
A BRIEF INTRODUCTION TO A-INFINITY ALGEBRAS
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Abstract. These are notes of a 90-minute talk given at the workshop on
Derived categories, Quivers and Strings in Edinburgh, August 2004.

1. Introduction

A-infinity spaces and A-infinity algebras were invented at the beginning of the
sixties by Stasheff [19]. In the seventies and the eighties, they were developped fur-
ther by Smirnov [18], Kadeishvili [7], Prouté [14], Huebschmann [5], [6], . . . especially
with a view towards applications in topology. At the beginning of the nineties, the
relevance of A-infinity structures in geometry and physics became apparent through
the work of Getzler-Jones [4], Stasheff [20], Fukaya [3], Kontsevich [10], . . . , and
later Kontsevich-Soibelman [11], Seidel [17], . . . .

In this brief introduction, we will define A-infinity algebras and examine their
basic properties. Then we will define A-infinity modules, the derived category and
conclude with the description of triangulated categories via A-infinity algebras.

We refer to [8] [9] for a more detailed introduction with numerous references.
K. Lefèvre’s thesis [12] contains proofs of all the statements made in this brief
introduction but we stress that most of the material we present is very classical.

2. A-infinity algebras

2.1. Notations. We will follow Fukaya’s sign and degree conventions. For this, we
need to introduce some notation:

Let k be a field. If V is a graded vector space, i. e.

V =
⊕

p∈Z

V p ,

we denote by SV or V [1] the graded space with (SV )p = V p+1 for all p ∈ Z. We
call SV the suspension or the shift of V .

If f : V → V ′ and g : W → W ′ are homogeneous maps between graded spaces,
their tensor product

f ⊗ g : V ⊗W → V ′ ⊗W ′

is defined by

(f ⊗ g)(v ⊗ w) = (−1)g vf(v)⊗ g(w)

for all homogeneous elements v ∈ V and w ∈W .
If V and V ′ are complexes, i. e. endowed with differentials d homogeneous of

degree 1 and square 0, we put dSV = −dV and, for a homogeneous map f : V → V ′,

d(f) = dV ′ ◦ f − (−1)ff ◦ dV .

Thus, f is a morphism of complexes iff d(f) = 0 and two morphisms of complexes
f and f ′ are homotopic iff there is a morphism of graded spaces h such that f ′ =
f +d(h). We will use that homotopic morphisms induce the same map in homology.
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2.2. A-infinity algebras. An A∞-algebra is a graded space A endowed with maps

bn : (SA)⊗p → SA

defined for n ≥ 1, homogeneous of degree 1 and such that, for all n ≥ 1, we have

(2.1)
∑

i+j+l=n

bi+1+l ◦ (1⊗i ⊗ bj ⊗ 1⊗l) = 0

as maps from (SA)⊗p to SA. Here, the symbol 1 denotes the identity map of SA.
We visualize bn either as a planar tree with n leaves and one root or as a halfdisk
whose upper arc is divided into segments, each of which symbolizes an ‘input’, and
whose base segment symbolizes the ‘output’ of the operation.

a_3

a_1

a_2

b_n

a_3

a_1

a_2

b_n

Using this last representation, the defining identity (2.1) is depicted as follows:

∑

±

a_3

a_1

a_2

b_j

b_(i+1+l)

= 0.

Let us analyze the defining identity for small values of n: For n = 1, it states that
b2
1 = 0, so that (SA, b1) is a complex. We also make A into a complex by endowing

it with the shifted differential

m1 = −b1.

For n = 2, the defining identity becomes

b1b2 + b2(b1 ⊗ 1 + 1⊗ b1) = 0.

Note that b1⊗1+1⊗ b1 is the differential of SA⊗SA so that we obtain d(b2) = 0,
which means that b2 : SA⊗ SA→ SA is a morphism of complexes.

For n = 3, the identity (2.1) becomes

b2 (b2 ⊗ 1 + 1⊗ b2) + b1b3 + b3(b1 ⊗ 1⊗ 1 + 1⊗ b1 ⊗ 1 + 1⊗ 1⊗ b1) = 0.

Here the second summand is d(b3) whereas the first is, up to a sign, the associator
for the binary operation b2. If we define m2 : A⊗A→ A by

m2(x, y) = (−1)xb2(x, y),

then we obtain that m2 is associative up to a homotopy given by b3.
For each n > 3, the identity (2.1) states that the maps b2, . . . , bn−1 satisfy a

certain quadratic identity up to a homotopy given by bn. In this sense, an A∞-
algebra is an algebra associative up to a given system of higher homotopies.

It is a direct consequence of the definition, that if bn vanishes for each n ≥ 1, then
(A, m1, m2) is a differential graded (=dg) algebra, i. e. m2 is associative and m1
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a differential compatible with m2 through the (graded) Leibniz rule. Conversely,
each dg algebra gives rise to an A∞-algebra with vanishing bn, n ≥ 3.

In particular, each ordinary associative algebra can be viewed as an A∞-algebra
concentrated in degree 0, and conversely.

2.3. Examples via deformations. Following an idea of Penkava-Schwarz [13],
let us exhibit a large class of easily constructed but non trivial examples of A∞-
algebras. Let B be an ordinary algebra and N ≥ 1 an integer. Let ε be an
indeterminate of degree 2 − N . We first endow the graded space A = B[ε]/(ε2)
with the trivial A∞-structure given by the map b2 induced by the multiplication of
B and the maps bn = 0 for all n 6= 2. Now let

c : B⊗N → B

be any linear map. Define deformed multiplications

b′n =

{

bn n 6= N
bN + εc n = N.

Then it is easy to see that A endowed with the b′n is an A∞-algebra iff c is a
Hochschild cocycle for B.

2.4. Weak A-infinity algebras. A weak A∞-algebra is a graded space A endowed
with maps b0 : k → SA and bn, n ≥ 0, such that the identity 2.1 holds for all n ≥ 0.
The preceding example then naturally extends to the case where N = 0, where we
start from a Hochschild 0-cocycle, i. e. a central element c of B. In general, in a
weak A∞-algebra, we have

b2
1 = −b2(b0 ⊗ 1 + 1⊗ b0) 6= 0

so that the homology with respect to b1 is no longer defined and the above remarks
no longer apply. Little is known about weak A∞-algebras in general, but they do
appear in nature as deformations.

2.5. Morphisms and quasi-isomorphisms. A morphism of A∞-algebras f :
A→ B is given by maps

fn : (SA)⊗n → SA , n ≥ 1 ,

homogeneous of degree 0 such that, for all n ≥ 1, we have
∑

i+j+l=n

fi+1+l ◦ (1⊗i ⊗ bj ⊗ 1⊗l) =
∑

i1+···is=n

bs ◦ (fi1 ⊗ · · · ⊗ fis
).

By looking at this equation for n = 1 and n = 2 we see that f1 then induces a
morphism of complexes from (A, m1) to (B, m1) which is compatible with m2 up
to an homotopy given by f2. In particular, f1 induces an algebra morphism

H∗A→ H∗B.

By definition, f is an A∞-quasi-isomorphism if f1 is a quasi-isomorphism (i. e.
induces an isomorphism in homology).

The composition f ◦ g of two morphisms is given by

(f ◦ g)n =
∑

i1+···+is=n

fis
◦ (gi1 ⊗ · · · gis

).

The identical morphism of SA is given by f1 = 1 and fn = 0 for all n ≥ 2.
It is easy to see that we do obtain a category. It contains the category of dg

algebras and their morphisms as a non-full subcategory.

Proposition. For each A∞-algebra A, there is a universal A∞-algebra morphism
ϕ : A→ U(A) to a dg algebra U(A). Moreover, ϕ is an A∞-quasi-isomorphism.
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The universal property means that for each dg algebra B, each A∞-morphism
f : A→ B factors as f = g ◦ϕ for a unique morphism of dg algebras g : U(A)→ B.
The proposition tells us that, up to A∞-quasi-isomorphism, A∞-algebras are quite
similar to dg algebras. However, in other respects, they are radically different from
dg algebras, as the following proposition shows.

Proposition. Let A be an A∞-algebra, V a complex and f1 : A → V a quasi-
isomorphism of complexes. Then V admits a structure of A∞-algebra such that f1

extends to an A∞-quasi-isomorphism f : A→ V .

The analogous statement for dg algebras and their morphisms is of course com-
pletely wrong. For our complex V , we can take in particular the graded space
H∗V with the zero differential (since we work over a field, the canonical surjection
from the cycles to the homology of V splits and we obtain f1 by composing a right
inverse with the inclusion of the cycles). Then we obtain the first part of the

Theorem. If A is an A∞-algebra, then H∗A admits an A∞-algebra structure such
that

(1) b1 = 0 and b2 is induced from bA
2 , and

(2) there is an A∞-quasi-isomorphism A → H∗A inducing the identity in ho-
mology.

Moreover, this structure is unique up to (non unique) A∞-isomorphism.

Note that uniqueness up to A∞-quasi-isomorphism is trivial. The point is that
here we can omit ‘quasi’. An A∞-algebra is minimal if b1 = 0. The minimal model
of an A∞-algebra A is the space H∗A endowed with ‘the’ structure provided by the
theorem. This structure can be computed as follows: Choose

Ah
88

p
//
H∗A

i
oo

such that p and i are morphisms of complexes of degree 0 and h is a homogeneous
map of degree −1 such that

pi = 1 , ip = 1 + d(h) , h2 = 0.

Then the nth multiplication of the minimal model is constructed as

bmin
n =

∑

T

bn
T

where T ranges over the planar rooted trees T with n leaves and bT
n is given by

composing the tree-shaped diagram obtained by labelling each leaf by i, each branch
point with m branches by bm, each internal edge by h and the root by p.

p

h h

h

h
h

i i i
i i i

i
i

i i

b_2

b_2

b_2 b_2

b_2
b_3

b_3
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2.6. Yoneda algebras. Let B be a unital associative algebra, M a (right) B-
module and P →M a projective resolution. Let A = HomB(P, P ) be the differential
graded endomorphism algebra of P (its nth component consists of the morphisms
of graded objects of degree n and its differential is the supercommutator with the
differential of P ). Then A is in particular an A∞-algebra and thus has a minimal
model. Now the homology H∗A is isomorphic, as an algebra for m2, to the Yoneda
algebra

Ext∗B(M, M).

Thus we obtain higher multiplications on the Yoneda algebra. The simplest case
where these are non-trivial is that of the algebra B given by the quiver

1
γ

// 2
β

// 3
α

// 4

with the relation αβγ = 0 and the module M equal to the sum of the four simple
B-modules. Then the Yoneda algebra is given by the quiver

1 2
c

oo 3
b

oo 4
a

oo

e

{{
,

where the arrows a, b, c are of degree 1, the arrow e is of degree 2, we have m2(c, b) =
0, m2(b, a) = 0 and b3(c, b, a) = e.

2.7. Units. A strict unit for an A∞-algebra A is an element 1 ∈ A0 which is a unit
for m2 and such that, for n 6= 2, the map bn takes the value 0 as soon as one of its
arguments equals 1. Unfortunately, strict unitality is not preserved by A∞-quasi-
isomorphisms. A homological unit for A is a unit for the associative algebra H∗A
with the multiplication induced by m2. Homological unitality is clearly preserved
under A∞-quasi-isomorphism but is not easy to handle in practical computations.
Fortunately, it turns out that the two notions are not very different:

Proposition ([12, 3.2.1]). Each (resp. minimal) homologically unital A∞-algebra
is A∞-quasi-isomorphic (resp. A∞-isomorphic) to a strictly unital A∞-algebra.

3. A-infinity modules

Let A be a homologically unital A∞-algebra. An A∞-module is a graded space
M with maps

bn : SM ⊗ (SA)⊗n−1 → SM , n ≥ 1 ,

homogeneous of degree 1 such that the identity 2.1 holds for all n ≥ 1 (where we
have to interpret bn as bA

n or bM
n according to the type of its arguments) and that

the induced action

H∗M ⊗H∗A→ H∗M

is unital. For example, the A∞-algebra A can be viewed as a module over itself:
the free module of rank one. The notions of morphism and quasi-isomorphism of
A∞-modules are defined in the natural way. The derived category D∞ A is defined
as the localization of the category of A∞-modules (with degree 0 morphisms) with
respect to the class of quasi-isomorphisms. Thus, its objects are all A∞-modules
and its morphisms are obtained from morphisms of A∞-modules by formally in-
verting all quasi-isomorphisms. It turns out that the derived category is naturally
a triangulated category. The perfect derived category per A is defined as the closure
of the free A-module of rank one under shifts in both directions, extensions and
passage to direct factors.

When A is an ordinary unital associative algebra, we have a natural functor
from the category of complexes over the category ModA of (right) A-modules to



6 BERNHARD KELLER

the category of A∞-modules. This functor is faithful but neither full nor essentially
surjective. Nevertheless, it induces an equivalence

D(ModA)→ D∞ A.

Under this equivalence, the perfect derived category corresponds to the full sub-
category of complexes quasi-isomorphic to bounded complexes of finitely generated
projective A-modules.

Let B be another homologically unital A∞-algebra. An A∞-bimodule is given
by a graded space X with maps

bi,j : (SA)⊗i ⊗ SX ⊗ (SB)⊗j → SM , i + j ≥ 0 ,

satisfying the identity 2.1 for all i, j ≥ 0 and such that H∗X becomes a unital
H∗A-H∗B-bimodule. For such a bimodule, one can define the tensor product

?
∞

⊗A X : D∞ A→ D∞ B , M 7→

∞
⊕

i=0

M ⊗ (SA)⊗i ⊗X

(we only indicate the underlying graded space). The A∞-algebras A and B are
derived equivalent if there is an A∞-bimodule X such that the associated tensor
product is an equivalence.

This generalizes the now classical notion of derived equivalence for ordinary
algebras: If A and B are ordinary algebras, then, by J. Rickard’s theorem [15],
they are derived equivalent iff B admits a tilting complex (e. g. a tilting module)
with endomorphism ring A.

Let us call algebraic a triangulated category which is the homotopy category as-
sociated with a k-linear Quillen model category (recall that k is the ground field).
The class of algebraic triangulated categories contains all homotopy categories of
complexes over k-linear categories and is stable under passage to triangulated sub-
categories and Verdier localizations. Thus, it contains all triangulated categories
‘of algebraic origin’, e. g. derived categories of categories of coherent sheaves.

Recall that an additive category has split idempotents if every idempotent en-
domorphism admits a kernel (and thus gives rise to a direct sum decomposition).
By a generator of a triangulated category T , we mean an object G whose closure
under shifts in both directions, extensions and passage to direct factors equals T .

Theorem ([12, 7.6]). Let T be a (k-linear) algebraic triangulated category with
split idempotents and a generator G. Then there is a structure of A∞-algebra on

A =
⊕

n∈Z

HomT (G, G[n])

such that m1 = 0, m2 is given by composition and that the functor

T → Grmod(A, m2) , U 7→
⊕

n∈Z

HomT (G, U [n])

lifts to a triangle equivalence

T → per(A).

Here Grmod denotes the category of graded right modules. For example, suppose
that T is the bounded derived category of the category of coherent sheaves on
projective n-space. Then, as Beilinson has shown [1] by ‘resolving the diagonal’,
the object G =

⊕n
i=0

O(−i) generates T . Moreover, the algebra A is concentrated
in degree 0 and of finite dimension and finite global dimension. Then we obtain
equivalences

Db(cohPn) ∼

→ per(A) ∼

← Db(mod A) ,

where modA denotes the category of finite-dimensional A-modules.
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Beautiful theorems on the existence of generators in triangulated categories of
geometric origin are due to Bondal-Van den Bergh [2] and to Rouquier [16].
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Jussieu, 75251 Paris Cedex 05, France

E-mail address: keller@math.jussieu.fr

www.math.jussieu.fr/ e keller


