
ON LECLERC’S CONJECTURAL CLUSTER STRUCTURES FOR OPEN

RICHARDSON VARIETIES

PEIGEN CAO AND BERNHARD KELLER

Abstract. In 2016, Leclerc constructed conjectural cluster structures on open Richard-
son varieties using representations of preprojective algebras. A variant with more explicit
seeds was obtained by Ménard in his thesis. We show that Ménard’s seeds do yield upper
cluster algebra structures on open Richardson varieties and discuss the problems that
remain in order to prove that they are cluster algebra structures.

1. Introduction

Open Richardson varieties were introduced by Kazhdan–Lusztig [20]. They are relevant
for Kazhdan–Lusztig polynomials [20, 7], the study of total positivity in the Grassmannian
[24, 34, 26, 35], the Poisson geometry of the flag variety [17] and many other subjects.

It is natural to ask whether open Richardson varieties carry cluster structures compatible
with total positivity and Poisson geometry. In 2016, Leclerc [23] gave a conjectural positive
answer using representations of preprojective algebras. His conjecture was slightly modified
and made more explicit by Ménard [27, 28]. In this note, based on [21], we show that
Ménard’s seed does provide an upper cluster algebra structure on each open Richardson
variety. We also discuss the problems that remain in order to prove that it is a cluster
algebra structure.

In type A, a (possibly different) upper cluster algebra structure was obtained using
completely different methods by Gracie Ingermanson in her thesis [19] under the supervision
of David Speyer. Open Richardson varieties are special cases of braid varieties. In this
more general framework, much stronger results will be contained in the forthcoming work
of two groups of mathematicians:

- Roger Casals, Eugene Gorsky, Mikhail Gorsky, Ian Le, Linhui Shen, and José
Simental in [4] and

- Pavel Galashin, Thomas Lam and Melissa Sherman-Bennett in [11, 12], cf. also
[10].

Acknowledgments. B. Keller thanks Bernard Leclerc and Etienne Ménard for stimulat-
ing discussions. P. Cao is supported by the ERC Grant No. 669655. We are grateful to
the authors of [4] for providing us with a preliminary version of their preprint.

2. Open Richardson varieties

Let ∆ be a simply laced Dynkin diagram, for example the diagram A4 given by a chain
of length 4. Let G be the associated simple, simply connected complex algebraic group, for
example Sl5(C). Let B,B− ⊆ G be opposite Borel subgroups, for example the subgroups
of upper/lower triangular matrices in Sl5(C). Let H = B ∩B− be the associated maximal
torus and W = NB(H)/H the Weyl group, for example the subgroup H ⊆ Sl5(C) of
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diagonal matrices and the symmetric group S5. Let X = B− \ G be the flag variety and
π : G→ X the canonical projection, for example the variety of complete flags

0 = F0 ⊂ F1 ⊂ · · · ⊂ F5 = C5

in the space of rows C5 with its natural right action by Sl5(C). We have the Schubert
decomposition

X =
∐
w∈W

Cw

into the Schubert cells Cw = π(wB−), which are affine spaces of dimension equal to the
length l(w). Dually, we have the opposite Schubert decomposition

X =
∐
v∈W

Cv

into the opposite Schubert cells Cv = π(vB), which are affine spaces of dimension equal to
l(w0)−l(v), where w0 is the longest element of W . For a pair of Weyl group elements (v, w),
the open Richardson variety Rv,w is defined as the intersection Cv ∩Cw. It is non-empty if
and only if v ≤ w for the Bruhat order and in this case, it is a smooth, irreducible, locally
closed subvariety of Cw of dimension l(w)− l(v) which is affine but not an affine space, in
general. In the minimal example where G = Sl2(C), the flag variety X = B− \G identifies
with the projective line P1(C) by the map sending a 2× 2-matrix to the line generated by
its first row. Under this identification, if s generates the Weyl group S2, we have

Ce = {0} Cs = P1(C) \ {0}
Ce = A1(C) Cs = {∞}
Re,e = {0} Re,s = P1(C) \ {0,∞} Rs,s =∞.

We refer to section 1 for the most relevant references on open Richardson varieties. It is
natural to ask whether they carry cluster structures compatible with total positivity and
Poisson geometry. In 2016, Leclerc [23] gave a conjectural positive answer using represen-
tations of preprojective algebras. There is a direct link between such representations and
the coordinate algebra C[N ] of the unipotent radical N of B. We will recall it in the next
section. In turn, the coordinate algebra C[N ] is linked to the coordinate algebra C[Rv,w]
of the affine variety Rv,w as follows: Put N(v) = N ∩ v−1N−v, where N− is the unipotent
radical of B−, and N ′(w) = N ∩w−1Nw. Let C[N ]v,w ⊆ C[N ] be the subalgebra of double
invariants

C[N ]v,w = N(v)C[N ]N
′(w).

Let Mv,w be the multiplicative subset of C[N ]v,w generated by the irreducible factors of

Dv,w =
∏
i∈I

∆v−1($i),w−1($i) ,

where I is the set of vertices of the Dynkin diagram and the factors of the product are
generalized minors, cf. section 2.2 of [23]. In section 2.8 of [23], Leclerc constructs an
algebra isomorphism

C[N ]v,w[M−1
v,w] ∼−→ C[Rv,w].
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We thus obtain the following diagram summing up the relations between the coordinate
algebras C[N ] and C[Rv,w]

C[N ]v,w C[N ]

C[N ]v,w[M−1
v,w] C[Rv,w].

can

∼

3. Additive categorification and Leclerc’s conjecture

3.1. The case of N ∼−→ Cw0. We keep the notations and assumptions of section 2. Let Λ
be the preprojective algebra of ∆ over k = C. For example, if ∆ is the diagram A4

1 2 3 4 ,

then, up to isomorphism, Λ is the k-algebra presented by the quiver

1 2 3 4
α

α∗

β

β∗

γ

γ∗

with relations

−α∗α = 0 , αα∗ − β∗β = 0 , ββ∗ − γ∗γ = 0 , γγ∗ = 0.

Let us recall some important properties of Λ and the category mod Λ of k-finite-dimensional
(right) Λ-modules:

a) The algebra Λ is finite-dimensional and selfinjective so that the category mod Λ
becomes a Frobenius category.

b) As shown by Crawley-Boevey [5], for finite-dimensional Λ-modules L and M , we
have a bifunctorial isomorphism

DExt1
Λ(L,M) ∼−→ ExtΛ(M,L) ,

where D = Homk(?, k) is the duality over the ground field. This means that the
Frobenius category mod Λ is stably 2-Calabi–Yau.

c) The category mod Λ contains (basic) cluster-tilting objects

T = T1 ⊕ · · · ⊕ Tm ,

where the Ti are indecomposable (and pairwise non isomorphic) and m is the length
of the longest element w0. These can be mutated at each non projective summand
Ti.

d) Each reduced expression w0 of the longest element w0 yields a canonical cluster-
tilting object Tw0 which, up to mutation, is independent of the choice of w0.

e) We have a canonical cluster-character

ϕ : mod Λ→ C[N ]

constructed by Geiss–Leclerc–Schröer [13] using work of Lusztig [25].

For an ice quiver Q, let us write A+(Q) for the cluster algebra with non invertible co-
efficients associated with Q and A(Q) for the cluster algebra with invertible coefficients
associated with Q. We always denote the initial cluster variables by xi, i ∈ Q0.

Theorem 3.2 ([13]). If T = T1 ⊕ · · · ⊕ Tm is a basic cluster-tilting object mutation-
equivalent to Tw0 and Q(T ) is the ice quiver of its endomorphism algebra EndΛ(T ) with
frozen vertices corresponding to the projective-injective indecomposable summands of T ,
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then (Q(T ), (ϕ(Ti))) is an initial seed for a cluster structure on C[N ]. Moreover, the
algebra isomorphism morphism taking xi to ϕ(Ti) fits into a commutative diagram

A+(Q(T )) C[N ]

A(Q(T )) C[Re,w0 ].

∼

∼

For example, suppose that ∆ = A4 and

w0 = s1s2s3s4s1s2s3s1s2s1.

We refer to [14] for the construction of the canonical cluster-tilting object T = Tw0 and
the computation of the corresponding ice quiver Q(T ) given by

�

� •

� • •

� • • •
where the squares denote frozen vertices. In this case, the subgroup N is formed by the
upper unitriangular 4× 4-matrices and the isomorphism

A+(Q(T )) ∼−→ C[N ]

sends the xi to certain maximal minors.

3.3. Case of Cw. Recall that a torsion pair in mod Λ is a pair (T ,F) of strictly full
subcategories such that we have

a) Hom(T ,F) = 0 and
b) for each M ∈ mod Λ, there is a short exact sequence

0 MT M MF 0 ,

where MT belongs to T and MF to F .

Here the submodule MT is called the torsion part and MF the torsion-free part of M . The
subcategory T is called a torsion class and F a torsion-free class. Torsion classes ordered
by inclusion form a poset.

For two elements v and w of the Weyl group W , we write v ≤R w if w admits a reduced
expression w equal to the concatenation vx of a reduced expression v for v with a reduced
word x. The relation ≤R is called the weak right order on W . Clearly, the relation v ≤R w
implies that v ≤ w in the Bruhat order but the converse does not hold in general.

Recall the a subcategory C of mod Λ is functorially finite if, for each M ∈ mod Λ, there
are morphisms C0 → M → C0 with C0, C

0 ∈ C such that for each C ∈ C, each morphism
C →M factors through C0 →M and each morphism M → C factors through M → C0.

Theorem 3.4 ([29]). We have a canonical isomorphism of posets w 7→ Cw from (W,≤R)
to the poset of functorially finite torsion classes of mod Λ.

Theorem 3.5 ([6]). If A is a finite-dimensional k-algebra such that modA admits only
finitely many functorially finite torsion classes, then each torsion class is functorially finite.
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By combining the two theorems, we see that all torsion classes of mod Λ are functorially
finite and that they are canonically parametrized by the elements of W via the bijection
w 7→ Cw.

Theorem 3.6 ([2]). If C ⊆ mod Λ is an extension-closed, functorially finite full subcate-
gory, it becomes a Frobenius category (for the exact structure inherited from mod Λ) which
is stably 2-Calabi–Yau and has a cluster structure. In particular, the category C contains
a cluster-tilting object.

For an ice quiver Q, let we write U+(Q) for the upper cluster algebra with non invertible
coefficients associated with Q.

We say that an ice quiver Q has a reddening sequence if the non frozen part of Q has a
reddening sequence in the sense of [22].

Theorem 3.7 ([14, 2]). Fix w ∈W and let w be a reduced expression for w.

a) There is a canonical cluster-tilting object Tw of Cw which, up to mutation, only
depends on w.

b) The ice quiver Qw of the endomorphism algebra of Tw has an explicit description
(up to the determination of the frozen subquiver).

c) The ice quiver Qw has a reddening sequence [22] and we have A+(Qw) = U+(Qw).

As an example, consider ∆ = A4 and w = s1s2s3s1s2s4s3. Then the quiver Qw is given
by

�

� •

� •

� •

Let w ∈W and let w be a reduced expression for w. Recall that we have defined N(w) =
N ∩ w−1N−w, where N− is the unipotent radical of B−, and N ′(w) = N ∩ w−1Nw. We
have a canonical isomorphism

C[N(w)] ∼−→ C[N ]N
′(w).

Theorem 3.8 ([14, 15]). Choose a decomposition into indecomposables

Tw = T1 ⊕ · · · ⊕ Tl(w).

Then the pair (Qw, (ϕ(Ti))) is an initial seed for a cluster structure on C[N(w)], i.e. the
algebra morphism taking xi to ϕ(Ti) is an isomorphism. Moreover, it makes the following
square commutative

A+(Qw) C[N(w)] C[N ]N
′(w)

A(Qw) C[Re,w]

∼ ∼

∼
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3.9. The case of Rv,w. We follow [23]. Let v ≤ w be elements of W . Let (Cv, Cv) be the
torsion pair associated with v. Define

Cv,w = Cv ∩ Cw ⊆ mod Λ.

Clearly, this subcategory is extension-closed. By the results of Auslander–Smalø [1], it is
also functorially finite in mod Λ. By Theorem 3.6, the category Cv,w has a cluster structure.
If T is a cluster-tilting object of Cw, then its Cv-torsion-free part T C

v
is a cluster-tilting

object of Cv,w, by Proposition 3.12 of [23]. However, in general, the module T C
v

is not
basic. Let Tv,w be a maximal basic summand of the cluster-tilting object T C

v

w and let Qv,w
be the quiver of the endomorphism algebra of Tv,w.

Theorem 3.10 (Leclerc [23]). a) The C-span of ϕ(Cv,w) ⊆ C[N ] equals

C[N ]v,w = N(v)C[N ]N
′(w).

b) The map ϕ : Cv,w → C[N ] induces injective algebra morphisms

A+(Qv,w) C[N ]v,w

A(Qv,w) C[Rv,w]

ϕ̃

ϕ̃loc

and dimRv,w equals the number of vertices of Qv,w.
c) The algebra embedding ϕ̃loc is an isomorphism if v ≤R w or if Cv,w has only finitely

many indecomposables (up to isomorphism).

Conjecture 3.11 (Leclerc [23]). The algebra embedding ϕ̃loc is always an isomorphism.

One difficulty arises from the fact that Leclerc’s seed (Qv,w, (ϕ(Ti))) is not known ex-
plicitly. The following theorem is the first to have made it explicit in certain cases.

Theorem 3.12 (Serhiyenko–Sherman-Bennett–Williams [36]). Leclerc’s seed equals the
canonical seed defined by a plabic graph if Rv,w is an open Schubert variety (in type A).

This theorem implies Leclerc’s conjecture for these cases since we have v ≤R w if Rv,w
is an open Schubert variety.

Theorem 3.13 (Galashin–Lam [9]). Leclerc’s seed seed equals the canonical seed defined
by a plabic graph if Rv,w is an open positroid variety (i.e. a type A open Richardson variety
in the Grassmannian). Moreover, the conjecture holds in this case.

Notice that in the situation of the theorem, we may have v 6≤R w.

4. Ménard’s results

We keep the notations and assumptions of the preceding section.

Theorem 4.1 (Ménard [28]). There is an explicit sequence of mutations transforming Tw
into a cluster-tilting object T ′w such that any maximal direct summand Mv,w of T ′w lying in
Cv,w is a cluster-tilting object of Cv,w.

The sequence of mutations in the theorem was conjectured by Jan Schröer. The cluster-
tilting objectMv,w is expected to be isomorphic to Tv,w. It yields a (possibly new) candidate
seed for C[N ]v,w and C[Rv,w]. In his thesis [27, 28], Ménard has developed an algorithm
allowing to explicitly compute the seed associated with Mv,w. It follows from his theorem
above that the quiver Q(Mv,w) is a cluster reduction of Q(Tw), i.e. it is obtained from
Q(Tw) by mutating, freezing vertices and deleting certain frozen vertices (in this order).
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By a theorem of Muller [31], the existence of reddening sequences is preserved under
cluster reduction. Since the existence of a reddening sequence for the ice quiver Q(Tw) is
known [15], it follows that the ice quiver Q(Mv,w) has a reddening sequence. Moreover,
the exchange matrix associated with Q(Mv,w) has full rank (this follows essentially from
[2]). Thus, the upper cluster algebra U(Q(Mv,w)) (with invertible coefficients) admits a
theta basis in the sense of Gross–Hacking–Keel–Kontsevich [18] and also a generic basis, as
shown by Qin [33]. In particular, the image of the Caldero–Chapoton map spans the upper
cluster algebra U(Q(Mv,w)) over the algebra of Laurent polynomials in the coefficients.

5. Upper cluster structure

We keep the notations and assumptions of the preceding section. Let T be Ménard’s
cluster-tilting object Mv,w. Let ϕ : A(Q(T )) → C[N ]v,w be the algebra morphism associ-
ated with the seed (Q(T ), (ϕ(Ti))).

Theorem 5.1. The map ϕ yields a commutative square

U+(Q(T )) C[N ]v,w

U(Q(T )) C[Rv,w].

ϕ̃

∼
ϕ̃loc

where the bottom map ϕ̃loc is an isomorphism.

Remark 5.2. We do not know whether the statement of the theorem also holds if T is
Leclerc’s cluster tilting object Tv,w.

Proof. Since the ϕ(Ti) are algebraically independent, the map xi 7→ ϕ(Ti) defines a field
embedding

C(xi) C(N).
ϕ̃

Let CC : Cv,w → C(xi) denote the cluster character associated with the cluster-tilting
object T ∈ Cv,w in [8]. By Theorem 4 of [16], the triangle

C(xi) C(N)

Cv,w

ϕ̃

CC ϕ

commutes. Now by definition, the map CC : Cv,w → C(xi) actually takes its values in
C[x±i ] and by Theorem 1.1 of [32], it even takes its values in the upper cluster algebra
U+ = U+(Q(T )) with non invertible coefficients. Clearly, the field embedding

ϕ̃ : C(xi)→ C(N)

induces an isomorphism

U+ ∼−→ ϕ̃(U+) ⊂ C(N)

and we have the commutative square

Cv,w C(N)

U+ ϕ̃(U+).

CC

ϕ

∼
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By Theorem 3.10 (a), the C-span of ϕ(Cv,w) equals C[N ]v,w. This implies the inclusion

C[N ]v,w ⊆ ϕ̃(U+).

Since Q(T ) is of full rank, the upper cluster algebra with non invertible coefficients is a
finite intersection of Laurent polynomial rings (by Cor. 1.9 of [3], the ‘starfish lemma’).
Therefore, the upper cluster algebra with invertible coefficients U is the localization of U+

at the coefficients. Therefore, from the above inclusion, we deduce that we have

C[N ]v,w[M−1
v,w] ⊆ ϕ̃(U).

Here, the symbol Mv,w denotes the multiplicative set in C[N ]v,w introduced at the end of
section 2.

Since T is Ménard’s cluster-tilting object, we know that the non frozen part of the ice
quiver Q(T ) has a reddening sequence. By [33, Theorem 1.2.3], the upper cluster algebra U
has a generic basis. This implies that CC(Cv,w) contains a generating set for the C[M±1

v,w]-
algebra U . Since the C-span of ϕ(Cv,w) equals C[N ]v,w, we have the reverse inclusion

ϕ̃(U) ⊆ C[N ]v,w[M−1
v,w].

Thus, we obtain the equality

ϕ̃(U) = C[N ]v,w[M−1
v,w] = C[Rv,w].

This is what we had to prove.
√

6. Towards a cluster structure

Our hope is that for Ménard’s cluster-tilting object Mv,w, we have A = U for the
corresponding cluster and upper cluster algebra with invertible coefficients. Recall that by
Ménard’s theorem, the ice quiver Q(Mv,w) is obtained from Q(Tw) by cluster reduction,
i.e. by mutation, freezing and deletion of frozen vertices (in this order).

Theorem 6.1 (Geiss–Leclerc–Schröer [15]). a) We have A = U for Q(Tw).
b) The ice quiver Q(Tw) admits a reddening sequence.

The second property is preserved under cluster reduction by Muller’s theorem [31].
However, it is not clear under which conditions this holds for the first property.

6.2. Preservation of U = A under freezing? Let Q be an ice quiver and Q′ the quiver
obtained from Q by freezing the cluster variable x associated with a non frozen vertex. We
then have the algebra inclusions

A′ ⊆ A[x−1] ⊆ U [x−1] ⊆ U ′ ,
where A = A(Q), . . . . Following Muller [30], we define A′ to be a cluster localization of
A at x if A′ = A[x−1]. Unfortunately, it is not clear whether the freezing occuring in the
passage from Geiss–Leclerc–Schröer’s seed for Cw to Ménard’s for Rv,w is a composition
of cluster localizations. The following theorem may nevertheless be useful.

Theorem 6.3. Suppose the exchange matrix associated with the ice quiver Q is of full
rank. Let A and U be the associated cluster and upper cluster algebra. If we have A = U
and A′ is a cluster localization of A at x, then we have A′ = U ′.

Proof. Since the exchange matrix B associated with the ice quiver Q is of full rank and
Q′ is obtained from Q by freezing the non frozen vertex of Q labeled by x, we know that
the exchange matrix B′ associated with the ice quiver Q′ is also of full rank. Hence, the
starfish lemma [3, Corollary 1.9] holds for U and U ′.
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Denote by t0 the initial seed of U and Iuf the set of non frozen vertices of the ice quiver
Q. Let k be the non frozen vertex of Q such that x = xk;t0 . By the starfish lemma [3,
Corollary 1.9], we have

U = L(t0)
⋂ ⋂

i∈Iuf

L(µi(t0))

 ,(6.1)

U ′ = L(t0)
⋂ ⋂

k 6=i∈Iuf

L(µi(t0))

 ,(6.2)

where L(µi(t0)) is the Laurent polynomial ring associated with the seed µi(t0).
Since A = U and A′ is a cluster localization of A at x, we have that

A′ = A[x−1] = U [x−1] ⊆ U ′.

It remains to show the converse inclusion U ′ ⊆ U [x−1].
By the equality (6.2), we know that for any v ∈ U ′, there exists a positive integer d such

that the exponents of x = xk;t0 in the Laurent expansion of vxd with respect to the seed

µi(t0) are positive for any k 6= i ∈ Iuf . In this case, we have vxd ∈ L(µk(t0)). Then by the
equality (6.1), we get vxd ∈ U and thus v ∈ U [x−1]. So we have U ′ ⊆ U [x−1] and

A′ = A[x−1] = U [x−1] = U ′.
√

6.4. Preservation of A = U under deletion? In general, the property A = U is not
preserved under deletion of frozen vertices. The hypotheses of the following proposition do
hold for the deletion occuring in the passage from Geiss–Leclerc–Schröer’s seed for Cw to
Ménard’s for Rv,w.

Proposition 6.5. Suppose Q′ is obtained from Q by deleting a frozen vertex, that Q and
Q′ are of full rank and that the ice quiver Q admits a reddening sequence. Denote by A,
U , A′ and U ′ the cluster algebras and the upper cluster algebras associated with Q and Q′.
If A = U , then A′ = U ′.

Proof. Let P and P′ denote the groups of Laurent monomials in the coefficients of A and
A′. Consider the diagram

A U C[x±1
i ][P]

A′ U ′ C[x±1
i ][P′]

π

Let CC and CC ′ be the Caldero–Chapoton maps associated with Q and Q′ and let π :
C[x±1

i ][P]→ C[x±1
i ][P′] be the specialization map. We have π ◦CC = CC ′. By Qin’s work

[33], we know that the image of CC generates U as a C[P]-module. Thus, the image of
π ◦ CC generates π(U) as a C[P′]-module. Now the image of π ◦ CC equals that of CC ′

and the image of CC ′ generates U ′ as a C[P′]-module since the ice quiver Q′ also has a
reddening sequence. It follows that π(U) equals U ′ and this implies A′ = U ′.

√
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