A characterization of cluster categories

Bernhard Keller1 \hspace{1cm} Idun Reiten2

1Department of Mathematics and Institute of Mathematics
University Paris 7

2Norwegian University of Science and Technology
Trondheim
A characterization of cluster categories
Outline

1. From quivers to derived categories and back
2. The cluster category, and the main theorem
3. Applications
4. Appendix: On the proof of the main theorem

Bernhard Keller, Idun Reiten

A characterization of cluster categories
A quiver is an oriented graph

Definition

A quiver Q is an oriented graph: It is given by

- a set Q_0 (the set of vertices)
- a set Q_1 (the set of arrows)
- two maps
 - $s: Q_1 \to Q_0$ (taking an arrow to its source)
 - $t: Q_1 \to Q_0$ (taking an arrow to its target).

Remark

A quiver is a ‘category without composition’.
A quiver can have loops, cycles, several components.

Example

The quiver $\tilde{A}_3 : 1 \overset{\alpha}{\longleftarrow} 2 \overset{\beta}{\longleftarrow} 3$ is an orientation of the Dynkin diagram $A_3 : 1 \rightarrow 2 \rightarrow 3$.

Example

$$Q : \begin{array}{c} 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\ \scriptstyle{\lambda} \quad \scriptstyle{\mu} \quad \scriptstyle{\alpha} \quad \scriptstyle{\beta} \quad \scriptstyle{\gamma} \quad \end{array}$$

We have $Q_0 = \{1, 2, 3, 4, 5, 6\}$, $Q_1 = \{\alpha, \beta, \ldots\}$. α is a loop, (β, γ) is a 2-cycle, (λ, μ, ν) is a 3-cycle.
Let k be an algebraically closed field. Let Q be a finite quiver (the sets Q_0 and Q_1 are finite).

Definition

A *representation* of Q is a diagram of finite-dimensional vector spaces of the shape given by Q.

Example

A representation of $\tilde{A}_2 : 1 \xrightarrow{\alpha} 2$ is a diagram of two finite-dimensional vector spaces linked by one linear map

$$V : V_1 \xrightarrow{V_\alpha} V_2.$$
The category of representations of Q is abelian.

Definition

A *morphism of representations* of Q is a morphism of diagrams.

\[\text{rep}(Q) = \text{category of representations of } Q. \]

Remarks

- Direct sums, kernels and cokernels are computed componentwise.
- The category of representations is a k-linear abelian category with enough projectives (it is even a module category).
Definition of the derived category \mathcal{D}_Q

Definition

$\mathcal{D}_Q = \text{bounded derived category of } \text{rep}(Q)$

- objects: bounded complexes $V : \ldots \rightarrow V^p \rightarrow V^{p+1} \rightarrow \ldots$ of representations
- morphisms: obtained from morphisms of complexes by formally inverting all quasi-isomorphisms
- suspension functor: $\Sigma : \mathcal{D}_Q \rightarrow \mathcal{D}_Q$, $V \mapsto \Sigma V = V[1]
- triangles: $U' \rightarrow V' \rightarrow W' \rightarrow \Sigma U'$ obtained from short exact sequences of complexes $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$.

Remark

\mathcal{D}_Q is k-linear. It is abelian iff Q has no arrows.
Objects of \mathcal{D}_Q decompose into indecomposables.

Definition

An object V of \mathcal{D}_Q is *indecomposable* if $V \neq 0$ and in each decomposition $V \cong V' \oplus V''$, we have $V' = 0$ or $V'' = 0$.

Decomposition theorem

(Azumaya-Fitting-Krull-Remak-Schmidt- . . .)

a) An object of \mathcal{D}_Q is indecomposable iff its endomorphism ring is local.

b) Each object of \mathcal{D}_Q decomposes into a finite sum of indecomposables, unique up to isomorphism and permutation.
Let \(\mathcal{A} \) be any \(k \)-linear category where the decomposition theorem holds. We will assign a quiver \(\Gamma_{\mathcal{A}} \) to \(\mathcal{A} \).

- The vertices of \(\Gamma_{\mathcal{A}} \) will be in bijection with the isomorphism classes of the indecomposables of \(\mathcal{A} \).
- To define the arrows, let

\[
\mathcal{R}(X, Y) = \{ \text{non invertible morphisms } f : X \to Y \},
\]

where \(X, Y \) are indecomposable in \(\mathcal{A} \). Then \(\mathcal{R} \) is an ideal (namely, the radical) of the category \(\text{ind} \mathcal{A} \) of indecomposables of \(\mathcal{A} \).
The quiver of a category with decomposition

Definition

The *quiver of* \mathcal{A} is the quiver $\Gamma_{\mathcal{A}}$ with

- vertices: representatives X of the isoclasses of indecomposables of \mathcal{A}
- arrows: the number of arrows from X to Y equals the dimension of the space

$$\text{irr}(X, Y) = R(X, Y)/R^2(X, Y) = \{\text{irreducible morphisms}\}$$

of ‘morphisms without non trivial factorization’.
The quiver of the derived category

Theorem

Suppose that Q does not have oriented cycles.

a) The quiver of the category \mathcal{P}_Q of projectives of $\text{rep}(Q)$ is the opposite quiver Q^{op}.

b) (Happel, 1986) If the underlying graph of Q is a Dynkin diagram of type A_n, D_n or E_n, the (Auslander-Reiten) quiver of \mathcal{D}_Q is the repetition $\mathbb{Z}Q^{\text{op}}$ of the opposite quiver: It has

- vertices: (p, x), for $p \in \mathbb{Z}$, $x \in Q_0$,
- arrows: for each arrow $\alpha: x \to y$ of Q^{op}, we have arrows
 - $(p, \alpha): (p, x) \to (p, y)$, $p \in \mathbb{Z}$, and
 - $\sigma(p, \alpha): (p - 1, y) \to (p, x)$, $p \in \mathbb{Z}$.
The example \tilde{A}_3

Example

$Q = \tilde{A}_3 : 1 \leftarrow 2 \leftarrow 3$

$\Gamma_{\mathcal{P}_Q} = Q^{op} :$

$\Gamma_{\mathcal{D}_Q} = \mathbb{Z}Q^{op} :$

\[
\begin{array}{c}
\cdots \\
P_1 \\
P_2 \\
P_3 \\
\end{array}
\begin{array}{c}
P_1 \\
P_2 \\
P_3 \\
\sum P_1 \\
\sum P_2 \\
\sum P_3 \\
\end{array}
\]
The Serre functor

Blanket assumptions

Q is a finite quiver without oriented cycles. All categories and functors are k-linear.

Theorem (Happel, 1986)

\mathcal{D}_Q admits a **Serre functor** (=Nakayama functor), i.e. an autoequivalence $S : \mathcal{D}_Q \xrightarrow{\sim} \mathcal{D}_Q$ such that

$$D \text{Hom}(X, ?) \xrightarrow{\sim} \text{Hom}(?, SX)$$

for all $X \in \mathcal{D}_Q$, where $D = \text{Hom}_k(?, k)$.

Bernhard Keller, Idun Reiten

A characterization of cluster categories
Calabi-Yau categories

Let d be an integer and \mathcal{T} a triangulated category with finite-dimensional Hom-spaces.

Definition (Kontsevich)

\mathcal{T} is d-Calabi-Yau if it has a Serre functor S and $S \sim \Sigma^d$ as triangle functors.

Example

X a smooth projective variety of dimension d. \mathcal{T} the bounded derived category of coherent sheaves on X. Then $S = ? \otimes \omega[d]$ and

\[X \text{ is Calabi-Yau} \iff \omega \sim \mathcal{O} \iff \mathcal{T} \text{ is } d\text{-Calabi-Yau} \]
The cluster category

Definition

The **cluster category** \(\mathcal{C}_Q \) is the universal 2-Calabi-Yau category under the derived category \(\mathcal{D}_Q \):

\[
\begin{align*}
\mathcal{D}_Q & \xrightarrow{\mathcal{C}_Q} \mathcal{T} \\
(P, \pi) & \xrightarrow{(F, \phi)} \\
\mathcal{C}_Q & \xrightarrow{\geq} \mathcal{T}
\end{align*}
\]

\(\mathcal{C}_Q, \mathcal{T} \) 2-Calabi-Yau

\(P, F \) triangle functors

\(\pi : P \circ S \xrightarrow{\sim} S \circ P \)

\(\phi : F \circ S \xrightarrow{\sim} S \circ F \)

Remark

\(\mathcal{C}_Q \) is due to Buan-Marsh-Reineke-Reiten-Todorov for \(Q \), to Caldero-Chapoton-Schiffler for \(\tilde{A}_n \).
Remarks

1) Strictly speaking the definition should be formulated in the homotopy category of enhanced triangulated categories.

2) Explicitly, \mathcal{C}_Q is the **orbit category** of \mathcal{D}_Q under the action of the automorphism $S^{-1} \circ \Sigma^2$. It has

- **objects**: same as those of \mathcal{D}_Q
- **morphisms**:

\[
\mathcal{C}_Q(X, Y) = \bigoplus_{p \in \mathbb{Z}} \mathcal{D}_Q(X, (S^{-1} \circ \Sigma^2)^p Y).
\]
The quiver of the cluster category

Theorem (BMRRT)

The decomposition theorem holds in \mathcal{C}_Q and its quiver is isomorphic to the quotient of the quiver of \mathcal{D}_Q under the action of the automorphism induced by $S^{-1} \circ \Sigma^2$.

Example

For $Q = \tilde{A}_n = (1 \leftarrow 2 \leftarrow 3 \leftarrow \cdots \leftarrow n)$ the quiver of \mathcal{C}_Q is a Moebius strip of width n with $n(n + 3)/2$ vertices. Similarly for $Q = \tilde{E}_6$.
$F = S^{-1} \circ \Sigma^2$

A characterization of cluster categories
The canonical cluster-tilting subcategory

Recall that we have functors \(\text{rep}(Q) \to \mathcal{D}_Q \to \mathcal{C}_Q \). Let \(\mathcal{T}_Q \) be the image of the category \(\mathcal{P}_Q \) of projectives of \(\text{rep}(Q) \).

Theorem (BMRRT)

a) *The quiver of* \(\mathcal{T}_Q \) *is isomorphic to* \(Q^{op} \).

b) \(\mathcal{T}_Q \subset \mathcal{C}_Q \) *is a cluster-tilting subcategory*, i.e.

1) *for all* \(T, T' \) *in* \(\mathcal{T}_Q \), *we have*

\[
0 = \text{Ext}^1(T, T') := \text{Hom}_{\mathcal{C}_Q}(T, \Sigma T'),
\]

2) *if* \(X \in \mathcal{C}_Q \) *satisfies* \(\text{Ext}^1(T, X) = 0 \) *for all* \(T \) *in* \(\mathcal{T}_Q \), *then* \(X \) *belongs to* \(\mathcal{T}_Q \).

Definition

\(\mathcal{T}_Q \) *is the canonical cluster-tilting subcategory.*
The main theorem

Main theorem

Let

- \(\mathcal{C} \) be a 2-Calabi-Yau triang. category (of ‘algebraic origin’),
- \(\mathcal{T} \subset \mathcal{C} \) a cluster-tilting subcategory,
- \(Q \) the opposite quiver of \(\mathcal{T} \).

If \(Q \) does not have oriented cycles, then \(\mathcal{C}_Q \xrightarrow{\sim} \mathcal{C} \).

Remarks

We only need to know \(Q \), not \(\mathcal{T} \)! The objects of \(\mathcal{T}_Q \) generate \(\mathcal{C}_Q \) as a triangulated category but for general \(T, T' \) in \(\mathcal{T} \), we have \(\text{Ext}^i(T, T') \neq 0 \) for infinitely many \(i \).
Application: Cohen-Macaulay modules

Let $k = \mathbb{C}$, ζ a primitive third root of 1. Let $G = \mathbb{Z}/3\mathbb{Z}$ act on $S = k[[X, Y, Z]]$ by multiplying the generators by ζ. Then

- $R = S^G$ is an isolated singularity of dimension 3 and Gorenstein.
- The category $\text{CM}(R)$ of maximal Cohen-Macaulay modules is Frobenius.
- The stable category $\text{CM}(R)$ is 2-Calabi-Yau (Auslander).
- Decompose $S = S^G \oplus T_1 \oplus T_2$ over R. Then the direct sums of copies of the T_i form a cluster-tilting subcategory \mathcal{T} of \mathcal{C} (Iyama).
- The quiver of \mathcal{T} is the generalized Kronecker quiver

$$Q : 1 \rightarrow 2.$$
Cluster categories occur in nature

Conclusion

The stable category of Cohen-Macaulay modules over S^G is triangle equivalent to the cluster category C_Q.

Consequence

New proof of Iyama-Yoshino’s classification of the rigid Cohen-Macaulay modules over S^G: sums of projectives and copies of $\Omega^a T_1$, $\Omega^b T_2$, $a, b \in \mathbb{Z}$.

Moral

Cluster categories occur in nature.
Let Q be a quiver without loops or 2-cycles and u a vertex of Q. The \textbf{mutation of Q at u} (Fomin-Zelevinsky) is the quiver Q' obtained from Q as follows (where $v \xrightarrow{r} w = \text{arrow of multiplicity } r \geq 0$)

1) reverse all arrows incident with u;
2) modify the other arrows as follows:
From quivers to derived categories and back
The cluster category, and the main theorem
Applications
Summary
Appendix: On the proof of the main theorem

Q'' is mutation equivalent to Q if Q'' is isomorphic to a quiver obtained from Q by a finite sequence of mutations.

![Quiver Diagram]

Theorem

This quiver Q is not mutation equivalent to a quiver Q' without oriented cycles.

Proof: Use brute force (Google ‘quiver mutation’!) or use the main theorem!
Let \(\mathcal{C} \) be the stable category of finite-dimensional modules over the preprojective algebra of type \(A_5 \).

Crawley-Boevey: \(\mathcal{C} \) is 2-Calabi-Yau.

Geiss-Leclerc-Schröer’s work implies:
- \(\mathcal{C} \) contains a cluster-tilting subcategory \(\mathcal{T} \) with quiver \(Q \),
- if \(Q \sim_{\text{mut}} Q' \), then \(\mathcal{C} \) contains a cluster-tilting subcategory with quiver \(Q' \).

By the main theorem: If \(Q \sim_{\text{mut}} Q' \) and \(Q' \) does not have oriented cycles, then \(\mathcal{C} \sim_{\text{mut}} \mathcal{C}_{Q'} \).

Contradiction: The suspension functor \(\Sigma \) is of order 6 in \(\mathcal{C} \) but of order \(\infty \) in \(\mathcal{C}_{Q'} \) (\(Q' \) is not a Dynkin quiver).
Summary

- Cluster categories occur in nature.
- Google ‘quiver mutation’!
The (best) proof of the main theorem uses the universal property.

Michel Van den Bergh: We use the universal property!

\[\begin{array}{ccc}
\mathcal{D}_Q & \rightarrow & \mathcal{C}_Q \\
\Downarrow & & \Downarrow \\
(F, \phi) & \rightarrow & \bar{F} \\
\end{array} \]

where \(\phi : F \circ S \xrightarrow{\sim} S \circ F \).

1) Construct \(\bar{F} \) via \((F, \phi)\). Subtle: Construct \(\phi \)!

2) \(\bar{F} \) is an equivalence by the
Beilinson's lemma has a cluster analogue

\[\begin{array}{ccc}
\mathcal{C}' & \xrightarrow{G} & \mathcal{C} \\
\uparrow & & \uparrow \\
\mathcal{T}' & \xrightarrow{G|\mathcal{T}'} & \mathcal{T}
\end{array} \]

Lemma (cluster-Beilinson)

- \(G : \mathcal{C}' \to \mathcal{C} \) a triangle functor between 2-CY categories
- \(\mathcal{T}' \subset \mathcal{C}' \) a cluster tilting subcategory.

Then \(G \) is an equivalence iff \(\mathcal{T} = G(\mathcal{T}') \) is a cluster-tilting subcategory and the restriction of \(G \) to \(\mathcal{T}' \) is fully faithful.