V/V_1, on a une représentation induite (la représentation quotient), d’où par récurrence un drapeau de V/V_1, $F' : 0 = V'_1 \subset V'_2 \subset \ldots \subset V'_n = V/V_1$ de sous-espaces vectoriels invariants de V/V_1. Il suffit alors de poser $V_i = V'_i + V_1$ pour conclure. √

Remarque 2.1.1.5. La réciproque est vraie. C’est-à-dire, si $\rho (g) \subset n (F)$, alors $\rho (X)$ est nilpotent pour tout $X \in g$.

Corollaire 2.1.1.6 (Théorème d’Engel). Soit g une algèbre de Lie de dimension finie. Alors g est nilpotente si et seulement si $\text{ad} X : g \rightarrow g$ est nilpotent pour tout $X \in g$.

Démonstration. On suppose que $\text{ad} X$ est nilpotent pour tout $X \in g$. On applique le théorème précédent à la représentation adjointe $g \rightarrow \text{gl} (g)$. On obtient un drapeau $0 \subset a_1 \subset \ldots \subset a_n = g$ tel que $\text{ad} (g) \subset n (F)$, c’est-à-dire pour tout $X \in g$ et pour tout i, $(\text{ad} (X)) (a_i) \subset a_{i-1}$. On en déduit la première implication. Pour la réciproque, on a vu que si g est nilpotente, alors $\text{ad} X \ldots \text{ad} X_2 (X_1) = 0$ pour tout $X \in g$. Et donc en particulier $(\text{ad} X)^{n-1} = 0$ pour tout $X \in g$. √

2.2 Algèbres résolubles

Soit k un corps commutatif.

Définition 2.2.0.1. Soit g une algèbre de Lie sur k de dimension finie. On définit $D^1 g = g$ et pour tout $n > 1$, $D^n g = [D^{n-1} g, D^{n-1} g]$. Les $D^n g$ forment la série dérivée d’idéaux de g.

Remarque 2.2.0.2.
1. Si $a \subset g$, alors g/a est abélienne si et seulement si $[g, g] \subset a$.
2. On a $D^n g \subset C^n g$.

Théorème 2.2.0.3. Les trois propositions suivantes sont équivalentes :
1. Il existe un entier n tel que $D^n g = 0$.
2. Il existe un entier n tel que tout crochet itéré de 2^n éléments est nul.
3. Il existe une suite d’idéaux de g, $g = a_1 \supset a_2 \supset \ldots \supset a_n = 0$, telle que les quotients a_i/a_{i+1} soient tous abéliens.

Définition 2.2.0.4. Une algèbre de Lie g qui vérifie les conditions précédentes est dite résoluble.

Exemple 2.2.0.5.
1. Tout algèbre de Lie nilpotente est résoluble.
2. Soit F un drapeau d’un espace vectoriel V de dimension finie. On définit alors :
$$b (F) = \{ f \in \text{End}_k (V) \mid f (V_i) \subset V_i \}$$
On a vu que que $[b (F), b (F)] = n (F)$ est nilpotente et donc $b (F)$ est résoluble.
3. Toute sous-algèbre et tout quotient d’une algèbre de Lie résoluble est résoluble.
4. Toute extension d’algèbres de Lie résolubles est résoluble.

Démonstration. Soit $0 \rightarrow \mathfrak{h} \rightarrow g \rightarrow \mathfrak{r} \rightarrow 0$ une suite exacte d’algèbres de Lie. Supposons que $D^n \mathfrak{r} = 0$, alors $\rho (D^n g) = 0$ et donc $D^n g \subset \mathfrak{r}$. Ainsi si $D^n \mathfrak{h} = 0$, on obtient $D^{n+m} g \subset D^m \mathfrak{h} = 0$. √

Remarque 2.2.0.6. En fait, la classe des algèbres de Lie résolubles est la plus petite classe contenant les algèbres de Lie abéliennes et stable par extension.
2.2. ALGÈBRES RÉSOLUBLES

Lemme 2.2.0.7. Soit \(\mathfrak{g} \) une algèbre de Lie de dimension finie sur un corps \(k \) de caractéristique nulle et \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) une représentation de \(\mathfrak{g} \) de dimension finie. Soit \(\mathfrak{h} \) un idéal de \(\mathfrak{g} \). On suppose qu'il existe un vecteur non nul \(v \in V \) qui engendre une droite stable par les \(\rho(H) \) pour \(H \in \mathfrak{h} \). Soit la fonction \(\chi : \mathfrak{h} \to k \) définie par l'égalité \(\rho(X) v = \chi(X) v \). Alors \(\chi \) est un caractère (le une représentation de dimension 1) et pour \(X \in \mathfrak{g} \) et \(H \in \mathfrak{h} \), on a \(\chi([X, H]) = 0 \).

Démonstration. Le fait que \(\chi \) soit un caractère est immédiat. Soit \(X \in \mathfrak{g} \), définissons \(V_0 = 0 \) et pour \(i \geq 1 \), \(V_i = V_{i-1} + kp(X)^{i-1}(v) \). On obtient ainsi une suite stationnaire. Considérons \(n \) le plus petit entier tel que \(V_n = V_{n+1} \). Alors dim \(V_n = n \) et \(\rho(X)(V_n) \subseteq V_n \).

Montrons par récurrence que \(H \rho(X)^i (v) \equiv \chi(H) \rho(X)^i (v) \pmod{V_i} \) pour tout \(H \in \mathfrak{h} \). C'est vrai pour \(i = 0 \). Pour \(i \geq 1 \), on écrit :

\[
HX^i v = HX^{i-1} v = [H, X]X^{i-1} v + XHX^{i-1} v
\]

\[
= \chi([H, X])X^{i-1} v + X \chi(H)X^{i-1} v + v_{i-1} + X v_{i-1}
\]

\[
\equiv \chi(H)X^i v \pmod{V_i}
\]

où \(X^i v = \rho(X)^i (v) \).

Ainsi \(H \) laisse stable \(V_n \) et il y opère par un endomorphisme donné par \(\begin{pmatrix} \chi(H) & * \\ 0 & \chi(H) \end{pmatrix} \) dans une base adaptée.

Donc l'élément \([X, H] \) agit par \(\begin{pmatrix} \chi([X, H]) & * \\ 0 & \chi([X, H]) \end{pmatrix} \)

Finalement \(\text{Tr}(\rho([X, H]|_{V_n})) = n\chi([X, H]) = 0 \) car il s'agit d'un commutateur. Comme le corps est de caractéristique nulle, on en déduit le résultat voulu.

\(\sqrt{\text{\ }} \)

Théorème 2.2.0.8 (Lie). Soit \(k \) un corps algébriquement clos de caractéristique nulle. Soient \(\mathfrak{g} \) une algèbre de Lie sur \(k \) résoluble et \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) une représentation de \(\mathfrak{g} \) de dimension finie. Alors il existe un drapeau \(F \) de \(V \) tel que \(\rho(\mathfrak{g}) \subseteq b(F) \).

Démonstration. On peut supposer que \(\mathfrak{g} \subseteq \mathfrak{gl}(V) \). On va alors prouver par récurrence sur la dimension de \(\mathfrak{g} \) qu'il existe un vecteur non nul \(v \in V \) tel que pour tout \(X \in \mathfrak{g} \), \(\rho(X)(v) \in kv \). Si \(\dim \mathfrak{g} = 0 \), il n'y a rien à faire.

Si \(\dim \mathfrak{g} > 0 \), on a \([\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{g} \). Soit donc \(\mathfrak{h} \) un sous-espace contenant \([\mathfrak{g}, \mathfrak{g}] \) de codimension 1. Alors \(\mathfrak{h} \) est un idéal car \([\mathfrak{g}, \mathfrak{h}] \subseteq [\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{h} \). Comme \(\dim \mathfrak{h} < \dim \mathfrak{g} \), on peut utiliser l'hypothèse de récurrence qui fournit l'existence d'un vecteur non nul \(w \in V \) tel que pour tout \(H \in \mathfrak{h} \), \(\rho(H)(w) \in kw \). Soit \(\chi \) le caractère associé défini précédemment.

On considère alors \(W = \{w' \in V \mid \rho(H)(w') = \chi(H)(w') \} \subseteq V \). On a \(w \in W \) et pour tout \(X \in \mathfrak{g} \), \(\rho(X)(W) \subseteq W \). En effet, pour \(X \in \mathfrak{g} \), \(H \in \mathfrak{h} \) et \(w' \in W \), on a :

\[
HXw' = [H, X]w' + XHw' = \chi(H)Xw'
\]

On choisit alors \(X \in \mathfrak{g} - \mathfrak{h} \). Comme \(\rho(X)(W) \subseteq W \) et que \(k \) est algébriquement clos, il existe un vecteur non nul \(v \in W \) tel que \(\rho(X)(v) \in kv \). Il permet de démontrer l'hérédité de la récurrence.

\(\sqrt{\text{\ }} \)

Exemple 2.2.0.9. Si \(\mathfrak{g} \) est une sous-algèbre de Lie résoluble de \(M(n, \mathbb{C}) \), le théorème de Lie nous donne un \(\mathfrak{g} \in GL(n, \mathbb{C}) \) tel que \(gg^{-1} \) est formé de matrices triangulaires supérieures.

Corollaire 2.2.0.10. Soit \(\mathfrak{g} \) une algèbre de Lie de dimension finie sur un corps \(k \) algébriquement clos de caractéristique nulle. Alors \(\mathfrak{g} \) est résoluble si et seulement si \(\mathfrak{g} \) admet un drapeau d'idéaux.

Démonstration. Pour le sens direct, on applique le théorème de Lie avec la représentation adjointe. Pour la réciproque, si \(F \) est un drapeau d'idéaux de \(\mathfrak{g} \), alors \(\text{ad}g \subseteq b(F) \). Comme \(b(F) \) est résoluble, \(\text{ad}g \) l’est aussi. \(\mathfrak{g} \) est alors résoluble car il est extension de \(adg \) par l’algèbre de Lie abélienne \(z(\mathfrak{g}) \).

\(\sqrt{\text{\ }} \)

Corollaire 2.2.0.11. Sous les mêmes hypothèses, on a \(\mathfrak{g} \) résoluble si et seulement si \([\mathfrak{g}, \mathfrak{g}] \) nilpotente.
Démonstration. Pour le sens direct, on considère F un drapéau d'idéaux de \mathfrak{g}. Alors $\text{ad} \mathfrak{g} \subseteq b(F)$ et $\text{ad} ([\mathfrak{g}, \mathfrak{g}]) \subseteq [b(F), b(F)] = n(F)$, ce qui prouve que $\text{ad} ([\mathfrak{g}, \mathfrak{g}])$ est nilpotente. Finalement $[\mathfrak{g}, \mathfrak{g}]$ est nilpotente en tant qu'extension centrale de $\text{ad} ([\mathfrak{g}, \mathfrak{g}])$ par $z(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$.

Réciproquement, si $[\mathfrak{g}, \mathfrak{g}]$ est nilpotente, elle est en particulier résoluble et donc \mathfrak{g} aussi.

2.3 Le critère de Cartan

Nous aurons besoin de faire tout d'abord un petit topo sur la décomposition de Jordan.

2.3.1 Décomposition de Jordan

Soit k un corps algébriquement clos et V un k-espace vectoriel de dimension finie.

Définition 2.3.1.1. Un endomorphisme $s : V \rightarrow V$ est dit semi-simple s'il est diagonalisable.

Remarque 2.3.1.2. Pour un corps k quelconque, on dit qu'un endomorphisme est semi-simple s'il est diagonalisable après extension des scalaires à une clôture algébrique de k.

Proposition 2.3.1.3. Soit u un endomorphisme de V. Alors il existe une décomposition $u = s + n$ où s est semi-simple, n est nilpotent et s et n commutent. Cette décomposition est unique. En outre, il existe des polynômes S et N dans $k[T]$ tels que $S(0) = N(0) = 0$, $s = S(u)$ et $n = N(u)$.

Démonstration. Notons λ_i ($1 \leq i \leq r$) les valeurs propres de u et V_i le sous-espace caractéristique associé à la valeur propre λ_i. On a alors $V = \bigoplus V_i$ et dans une base de la matrice de u s'écrit :

$$
\begin{pmatrix}
A_1 & 0 \\
0 & \ddots & \\
& \ddots & 0 \\
& & A_n
\end{pmatrix}
$$

où $A_i = \begin{pmatrix} \lambda_i & * \\
0 & \lambda_i
\end{pmatrix}$

On considère alors les matrices $B_i = \begin{pmatrix} \lambda_i & 0 \\
0 & \lambda_i
\end{pmatrix}$ et on pose $s = \begin{pmatrix} B_1 & 0 \\
0 & B_n
\end{pmatrix}$ et on vérifie alors que tout marche bien.

Pour l'unicité, supposons que $u = s + n = s' + n'$. Alors s' commute avec s' et n' et donc avec u, ce qui prouve que pour tout i, $s'V_i \subseteq V_i$. Ainsi s' commute avec s et donc n' commute avec s puis avec n. Ainsi $s - s' = n - n'$ est nilpotent et semi-stable donc vaut 0.

Le polynôme S est donné par une solution du système de congruence suivant :

$$
\begin{cases}
S(T) \equiv \lambda_i \mod (T - \lambda_i)^{m_i} \\
S(T) \equiv 0 \mod T
\end{cases}
$$

où m_i est la multiplicité de la valeur propre λ_i.

Exemple 2.3.1.4.

1. Si $u = \begin{pmatrix} a & c \\
0 & b
\end{pmatrix} \in M(2, \mathbb{C})$. Si $a \neq b$, alors $s = u$ et $n = 0$. Si $a = b$, alors $s = \begin{pmatrix} a & 0 \\
0 & a
\end{pmatrix}$ et $n = \begin{pmatrix} 0 & c \\
0 & 0
\end{pmatrix}$.

2. Si $u = \begin{pmatrix} a & c & d \\
0 & a & e \\
0 & 0 & b
\end{pmatrix} \in M(3, \mathbb{C})$.

Si $a = b$, alors $s = a1_3$ et $n = \begin{pmatrix} 0 & c & d \\
0 & 0 & e \\
0 & 0 & 0
\end{pmatrix}$. Si $a \neq b$, alors $s = \begin{pmatrix} a & c & d + \frac{cd}{b-a} \\
0 & a & e \\
0 & 0 & b
\end{pmatrix}$ et $n = \begin{pmatrix} 0 & 0 & -\frac{cd}{b-a} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$.

Conséquence 2.3.1.5. Avec les notations précédentes, si $A \subseteq B \subseteq V$ sont tels que $u(B) \subseteq A$, on a $s(B) \subseteq A$ et $n(B) \subseteq A$.

Définition 2.3.1.6. Soit $s : V \rightarrow V$ semi-simple. Alors il existe une base (v_1, \ldots, v_n) de V et des scalaires λ_i tels que $s(v_i) = \lambda_i v_i$. Si $\varphi : k \rightarrow k$ est une application on définit $\varphi(s)$ par les égalités $\varphi(s)(v_i) = \varphi(\lambda_i) v_i$.

\[\square\]
2.3. LE CRITÈRE DE CARTAN

Remarque 2.3.1.7. Si \(\varphi(0) = 0 \), alors il existe un polynôme \(P \in k[T] \) tel que \(P(0) = 0 \) et pour tout \(i \), \(P(\lambda_i) = \varphi(\lambda_i) \). On a alors \(\varphi(s) = P(s) \). Donc si \(A \subset B \subset V \) est tels que \(s(B) \subset A \), alors \(\varphi(s)(B) \subset A \).

Lemma 2.3.1.8. Soient \(s : V \rightarrow V \) un endomorphisme semi-simple et \(\varphi : k \rightarrow k \) un morphisme de groupes abéliens, alors \(\varphi(ad(s)) = ad(\varphi(s)) \).

Démonstration. Soit \((e_1, \ldots, e_n) \) une base diagonalisant \(s \). Alors on a \((ad(s))_i j = (\lambda_i - \lambda_j)E_{ij} \). Donc \(\varphi(ad(s)) = (\varphi(\lambda_i) - \varphi(\lambda_j))E_{ij} \). D’autre part, \(ad(\varphi(s)) = (\varphi(\lambda_i) - \varphi(\lambda_j))E_{ij} \).

Conséquence 2.3.1.9. Soient \(u = s + n \) la décomposition de Jordan de l’endomorphisme \(u \) et \(A \subset B \) tels que \(ad(u)(B) \subset A \). Alors pour tout morphisme de groupes \(\varphi : k \rightarrow k \), on a \(\varphi(ad(s))(B) \subset A \).

Lemma 2.3.1.10. Supposons que \(k \) soit de caractéristique nulle. Soit \(u \) un endomorphisme de \(V \) et \(u = s + n + \lambda \) sa décomposition de Jordan. Alors \(u \) est nilpotent si et seulement si pour tout \(\varphi : k \rightarrow k \), \(Tr(u\varphi(s)) = 0 \).

Démonstration. Soit \(\lambda_1, \ldots, \lambda_m \) les valeurs propres de \(u \). Il suffit de montrer que \(\varphi(\lambda_i) = 0 \) pour tout \(i \). Comme \(\varphi(s) \) est un polynôme en \(s \), il commute à \(s \) et \(n \) donc \(u\varphi(s) = s\varphi(s) = n\varphi(s) \) est la décomposition de Jordan de \(u\varphi(s) \). Ainsi on obtient :

\[
Tr(u\varphi(s)) = Tr(s\varphi(s)) = \sum_{i=1}^{m} \lambda_i \varphi(\lambda_i) = 0
\]

En appliquant \(\varphi \) à cette égalité, on trouve \(\sum_{i=1}^{m} \varphi(\lambda_i)^2 = 0 \) ou \(\varphi(\lambda_i) = 0 \) pour tout \(i \).

Remarque 2.3.1.11. Si \(k = \mathbb{C} \), on a \(u \) nilpotent si et seulement si \(Tr(u\varphi(s)) = 0 \) ou \(\varphi \) est la conjugaison complexe.

Démonstration. Il suffit de voir que, \(Tr(u\varphi(s)) = \sum_{i=1}^{m} |\lambda_i|^2 \) où les \(\lambda_i \) sont les valeurs propres de \(u \) comptées avec leur ordre de multiplicité.

\[
\sum_{i=1}^{m} |\lambda_i|^2 = \sum_{i=1}^{m} \lambda_i \varphi(\lambda_i) = 0
\]

2.3.2 Théorème de Cartan

Théorème 2.3.2.1 (Cartan). Soient \(k \) un corps de caractéristique nulle et \(V \) un \(k \)-espace vectoriel de dimension finie. Soit \(g \) une sous-algèbre de Lie de \(gl(V) \). Alors \(g \) est résoluble si et seulement si pour tout \(X \in g \) et pour tout \(Y \in [g, g] \), on a \(Tr(XY) = 0 \).

Démonstration. Supposons que \(g \) soit résoluble. On considère alors \(k \) une clôture algébrique de \(k \) et \(\bar{g} \) le sous-espace vectoriel de \(gl(n, k) \) engendré par \(g \) si \(\dim V = n \). \(g \) est alors une sous-algèbre de Lie \(gl(n, k) \) et elle est résoluble car pour tout \(i \geq 1 \), \(D^i(\bar{g}) = D^i(g) \). Le théorème de Lie permet de supposer que \(g \subset \mathfrak{s}(n, k) \). Ainsi \([g, g] \subset \mathfrak{s}(n, k) \) et puis si \(X \in g \) et \(Y \in [g, g] \), \(XY \) est une matrice triangulaire supérieure stricte et donc est de trace nulle.

Réciproquement, comme \(g \) est extension abélienne de \(g/\mathfrak{g} \) par \([g, g] \), il suffit de montrer que \(g/\mathfrak{g} \) est nilpotente. Par le théorème d’Engel, il suffit de voir que pour tout \(X \in [g, g] \), \(adX \) est nilpotent et donc en fait que \(X \) est nilpotent. Soit donc \(u \in [g, g] \) et soit \(u = s + n + \lambda \) sa décomposition de Jordan. Par le lemme 2.3.1.10, il suffit de montrer que pour tout \(\varphi : k \rightarrow k \) morphisme de groupes, \(Tr(u\varphi(s)) = 0 \). Écrivons alors \(u = \sum_{i=1}^{n} [X_i, Y_i] \) où \(X_i \) et \(Y_i \) sont des éléments de \(g \) et calculons :

\[
Tr(u\varphi(s)) = Tr \left(\sum_{i=1}^{n} [X_i, Y_i] \varphi(s) \right) = \sum_{i=1}^{n} Tr(X_iY_i\varphi(s) - Y_iX_i\varphi(s)) = \sum_{i=1}^{n} Tr(X_iY_i\varphi(s) - X_i\varphi(s)Y_i) = \sum_{i=1}^{n} Tr(X_i[Y_i, \varphi(s)])
\]

Ainsi :

\[
\sum_{i=1}^{n} Tr(X_i[Y_i, \varphi(s)]) = 0
\]
2.4 Algèbres de Lie semi-simples

Soient k un corps commutatif de caractéristique nulle et \mathfrak{g} une algèbre de Lie de dimension finie sur k.

Lemme 2.4.0.1. Parmi les idéaux résolubles de \mathfrak{g}, il en existe un qui contient tous les autres.

Démonstration. Soient a et b deux idéaux résolubles de \mathfrak{g}. Alors la suite exacte suivante :

$$
\begin{array}{c}
0 \longrightarrow a \longrightarrow a + b \longrightarrow \frac{(a + b)}{a} \longrightarrow 0 \\
\downarrow \sim \\
b/(a \cap b)
\end{array}
$$

prouve que $a + b$ est encore résoluble. Ainsi le plus grand idéal recherché est la somme des idéaux résolubles de \mathfrak{g}.

Définition 2.4.0.2. On appelle radical de \mathfrak{g} le plus grand idéal résoluble de \mathfrak{g}. On note $\text{rad} (\mathfrak{g})$. On dit que \mathfrak{g} est semi-simple si $\text{rad} (\mathfrak{g}) = 0$. On dit que \mathfrak{g} est simple si \mathfrak{g} est non-abélienne et n’admet aucun idéal propre non nul.

Proposition 2.4.0.3. Le radical de $\mathfrak{g}/(\text{rad} (\mathfrak{g}))$ s’annule. Autrement dit $\mathfrak{g}/(\text{rad} (\mathfrak{g}))$ est semi-simple.

Démonstration. Soit a un idéal résoluble de $\mathfrak{g}/(\text{rad} (\mathfrak{g}))$. Notons \tilde{a} son image réciproque dans \mathfrak{g}. Alors \tilde{a} est résoluble d’après la suite exacte :

$$
\begin{array}{c}
0 \longrightarrow \text{rad} (\mathfrak{g}) \longrightarrow \tilde{a} \longrightarrow a \longrightarrow 0
\end{array}
$$

Ainsi $\tilde{a} \subset \text{rad} (\mathfrak{g})$ et $a = 0$.

Remarque 2.4.0.4. On a $\text{rad} (\mathfrak{g}) \neq 0$ si et seulement si \mathfrak{g} contient un idéal abélien non nul ; en effet, il suffit de considérer le dernier terme non nul de la série dérivée de rad (\mathfrak{g}). En particulier si \mathfrak{g} est simple, \mathfrak{g} est semi-simple.

Proposition 2.4.0.5. Si \mathfrak{g}_1 et \mathfrak{g}_2 sont deux algèbres de Lie de dimension finie sur k, on a $\text{rad} (\mathfrak{g}_1 \times \mathfrak{g}_2) = \text{rad} (\mathfrak{g}_1) \times \text{rad} (\mathfrak{g}_2)$. En particulier si \mathfrak{g}_1 et \mathfrak{g}_2 sont semi-simples, $\mathfrak{g}_1 \times \mathfrak{g}_2$ l’est aussi.

Démonstration. L’inclusion $\text{rad} (\mathfrak{g}_1 \times \mathfrak{g}_2) \supset \text{rad} (\mathfrak{g}_1) \times \text{rad} (\mathfrak{g}_2)$ est claire. Pour la réciproque, prenons a un idéal résoluble de $\mathfrak{g}_1 \times \mathfrak{g}_2$. Alors $pr_1 (a)$ et $pr_2 (a)$ sont des idéaux résolubles respectivement de \mathfrak{g}_1 et \mathfrak{g}_2. Ainsi $a \subset pr_1 (a) \times pr_2 (a) \subset \text{rad} (\mathfrak{g}_1) \times \text{rad} (\mathfrak{g}_2)$.

Exemple 2.4.0.6.

1. Soit $\mathfrak{g} = \mathfrak{sl} (2, k)$. Alors \mathfrak{g} est simple (et donc semi-simple). En effet considérons $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ la base canonique de \mathfrak{g}. On a alors $F \overset{\text{ad} E}{\longrightarrow} H \overset{-\text{ad} E}{\longrightarrow} E$ donc si a est un idéal non nul de \mathfrak{g}, on a $E \in a$. Mais on a aussi $E \overset{-\text{ad} F}{\longrightarrow} H \overset{-\text{ad} F}{\longrightarrow} F$, ce qui prouve que $a = \mathfrak{g}$.

2. Soit $\mathfrak{g} = \mathfrak{gl} (2, k)$. Alors $\text{rad} (\mathfrak{g}) = \mathfrak{cl}_2$. En effet, \mathfrak{cl}_2 est un idéal central et donc résoluble et $\mathfrak{gl} (2, k) / \mathfrak{cl}_2 \sim \mathfrak{sl} (2, k)$ qui est semi-simple.

Définition 2.4.0.7. On dit qu’une forme bilinéaire $b : \mathfrak{g} \times \mathfrak{g} \to k$ est invariante si :

$$
\forall X, Y, Z \in \mathfrak{g} \quad b ([X, Y], Z) + b (Y, [X, Z]) = 0
$$

ou encore :

$$
\forall X, Y, Z \in \mathfrak{g} \quad b ((\text{ad} X) (Y), Z) = -b (Y, (\text{ad} X) (Z))
$$

La forme de Killing de \mathfrak{g} est la forme $K_{\mathfrak{g}} (X, Y) = \text{Tr} \ (\text{ad} X \text{ad} Y)$.

Remarque 2.4.0.8.
2.4. **Algèbres de Lie semi-simples**

1. Supposons que G est un groupe de Lie connexe et notons \mathfrak{g} son algèbre de Lie et $b : \mathfrak{g} \times \mathfrak{g} \to k$ une forme bilinéaire symétrique. Alors b est invariante si et seulement si pour tout $g \in G$ et tous $X, Y \in \mathfrak{g}$, on a $b(\text{Ad}(g)X, \text{Ad}(g)Y) = b(X, Y)$, c'est-à-dire $\text{Ad}(g)$ est orthonormale pour tout $g \in G$.

2. La forme de Killing est invariante. En effet :

$$K_\mathfrak{g}([X, Y], Z) = \text{Tr}(\text{ad}([X, Y])\text{ad}Z)$$

$$= \text{Tr}(\text{adXadZ} - \text{adYadXadZ})$$

$$= \text{Tr}(\text{adYad}([Z, X])) = K_\mathfrak{g}(Y, [Z, X])$$

3. Si a est un idéal de \mathfrak{g}, alors $K_a = K_{\mathfrak{g}[a \times a]}$. Ceci est faux en général si a est seulement une sous-algèbre.

Exemple 2.4.0.9.

1. Soient $\mathfrak{g} = \mathfrak{gl}(n, k)$ et $X \in \mathfrak{g}$. Notons $\lambda_1, \ldots, \lambda_n$ les valeurs propres de X comptées avec leur ordre de multiplicité et dans une clôture algébrique de k. Alors on calcule $K_\mathfrak{g}(X, Y) = 2n\text{Tr}(XY) - 2\text{Tr}X\text{Tr}Y$.

Notons que $K_\mathfrak{g}$ est dégénérée. En effet $kI_n \subset \text{Ker}K_\mathfrak{g}$.

2. $\mathfrak{sl}(n, k)$ est un idéal de $\mathfrak{gl}(n, k)$. Donc $K_{\mathfrak{sl}(n, k)}(X, Y) = 2n\text{Tr}(XY)$ qui, elle, est non dégénérée.

Théorème 2.4.0.10. \mathfrak{g} est semi-simple si et seulement si $K_\mathfrak{g}$ est non dégénérée.

Démonstration. Supposons que \mathfrak{g} est semi-simple. Considérons $a = \{X \in \mathfrak{g} | \forall Y \in \mathfrak{g}, K_\mathfrak{g}(X, Y) = 0\} = \text{Ker}K_\mathfrak{g}$. Comme $K_\mathfrak{g}$ est invariante, a est un idéal. On a a ad résoluble. En effet, il suffit de voir que $\text{Tr}(\text{adXadY}) = 0$ pour tout X et Y dans a et d’appliquer le théorème de Cartan. Ainsi a est résoluble en tant qu’extension de a par $z(a)$. Comme \mathfrak{g} est semi-simple, on obtient $a = 0$, ce qui prouve bien que $K_\mathfrak{g}$ est non dégénérée.

Réciproquement, supposons que $K_\mathfrak{g}$ soit non dégénérée. Pour montrer que $\text{rad}(\mathfrak{g}) = 0$, il suffit de montrer que tout idéal abélien de \mathfrak{g} est nul. Soit donc a un idéal abélien de \mathfrak{g}. Montrons que a est orthogonal à \mathfrak{g} pour $K_\mathfrak{g}$. Soit donc $X \in a$ et $Y \in \mathfrak{g}$. On considère $f = \text{adXadY}$. On a $f(\mathfrak{g}) \subset a$ et $f^2(\mathfrak{g}) \subset f(a) = 0$ donc $f^2 = 0$ et $K_\mathfrak{g}(XY) = \text{Tr}(f) = 0$.

Exemple 2.4.0.11.

1. $\mathfrak{sl}(n, k)$ est semi-simple. En fait $\mathfrak{sl}(n, k)$ est simple.

2. Soit $\mathfrak{g} = \mathfrak{so}(n, k) = \{X \in \mathfrak{gl}(n, k) \mid [XJ + JX = 0\}$. On a $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. C’est l’algèbre de Lie des matrices co-antisymétriques. Si k est algébriquement clos, en fait si -1 est un carré dans k, alors \mathfrak{g} est isomorphe à l’algèbre de Lie de matrices anti-symétriques. On calcule et on trouve $K_\mathfrak{g}(X, Y) = (n - 2)\text{Tr}(XY)$ qui est non dégénérée sur $\mathfrak{so}(n, k)$ et donc $\mathfrak{so}(n, k)$ est semi-simple.

3. Soit $\mathfrak{g} = \mathfrak{sp}(2n, k) = \{X \in \mathfrak{gl}(2n, k) \mid [XJ’ + J’X = 0\}$. On a $J’ = \begin{pmatrix} 0 & J \\ -J & 0 \end{pmatrix}$. On calcule $K_\mathfrak{g}(X, Y) = (2n + 2)\text{Tr}(XY)$. $K_\mathfrak{g}$ est non dégénérée donc $\mathfrak{sp}(2n, k)$ est semi-simple.

Théorème 2.4.0.12. Soit \mathfrak{g} une algèbre de Lie semi-simple et de dimension finie sur k. Soit a un idéal de \mathfrak{g}. Notons a^\perp l’orthogonal de a pour $K_\mathfrak{g}$. Alors a^\perp est un idéal de \mathfrak{g} et $a \oplus a^\perp = \mathfrak{g}$.

Démonstration. Le fait que $K_\mathfrak{g}$ soit invariante prouve que a^\perp est un idéal. Par le critère de Cartan $a \cap a^\perp$ est résoluble et donc nul. Ainsi a et a^\perp sont en somme directe. Le fait que $\dim a^\perp \geq \text{codim} a$ prouve que $a \oplus a^\perp = \mathfrak{g}$.

Remarque 2.4.0.13. Si a et b sont deux idéaux de \mathfrak{g} tels que $\mathfrak{g} = a \oplus b$, alors $[a, b] \subset a \cap b = 0$ et donc on a un isomorphisme d’algèbres de Lie $\mathfrak{g} \cong a \times b$. En particulier, si a est un idéal de \mathfrak{g}, on a $\mathfrak{g} \cong \mathfrak{a} \times a^\perp$.

Corollaire 2.4.0.14. Si \mathfrak{g} est semi-simple, alors \mathfrak{g} est isomorphe à un produits d’algèbres de Lie simples.

Démonstration. Si \mathfrak{g} ne contient aucun idéal propre non nul, alors \mathfrak{g} est simple. Si \mathfrak{g} contient un idéal propre non nul a et $\mathfrak{g} \cong \mathfrak{a} \times a^\perp$, a (resp. a^\perp) étant un idéal, la forme de Killing sur a (resp. a^\perp) est la restriction de la forme de Killing sur \mathfrak{g} et est donc non dégénérée. Ainsi a et a^\perp sont semi-simples et on conclut par une récurrence sur la dimension de \mathfrak{g}.

Corollaire 2.4.0.15. Si \mathfrak{g} est semi-simple, alors $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$.

\[\square \]
Démonstration. Par le corollaire précédent, on peut supposer que \(\mathfrak{g} \) est simple. Or, dans ce cas, \([\mathfrak{g}, \mathfrak{g}]\) est un idéal non nul de \(\mathfrak{g} \) (car \(\mathfrak{g} \) est non-abélienne) et le résultat s’ensuit.

Corollaire 2.4.0.16. Supposons que \(\mathfrak{g} \) soit semi-simple et que \(\mathfrak{g} = \bigoplus_{a=1}^{n} \mathfrak{a}_a \) soit une décomposition de \(\mathfrak{g} \) en idéaux simples. Soit \(\mathfrak{b} \) un idéal de \(\mathfrak{g} \). Alors \(\mathfrak{b} \) est égal à la somme de certains des \(\mathfrak{a}_a \).

Démonstration. On sait que pour la forme de Killing \(K_\mathfrak{g} \), \(\mathfrak{g} = \mathfrak{b} \oplus \mathfrak{b}^* \) et que \(\mathfrak{b} \) est encore semi-simple. On a alors :

\[
b = [b, b] \subset [b, \mathfrak{g}] \subset \bigoplus_{a=1}^{n} [b, \mathfrak{a}_a] \subset \bigoplus_{a=1}^{n} b \cap \mathfrak{a}_a \subset b
\]

Ainsi toutes les inclusions sont en fait des égalités et en particulier \(b = \bigoplus_{a=1}^{n} (b \cap \mathfrak{a}_a) \). Or \(b \cap \mathfrak{a}_a \) est un idéal de \(\mathfrak{a}_a \), c’est donc soit \(\mathfrak{a}_a \), soit \(0 \). Ceci démontre le corollaire.

Remarque 2.4.0.17. Donc si \(\mathfrak{g} \) est semi-simple, elle s’écrit de manière unique comme somme d’idéaux simples, idéaux uniques même en tant que sous-espaces vectoriels. En particulier, pour classifier les algèbres de Lie semi-simples, il faut commencer par classifier les algèbres de Lie simples.

Exemple 2.4.0.18. Si \(\mathfrak{a}_1 \) et \(\mathfrak{a}_2 \) sont simples, le corollaire prouve que \(\mathfrak{g} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \) n’admet que quatre idéaux.

Théorème 2.4.0.19. A cinq exceptions près (à isomorphisme près) toute algèbre de Lie simple, de dimension finie, sur un corps \(k \) algébriquement clos de caractère nulle est isomorphe à \(\mathfrak{sl}(n, k) \), \(\mathfrak{so}(n, k) \) ou \(\mathfrak{sp}(n, k) \). Plus précisément, la classification est :

2.5 Semi-simplicité des modules de dimension finie sur une algèbre semi-simple

Soit \(k \) un corps commutatif et \(\mathfrak{g} \) une algèbre de Lie sur \(k \) de dimension finie.

Définition 2.5.0.1. Soient \(V \) et \(W \) deux modules sur \(\mathfrak{g} \). On note \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) et \(\sigma : \mathfrak{g} \to \mathfrak{gl}(W) \) les représentations correspondantes. Un morphisme de \(\mathfrak{g} \)-modules de \(V \) vers \(W \) est une application linéaire \(f : V \to W \) telle que pour tout \(v \in V \) et tout \(X \in \mathfrak{g} \), on ait \(f(Xv) = Xf(v) \).

Dans le langage des représentations, \(f \) s’appelle un opérateur d’entrelacement car il vérifie pour tout \(X \in \mathfrak{g} \), \(f \circ \rho(X) = \sigma(X) \circ f \).

Définition 2.5.0.2. On dit que \(V \) est simple si \(V \neq 0 \) et s’il n’admet pas de sous-modules autres que 0 et \(V \).

Dans le langage des représentations, on dit que \(\rho \) est irréductible si \(V \neq 0 \) et si \(V \) n’admet pas de sous-espace strict stable par tous les \(\rho(X) \).

Exemple 2.5.0.3.

1. Supposons que \(\dim \mathfrak{g} = 1 \). Soit donc \(X_0 \) une base de \(\mathfrak{g} \). La donnée d’une représentation \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) est équivalente à celle de l’endomorphisme \(\rho(X_0) : V \to V \). Un sous-module est alors un sous-espace stable par \(\rho(X_0) \). Supposons \(k \) algébriquement clos. Il existe alors un vecteur propre pour \(\rho(X_0) \), et donc il existe un sous-module de dimension 1 si \(V \neq 0 \). Donc si \(k \) est algébriquement clos, les modules simples sur une algèbre de Lie de dimension 1 sont exactement les modules de dimension 1.

2. Supposons \(k \) algébriquement clos et de caractère nulle. Supposons en outre que \(\mathfrak{g} \) est résoluble. Soit \(V \) un \(\mathfrak{g} \)-module. Par le théorème de Lie, il existe une droite dans \(V \) stable par tous les \(\rho(X) \). \(X \in \mathfrak{g} \). Cette droite est un sous-module de dimension 1. Ainsi les \(\mathfrak{g} \)-modules simples sont encore de dimension 1.

Supposons que \(V \) est une représentation de \(\mathfrak{g} \) de dimension finie quelconque, le théorème de Lie prouve qu’il existe un drapeau \(0 = V_0 \subset V_1 \subset \ldots \subset V_n = V \) de sous-espaces stables par tous les \(\rho(X) \), \(X \in \mathfrak{g} \). Ainsi les \(V_i \) forment une suite croissante de sous-modules de \(V \) telle que \(V_{i+1}/V_i \) soit un module simple pour tout \(i \geq 0 \).

3. Soit \(\mathfrak{g} = \mathfrak{sl}(2, k) \) où \(k \) est un corps de caractère nulle. Alors \(V = k^2 \) est simple. En effet, si \(W \subset V \) est un sous-module nul, considérons \(w = \alpha e_1 + \beta e_2 \in W - \{0\} \). Alors si \(\alpha \neq 0 \), \(Fw \) est un multiple non nul de \(e_2 \) et si \(\beta \neq 0 \), \(Ew \) est un multiple non nul de \(e_1 \). Ainsi \(e_1 \in W \) ou \(e_2 \in W \). Le fait que \(W \) doive être stable par \(E \) et \(F \) prouve alors que \(W = V \).
2.5. SEMI-SIMPLICITÉ DES MODULES DE DIMENSION FINIE SUR UNE ALGÈBRE SEMI-SIMPLE

Lemme 2.5.0.4 (Schur). Soit V un g-module simple. Alors l’anneau $\text{End}_g (V)$ est un corps éventuellement non commutatif. Si de plus, V est de dimension finie et k est algébriquement clos, alors $\text{End}_g (V) = k \text{Id}_V$.

Si V et W sont deux g-modules simples, alors soit $V \overset{\sim}{\longrightarrow} W$, soit $\text{Hom}_g (V, W) = 0$.

Démonstration. Soit $f : V \rightarrow V$ un endomorphisme non nul. Alors $\ker f \subsetneq V$ et $\ker f$ est un sous-module. Ainsi $\ker f = 0$. De même, im $f \neq 0$ et im f est un sous-module, d’où $\ker f = V$, ce qui prouve que f est inversible.

Soit $f : V \rightarrow V$ un endomorphisme et λ une valeur propre. Alors $f - \lambda \text{Id}_V$ est non inversible et donc nul par le résultat précédent.

Définition 2.5.0.5. Soit $(V_i)_{i \in I}$ une famille de g-modules. La **somme directe** $\bigoplus_{i \in I} V_i$ est la somme des espaces vectoriels V_i munie de $X(v_i) = (Xv_i)$.

Un module est dit **semi-simple** s’il est isomorphe à la somme directe d’une famille de modules simples.

Exemple 2.5.0.6.

1. Soit $g = D(n, k) \subset \mathfrak{gl} (n, k)$ l’ensemble des matrices diagonales et soit $V = k^n$ la représentation tautologique. Alors $V \overset{\sim}{\longrightarrow} \bigoplus k_{e_i}$, où k_{e_i} est la représentation $g \rightarrow \mathfrak{gl} (k)$, $D(\alpha_1, \ldots, \alpha_n) \mapsto \alpha_i$. Ainsi V est semi-simple.

2. Soient $g = b(n, k) \subset \mathfrak{gl} (n, k)$ et $V = k^n$ la représentation tautologique. Alors V admet un drapeau de sous-modules $V_i = k e_1 \oplus \cdots \oplus k e_i$ et $V_{i+1}/V_i \overset{\sim}{\longrightarrow} k_{e_i}$. Mais $V \neq \bigoplus k_{e_i}$ et V n’est pas semi-simple.

3. Soit $g = \mathfrak{sl} (2, k)$ où k est un corps de caractéristique nulle. Soit $V = k [X, Y]$ muni de ρ définie par $\rho (E) = X \frac{\partial}{\partial Y}$, $\rho (F) = Y \frac{\partial}{\partial X}$ et $\rho (H) = [\rho (E), \rho (F)] = X \frac{\partial}{\partial X} - Y \frac{\partial}{\partial Y}$. Ceci est une représentation. Soit V_i le sous-espace vectoriel de V formé des polynômes homogènes de degré i. On admet que V_i est simple, ce qui prouve que V est semi-simple.

Lemme 2.5.0.7. Soient g une algèbre de Lie et V un g-module. Alors V est semi-simple si et seulement si tout sous-module U de V admet un supplémentaire.

Démonstration. Voir Cartan-Eilenberg, Chap. I, Proposition 4.1.

Théorème 2.5.0.8 (Weyl). Soit g une algèbre de Lie semi-simple sur un corps k de caractéristique nulle. Alors tout g-module de dimension finie est semi-simple.

Démonstration. On va utiliser l’astuce unitaire (unitarian trick). Prenons par exemple $g = \mathfrak{sl} (2, \mathbb{C})$. On a alors le diagramme suivant :

\[
\begin{array}{ccc}
\mathfrak{sl} (2, \mathbb{C}) & \overset{\rho}{\longrightarrow} & \mathfrak{gl} (V) \\
& & \exp \longrightarrow GL (V) \\
\mathfrak{su} (2, \mathbb{C}) \downarrow \rho_1 & & \\
SU (2) \swarrow \bar{\rho}_1 & & \\
\end{array}
\]

où $\mathfrak{su} (2, \mathbb{C})$ est une sous-algèbre réelle de $\mathfrak{sl} (2, \mathbb{C})$ qui contient une base complexe de $\mathfrak{sl} (2, \mathbb{C})$.

L’existence de $\bar{\rho}_1$ résulte de la simple connectivité de $SU (2)$. Les espaces invariants par ρ, ρ_1 et $\bar{\rho}_1$ sont les mêmes.

Le point clé est alors que lorsque $SU (2)$ est compact, on peut faire des moyennes. En fait, on montre qu’il existe une forme hermitienne définie positive invariante sur V. Elle est définie par, en posant $G = SU (2)$:

\[
\langle v_1, v_2 \rangle_{\text{inv}} = \frac{1}{\text{vol} (G)} \int_G \langle gv_1, gv_2 \rangle dg
\]

Comme ceci n’est pas très convaincant, on va proposer la démonstration suivante due à Casimir, un physicien hollandais.
2.5.1 Opérateur de Casimir

Lemme 2.5.1.1 (Première étape). Si \(\mathfrak{g} \) est semi-simple et \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) est une représentation injective et de dimension finie de \(\mathfrak{g} \), alors la forme \(B_\rho(X,Y) = \text{Tr}(\rho(X)\rho(Y)) \) est invariante et non dégénérée.

Démonstration. La forme \(B_\rho \) est invariante car \((f,g) \mapsto \text{Tr}(fg) \) est une forme invariante sur \(\mathfrak{gl}(V) \) et \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) est un morphisme d'algèbres de Lie. Donc \(\mathfrak{a} = \{ Y \in \mathfrak{g} | B_\rho(X,Y) = 0 \} \) est un idéal de \(\mathfrak{g} \). Son image par \(\rho \) est résoluble par le critère de Cartan. Comme \(\rho \) est injective, \(\mathfrak{a} \) est isomorphe à \(\rho(\mathfrak{a}) \) et donc \(\mathfrak{a} \) est résoluble puis \(\mathfrak{a} = 0 \) car \(\mathfrak{g} \) est semi-simple.

Lemme 2.5.1.2 (Deuxième étape). Soient \(\mathfrak{g} \) une algèbre de Lie de dimension finie quelconque et \(B : \mathfrak{g} \times \mathfrak{g} \to k \) une forme invariante non dégénérée. Soit \((E_1, \ldots, E_n) \) une base de \(\mathfrak{g} \) et soit \((F_1, \ldots, F_n) \) la base duale par rapport à \(B \) (le pour tous \(i \) et \(j \) entre 1 et \(n \), \(B(E_i,F_j) = \delta_{ij} \)). Soit \(\rho : \mathfrak{g} \to \mathfrak{gl}(V) \) une représentation de \(\mathfrak{g} \).

Alors l’opérateur de Casimir \(C_\rho = \sum_{i=1}^n \rho(E_i)\rho(F_i) : V \to V \) commute avec tous les opérateurs \(\rho(X) \) pour \(X \in \mathfrak{g} \) et ne dépend pas du choix de la base \((E_1, \ldots, E_n) \).

Démonstration. Soit \(X \in \mathfrak{g} \). Définissons les \(\lambda_{ij} \) et les \(\mu_{ij} \) par les égalités suivantes :

\[
[X, E_i] = \sum_{j=1}^n \lambda_{ij} E_j \quad \text{et} \quad [X, F_i] = \sum_{i=1}^n \mu_{ij} F_j
\]

On a alors \(\lambda_{ij} = B([X, E_i], F_j) = -B(E_i, [X, F_j]) = -\mu_{ij} \), ce qui donne :

\[
\rho(X) \left(\sum_{i=1}^n \lambda_{ij} E_j \right) \rho(F_i) = \sum_{i=1}^n \left(\rho(X) \rho(E_i) \rho(F_i) + \rho(E_i) \rho(X) \rho(F_i) \right)
\]

\[
= \sum_{i,j} (\lambda_{ij} \rho(E_i) \rho(F_i) + \mu_{ij} \rho(E_i) \rho(F_i)) = 0
\]

L’indépendance du choix de la base est laissée en exercice au lecteur.

Exemple 2.5.1.3. Prenons \(k \) un corps de caractéristique nulle, \(\mathfrak{g} = \mathfrak{sl}(2, k) \) et \(B(X,Y) = \text{Tr}(XY) \). La base duale de la base canonique \((E, H, F) \) est \((F, \frac{1}{2}H, E) \) et l’opérateur de Casimir est alors \(EF + \frac{1}{2}H^2 + FE \).

Remarque 2.5.1.4. En outre, si \(f : V \to W \) est un morphisme de représentations alors le carré suivant commute :

\[
\begin{array}{ccc}
V & \xrightarrow{\rho} & V \\
\downarrow{f} & & \downarrow{f} \\
W & \xrightarrow{\rho} & W
\end{array}
\]

Ainsi \(C \) peut être vu comme un endomorphisme du foncteur identité de la catégorie de \(\mathfrak{g} \)-modules, c’est-à-dire comme un élément de \(\text{centre} \) de cette catégorie.

Définition 2.5.1.5. Soit \(\mathfrak{g} \) une algèbre de Lie sur un corps \(k \). Soient \(V \) et \(W \) deux \(\mathfrak{g} \)-modules. On définit une structure de \(\mathfrak{g} \)-module sur \(\text{Hom}_k(V, W) \) (resp. \(V \otimes_k W \)) par pour \(v \in V \) et \(X \in \mathfrak{g} \), \((Xf)(v) = Xf(v) - f(Xv) \) (resp. \(X(v \otimes w) = Xv \otimes w + v \otimes Xw \)).

Remarque 2.5.1.6. Il faut juste vérifier que le crochet agit par le commutateur.

Remarque 2.5.1.7.

1. Soient \(k = \mathbb{R} \) et \(\mathfrak{g} = \mathfrak{Lie}(G) \) où \(G \) est un groupe de Lie. Soient \(V \) et \(W \) des représentation de dimension finie de \(G \). Alors \(G \) agit sur \(\text{Hom}_\mathbb{R}(V, W) \) (resp. \(V \otimes_k W \)) par \((gf)(v) = gf(g^{-1}v) \) (resp. \(g(v \otimes w) = gw \otimes gw \)). Les différentielles des morphismes \(G \to \text{GL}(\text{Hom}_\mathbb{R}(V, W)) \) et \(G \to \text{GL}(V \otimes_k W) \) sont données par les formules de la définition ci-dessus.

2. Dans le cas des groupes (resp. des \(\mathfrak{g} \)-modules), les morphismes de représentations \(f : V \to W \) sont exactement les points fixes de \(G \) agissant dans \(\text{Hom}_\mathbb{R}(V, W) \) (resp. les \(f \) annulés par l’action de \(\mathfrak{g} \)).
3. On peut également construire l’opérateur de Casimir de la façon suivante. On regarde g comme un g-module, par la représentation adjointe. On a :
\[
\begin{array}{ccc}
\text{Hom}_k(g,g) & \xleftarrow{\alpha} & g \otimes_k g \\
\downarrow & & \downarrow \\
(Z \mapsto XB(Y,Z)) & \xleftarrow{\beta} & X \otimes Y \xrightarrow{\rho(X)\rho(Y)}
\end{array}
\]
On vérifie que α et β sont des morphismes de g-modules et que α est inversible. L’opérateur de Casimir agissant dans V est alors $C = \beta(\alpha^{-1}(\text{Id}_g))$. C’est un endomorphisme du g-module V car Id_g est un endomorphisme du g-module g et que α^{-1} est un morphisme de g-modules.

Lemme 2.5.1.8 (Troisième étape). Soient g une algèbre de Lie semi-simple et $\rho : g \to \text{gl}(V)$ une représentation injective de dimension finie de g. On considère $C : V \to V$ l’opérateur de Casimir associé à $B_{\rho} : (X,Y) \mapsto \text{Tr}(\rho(X)\rho(Y))$. Alors $\text{Tr}C = \dim g$.

Démonstration. On sait que pour si (E_1, \ldots, E_n) est une base de g et (F_1, \ldots, F_n) est sa base duale, alors C s’exprime sous la forme $C = \sum_{i=1}^n \rho(E_i)\rho(F_i)$. On calcule alors :
\[
\text{Tr}C = \sum_{i=1}^n \text{Tr}(\rho(E_i)\rho(F_i)) = \sum_{i=1}^n B_{\rho}(E_i,F_i) = n = \dim g
\]
\[\square\]

Lemme 2.5.1.9 (Quatrième étape). Sous les mêmes hypothèses, si V est un g-module simple et si $\dim g \neq 0$, alors $C : V \to V$ est inversible.

Démonstration. Comme k est un corps de caractéristique nulle, le lemme précédent prouve que la trace de C est non nulle. On applique alors le lemme de Schur qui permet de conclure. \[\square\]

Lemme 2.5.1.10 (Cinquième étape). Soient g une algèbre de Lie semi-simple et $0 \xrightarrow{0} V \xrightarrow{W} k \xrightarrow{0}$ une suite exacte de g-modules de dimension finie (où g agit trivialement sur k, c’est la seule possibilité puisque g est égale à son algèbre des commutateurs). Autrement dit V est un sous-module de W de codimension 1. Alors il existe une droite $D \subset W$ supplémentaire de V et stable par g.

Démonstration. On va tout d’abord se réduire au cas où V est simple par un récurrence sur la dimension de V. Si $\dim V = 0$, alors c’est bon. Supposez donc que $\dim V > 0$ et que V n’est pas simple. Alors il existe un sous-module strict de V, disons V_1. La suite $0 \to V/V_1 \to W/V_1 \to k \to 0$ est alors exacte. Par l’hypothèse de récurrence, il existe une droite g-stable $\tilde{V}/V_1 \subset W/V_1$ supplémentaire de V/V_1. Considérons la suite exacte $0 \to V_1 \to \tilde{V} \to V_1 \to 0$. Par l’hypothèse de récurrence, il existe une droite g-stable $D \subset \tilde{V}$ supplémentaire de V_1. D est alors également un supplémentaire de V_1 dans W.

Réduisons nous ensuite au cas où la représentation $\rho : g \to \text{gl}(V)$ est injective. Pour cela, considérons la suite exacte $0 \to V \to W \to k \to 0$. Soit a le noyau de ρ. C’est un idéal de g et donc a est encore semi-simple, ce qui prouve que $[a,a] = a$. On sait que pour tout $X \in g$, $XW \subset V$ (car X agit par 0 dans k). Soit $X \in a = [a,a]$. Ecrivons X sous la forme $X = \sum_{i=1}^n [X_i,Y_i]$ où les X_i et les Y_i sont dans a et on calcule :
\[
Xw = \sum_{i=1}^n X_i(Y_iw) - Y_i(X_iw) = 0
\]
Donc a annule W et la suite devient une suite de g/a-modules. g/a est encore semi-simple et la représentation $g/a \to \text{gl}(V)$ est injective. D’autre part, si on a une droite $D \subset W$ supplémentaire de V et g/a-stable, elle est aussi g-stable.

Finalement, on peut supposer $g \neq 0$, V simple et $\rho : g \to \text{gl}(V)$ injectif. Considérons C l’opérateur de Casimir associé à B_{ρ}. On a alors :
\[
\begin{array}{ccc}
0 & \xrightarrow{C} & V & \xrightarrow{C} & W & \xrightarrow{C=0} & k \\
0 & \xrightarrow{0} & V & \xrightarrow{0} & W & \xrightarrow{0} & k
\end{array}
\]
CHAPITRE 2. ALGÈBRES DE LIE SEMI-SIMPLES COMPLEXES

C : W → W est un endomorphisme et sa restriction à V est inversible par le lemme 2.5.1.8. Son noyau est alors un supplémentaire g-stable de V dans W.

Théorème 2.5.1.11 (Sixième étape). Soit g une algèbre de Lie semi-simple sur un corps k de caractéristique nulle. Alors tout g-module de dimension finie est semi-simple.

Démonstration. Soit 0 → E₁ → EE₂ → 0 une suite exacte de g-modules. On cherche un supplémentaire g-stable de E₁ dans E. Pour trouver un tel supplémentaire, il suffit en fait de trouver f : E → E₁ un morphisme de g-modules tel que f ◦ i = Idₕ₁. En effet, le noyau de f conviendra alors. Pour cela, on considère le diagramme :

\[
\begin{array}{c}
0 & \rightarrow & \text{Hom}_k (E₂, E₁) & \rightarrow & \text{Hom}_k (E, E₁) & \rightarrow & \text{Hom}_k (E₁, E₁) & \rightarrow & 0 \\
0 & \rightarrow & \text{Hom}_k (E₂, E₁) & \rightarrow & W & \rightarrow & k\text{Id}_{E₁} & \rightarrow & 0
\end{array}
\]

où W = \{ f : E → E₁ | f ◦ i = k\text{Id}_{E₁} \}

C’est un diagramme de g-modules. D’après le lemme 2.5.1.10, il existe une droite D ⊂ W g-stable et supplémentaire de Hom₁(E₂, E₁). On choisit alors f ∈ D tel que f ◦ i = Idₕ₁. g = [g, g] agit par 0 sur D donc f est un morphisme de g-modules.

La morale de la démonstration est que les opérateurs de Casimir permettent de séparer la représentation triviale des autres représentations simples de dimension finie de g.

2.5.2 Consequences

Corollaire 2.5.2.1. Soient h une algèbre de Lie de dimension finie sur un corps k algébriquement clos et g un idéal semi-simple de h. Alors il existe un idéal a de h tel que g = h ⊕ a.

Démonstration. Considérons g ⊆ h comme des g-modules (pour la représentation adjointe). Par le théorème de Weyl, il existe a un sous-g-module de h supplémentaire de g. On a alors [g, a] ⊂ g ∩ a = \{0\}. En effet, [g, a] ⊂ g car g est un idéal et [g, a] ⊂ a car a est un sous-g-module. Montrons alors que :

\[a = \{ X ∈ h | ∀ Y ∈ g, [X, Y] = 0 \} \]

On vient de voir la première inclusion. Réciproquement, soit X ∈ h tel que [X, g] = 0. Écrivons X = X’ + A avec X’ ∈ g et A ∈ a. Alors pour tout Y ∈ g, on a 0 = [X, Y] = [X’, Y] + [A, Y] = [X’, Y], ce qui prouve que X’ ∈ g (0) (car z(g) est une idéal abélien de g semi-simple) et X ∈ a.

Finalement a est un idéal en tant qu’annulateur de l’idéal g et a ⊂ h est unique en tant que sous-g-module.

Corollaire 2.5.2.2. Soit g une algèbre de Lie semi-simple sur un corps k de caractéristique nulle. Alors toute dérivation de g est de la forme ad X pour un certain X ∈ g.

Démonstration. Considérons h = Derₕ₁ (g). Le fait que z(g) = 0 prouve que l’on a un morphisme injectif g ⊆ h, X → ad X. Son image est un idéal de h car [D, ad X] = ad D (X). Identifions g à son image dans h. Par le corollaire précédent, il existe a un idéal de h supplémentaire de g. Soit D ∈ a. Alors pour tout X ∈ g, on a ad D (X) = [D, ad X] = 0 et donc D (X) = 0. Ceci prouve que D = 0 puis que a = 0 et démontre le corollaire.

Exemple 2.5.2.3. Prenons g = sl (n, k) et D une dérivation de g. Alors D s’écrit |Z, | pour un unique Z ∈ g. L’existence provient du corollaire précédent. L’unicité provient du fait que ad est injectif (car z(g) = 0).

2.6 Représentations de dimension finie de sl (2, k)

Soit k un corps de caractéristique nulle.

Proposition 2.6.0.1.

Tout sl (2, k)-module de dimension finie est isomorphe à une somme \(\bigoplus_{i=1}^{m} V_{i}^{\oplus n_i} \) où les Vi sont irréductibles et deux à deux non isomorphes. Les ni sont entièrement déterminés par le module.
2.7. SOUS-ALGÈBRES DE CARTAN

Pour tout $m \geq 0$, il existe un $\mathfrak{s}(n,k)$-module simple V de dimension $m + 1$, unique à isomorphisme près. De plus V admet une base (v_0, \ldots, v_m) telle que pour tout i, $Ev_i = i (m - i + 1) v_{i-1}$, $Hv_i = (m - 2i) v_i$ et $Fv_i = v_{i+1}$ avec les conventions $v_{-1} = v_{m+1} = 0$.

Démonstration. Pour le premier résultat, l’existence résulte directement du théorème de Weyl. Pour montrer l’unicité, il suffit de remarquer que:

$$\text{Hom}_g (V_i, V) \cong \text{Hom}_g \left(V_i, \bigoplus_{j=1}^{m} V_j^m \right) \cong \bigoplus_{j=1}^{m} \text{Hom}_g (V_i, V_j)^{n_j}$$

Il résulte alors du lemme de Schur que $n_i = \dim \text{Hom}_g (V_i, V)$.

Montrons la deuxième partie de la proposition. On a déjà vu que l’espace des polynômes homogènes de degré m en les variables X et Y est un module simple de dimension $m + 1$. On en a ainsi l’existence.

Reste à montrer l’unicité et l’existence de la base. Pour cela, on considère V un module simple de dimension $m + 1$. Comme k est algébriquement clos, H admet un vecteur propre. Appelons-le v et notons μ la valeur propre qui lui est associée. On a:

$$HEv = [H,E] v + EHv = (\mu + 2) E v$$

Ainsi pour tout i, E^iv est encore un vecteur propre et il est associé à la valeur propre $\mu + 2i$. Ceci prouve en particulier que l’ensemble des E^iv qui ne sont pas nuls forment une famille libre. Ainsi comme V est de dimension finie, il existe un plus petit entier i_0 tel que $E^{i_0}v = 0$. Notons alors $v_0 = E^{i_0}v$ et appelons λ la valeur propre associée à v_0. On définit alors $v_i = E^i v_0$ de sorte que l’on a $Hv_i = (\lambda - 2i) v_i$ et on considère V' l’espace vectoriel engendré par les v_i. Il est stable par F et H et on montre facilement par récurrence que $Ev_i = i (\lambda - i + 1) v_{i-1}$, ce qui prouve qu’il est aussi stable par E. Ainsi V' est un sous-module non nul de V. Comme V est simple, on obtient $V' = V$ et la famille (v_0, \ldots, v_m) forme bien une base de V et vérifie les relations énoncées.

Pour finir la démonstration, il ne reste plus qu’à voir que $\lambda = m$ mais cela résulte des deux égalités suivantes :

$$\text{Tr} (\rho (H)) = \text{Tr} (|\rho (E), \rho (F)|) = 0$$

$$\text{Tr} (\rho (H)) = \sum_{i=0}^{m} (\lambda - 2i) = (m + 1) \lambda - 2 : \frac{m (m + 1)}{2} = (m + 1) (\lambda - m)$$

$\sqrt{\text{Remarque 2.6.0.2.} \quad \text{Notons que les sous-espaces propres } k v_i \text{ sont les droites propres de } H \text{ agissant sur } V.}$

$\text{Remarque 2.6.0.3.} \quad \text{Si } V \text{ est un } \mathfrak{s}(2,k)\text{-module simple, on voit que } V \text{ est déterminé à isomorphisme près par } \dim V. \text{ En particulier les valeurs propres de } H \text{ agissant dans } V \text{ sont déterminées par } \dim V = m + 1 \text{ et :} \quad \sigma (\rho (H)) = \{-m, -m + 2, \ldots, m\} \subset \mathbb{Z}$

2.7 Sous-algèbres de Cartan

Dans ce paragraphe, on prend $k = \mathbb{C}$.

Si $\mathfrak{g} = \mathfrak{s}(n, \mathbb{C})$, une sous-algèbre de Cartan de \mathfrak{g} est une sous-algèbre conjuguée (pour un $g \in SL (n, \mathbb{C})$) à la sous-algèbre des matrices diagonales $D (n, \mathbb{C})$.

Le but de ce paragraphe est de généraliser la notion de sous-algèbres de Cartan à une algèbre de Lie semi-simple quelconque et de montrer leur existence et leur unicité à conjugaison près.
2.7.1 Éléments réguliers

Définition 2.7.1.1. Soit \(g \) une algèbre de Lie de dimension finie. Pour \(X \in g \), on note \(P_X(T) = \det(T - \text{ad}X) \).

Supposons que \(\dim g = n \) et que \((X_1, \ldots, X_n) \) soit une base de \(g \). Alors si \(X = x_1X_1 + \ldots + x_nX_n \), on a \(P_X(T) = \det(T - x_1\text{ad}X_1 - \ldots - x_n\text{ad}X_n) \). Les coefficients de cette matrice sont les polynômes homogènes de degré 1 en les variables \(T, X_1, \ldots, X_n \). Donc \(P_X(T) \) est un polynôme homogène de degré \(n \) en les variables \(T, X_1, \ldots, X_n \). Donc si on écrit :

\[
P_X(T) = \sum_{i=1}^{n} a_i(X) T^i
\]

les \(a_i(X) \) sont des polynômes homogènes de degré \(n - i \) en les variables \(X_1, \ldots, X_n \).

Définition 2.7.1.2. Le rang de \(g \) est le plus petit entier \(l \) tel que \(a_l \) ne soit pas le polynôme nul. Un élément \(X \in g \) est dit régulier si \(a_l(X) \neq 0 \).

Remarque 2.7.1.3.

1. On a \(a_n = 1 \) et donc \(l \leq n \).
2. On a \(l = n \) si et seulement si \(P_X(T) = T^n \) si et seulement si \(\text{ad}X \) est nilpotent pour tout \(X \in g \) si et seulement si \(g \) est nilpotente.
3. Si \(g \neq 0 \), on a \(a_0(X) = 0 \) car pour tout \(X \), \(\text{ad}X \) n’est pas inversible. Ainsi \(l \geq 1 \).

Remarque 2.7.1.4. Soit \(X \in g \). On considère \(g_X^0 = \{ Y \in g \mid \exists n, (\text{ad}X)^n(Y) = 0 \} \) l’espace caractéristique pour la valeur propre 0. Alors \(P_X(T) = T^{\dim g_X^0} Q_X(T) \) avec \(Q_X(0) \neq 0 \) et \(X \) est régulier si et seulement si \(\dim g_X^0 = \min_{Y \in g} \dim g_Y^0 \).

Exemple 2.7.1.5. Soient \(g = sl(n, \mathbb{C}) \) et \(X \in g \). On appelle \(\lambda_1, \ldots, \lambda_n \) les valeurs propres de \(X \). On sait alors que les valeurs propres de \(\text{ad}X \) dans \(gl(n, \mathbb{C}) \) sont les \(\lambda_1 - \lambda_j \). D’autre part, on a \(gl(n, \mathbb{C}) = sl(n, \mathbb{C}) \oplus \mathbb{C} I_n \) et \(I_n \) est vecteur propre de \(\text{ad}X \) pour la valeur propre 0. Donc les valeurs propres de \(\text{ad}X \) agissant dans \(sl(n, \mathbb{C}) \) sont 0 (comptée \(n - 1 \) fois) et les \(\lambda_1 - \lambda_j \), d’où :

\[
P_X(T) = T^{n-1} \prod_{i,j} (T - \lambda_i + \lambda_j)
\]

et le rang de \(sl(n, \mathbb{C}) \) est \(n - 1 \).

Proposition 2.7.1.6. L’ensemble \(g_r \) des éléments réguliers de \(g \) est un ouvert dense et connexe de \(g \).

Démonstration. Posons \(V = g - g_r \). \(V \) est l’ensemble des zéros du polynôme \(a_l \) et donc il est fermé et \(g_r \) est ouvert. D’autre part si \(V \) était d’intérieur non vide, \(a_l \) s’anulerait sur un ouvert et serait donc nul, ce qui est faux. Ainsi \(g_r \) est bien dense.

Montrons que \(g_r \) est connexe par arcs. Soient \(X \) et \(Y \) deux éléments de \(g_r \), et soit \(D \) la droite complexe passant par \(X \) et \(Y \). Alors \(g_r \cap D \) est un plan réel privé d’un nombre fini de points et est donc connexe par arcs.

2.7.2 La sous-algèbre de Cartan associée à un élément régulier

Prenons \(g = sl(n, \mathbb{C}) \) et considérons \(X \in g \) un élément régulier. La sous-algèbre de Cartan associée à \(X \) est \(z = \{ Y \in g \mid [X,Y] = 0 \} \). Soit alors \(g \in SL(n, \mathbb{C}) \) tel que \(gXg^{-1} \) soit diagonale. Alors \(gZg^{-1} = D(n, \mathbb{C}) \).

Définition 2.7.2.1. Soit \(g \) une algèbre de Lie de dimension finie sur \(\mathbb{C} \). Soient \(X \in g \) et \(\lambda \in \mathbb{C} \). On définit alors l’espace caractéristique associée à \(\lambda \) :

\[
g_X^\lambda = \{ Y \in g \mid \exists n \ (\text{ad}X - \lambda)^n(Y) = 0 \}
\]

Remarque 2.7.2.2. On a la décomposition \(g = \bigoplus_{\lambda \in \mathbb{C}} g_X^\lambda \).

** Proposition 2.7.2.3.** Pour \(\lambda \) et \(\mu \) complexes, on a \([g_X^\lambda, g_X^\mu] = g_X^{\lambda+\mu} \). En particulier, \(g_X^0 \) est une sous-algèbre de Lie de \(g \).
2.7. **SOUS-ALGÈBRES DE CARTAN**

Démonstration. On montre par récurrence que :

$$(\text{ad}X - \lambda - \mu)^n [Y, Z] = \sum_{i=0}^{n} [(\text{ad}X - \lambda)^i Y, (\text{ad}X - \mu)^{n-i} Z]$$

\square

Définition 2.7.2.4. Une sous-algèbre de Cartan de \mathfrak{g} est une sous-algèbre \mathfrak{h} de \mathfrak{g} nilpotente et égale à son normalisateur :

$$n_{\mathfrak{g}}(\mathfrak{h}) = \{ Y \in \mathfrak{g} \mid \forall X \in \mathfrak{h}, [X, Y] \in \mathfrak{h} \}$$

Théorème 2.7.2.5 (existence des sous-algèbres de Cartan). Soit \mathfrak{g} une algèbre de Lie. Si $X \in \mathfrak{g}$ est régulier, alors \mathfrak{g}_X^0 est une sous-algèbre de Cartan. Sa dimension est égale au rang de \mathfrak{g}.

Démonstration. Montrons que $\text{ad}Y : \mathfrak{g}_X^0 \rightarrow \mathfrak{g}_X^0$ est nilpotent pour tout $Y \in \mathfrak{g}_X^0$. Pour cela on regarde la suite exacte de \mathfrak{g}_X^0-modules (pour ad suivante) :

$$0 \rightarrow \mathfrak{g}_X^0 \rightarrow \mathfrak{g} \rightarrow \mathfrak{g}/\mathfrak{g}_X^0 \rightarrow 0$$

Pour $Y \in \mathfrak{g}_X^0$, notons $\text{ad}^1 Y = \text{ad} Y : \mathfrak{g}_X^0 \rightarrow \mathfrak{g}_X^0$ et ad^2 l’endomorphisme de $\mathfrak{g}/\mathfrak{g}_X^0$ induit par $\text{ad} Y$. On considère ensuite $U = \{ Y \in \mathfrak{g}_X^0 \mid \text{ad}^1 Y n’est pas nilpotent \}$ et $V = \{ Y \in \mathfrak{g}_X^0 \mid \text{ad}^2 Y est inversible \}$. L’ensemble V est non vide (car il contient X). Il est ouvert (car défini par la non-annulation de $\text{det} (\text{ad}^2 Y)$) et dense. L’ensemble U est ouvert. Donc si U était non vide, il intersectorait V. Supposons que ce soit le cas et notons Y un point de l’intersection. On a alors immédiatement une contradiction car dans ces conditions $\mathfrak{g}_Y^0 \subsetneq \mathfrak{g}_X^0$.

Soit $Z \in n_{\mathfrak{g}}(\mathfrak{g}_X^0)$. Alors comme $X \in \mathfrak{g}_X^0$, $[Z, X] \in \mathfrak{g}_X^0$, et donc $(\text{ad}X)^n [Z, X] = 0$ pour un certain n d’où $(\text{ad}X)^{n+1} Z = 0$ et $Z \in \mathfrak{g}_X^0$.

\square

Remarque 2.7.2.6. On verra plus tard que tout algèbre de Cartan est de cette forme.

2.7.3 Unicité à conjugaison près

Soit $k = \mathbb{C}$ et \mathfrak{g} une algèbre de Lie sur k.

Définition 2.7.3.1. On note G l’ensemble des automorphismes intérieurs de G défini comme étant la sous-groupe de $\text{Aut}_k (\mathfrak{g})$ qui correspond à la sous-algèbre $\text{ad} \mathfrak{g} \subset \text{Der}_k (G)$. C’est aussi le sous-groupe de $\text{Aut}_k (\mathfrak{g})$ engendré par les $e^{\text{ad}X}$ pour $X \in \mathfrak{g}$.

Théorème 2.7.3.2. Toute sous-algèbre de Cartan de \mathfrak{g} est de la forme \mathfrak{g}_X^0 pour un certain élément régulier $X \in \mathfrak{g}$. En particulier, sa dimension vaut le rang de \mathfrak{g}.

Démonstration. Soit \mathfrak{h} une sous-algèbre de Cartan de \mathfrak{g}. Nous allons trouver un élément régulier dans \mathfrak{h}. Pour cela considérons la suite exacte de \mathfrak{h}-module, via la représentation adjointe :

$$0 \rightarrow \mathfrak{h} \rightarrow \mathfrak{g} \rightarrow \mathfrak{g}/\mathfrak{h} \rightarrow 0$$

Pour $Y \in \mathfrak{h}$, notons $\text{ad}^1 Y = \text{ad} Y : \mathfrak{h} \rightarrow \mathfrak{h}$ et $\text{ad}^2 Y$ l’endomorphisme de $\mathfrak{g}/\mathfrak{h}$ induit par $\text{ad} Y$.

Lemme 2.7.3.3. Soit $V = \{ Y \in \mathfrak{h} \mid \text{ad}^2 Y est inversible \}$. Alors V n’est pas vide.

Démonstration. Appliquons le théorème de Lie au \mathfrak{h}-module $\mathfrak{g}/\mathfrak{h}$. On obtient une base de $\mathfrak{g}/\mathfrak{h}$ par rapport à laquelle les matrices des applications $\text{ad}^2 X$, pour $X \in \mathfrak{h}$ sont triangulaires supérieures :

$\text{ad}^2 X : \begin{pmatrix} \alpha_1 (X) & \ast & \cdots & \ast \\ 0 & \cdots & \cdots & \alpha_m (X) \end{pmatrix}$

Comme l’application ad^2 est linéaire, les α_i sont des formes linéaires sur \mathfrak{h}. Il s’agit de montrer qu’aucune des ces formes linéaires n’est identiquement nulle. Supposons que ce ne soit pas le cas. Il existe alors un K compris entre 1
et m tel que $a_1 \neq 0, \ldots, a_{K-1} \neq 0$ et $a_K \equiv 0$. Appelons D_i, le sous-espace vectoriel de g/h engendré par les premiers vecteurs de la base. Soient $X_0 \in h$ tel que $a_1 (X_0) \neq 0, \ldots, a_{K-1} (X_0) \neq 0$ et $D \subset D_K$ l’espace caractéristique pour la valeur propre 0 de $\operatorname{ad}X_0$ agissant dans D_K. Notons que D est une droite qui est en somme directe avec D_{K-1}. Soit Z une base de D. Remarquons que pour tout $X \in h$, on a $(\operatorname{ad}^2 X) (Z) \in D_{K-1}$. On a d’autre part la relation suivante que l’on vérifie aisément par récurrence :

$$X_0^n (XZ) = \sum_{p=0}^{n} C_n^p (\operatorname{ad}X_0)^p X (X_0^{n-p} Z)$$

Or comme h est nilpotente, $(\operatorname{ad}X_0)^p X$ s’annule pour p suffisamment grand et comme $Z \in D$, $X_0^{n-p} Z$ s’annule pour $n-p$ suffisamment grand. On en déduit que $X_0^n (XZ)$ s’annule pour n suffisamment grand et donc que $(\operatorname{ad}^2 X) (Z) \in D$. Finalement, $(\operatorname{ad}^2 X) (Z) = 0$.

On considère alors $\tilde{Z} \in g$ un représentant de $Z \in g/h$. Alors $[X, Z] \in h$ pour tout $X \in h$ mais $\tilde{Z} \notin h$. Ainsi $Z \in u_g (h) - h$, ce qui contredit le fait que h est un algèbre de Cartan.

\textbf{Lemma 2.7.3.4.} Soit $W = G.V = \bigcup_{g \in G} g.V$. Alors W est ouvert dans g.

\textbf{Démonstration.} Il s’agit de montrer que $G \times V \to g$ est ouverte. Pour cela, il suffit de voir qu’il s’agit d’une submersion (le son application tangente est surjective en chaque point de $G \times V$). Par translation, il suffit de prouver la surjectivité en (e, x) pour $X \in V$.

Comme V est un ouvert non vide de h, $T_X V \sim h$. Par définition de G, $T_g G = \operatorname{ad} g$. Soit donc $(\operatorname{ad} Y, H) \in T_{(e, x)} G \times V$. Alors :

$$e^{\operatorname{ad} Y} (X + t H) = X + t H + t (\operatorname{ad} Y) (X) + O (t^2)$$

Ainsi l’application tangente s’identifie à $(\operatorname{ad} Y, H) \mapsto H + [Y, X]$. L’image de cette application contient h et sa composition avec la projection $g \to g/h$ est surjective car ad^2 est surjective.

Finalement l’image est bien égale à g.

Par les lemmes précédents, W est un ouvert non vide de g. Ainsi il existe g_ϵ, l’ensemble des éléments réguliers. D’autre part, si $g.x (g \in G, X \in g)$ est régulier alors X est régulier. Donc V contient au moins un élément régulier, disons X. On a alors $\operatorname{ad} X$ nilpotent d’où $h \subset g_\epsilon^0$ et $\operatorname{ad}^2 X$ bijectif d’où $g_\epsilon^{2} \subset h$.

\textbf{Théorème 2.7.3.5.} Le groupe G agit transitivement sur l’ensemble des sous-algèbres de Cartan de g.

\textbf{Démonstration.} Par le théorème précédent, il suffit de montrer que $g_\epsilon^0_X$ et $g_\epsilon^0_Y$ sont conjugués pour tous X et Y réguliers. Par la suite, nous dirons que X et Y sont équivalents, et nous noterons $X \sim Y$, si $g_\epsilon^0_X$ et $g_\epsilon^0_Y$ sont conjugués. Nous allons montrer que les classes d’équivalence pour cette relation sont ouvertes dans g. Comme étant une partition de g, qui est connexe, il s’en suit que X est équivalent à une seule classe d’équivalence. Soit donc $X \in g$. Il s’agit de montrer que tout élément Y suffisamment proche de X lui est équivalent. Prenons $h = g_\epsilon^0_X$ et $V = g_\epsilon^0_X \cap h$, et appliquons le lemme 2.7.3.4. $G.V$ contient alors un voisinage de X. Donc tout élément $Y \in g$, suffisamment proche de X est de la forme $Y = g.X'$ pour un certain $g \in G$ et un certain $X' \in V$. On obtient alors $g_\epsilon^0_Y = g.g_\epsilon^0_X = g_\epsilon^0_X = y$. Donc X est bien équivalent à X.

\textbf{Remarque 2.7.3.6.} Le théorème d’unicité à conjugaison près reste vrai en remplaçant G par le groupe engendré par les $e^{\operatorname{ad} X}$ où $X \in g$ et $\operatorname{ad} X$ est nilpotent. Sous cette forme, le théorème se généralise à des algèbres de Lie sur tout corps k algébriquement clos et de caractéristique nulle.

2.7.4 Décomposition de Jordan dans les algèbres semi-simples

\textbf{Exemple 2.7.4.1.} Soit $g = s_0 (n, \mathbb{C})$. Si $X \in g$ et $X = S + N$ est la décomposition de Jordan de X, alors on constate que S et N sont dans g.

Soit k un corps commutatif algébriquement clos et de caractéristique nulle.

\textbf{Lemme 2.7.4.2.} Soit A une algèbre de dimension finie sur k. Soit $u = s + n$ la décomposition de Jordan d’un endomorphisme $u : A \to A$. On suppose que u est une dérivation. Alors s et n en sont aussi.
2.7. SOUS-ALGÈBRES DE CARTAN

Démonstration. Soit \(A = \bigoplus_{\lambda \in \Lambda} A^\lambda_u \) la décomposition en somme d’espaces caractéristiques pour \(u \). Alors on a \(A^\lambda_u A^\nu_u \subset A^{\lambda+\nu}_u \). En effet, il suffit de vérifier par récurrence que, pour \(a \) et \(b \) dans \(A \), on a:

\[
(u - \lambda - \mu) (ab) = \sum_{p=0}^{n} C^n_p (u - \lambda)^p (a) (u - \mu)^{n-p} (b)
\]

Il s’agit de vérifier que pour \(a \) et \(b \) dans \(A \), on a \(s(ab) = s(a)bas(b) \). Comme les deux côtés sont bilinéaires en \((a, b)\), on peut supposer que \(a \in A^\lambda_u \) et \(b \in A^\nu_u \). Mais c’est alors clair car \(s(a) = \lambda a \), \(s(b) = \mu b \) et \(s(ab) = (\lambda + \mu)ab \).

Finalement \(n \) est une dérivation comme différence de deux dérivation.

Dénition 2.7.4.3. Soit \(g \) une algèbre de Lie semi-simple. Un élément \(X \in g \) est dit semi-simple (resp. nilpotent) si \(\text{ad} X \) est semi-simple (resp. nilpotent).

On dit que \(X = S + N \) est une décomposition de Jordan de \(X \in g \) si \(\text{ad} X = \text{ad} S + \text{ad} N \) est la décomposition de Jordan de \(\text{ad} X \).

Proposition 2.7.4.4. Soit \(g \) une algèbre de Lie semi-simple. Alors tout \(X \in g \) admet une unique décomposition de Jordan.

Démonstration. Comme \(g \) est semi-simple, le morphisme \(\text{ad} : g \to \operatorname{Der}_k(g) \) est un isomorphisme. On conclut alors par le lemme précédent.

Proposition 2.7.4.5. Soit \(g \) une algèbre de Lie semi-simple et \(\rho : g \to \mathfrak{gl}(V) \) une représentation de \(g \). Si \(X \in g \) est semi-simple (resp. nilpotent) alors \(\rho(X) \) est semi-simple (resp. nilpotent).

Démonstration.

Lemma 2.7.4.6. On suppose tout d’abord que \(g \subset \mathfrak{gl}(V) \) (le que \(\rho \) est injective). Alors \(g \) contient les parties semi-simples et nilpotentes (calculées dans \(\operatorname{End}_k(V) \) de chacun de ses éléments.

Démonstration. On considère \(V \) l’ensemble des sous-\(g \)-modules de \(V \). Pour \(W \in V \), on pose:

\[
g_W = \{ X \in \mathfrak{gl}(V) \mid XW \subset W \text{ et } \operatorname{Tr}(X : W \to W) = 0 \}
\]

Posons également \(n = n_{\mathfrak{gl}(V)}(g) \) et \(g_* = n \cap (\bigcap_{W \in V} g_W) \). Montrons que \(g = g_* \). On a déjà \(g \subset g_* \) car \(gW \subset W \) pour tout \(W \in V \) et pour tout \(X \in g \), \(\operatorname{Tr}(X : W \to W) = 0 \) car \(g \) est \(g \)-stable. Réciproquement, si \(g \) est un idéal semi-simple dans \(g_* \), il existe un idéal \(a \) de \(g \) tel que \(g_* = g \oplus a \). En particulier \([g, a] \subset g \cap a = \{0\} \). Soient alors \(a \in a \) et \(W \) un sous-\(g \)-module simple de \(V \). Comme \([g, a] = 0 \), \(A \) est un endomorphisme de \(W \). Par le lemme de Schur, \(A_{1W} = \lambda d_W \) pour un certain \(\lambda \in k \). Comme \(\operatorname{Tr}(A : W \to W) = 0 \), on obtient \(\lambda = 0 \). Comme \(V \) est somme directe de sous-\(g \)-modules simples, \(A \) agit par 0 dans \(V \) et donc \(A = 0 \).

Montrons maintenant que \(g_* \) contient les parties semi-simples et nilpotentes de chacun de ses éléments. Pour cela, considérons \(X \in g_* \) et notons \(X = S + N \) sa décomposition de Jordan. On sait que \(S \) et \(N \) sont des polynômes sans terme constant en \(X \). Ainsi ils laissent invariants chaque \(W \in V \). D’autre part \(\operatorname{Tr}(N : W \to W) = 0 \) car \(N \) est nilpotent et puis \(\operatorname{Tr}(S : W \to W) = 0 \).

Lemma 2.7.4.7. On suppose encore que \(g \subset \mathfrak{gl}(V) \). Soient \(X \in g \) et \(X = S + N \) la décomposition de Jordan de \(X \) en tant qu’endomorphisme de \(V \). Alors \(X = S + N \) est encore la décomposition de Jordan de \(X \) en tant qu’élément de \(g \).

Démonstration. Par le lemme précédent, \(S \) et \(N \) appartiennent à \(g \). On sait aussi que \(\text{ad}_{\mathfrak{gl}(V)}(X) = \text{ad}_{\mathfrak{gl}(V)}(S) + \text{ad}_{\mathfrak{gl}(V)}(N) \) est la décomposition de Jordan de \(\text{ad}_{\mathfrak{gl}(V)}(X) \) dans \(\text{End}(\mathfrak{gl}(V)) \). Or la décomposition de Jordan est préservée par le passage à un sous-espace stable et \(g \subset \mathfrak{gl}(V) \) est stable par les trois opérateurs.

Pour le cas général (\(\rho \) n’est plus fortement injective), on pose \(g' = g/\ker \rho \). Alors \(g' \) est encore semi-simple. Soit \(X \in g \). Notons \(X = S + N \) sa décomposition de Jordan dans \(g \). Alors \(\text{ad}_g(X) = \text{ad}_g(S) + \text{ad}_g(N) \) est la décomposition de Jordan de \(\text{ad}_g(X) \) dans \(\mathfrak{gl}(g) \). On en déduit que \(\text{ad}_g(X) = \text{ad}_g(S) + \text{ad}_g(N) = \text{ad}_{g'}(X) \) dans \(\mathfrak{gl}(g') \). Et \(\pi(X) = \pi(S) + \pi(N) \) est la décomposition de Jordan de \(\pi(X) \) dans \(g' \) (où \(\pi \) désigne la projection \(g \to g' \)). On conclut alors par le lemme précédent.
2.7.5 Propriétés des sous-algèbres de Cartan dans les algèbres semi-simples

On prend désormais $k = \mathbb{C}$.

Proposition 2.7.5.1. Soit \mathfrak{h} une sous-algèbre de Cartan d’une algèbre semi-simple \mathfrak{g}. Alors :

1. \mathfrak{h} est abélienne.
2. \mathfrak{h} est égale à son centralisateur $c_{\mathfrak{g}}(\mathfrak{h}) = \{X \in \mathfrak{g} \mid \forall H \in \mathfrak{h}, [X, H] = 0\}$.
3. Tout élément de \mathfrak{h} est semi-simple.
4. La restriction de la forme de Killing $K_{\mathfrak{g}}$ à $\mathfrak{h} \times \mathfrak{h}$ est non dégénérée.

Démonstration. Commençons par démontrer le dernier point. Soit $X \in \mathfrak{g}$ un élément régulier tel que $\mathfrak{h} = \mathfrak{g}_{X}^0$. On a alors la décomposition :

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\lambda \in \mathbb{C}^*} \mathfrak{g}_{X}^{-\lambda}$$

Montrons que si $\lambda + \mu \neq 0$, alors $\mathfrak{g}_{X}^{\lambda}$ et \mathfrak{g}_{X}^{μ} sont orthogonaux pour $K_{\mathfrak{g}}$. Pour cela, il faut se rappeler que pour tous α et β complexes, on a $[\mathfrak{g}_{X}^{\alpha}, \mathfrak{g}_{X}^{\beta}] \subseteq \mathfrak{g}_{X}^{\alpha + \beta}$ et donc si $Y \in \mathfrak{g}_{X}^{\alpha}$ et $Z \in \mathfrak{g}_{X}^{\mu}$, on a pour tout $n \geq 1$:

$$(\text{ad}Y \text{ad}Z)^n(\mathfrak{g}_{X}^{\alpha}) \subseteq \mathfrak{g}_{X}^{\alpha + n(\lambda + \mu)}$$

Or si $\lambda + \mu \neq 0$, on a pour n suffisamment grand $\mathfrak{g}_{X}^{\alpha + n(\lambda + \mu)} = 0$ et donc $(\text{ad}Y \text{ad}Z)$ est nilpotent, ce qui prouve que $K_{\mathfrak{g}}(Y, Z) = \text{Tr}(\text{ad}Y \text{ad}Z) = 0$.

On en déduit que la décomposition suivante est orthogonale :

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\lambda \in \mathbb{C}^*} \mathfrak{g}_{X}^{\lambda} \oplus \mathfrak{g}_{X}^{-\lambda}$$

Comme \mathfrak{g} est semi-simple, $K_{\mathfrak{g}}$ est non dégénéré sur \mathfrak{g} et donc sa restriction à chacun des deux facteurs est non dégénérée.

Pour le 1), il s’agit de montrer que $[\mathfrak{h}, \mathfrak{h}] = 0$. Montrons que $\mathfrak{h} \perp [\mathfrak{h}, \mathfrak{h}]$, c’est-à-dire que $\text{Tr}(\text{ad}_{\mathfrak{g}} \text{ad}_{\mathfrak{g}} Y) = 0$, pour $X \in \mathfrak{h}$ et $Y \in [\mathfrak{h}, \mathfrak{h}]$, mais cela découle directement du théorème de Lie appliqué à la représentation adjointe $\mathfrak{h} \to \mathfrak{gl}(\mathfrak{g})$ de l’algèbre de Lie résoluble \mathfrak{h}.

Pour le 2), on remarque que l’on a $\mathfrak{h} \subseteq c_{\mathfrak{g}}(\mathfrak{h}) \subset n_{\mathfrak{g}} \mathfrak{h} = \mathfrak{h}$.

Pour le 3), considérons $H \in \mathfrak{h}$ et $H = S + N$ sa décomposition de Jordan dans \mathfrak{g}. Alors N commute à tous les éléments de \mathfrak{g} qui commutent à H et donc $N \in c_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{h}$. D’autre part montrons que N est orthogonal à \mathfrak{h}, ce qui permettra de conclure. Pour cela, on remarque que pour $X \in \mathfrak{h}$, on a $[X, N] = 0$ donc $[\text{ad}X, \text{ad}N] = 0$. Ainsi $\text{ad}X \text{ad}N$ est nilpotent et $K_{\mathfrak{g}}(X, N) = 0$.

Corollaire 2.7.5.2. \mathfrak{h} est une sous-algèbre abélienne maximale de \mathfrak{g}.

Corollaire 2.7.5.3. Tout élément régulier de \mathfrak{g} est semi-simple.

Exemple 2.7.5.4. Prenons $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$ et $\mathfrak{h} = D(n, \mathbb{C})$. On retrouve alors tout.

2.7.6 Le système de racines associé à un algèbre de Lie semi-simple

On prend toujours $k = \mathbb{C}$ et on considère \mathfrak{g} une algèbre de Lie semi-simple sur \mathbb{C}. Soit \mathfrak{h} une sous-algèbre de Cartan de \mathfrak{g}. On note finalement $\mathfrak{h}^* = \text{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$.

Définition 2.7.6.1. Pour $\alpha \in \mathfrak{h}^*$, on appelle espace de poids α et on note :

$$\mathfrak{g}^\alpha = \{X \in \mathfrak{g} \mid \forall H \in \mathfrak{h}, [X, H] = \alpha(H) X\}$$

Remarque 2.7.6.2. On a $\mathfrak{g}^0 = c_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{h}$.
2.8. SYSTÈMES DE RACINES (ABSTRAIT) (HOULÀ, ÇA VA ÊTRE DUR ALORS)

Définition 2.7.6.3. Une forme $\alpha \in h^*$ non nulle est une racine de g par rapport à h si $g^\alpha \neq 0$. On note $R = R(g, h)$ l’ensemble des racines. Le couple (h^*, R) s’appelle le système de racines (complexes) associé à g.

Remarque 2.7.6.4. Le système de racines n’est pas canoniquement associé à g, il faut choisir une sous-algèbre de Cartan h.

Théorème 2.7.6.5. On a la décomposition $g = h \oplus \bigoplus_{\alpha \in R} g^\alpha$.

Démonstration. On sait que les $\text{ad} H$, $H \in h$, sont semi-simples et commutent entre eux. Ils sont donc simultanément diagonalisables, ce qui prouve le théorème.

Proposition 2.7.6.6. Supposons g semi-simple et $h \subset g$ une sous-algèbre abélienne formée d’éléments semi-simples et telle que :

$$g = h \oplus \bigoplus_{\alpha \in R} g^\alpha$$

Alors h est une sous-algèbre de Cartan.

Démonstration. Supposons que $X \in g$ normalise h. Écrivons $X = X_h + \sum_{\alpha \in R} X_\alpha$ où $X_h \in h$ et $X_\alpha \in g^\alpha$. Alors pour tout $H \in h$, on a $[H, X] = 0 + \sum_{\alpha \in R} \alpha(H) X_\alpha \in h$. Ainsi $\alpha(H) X_\alpha = 0$ pour tout $H \in h$ et tout $\alpha \in R$. Ceci prouve que $X_\alpha = 0$ pour tout $\alpha \in R$ et puis que $X = X_h \in h$.

C’est pratique. Par exemple, prenons $g = \mathfrak{sl}(n, \mathbb{C})$ et $h = D(n, \mathbb{C}) \cap g$. On sait que si $H = D(\lambda_1, \ldots, \lambda_n)$, le polynôme caractéristique de $\text{ad} H$ est :

$$\det(T - \text{ad} H) = T^{n-1} \prod_{i \neq j} (T - (\lambda_i - \lambda_j))$$

Les racines de g par rapport à h sont les formes linéaires $\alpha_{ij} = \varepsilon_i - \varepsilon_j$ pour $i \neq j$ où $\varepsilon_i : h \to \mathbb{C}$, $D(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_i$. L’espace de poids $g^{\alpha_{ij}}$ est $\mathbb{C}E_{ij}$. En effet, $H = D(\lambda_1, \ldots, \lambda_n)$ agit sur E_{ij} par $\lambda_i - \lambda_j$, ce qui prouve que $\mathbb{C}E_{ij} \subset g^{\alpha_{ij}}$. D’autre part, on a $h \oplus \bigoplus_{i \neq j} \mathbb{C}E_{ij} = g$ d’où l’autre inclusion.

En particulier, pour $n = 2$, on trouve $R = \{\pm \alpha_{12}\}$ où $\alpha_{12} : D(\lambda_1, -\lambda_1) \mapsto 2\lambda_1$.

Pour $n = 3$, on trouve $R = \{\pm (\varepsilon_1 - \varepsilon_2), \pm (\varepsilon_2 - \varepsilon_3), \pm (\varepsilon_1 - \varepsilon_3)\} \subset h^*$.

Regardons maintenant $g = \mathfrak{so}(n, \mathbb{C})$. Notons que g est alors en bijection avec les matrices anti-symétriques. Posons $h = D(n, \mathbb{C}) \cap g$. Nous allons montrer que h est une sous-algèbre de Cartan et calculer son système de racines.

<zap>

2.8 Systèmes de racines (abstrait) (houlà, ça va être dur alors)

2.8.1 Symétries

Soient $k = \mathbb{R}$ et V un espace vectoriel de dimension finie sur \mathbb{R}.

Définition 2.8.1.1. Soit $\alpha \in V$, $\alpha \neq 0$. Une symétrie par rapport à α est un automorphisme $s : V \to V$ tel que $s(\alpha) = -\alpha$ et l’ensemble des points fixes de s est un hyperplan H de V.

Remarque 2.8.1.2.

2. Soit $V^\alpha = \text{Hom}_R(V, V)$ et $\alpha^* \in V^\alpha$ tel que $\alpha^*_H = 0$ et $\alpha^*(\alpha) = 2$. Alors pour tout $v \in V$, $s(v) = v - \alpha^*(v)\alpha$.

Via l’isomorphisme, $\text{End}_R(V) \tilde{\to} V \otimes V^\alpha$, on peut aussi noter $s = \text{Id}_V - \alpha \otimes \alpha^\alpha$. Réciproquement, si $\alpha \in V$ et $\alpha^* \in V^\alpha$ sont tels que $\alpha^*(\alpha) = 2$, alors la formule précédente définit une symétrie par rapport à α.

Lemme 2.8.1.3. Soient $\alpha \in V$, $\alpha \neq 0$ et $R \subset V$ une partie finie qui engendre V. Alors il existe au plus une symétrie s par rapport à α telle que $s(R) \subset R$.

Démonstration. Supposons que s_1 et s_2 soient deux telles symétries. L'endomorphisme s_1s_2 induit donc une permutation des éléments de R. Comme R est fini, il existe un entier N tel que $(s_1s_2)^N = \text{Id}_V$. Ainsi s_1s_2 est diagonalisable. D'autre part, on a $s_1s_2(\alpha) = \alpha$ et s_1s_2 induit l'identité dans $V/\mathbb{R}\alpha$. Ainsi toutes les valeurs propres de s_1s_2 sont égales à 1 et $s_1 = s_2$.

2.9 Le système de racines associé à une algèbre de Lie semi-simple complexe

2.10 Suite de l'étude des systèmes de racines

Soit V un \mathbb{R}-espace vectoriel de dimension finie. Soit R un système de racines de V et (\cdot, \cdot) un produit scalaire W-invariant.

2.10.1 Position relatives de deux racines

Soient α et β deux racines. On pose $n(\alpha, \beta) = \alpha^* (\beta) = 2 \frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$. On définit également $|\alpha| = \sqrt{\langle \alpha, \alpha \rangle}$. Notons φ l'angle entre α et β. On a alors $n(\alpha, \beta) = |\alpha||\beta| \cos \varphi$, d'où :

$$n(\beta, \alpha) = 2 \frac{|\beta|}{|\alpha|} \cos \varphi$$

et

$$n(\beta, \alpha)n(\alpha, \beta) = 4 \cos^2 \varphi \in \mathbb{Z}$$

Ainsi les seules valeurs possibles pour $\cos^2 \varphi$ sont 0, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$ et 1. Dans le dernier cas, α et β sont proportionnels.

Supposons que α et β ne sont pas proportionnels. Alors, quitte à échanger α et β, on n'a que les sept possibilités suivantes :

| $4 \cos^2 \varphi$ | $n(\alpha, \beta)$ | $n(\beta, \alpha)$ | φ | $\frac{|\beta|}{|\alpha|}$ |
|------------------|------------------|------------------|---------|------------------|
| 0 | 0 | 0 | $\frac{\pi}{2}$ | ? |
| 1 | 1 | 1 | $\frac{\pi}{4}$ | 1 |
| 1 | -1 | -1 | $\frac{3\pi}{4}$ | 1 |
| 2 | 1 | 2 | $\frac{\pi}{2}$ | $\sqrt{2}$ |
| 2 | -1 | -2 | $\frac{3\pi}{4}$ | $\sqrt{2}$ |
| 3 | 1 | 3 | $\frac{\pi}{3}$ | $\sqrt{3}$ |
| 3 | -1 | -3 | $\frac{2\pi}{3}$ | $\sqrt{3}$ |

Notons que φ détermine l'ensemble $\{n(\alpha, \beta), n(\beta, \alpha)\}$ et que si $\varphi \neq \frac{\pi}{2}$, il détermine aussi l'ensemble $\left\{\frac{|\alpha|}{|\beta|}, \frac{|\beta|}{|\alpha|}\right\}$.

Remarque 2.10.1. Toutes ces possibilités apparaissent effectivement. Pour s'en convaincre, il suffit de voir la liste des exemples de systèmes de dimension 2). Le tableau permet aussi de prouver que cette liste est en fait exhaustive.

Proposition 2.10.1.2. Si α et β sont deux racines et que $n(\alpha, \beta) > 0$ (ie φ est un angle aigu), alors $\alpha - \beta$ est encore une racine.

Démonstration. D'après le tableau, on doit avoir $n(\alpha, \beta) = 1$ ou $n(\beta, \alpha) = 1$. Dans le premier cas, on écrit $s_\beta(\alpha) = \alpha - n(\alpha, \beta) \beta = \alpha - \beta$. D'où le résultat. Le deuxième cas se traite pareillement.
2.10. SUITE DE L’ÉTUDE DES SYSTÈMES DE RACINES

2.10.2 Bases

Définition 2.10.2.1. Une partie \(S \) de \(R \) est une base du système de racines \(R \) si : \(S \) est une base de \(V \) et si tout \(\beta \in R \) s’écrit comme combinaison linéaire \(\beta = \sum_{\alpha \in S} m_{\alpha} \alpha \) où tous les \(m_{\alpha} \) sont de même signe.

Théorème 2.10.2.2. Tout système de racines admet une base.

On va en fait montrer un résultat plus précis :

Soit \(t \in V^* \) une forme linéaire telle que pour tout \(\alpha \in R \), on ait \(t(\alpha) \neq 0 \). On définit \(R_{t}^+ = \{ \alpha \in R | t(\alpha) > 0 \} \). On a alors \(R_0 = R_t^+ \cup (-R_t^+) \). On dit que \(\alpha \in R_t^+ \) est décomposable s’il existe \(\beta \) et \(\gamma \) dans \(R_t^+ \) tels que \(\alpha = \beta + \gamma \). Sinon, on dit que \(\alpha \) est indécomposable. Notons finalement \(S_t \) l’ensemble des racines indécomposables. On a alors la proposition suivante :

Proposition 2.10.2.3. Avec les notations précédentes, \(S_t \) est une base de \(R \).

Démonstration.

Lemma 2.10.2.4. Tout élément de \(R_t^+ \) est combinaison linéaire à coefficients entiers positifs d’éléments de \(S_t \).

Démonstration. Notons \(I \) l’ensemble des \(\alpha \in R_t^+ \) qui ne sont pas combinaison linéaire à coefficients entiers positifs d’éléments de \(S_t \) et supposons que \(I \neq \emptyset \). Comme \(I \) est fini, il contient un élément \(\alpha \) tel que \(t(\alpha) \) est minimal. Alors \(\alpha \) est forcément décomposable. On écrit donc \(\alpha \) sous la forme \(\alpha = \beta + \gamma \) où \(\beta \) et \(\gamma \) appartiennent à \(R_t^+ \). On a alors \(t(\beta) < t(\alpha) \) et \(t(\gamma) < t(\alpha) \) donc \(\alpha \) et \(\beta \) n’appartiennent pas à \(I \) et s’écrivent donc comme combinaison linéaire à coefficients entiers d’éléments de \(S_t \) et puis \(\alpha \) aussi, ce qui est absurde.

Lemma 2.10.2.5. Si \(\alpha \) et \(\beta \) sont dans \(S_t \), alors \((\alpha, \beta) \leq 0 \).

Démonstration. Raisonnons par l’absurde. \(\alpha - \beta \) et \(\beta - \alpha \) seraient encore des racines. Or l’une d’elle est positive, ce qui est impossible.

Lemma 2.10.2.6. Soit \(t \in V^* \) et \(A \subset V \) tels que pour tout \(\alpha \in A \), \(t(\alpha) > 0 \) et pour tous \(\alpha, \beta \in A \), \((\alpha, \beta) \leq 0 \). Alors \(A \) est une famille libre.

Démonstration. Supposons que \(A \) soit liée. On peut alors écrire :

\[\lambda = \sum_{\beta \in B} c_{\beta} \beta = \sum_{\gamma \in C} d_{\gamma} \gamma \]

où \(B \) et \(C \) sont des sous ensembles finis, non vides et disjoints de \(A \) et \(c_{\beta} \) et \(d_{\gamma} \) des réels strictement positifs. On calcule alors \((\lambda, \lambda) = \sum_{\beta, \gamma} c_{\beta} d_{\gamma} (\beta, \gamma) \leq 0 \), ce qui prouve que \(\lambda = 0 \). Mais d’autre part, \(t(\lambda) = \sum_{\beta \in B} c_{\beta} t(\beta) > 0 \). D’où la contradiction.

La proposition résulte directement des trois lemmes.

Ce résultat admet une réciproque :

Proposition 2.10.2.7. Soit \(S \) une base de \(R \) et \(t \in V^* \) tel que \(t(\alpha) > 0 \) pour tout \(\alpha \in S \). Alors \(S = S_t \).

Démonstration. Notons :

\[R^+ = \left\{ \sum_{\alpha \in S} c_{\alpha} \alpha, c_{\alpha} \in \mathbb{N} \right\} \cap R \]

On a alors \(R^+ \subset R_t^+ \) et \((-R^+) \subset (-R_t^+) \). De plus, \(R^+ \cup (-R^+) = R = R_t^+ \cup (-R_t^+) \). On en déduit que \(R^+ = R_t^+ \) et donc que \(S \subset S_t \). Comme \(S \) et \(S_t \) sont toutes deux des bases de \(V \), elles ont le même cardinal et donc on a l’égalité.

Remarque 2.10.2.8. Ceci prouve en particulier que toute base de \(R \) est de la forme \(S_t \) pour un certain \(t \in V^* \).
2.10.3 Propriétés des bases

Soit S une base de R.

Définition 2.10.3.1. Les éléments de S s’appellent des racines simples.

Proposition 2.10.3.2. Toute racine positive β s’écrit $\beta = \alpha_1 + \ldots + \alpha_n$ où les $\alpha_i \in S$ et les sommes partielles $\alpha_1 + \ldots + \alpha_k$ (pour $k \leq n$) sont aussi des racines.

Démonstration. Soit $t \in \mathcal{V}^*$ tel que pour tout $\alpha \in S$, $t(\alpha) = 1$. On a alors $S = S_t$. Comme $\beta \in R^+$, on a $t(\beta) \in \mathbb{N}^*$. On va donc procéder par récurrence.

Si $t(\beta) = 1$, on a $\beta \in S$ et la proposition est démontrée. Supposons que $t(\beta) > 1$. Alors il existe une racine simple α telle que $(\alpha, \beta) > 0$. En effet, sinon la démonstration du lemme 2.10.2.6 prouverait que $S \cup \{\beta\}$ serait libre. Si β est proportionnel à α, on a $\beta = \alpha$ où $\beta = 2\alpha$ et donc la proposition est également démontrée. Supposons donc que α et β ne sont pas proportionnels. On sait alors que $\gamma = \beta - \alpha$ est encore une racine. Si $\gamma \in (-R^*)$, alors $\alpha = \beta + (\gamma)$ serait une décomposition de α, ce qui n’est pas possible. On en déduit que $\gamma \in R^*$. D’autre part, $t(\gamma) = t(\beta) - 1$. On peut donc appliquer l’hypothèse de récurrence à γ, ce qui donne le résultat. \square

Proposition 2.10.3.3. On suppose que R est réduit. Soit $\alpha \in S$. Alors s_α laisse stable $R^+ - \{\alpha\}$.

Démonstration. Soit $\beta \in R^+ - \{\alpha\}$. On écrit $\beta = \sum \gamma_i \alpha_i$ où $\gamma_i \in \mathbb{N}$. Comme R est réduit, on a $\gamma_i > 0$ pour un $\gamma_i \in S - \{\alpha\}$. Alors le coefficient de γ dans la décomposition de $s_\alpha(\beta) = \beta - n(\beta, \alpha)\alpha$ est encore γ_i et donc encore strictement positif. Ainsi tous les coefficients de cette décomposition sont positifs et $s_\alpha \beta \in R^+$. Et bien sûr $s_\alpha \beta \neq \alpha$.

Corollaire 2.10.3.4. On suppose toujours R réduit. On définit $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$. Alors $s_\alpha(\rho) = \rho - \alpha$ pour tout $\alpha \in S$.

Démonstration. Soit $\rho_\alpha = \rho - \frac{1}{2} \alpha$. C’est la demisomme des racines positives différentes de α. On a $s_\alpha(\rho) = s_\alpha(\rho_\alpha) - \frac{1}{2} \alpha$ et par la proposition précédente, $s_\alpha(\rho_\alpha) = \rho_\alpha$. \square

2.10.4 Génrateurs et relations pour les algèbres de Lie semi-simples complexes

Soit \mathfrak{g} une algèbre de Lie semi-simple complexe. Soient \mathfrak{h} une sous-algèbre de Cartan de \mathfrak{g} et $R = R(\mathfrak{g}, \mathfrak{h})$ le système de racines associé. On a alors la décomposition :

$$\mathfrak{g} = \mathfrak{h} \oplus \left(\bigoplus_{\alpha \in R} \mathfrak{g}^\alpha \right)$$

Soit S une base de R. Notons $S = \{\alpha_1, \ldots, \alpha_n\}$. Pour tout i, posons $H_i = H_{\alpha_i}$ et on choisit $X_i \in \mathfrak{g}^{\alpha_i}$ et $Y_i \in \mathfrak{g}^{-\alpha_i}$ tels que $[X_i, Y_i] = H_i$.

On pose $n(i, j) = \alpha_j(H_i) = \alpha_i^*(\alpha_j)$ qui est un entier négatif ou nul si $i \neq j$.

Théorème 2.10.4.1. \mathfrak{g} est engendré en tant qu’algèbre de Lie par les H_i, X_i et Y_i. Ces éléments vérifient les relations de Weyl :

$$[H_i, H_j] = 0$$

$$[X_i, Y_j] = H_i$$

$$[X_i, Y_j] = 0 \quad \text{si} \ i \neq j$$

$$[H_i, X_j] = n(i, j) X_j$$

$$[H_i, Y_j] = -n(i, j) Y_j$$

et les relations de Serre :

$$\text{ad}X_i)^{-n(i,j)+1}(X_j) = 0 \quad \text{si} \ i \neq j$$

$$\text{ad}Y_i)^{-n(i,j)+1}(Y_j) = 0 \quad \text{si} \ i \neq j$$

Démonstration. On sait que $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}^\alpha$ et que $\mathfrak{h} = \bigoplus CH_i$. Il s’agit donc de montrer que \mathfrak{g}^α est dans la sous-algèbre engendrée par X_i, H_i et Y_i pour chaque $\alpha \in R$. Supposons $\alpha \in R^+$, alors il existe $\alpha_{i_1}, \ldots, \alpha_{i_k}$ des racines simples telles que pour tout h, $\alpha_{i_1} + \ldots + \alpha_{i_k}$ soit une racine. Posons alors :

$$X_h = [X_{i_1}, [X_{i_1}, \ldots, [X_{i_2}, X_{i_1}]]]$$
2.10. SUITE DE L’ÉTUDE DES SYSTÈMES DE RACINES

On montre par récurrence que $X_{k} \neq 0$ et $X_{h} \in \mathfrak{g}^{\alpha_{1}+\ldots+\alpha_{k}}$ en utilisant le fait que si β, γ et $\beta + \gamma$ sont des racines, on a $[\mathfrak{g}^{\beta}, \mathfrak{g}^{\gamma}] = \mathfrak{g}^{eta + \gamma} \neq 0$. En particulier, on trouve que X_{k} engendre la droite \mathfrak{g}^{α}. On procède de même pour $\alpha \in \mathcal{R}$ en utilisant les Y_{i}.

Les relations de Weyl sont claires sauf peut-être $[X_{i}, Y_{j}] = 0$ pour $i \neq j$. Mais il suffit en fait de voir que $[X_{i}, Y_{j}] \in \mathfrak{g}^{\alpha_{i} - \alpha_{j}}$ et que $\alpha_{i} - \alpha_{j}$ n’est pas une racine, d’où $\mathfrak{g}^{\alpha_{i} - \alpha_{j}} = 0$.

Pour les relations de Serre, on remarque que $(\text{ad}X_{i})^{-n(i,j)+1}(X_{j}) \in \mathfrak{g}^{\alpha_{j} - n(i,j)\alpha_{i} + \alpha_{i}}$ et que $\alpha_{j} - n(i,j)\alpha_{i} + \alpha_{i} = s_{i}(\alpha_{j} - \alpha_{i})$ et n’est donc pas une racine.

Théorème 2.10.4.2. L’algèbre de Lie \mathfrak{g} peut être définie par les générateurs X_{i}, Y_{i} et H_{i} et les relations de Weyl et Serre.

Corollaire 2.10.4.3. Il existe un automorphisme $\sigma : \mathfrak{g} \rightarrow \mathfrak{g}$ qui laisse stable \mathfrak{h}, y induit $-\text{Id}_{\mathfrak{h}}$ et envoie X_{i} sur $-Y_{i}$ et Y_{i} sur $-X_{i}$ pour tout i. En outre, il est involutif.

Démonstration. On vérifie que les éléments $-Y_{i}$, $-H_{i}$ et $-X_{i}$ vérifient les relations de Weyl et Serre.

Corollaire 2.10.4.4. L’application :

\[
\begin{align*}
\{\text{Algèbres de Lie semi-simples complexes}\} / \text{Isomorphismes} & \rightarrow \{\text{Systèmes de racines réduits}\} / \text{Isomorphismes} \\
\mathfrak{g} & \mapsto R(\mathfrak{g}, \mathfrak{h})
\end{align*}
\]

est injective.

Remarque 2.10.4.5. Le théorème principal dit qu’elle est même bijective. Le théorème précédent donne un candidat pour l’inverse.

2.10.5 Classification des systèmes de racines

Soit $R \subset V$ un système de racines. On note W son groupe de Weyl et S une base de R.

Théorème 2.10.5.1.

1. \(\forall t \in V^{*}, \exists w \in W, \forall \alpha \in S, \langle w(t), \alpha \rangle \geq 0.\)
2. Si S' est une base de R, il existe $w \in W$ tel que $w(S) = S'$.
3. \(\forall \beta \in R, \exists w \in W, w(\beta) \in S.\)
4. W est engendré par les s_{α}, racine simple.

Remarque 2.10.5.2.

1. On peut montrer que $w \in W$ tel que $w(S) = S'$ est unique. Autrement dit, le groupe de Weyl agit de manière simplement transitive sur l’ensemble des bases.
2. Le cône des $t \in V^{*}$ tels que pour tout $\alpha \in S, \langle t, \alpha \rangle > 0$ est appelé la chambre de Weyl associée à S.
3. Les chambres de Weyl sont les composantes connexes de V^{*} privé des hyperplans $\langle \alpha^{*}, \cdot \rangle = 0$. Le groupe de Weyl agit simplement transitive sur l’ensemble des chambres de Weyl.
4. On a dit que les s_{α} pour α racine simple engendraient le groupe de Weyl. On peut également montrer que toute relation entre les S_{α} découle de $s_{\alpha}^{2} = e$ et $(s_{\alpha}s_{\beta})^{n}(\alpha, \beta) = e.$

Dorénavant, on suppose que R est réduit.

Définition 2.10.5.3. La matrice de Cartan de R par rapport à la base S est la matrice $(n(\alpha, \beta))_{\alpha, \beta \in S}.$

Remarque 2.10.5.4.

1. La matrice de Cartan est indépendante du choix de S à conjugaison par une matrice de permutation près.
2. R est déterminé à isomorphisme près par sa matrice de Cartan.

Définition 2.10.5.5. Le graphe de Coxeter de R par rapport à S est le graphe de sommets les éléments de S et où α et β sont liés par $n(\alpha, \beta) n(\beta, \alpha)$ arêtes.
Remarque 2.10.5.6.
1. On a \(n(\alpha, \beta) n(\beta, \alpha) = 4 \cos^2 \varphi \) où \(\varphi \) est l’angle entre \(\alpha \) et \(\beta \). Comme cet angle est obtus, il est entièrement déterminé par la donnée de \(n(\alpha, \beta) n(\beta, \alpha) \).
2. À isomorphisme près, le graphe de Coxeter est indépendant du choix de \(S \).

Définition 2.10.5.7. On dit que \(R \) est réductible si \(V \) peut s’écrire \(V = V_1 \oplus V_2 \) où \(V_1 \neq 0 \) et \(R = (V_1 \cap R) \cup (V_2 \cap R) \). Sinon, on dit que \(R \) est irréductible.

Remarque 2.10.5.8.
1. On montre que \(V_1 \cap R \) est un système de racines dans \(V_1 \).
2. Tout systèmes de racines se décompose de façon unique en somme de systèmes irréductibles.
3. \(R \) est irréductible si et seulement si son graphe de Coxeter est connexe. La décomposition de \(R \) en systèmes irréductibles correspond à la décomposition de son graphe de Coxeter en composantes connexes.

Théorème 2.10.5.9. Tout graphe de Coxeter associé à un système de racines irréductibles est isomorphes à l’un des graphes suivants :

Remarque 2.10.5.10. Le graphe de Coxeter ne détermine pas la matrice de Cartan. Il indique les angles entre racines mais pas les longueurs. La matrice de Cartan est déterminée si on indique en outre \((\alpha, \alpha) \) pour tout \(\alpha \in S \). Le graphe étiqueté est le diagramme de Dynkin associé à \(R \). Il détermine le système de racines à isomorphisme près.

Théorème 2.10.5.11. Tout diagramme de Dynkin est isomorphe à l’un des suivants :

<insert jolis dessins>