RELATIVE CLUSTER CATEGORIES AND HIGGS CATEGORIES
WITH INFINITE-DIMENSIONAL MORPHISM SPACES

BERNHARD KELLER AND YILIN WU

With an appendix by Chris Fraser and Bernhard Keller

Dedicated to Professor Henning Krause on the occasion of his 60th birthday

ABSTRACT. Cluster algebras with coefficients are important since they appear in nature as coordinate
algebras of varieties like Grassmannians, double Bruhat cells, unipotent cells, - - -. The approach of Geiss—
Leclerc—Schroer often yields Frobenius exact categories which allow to categorify such cluster algebras. In
previous work, the second-named author has constructed Higgs categories and relative cluster categories in
the relative Jacobi-finite setting (arXiv:2109.03707). Higgs categories generalize the Frobenius categories
used by Geiss—Leclerc—Schroer.

In this article, we construct the Higgs category and the relative cluster category in the relative Jacobi-
infinite setting under suitable hypotheses. This covers for example the case of Jensen—King—Su’s Grass-
mannian cluster category. As in the relative Jacobi-finite case, the Higgs category is no longer exact
but still extriangulated in the sense of Nakaoka-Palu. We also construct a cluster character refining
Plamondon’s.

In the appendix, Chris Fraser and the first-named author categorify quasi-cluster morphisms using
Frobenius categories. A recent application of this result is due to Matthew Pressland, who uses it to
prove a conjecture by Muller—Speyer.
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1. INTRODUCTION

Cluster categories were introduced in 2006 by Buan-Marsh-Reineke-Reiten-Todorov [2] in order to
categorify acyclic cluster algebras [11], 12, 13] without coefficients. Caldero and Chapoton used the
geometry of quiver Grassmannians to define the cluster character [5], i.e. a decategorification map which
yields a bijection from the set of isomorphism classes of indecomposable objects of the cluster category
of a Dynkin quiver to the set of cluster variables in the associated cluster algebra. More generally,
for (antisymmetric) cluster algebras associated with acyclic quivers, Caldero-Keller [7] showed that the
Caldero-Chapoton map induces a bijection between the set of isomorphism classes of indecomposable
rigid objects and the set of cluster variables.

Key words and phrases. Ice quiver with potential, relative Ginzburg algebra, Higgs category, cluster character, quasi-
cluster homomorphism.
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In order generalize the representation-theoretic approach to cluster algebras from acyclic quivers to
quivers with oriented cycles, Derksen—Weyman—Zelevinsky [8, 9] extended the mutation operation from
quivers to quivers with potential and their representations. In the case where the quiver with potential
is Jacobi-finite, Amiot [I] generalized the construction of the cluster category [I]. The cluster character
constructed by Palu in [33] induces a bijection [6] from the isoclasses of the reachable rigid indecom-
posables of the (generalized) cluster category to the cluster variables of the associated cluster algebra.
Plamondon [36] generalized Amiot’s and Palu’s constructions to arbitrary quivers with potential.

Cluster algebras with coefficients are of great importance in geometric examples. They appear in
nature as coordinate algebras of varieties like Grassmannians, double Bruhat cells, unipotent cells, ...
cf. for example [3, I8, 41]. The work of Geiss—Leclerc—Schréer provides Frobenius exact categories
which allow to categorify such cluster algebras [I7), 18] in many cases. In their approach, the Frobenius
exact category is a full subcategory of the category of modules over a certain preprojective algebra.
Geiss—Leclerc—Schroer’s setting was axiomatized by Fu—Keller [I5] using stably 2-Calabi—Yau Frobenius
categories. They also observed that not all cluster algebras with coefficients admit such a categorification
(for example, acyclic cluster algebras with principal coefficients do not, cf. Remark 5.7 of [15]).

In order to extend Geiss—Leclerc—Schroer’s approach to larger classes of cluster algebras with coef-
ficients, the second-named author introduced relative cluster categories and Higgs categories in [43].
However, the setting he considered was restricted to the case of ice quivers with potential (Q, F, W)
whose associated relative Jacobi algebra is finite-dimensional. In this article, our aim is to construct
the associated Higgs category H(Q, F, W) and the relative cluster category C(Q, F, W) under a much
weaker assumption (cf. Assumption . We also construct a canonical cluster character in this set-
ting. Higgs categories generalize the Frobenius categories used by Geiss-Leclerc-Schroer. Our cluster
character generalizes Plamondon’s [30] to the relative context.

Let us state our main results more precisely: Let (Q,F,W) be an ice quiver with potential and
I' = T(Q, F,W) the associated relative Ginzburg algebra (cf. section . Let e = ) ,cpei be the
idempotent associated with the set of frozen vertices. Let J(Q, F,W) = H%T) be the corresponding
relative Jacobian algebra. We denote by P = add(eI") the closure under finite direct sums and summands
of eI’ in the perfect derived category perI’. The relative cluster category C(Q, F, W) is defined as the
idempotent completion of the quotient of perT’ by the thick subcategory generated by all simple H°(T')-
modules associated with non frozen vertices of Q. The Higgs category H(Q, F, W) is a certain extension
closed full subcategory of C(Q, F,W) (cf. Definition [3.21)). Let (Q,W) be the quiver with potential
obtained from (Q, F, W) by deleting the frozen part F and T'(Q, W) the Ginzburg algebra of (Q, W).
Then we have a dg quotient morphism

p: T(Q, F,W) = T(Q,W).

It induces a triangulated quotient functor p*: C(Q, F, W) — C(Q, W), where C(Q, W) (or C) is the asso-
ciated generalized cluster category. Let D(Q, F, W) C C(Q, F, W) be the full subcategory of C(Q, F, W)

whose objects are the M in C(Q, F, W) whose image p*(M) lies in Plamondon’s category D(Q, W) (see
Subsection . In the following theorem, we abbreviate I' = I'(Q, F, W) and H = H(Q, F, W).

Theorem 1.1. (Theorem[4.17) Let (Q, F, W) be an ice quiver with potential such that P = add(eT’) is
functorially finite in add(T").

1) We have an equivalence of k-categories
H(Q, F,W)/[P] = D(Q,W).

2) If (Q, W) is Jacobi-finite, then H(Q, F, W) is a Frobenius extriangulated category with projective-
injective objects P = add(eI') and the equivalence in (1) preserves the extriangulated structure.
Moreover, we have equalities

D(Q,W)=C(Q, W)
and
D(Q,F,W)=C(Q,F,W).

3) If moreover T' is concentrated in degree 0, then the boundary algebra B =eH’(T')e is fp, -
Gorenstein of injective dimension at most e with respect to I' and the Higgs category H is
equivalent to the category gprS3B (cf. section @ Moreover, T is a canonical cluster-tilting

object of H with endomorphism algebra Endy(T') = H°(T) = J(Q, F,W).
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4) Let M = add(T") C H. Under the assumptions of 3), the exact sequence of triangulated categories
0 — pvd (T') — perI' = C(Q, F, W) — 0
s equivalent to
0 — K5, (M) = K'(M) — D°(H) — 0.
In particular, the relative cluster category C(Q, F, W) is equivalent to the bounded derived cate-
gory DP(H) of H.

In section [5| we generalize Fu-Keller’s cluster character to a cluster character
CC = X7: obj(H) = Qlzry1, ..., xn][xF, 23t ... 2

T
defined for Hom-infinite Higgs categories . Thus, the Higgs category yields an additive categorification
for cluster algebras with non-invertible coefficients and the cluster character is a decategorification
map. Let us point out that Grabowski and Pressland will construct a cluster character for certain
extriangulated categories in their upcoming paper [20].
Now we assume that (Q, W) is Jacobi-finite. By definition, the Higgs category H(Q, F, W) is a full
subcategory of C(Q, F,W). The following theorem shows that the map CC' defined on H(Q, F, W)

canonically extends to a map

CCloc: C(Q, F, W) — (@[:clﬂ, Y = zH

Y sy Hp4lr ot
defined on the whole relative cluster category. Thus, we can consider the triangulated category C(Q, F, W)
as an additive categorification of a cluster algebra with invertible coefficients and the map CCj,. as a
decategorification map.

Theorem 1.2. (Theorem Let (Q, F, W) be an ice quiver with potential such that P = add(eI") is
functorially finite in add(T'). We assume moreover that (Q, W) is Jacobi-finite. Consider the following
diagram, where CC' is the cluster character constructed by Plamondon in [36],

CC,
H—— C(Q,F, W) 2= Q[xfl, . ,xfl,xf_&l, oy
p* zi—1, Vi>r
~ = T cC
H—"—CQW) — 55— Qzit, ... ]

There is a unique map
CCloc: C(Q, F, W) — Q2 ...,xf o, ot

n
such that the above diagram commutes and

1) for each triangle in C(Q, F,W)
P—-X—->M-—%XP
with P € thicke(P), we have
CCloc(X) = CCloc(P) - CCloe(M) ;

2) the restriction CCloely is the cluster character X, defined in Section @
3) for each object P in thicke(P), we have CCiy(P) = 21 where [P] € Ko(perT') ~ 7.

This article is organized as follows. In Section [2] we first recall the definitions of ice quivers with
potential and the mutation operations. Then we give the construction of (complete) relative Ginzburg
algebras. In Section [3] we use Plamondon’s technique to define the Higgs category. The relationship
between the Higgs category and Plamondon’s category is explained in Section [4.1

Let (Q,F,W) be an ice quiver with potential and u,(Q,F,W) = (Q', F',W’) its mutation at a
vertex v. If v is an unfrozen vertex, we show that mutation at v yields an equivalence between the
relative cluster categories of (Q, F,W) and (Q', F',W’) (see Proposition [3.29). If v is a frozen source
or frozen sink, the mutation at v yields an equivalence between D(Q, F,W) and D(Q’, F',W') (see

Proposition [3.31)).
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Section |5 is devoted to the construction of the cluster character CC = X» (with respect to I') on
H(Q, F,W). We use an argument similar to Plamondon’s to show the multiplication formula, cf. Sec-
tion Then we extend our cluster character to a map

CCloc: C(Q, F, W) — @[mfl, . ,xfl,:cﬂl, B

In Section [6] we show that the decategorification of the equivalence associated with the mutation at a
frozen source (or sink) is a quasi-cluster isomorphism. In the final section [7} we explain how the class
of ice quivers with potential which come from Postnikov diagrams fits into the theory developed in this
article.

In appendix Chris Fraser and the first-named author use Frobenius categorifications (which can
often be constructed using the main results of this paper) to construct quasi-cluster isomorphisms.
In [40], Matthew Pressland has recently applied these results to prove a conjecture by Muller-Speyer
[31, Rem. 4.7] linking the two canonical cluster structures on a positroid variety by a quasi-cluster
isomorphism.
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NOTATION AND CONVENTIONS

Throughout this paper, k will denote an algebraically closed field of characteristic zero. We denote
by D = Homy(—, k) the k-dual. All modules are right modules unless stated otherwise.

Let 7 be any triangulated category. For any subcategory 7' of T, we denote by ind7” the set
of isomorphism classes of indecomposable objects of 7 contained in 7’. Denote by add7’ the full
subcategory of 7 whose objects are all direct summands of finite direct sums of objects in 7’. The
subcategory T is rigid if for any two objects X and Y of 7', we have Hom(X,XY) = 0.

Let P be a subcategory of 7. We denote by [P] the ideal of morphisms in 7 factoring through an
object of P. Then the corresponding additive quotient category with respect to P is denoted by T /[P].
Denote by triy(P) the triangulated subcategory of T gennerated by P, i.e. the smallest triangulated
subcategory of T containing P.

For collections X and ) of objects in 7. we denote by X *)) the collection of objects Z € T appearing
in a triangle X - Z Y - XX with X e XY and Y € ).

2. PRELIMINARIES
2.1. Ice quivers with potential.

Definition 2.1. A quiver is a tuple Q = (Qo, @1, s,t), where Qo and @ are sets, and s,t: Q1 — Qo
are functions. We think of the elements of (g as vertices and of those of ()1 as arrows, so that each
a € () is realised as an arrow a: s(a) — t(a). We call Q finite if Qo and @ are finite sets.

Definition 2.2. Let @ be a quiver. A quiver F' = (Fy, Fy,s',t') is a subquiver of Q if it is a quiver such
that Fy C Qo, F1 C @1 and the functions s’ and ¢ are the restrictions of s and ¢t to F; . We say F is a
full subquiver if F1 = {a € Q1: s(a),t(a) € Fy}, so that a full subquiver of @ is completely determined
by its set of vertices.

Definition 2.3. An ice quiver is a pair (Q, F), where @ is a finite quiver and F' is a (not necessarily
full) subquiver of Q. We call Fy, F; and F the frozen vertices, arrows and subquiver respectively. We
also call Qg \ Fo and @1 \ F1 the unfrozen vertices and arrows respectively.

Let k be a field. Let @ be a finite quiver.
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Definition 2.4. Let S be the semisimple k-algebra Hier ke;. The vector space k@1 naturally becomes
an S-bimodule. Then the complete path algebra of ) is the completed tensor algebra

kQ = Ts(kQ1).

It has underlying vector space
[e.e]

[Tx@u®s

d=0
and multiplication given by concatenation. The algebra k:/@ becomes a graded pseudocompact S-algebra
in the sense of [4].

Definition 2.5. [39, Definition 2.8] A potential on @ is an element W in HHO(@) = k/@/[k/@,k/@]
expressible as a (possibly infinite) linear combination of homogeneous elements of degree at least 2,
such that any term involving a loop has degree at least 3. An ice quiver with potential is a tuple
(Q, F,W) in which (Q, F) is a finite ice quiver and W is a potential on Q. If F' = () is the empty quiver,
then (Q,0, W) = (Q, W) is simply called a quiver with potential. We say that W is irredundant if each
term of W includes at least one unfrozen arrow.

A potential can be thought of as an infinite formal linear combination of cyclic paths in @ (of length
at least 2), considered up to the equivalence relation on such cycles induced by

an.--al ~Y an*l ---alan.
Definition 2.6. Let p = «y, - - - a7 be a cyclic path, with each a; € @1, and let o € ()1 be any arrow.
Then the cyclic derivative of p with respect to « is
Oap = La;=aQli—1 "0~ Qg1

We extend 0, by linearity and continuity. Then it determines a map HHO(I@) — l;@ For an ice quiver
with potential (Q, F, W), we define the relative Jacobian algebra J(Q, F, W) (or J,.e) as

kQ/(0aW: € Q1 \ ).

If =0, wecal J(Q,W)=J(Q,0,W) the Jacobian algebra of the quiver with potential (Q,
ice quiver with potential (Q, F, W) is called Jacobi-finite if the relative Jacobian algebra J(Q,
finite-dimensional. Otherwise, we say it is Jacobi-infinite.

W). An
F, W) is

Definition 2.7. Let @ be a quiver. An ideal of k/:@ is called admissible if it is contained in the square
of the closed ideal generated by the arrows of (). We call an ice quiver with potential (Q, F, W) reduced

if W is irredundant and the Jacobian ideal of l;@ determined by F and W is admissible. An ice quiver
with potential (Q, F, W) is trivial if its relative Jacobian algebra J(Q, F, W) is a product of copies of
the base field k.

2.2. Mutation of ice quivers with potentials.
Two ice quivers with potential (Q, F, W) and (Q', F',W') are right equivalent if Qo = Qy, Fo = F},
and there exists an S-algebra isomorphism ¢: kQ — k@’ such that

(1) ¢ls =1s,
(2) p(kF) = kF', where kF' and kF" are treated in the the natural way as subalgebras of k@ and

—

kQ' respectively, and -
(3) (W) equals W' in HHy(kQ').
In that case, the relative Jacobian algebras of the two ice quivers with potential are isomorphic (see [39,
Proposition 3.10]). Let (Q, F,W) be an ice quiver with potential. By [39, Theorem 3.6], there ex-
ists a reduced ice quiver with potential (Qred, Freds Wred) such that J(Q, F, W) = J(Qred; Freds Wred)-
And (Qred, Freds Wreq) is uniquely determined up to right equivalence by the right equivalence class of
(Q, F,W). We call (Qred, Fred; Wred) the reduction of (Q, F,W).
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2.2.1. Mutation at unfrozen vertices. Let v be an unfrozen vertex of () such that no loops or 2-cycles of
@ are incident with v. The mutation at the vertex v is the new ice quiver with potential u,(Q, F, W)
obtained from (Q, F, W) (see [39]) in the following way:

(1) For each pair of arrows a: u — v and 3: v — w, add an unfrozen ‘composite’ arrow [Sa]: u — w
to Q.

(2) Reverse each arrow incident with v. This gives a new ice quiver (@', F').

(3) Pick a representative W of W in k@ such that no term of W begins at v (which is possible since
there are no loops at v). For each pair of arrows «, 5 as in (1), replace each occurrence of Sa in
W by [Ba], and add the term [Sa]a*3*. This gives a new potential W’'.

The mutation u,(Q, F,W) of (Q, F,W) at v is then defined to be the reduction of (Q’, F, W').

2.2.2. Mutation at frozen vertices. Let (Q,F,W) be an ice quiver with potential. Let v be a frozen
vertex.

Definition 2.8. We say that v is a frozen source of @ if v is a source vertex of F' and there are no
unfrozen arrows with source v. Similarly, we say that v is a frozen sink of @ if v is a sink vertex of F'
and there are no unfrozen arrows with target v. For two vertices i and j, we say that they have the same
state if they are both in Fyy or Qo \ Fy. Otherwise, we say that they have different states. Similarly, for
two arrows in @), we say that they have the same state if they are both in F; or Q1 \ F1. Otherwise, we
say that they have different states.

Let v be a frozen source or a frozen sink. The mutation at the vertex v is the new ice quiver with
potential p,(Q, F, W) obtained from (Q, F, W) (see [39, 42]) in the following way:

(1) For each pair of arrows a: u — v and f: v — w, add an unfrozen ‘composite’ arrow [Sa]: v — w

to Q.
(2) Replace each arrow a: u — v by an arrow a*: v — u of the same state as o and each arrow
f: v — w by an arrow *: w — v of the same state as 3. This gives a new ice quiver (Q’, F").

(3) Pick a representative W of W in kQ such that no term of W begins at v (which is possible since
there are no loops at v). For each pair of arrows «, 5 as in (1), replace each occurrence of S in

w by [Bal, and add the term [Ba]a*5*. This gives a new potential W',
The mutation pu,(Q, F, W) of (Q, F, W) at v is then defined to be the reduction of (Q’, F', W’).

2.3. Complete relative Ginzburg dg algebras.

Definition 2.9. Let (Q, F, W) be a finite ice quiver with potential. Let @ be the graded quiver with
the same vertices as () and whose arrows are

e the arrows of @,

e an arrow a*: j — 1 of degree —1 for each arrow a of () not belonging to F’,

e a loop t;: © — ¢ of degree —2 for each vertex ¢ of () not belonging to F'.

Define the completed relative Ginzburg dg algebra T'(Q, F, W) as the dg algebra whose underlying

graded space is the completed graded path algebra k@ Its differential is the unique k-linear continuous
endomorphism of degree 1 which satisfies the Leibniz rule

d(uv) = d(u)v + (—=1)Pud(v)

for all homogeneous u of degree p and all v, and takes the following values on the arrows of @:
e d(a) = 0 for each arrow a of @,
e d(a*) = 9,W for each arrow a of @ not belonging to F,
o d(t;) = €i(d_qeq,la; a’])e; for each vertex i of @ not belonging to F' where e; is the lazy path
corresponding to the vertex 1.

Definition 2.10. Let F' be any finite quiver. Let F be the graded quiver with the same vertices as F'
and whose arrows are

e the arrows of F,

e an arrow a : j — i of degree 0 for each arrow a of F,

e a loop r; : ¢ — ¢ of degree —1 for each vertex ¢ of F.
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Define complete derived preprojective algebra II5(F') as the dg algebra whose underlying graded space is

the completed graded path algebra kE. Tts differential is the unique k-linear continuous endomorphism
of degree 1 which satisfies the Leibniz rule

d(uowv)=d(u)ov+ (—1)Puod(v)

for all homogeneous u of degree p and all v, and takes the following values on the arrows of F:
e d(a) =0 for each arrow a of F,
e d(a) = 0 for each arrow a in F,
e d(r;) = €i(Q_qep [a, a])e; for each vertex i of F', where e; is the lazy path corresponding to the
vertex 1.

Lemma 2.11. With the above notations, J(Q, F, W) is isomorphic to H*(T'(Q, F, W)).

Let (@, F, W) be a finite ice quiver with potential. Since W can be viewed as an element in H Co(l;@),
the class ¢ = B(W) is an element in H H; (kQ), where

B: HCy(kQ) — HH:(kQ)

is Connes’ connecting map (see [28, Section 6.1]).

We denote by G': kF < kQ the canonical dg inclusion. Let HHy(G) be the 0-th Hochschild homology
of G (see [43] Section 2.4]). Then & = (0,¢) is an element of HHy(G). Applying the relative deformed
3-Calabi-Yau completion of G: kF' — k(@ with respect to £, we get the following dg functor (see [43,
Section 7.2] and [42, Section 4])

Gre: TIo(F) — T(Q, F, W).

We call it Ginzburg functor (see [42, Section 4]). In the notations of [42, Section 4], it is given

explicitly as follows:

e G, (1) =i for each frozen vertex i € Fy,

G, (a) = a for each arrow a € F7,

G.e(a) = —0,W for each arrow a € F7,

Grei(ri) = €i(Xqeg,\m (@, a”])e; for each frozen vertex i € Fo.

Let e = >, e be the idempotent associated with the set of frozen vertices and pvd,(T") the full
subcategory of pvd(I') whose objects are dg modules Mwhose restriction to eT'e is acyclic. In another
words, pvd,(T') is equal to

thickpr)(Si |7 € Qo \ Fo),
i.e. the thick subcategory of D(I") generated by all unfrozen simple modules.

Proposition 2.12. [43, Corollary 3.13] For any dg module N and any dg module M in pvd,(T"), there
18 a canonical isomorphism

Hompp) (M, N) = DHompr) (N, S*M).

Proposition 2.13. [43, Proposition 7.7] Let (Q,F,W) be a finite ice quiver with potential. Let Q be
the quiver obtained from Q by deleting all vertices in F' and all arrows incident with vertices in F. Let
W be the potential on Q) obtained by deleting all cycles passing through vertices of F' in W. Then

IL(F) S 0(Q, F, W) — T(Q, W)

is a homotopy cofiber sequence of dg categories, where T'(Q, W) is the Ginzburg algebra (see [28, Section
6]) associated with the quiver with potential (Q,W).

For simplicity of notation, we write I instead of T'(Q, F, W) and use T for T'(Q, W).
Denote by p : I' — T the canonical quotient functor. Then p induces the usual triple of adjoint

L _
functors (p*, ps, ') between D(T) and D(T'), where p, is the restriction functor, p* =? ®p I' and
p' = RHomp (T, ?).

Proposition 2.14. Let e = ) .. e; be the idempotent associated with the set of frozen vertices. We
have an exact sequence of triangulated categories

per(eTyere) = per(Trer) 2 per(T(Q, W)).
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Proof. This follows from the lemma below based on [10, Theorem 3.1]. Vv

Lemma 2.15. Let A be a dg category and B a full dg subcategory. Suppose that the functor
p*: add(HY(A)) — add(H(A/B))
is essentially surjective. Then we have an equivalence of triangulated categories
perA/perB =5 perA/B,

where A/B is the Drinfeld dg quotient (see [10]) of A by B.

Proof. The perfect derived category per(A/B) is generated, as triangulated category, by the re-
tracts of the representable functor (A/B)(?,z), v € A. By [10, Theorem 3.1}, the triangulated functor
p*: perA/perB — perA/B is an equivalence up to direct summands. To show that it is dense, it suffices

to check that its image contains the retract of the representable functor (A/B)(?,z), z € A. Then it
follows from our assumption. V

3. RELATIVE CLUSTER CATEGORIES AND HIGGS CATEGORIES

Let (@, F, W) be an ice quiver with potential. Denote by I" the associated complete relative Ginzburg
dg algebra I'(Q, F,W). Let e = }_,.pe; be the idempotent associated with the set of frozen vertices
and P the additive subcategory add(eI') of perI'.

Definition 3.1. The relative cluster category C(Q, F, W) (or C) of (Q, F, W) is defined as the idempotent
completion of the Verdier quotient of triangulated categories

per(I)/pvd, ().
If F = (), the cluster category associated with (Q,W) is defined as C(Q,D, W) and we denote it by
c(Q,w).

Remark 3.2. If (Q, F,W) is Jacobi-finite, then the Verdier quotient per(T')/pvd,(T) is idempotent
complete (see [43, Corollary 4.15]) and (Q, W) is also Jacobi-finite (see [43, Proposition 4.20]). The
Verdier quotient per(T(Q, W))/pvd(T(Q,W)) is also idempotent complete (see [1]).

We denote by D the unbounded derived category of I'(Q, W) and by C the cluster category C(Q, W)
associated with (Q, W).

Proposition 3.3. [43, Corollary 4.22] We have the following commutative diagram
thick(P) thick(P)
\[ rel \[
pvd, (T) —— perI' —/— C(Q,F, W)
Lk

pvd(T) ——— perl’ —"— C(Q, W),

where the columns and rows are exact sequences of triangulated categories.

Proposition 3.4. [29, Lemma 2.17] The perfect derived categories perI' and perD are Krull-Schmidt
categories.

Let DSV (and D~ respectively) be the full subcategory of D(T') whose objects are those X whose
homology is concentrated in non-positive (and non-negative, respectively) degrees. Since I' is connective,
the pair (DS?, D>0) is a canonical ¢t-structure on D(T'). Similarly, we define D~ and D°°. And the pair

=<0 ==>0, . . =
(D™,D7") is a canonical t-structure on D.

On D, we take the canonical t-structure (5@,520) with heart © = Mod(J(Q, W)) and on D(ele),
we take the trivial t-structure whose left aisle is D(ele).

We denote by (i*,4,,4') the usual triple of adjoint functors between D(eI'e) and D(T) induced by the
dg inclusion i: el'e < T'.



Proposition 3.5. [43, Corollary 4.4] There is a t-structure in D(I') obtained by gluing the canonical
t-structure on D(T') with the trivial t-structure on D(el'e) through a recollement diagram.
We denote by (D", D2") the glued t-structure on D(T). For each n € Z,

rel” “rel

Dy ={X e DD)|H'(p*X) = 0, VL > n},

rel

D7 ={X € D(T)|i.(X) =0, H'(p'X) = H'(X) = 0, VI < n}

rel

and the heart O™ of this glued t-structure is equivalent to Mod.H(T'). We will call (ng,Dfe?) the
relative t-structure on D(T'). We illustrate this glued t-structure in the following picture

o]

D(eTe)

)

where the blue region represents the subcategory D\l and the red region represents the subcategory Dml

Definition 3.6. We define the relative truncation functor Tml to be the following composition

*

p T>n

ek D(T) D(T) D(T) —=D(T).

Thus, for any X € D(I'), we have a canonical triangle in D(T")
Tzean — X = ETTelX

such that 77¢X belongs to D and 72¢(X) = p, (75, (p* X)) belongs to pzntl

rel rel

Corollary 3.7. If (Q, W) is Jacobi-finite, the relative t-structure on D(T') restricts to the perfect derived
category perl.

Proof. Let X be an object in perI". Consider the canonical triangle with respect to the relative
t-structure on D(T")
TIIX = X = X - Nl X

Since (Q, W) is Jacobi-finite, the perfect derived category perI is Home-finite (see [27, Proposition
2.5]). Thus, the space
HY(729 X) = Hom (T, o op* X)
equals zero or H'(7-gp*(X)) which is finite-dimensional and vanishes for all |I| > 0. Thus, the object
7% X is in pvd(T) and so in perI'. This shows that the relative t-structure on D(T) restricts to perI'. +/

3.1. Silting reduction. Recall that a full subcategory P of a triangulated category T is presilting if
Hom7 (P, X¥P) = 0 for any i > 0. It is silting if in addition 7~ = thickP. It is clear that P = add(eI)
is a presilting subcategory of perI'.

Let Z be the following subcategory of perI’

Z=HE"P)n (=<0P)*

Proposition 3.8. [22) Lemma 3.4] The composition Z C perD’ 7, perI induces a fully faithful embed-
ding
p*: Z/[P] < perI /thick(P) = perT.
Similarly, the category P = add(eI') C C = C(Q, F, W) is a presilting subcategory of C. Let ) be the

following subcategory of C
y 1 (E>0rp) N (E<OrP)J_

Proposition 3.9. [22, Lemma 3.4] The composition Y C C P, C(Q,W) induces a fully faithful embed-
ding
p*: Y/[P] = C/thick(P) = C(Q,W).
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Remark 3.10. Since P doesn’t satisfy the condition (P1) in [22] Section 3.1], the functor p* in Propo-
sition [3.8] and Proposition [3.9] may not be dense.

3.2. SMC reduction. Let S be the subcategory of perI’ formed by the modules S; associated with
unfrozen vertices ¢ € Qo \ Fo. Then S is a simple-minded collection (|25, Definition 2.4]) of pvd,(T") and
a pre-simple-minded collection of per(T).

Consider the following subcategory of perI’

W = (2298)t nt(us0s).

rel
Proposition 3.11. [25, Theorem 3.1] The composition W C per(T') =— C(Q, F,W) induces a fully
faithful embedding
e W e C(Q, F,W).

Remark 3.12. Since S doesn’t satisfy the condition (R1) in [25, Theorem 3.1], the functor 7} above
may not be dense.

Lemma 3.13. If (Q, W) is Jacobi-finite, then S is functorially finite in perl.

Proof. Let S be the the subcategory of perI’ formed by all the simple I'-modules. Since (Q,W) is
Jacobi-finite, by a similar argument in [43] Lemma 4.18], S is functorially finite in per[. The triple of
adjoint functors

*

P
H —
D(T) epT— D(T)
o /
induced by p : T' — T induces a k-linear equivalence p* : § = S. B B
Let X be an object of perI'. Since S is covariantly finite in perI’, there exists a left S-morphism

f':p*(X) — 8" in perT. Let f be the following composition

f: X5 pp'X &(i)—)p*s/,

where ex is the unite of the adjunction (p*,ps). It is easy to check that f is a left S-approximation of
X in perI’. Thus, § is covariantly finite in perI.
Dually, we show that S is contravariantly finite in perI.

V

By the above Lemma, if (Q, W) is Jacobi-finite, the category S also satisfies the condition (R1) in [25,
Theorem 3.1].

Proposition 3.14. If (Q, W) is Jacobi-finite, the fully faithful embedding functor
e W C(Q, F,W).

is dense. Therefore we get a k-linear equivalence
et W 5 C(Q, F, Q).

3.3. Higgs categories. Let 7 be any triangulated category. Let 7’ be a full subcategory of 7. We
denote by pr+7' the full subcategory of 7 whose objects are cones of morphisms in add7”’. Similarly,
we denote by copr,7’ the full subcategory of 7 whose objects are those X such that XX is in pry7".
If 7' = addT for some object T' € T, the categories pr+7’ and coprs 7’ will be simply denoted by pr,T
and coprT' respectively.

Lemma 3.15. [30, Lemma 2.11] We have
prpl' = DO N +ADS2 N perT.
Thus, the category prpI' is an extension closed subcategory of perT.

Proposition 3.16. The quotient functor "¢ : perI’ — C restricts to an equivalence of k-linear cate-
gories prpI' = prcI.
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Proof. Firstly, we show that 77 : prpI' — preI is fully faithful.
Let X and Y be two objects in prpI’. Hence X and Y lie in DS%(T"). Suppose that a morphism
f: X — Y is sent to zero in C, i.e. f factors as

xLmby
with M in pvd,(T'). Since X = 71X, g factors through 7<; M, which is still in pvd,(T"). By Proposi-
tion [2.12] we have an isomorphism
DHomr(7<1M,Y) = Hompr) (Y, S3r<1 M).

The space Hompr)(Y, ¥37<1 M) vanishes, since Y belongs to ~D<~2. Thus, the morphism f is zero.

This shows that 7" prpI' — preI is faithful. Let f/: X — Y be a morphism in proI'. Suppose that
it can be represented by the following fraction

xLy ey,
where the cone of s is an object N of pvd I'. Consider the following diagram

Y ——Y

s t

X Lyt

T<olN S Xf T;\;N

h

SY —— 3y

Since N is in pvd.I', 7¢oN is also in pvd . I'. Then the space Hompr)(7<oN,XY’) is isomorphic to
DHomp(r) (Y, ¥27<9N) because of Proposition And this space vanishes since Homp (Y, DS—2)
vanishes.

Thus there exists a morphism h: 751 N — XY such that the lower right square of the above diagram
commutes. We extend h into a distinguished triangle which is the rightmost column of the diagram.
Thus we have a fraction

xLyrly
which is equal to

xLy vy
But the space Hompr)(X, 7>1N) is zero since X is in DS? and 7>1 N is in D>!. Therefore, there exists
a morphism [: X — Y such that gf = tl. It is easy to see that the fraction

xYyrly
is the image of [: X — Y under the functor 77 : prpI’ — prI'. Thus, we have shown that 7r’”el|prDr is
fully faithful.

It remains to be shown that it is dense. Let Z be an object of proI'. Then Z admits an addI'-
presentation

nhrnoszsyn

in C. Since the functor 7" : prpI’ — pr.T' is fully faithful, we can lift the morphism f’: Ty — Tj to a
morphism f: P; = Fy in prpl’ with P} and Fy in addI'. Its cone is sent to Z in C. This finishes the

proof. V

An object X isin coprpI if and only if ¥ X is in prpI'. Therefore we have the following dual statement
of Proposition [3.16

Corollary 3.17. The quotient functor 77 : perI’ — C restricts to an equivalence of k-linear categories
coprpI' = coprI'.
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Let prDI‘ be the following subcategory of prpI’

{Cone(X, ERN Xo) | X; € add(T") and Homyp(f, I) is surjective for any object I € P}.

Clearly, we have prET = prpI' N Z = prpl NH(S70P) N (Z<OP)L, where P = add(eT).
Dually, we define CoprgF as the following subcategory of coprpI’

{27 1Cone(X, ERN X1) | X; € add(T") and Homyp (P, f) is surjective for any object P € P}.

And we have copriST' = coprpI' N 2.
Similarly, we define subcategories
priT = pr,TNY
and
coprg I' = copreI'NY
of C, where
y="(="P)n(="P)t cC.

Remark 3.18. It is easy to see that prpI'is a full subcategory of ¥ ~'W, where W = (£208)+ N+ (£508)
and S = thick(S; |i € Qo \ Fp).

Prop051t10n 3.19. The quotient functor 7" perl' — C induces equivalences of k-linear categories

prDI‘ — prp ET and coprp T = coprgI‘.

Proof. Let X be an object of prg IT C preI'. By Proposition there is an object X' €
prpll such that 77¢(X’) = X. Since HomC(E<OP X) ~ HomD(E<OP,X/) and Home(X,X>0P) ~
HomD(X ! E>073) we see that X’ is in prST' . Thus, 7" induces equivalences of k-linear categories
prDF — prp LT and coprDF —» coprg LT.

Vv

The following result relates morphisms in the relative cluster category and in the derived category.

Proposition 3.20. [36, Proposition 2.19] Let X and Y be objects of prpI' such that Homp(X,XY) is
finite-dimensional. Then there is an exact sequence of vector spaces

0 — Homp(X,XY) — Hom¢ (X, YY) - DHomp(Y,XX) — 0
Proof. The proof follows the lines of that [36, Proposition 2.19]. Vv

Definition 3.21. [43] We define the Higgs category H(Q,F,W) (or H) as the full subcategory of
pre TN coprp LT whose objects are those X such that Home(X7'T', X) is finite-dimensional.
Recall that the dg quotient functor p: I‘(Q F,W) — IT'(Q, W) induces the following Verdier quotient
Qu F7 W) - C<@7W)

C(
Definition 3.22. We define the category D(Q, F,W) C C(Q, F, W) as the full subcategory of C(Q, F'
whose objects are those objects M of C(Q, F, W) such that p*(M) lies in Plamondon’s category D(Q,

(see Subsection [4.1)).

By Proposition we see that D(Q, F, W) is an extension closed subcategory of C(Q, F, W). Hence
it has an extriangulated structure in the sense of Nakaoka-Palu [32], cf. also [35].

)

W
w)

Lemma 3.23. The Higgs category H(Q, F, W) is idempotent complete.

Proof. The Higgs category is a full subcategory of prCI‘ N coprCI‘ = preI' N copreI' N Y, where
Y =1 (£>%P) N (B<0P)L C C. By definition, the relative cluster category C is idempotent complete.
Then ) is also idempotent complete.

By Lemma and Proposition [3.16] preI' is idempotent complete. Hence so is copreI'. This
shows that pr; I‘ ﬂ copry LT is idempotent complete. Thus, the Higgs category H(Q, F, W) is idempotent
complete. vV
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3.4. Modules. Consider the functors
R = Home (27T, ?): C — ModJ,

and
G = Home(?,XT): (C)? — ModJ 7,

rel’

where ModJ,.; is the category of right J,..;-modules.
Proposition 3.24. [30, Lemma 3.2] Let X and Y be objects in C.
1) If X lies in coprI', then R induces an isomorphism
Hom¢(X,Y)/[I'] - Homj_,(RX, RY).
2) IfY lies in proI', then G induces an isomorphism
Home (X, Y)/[I'] — HomJ:Z(GY, GX).
3) R induces an equivalence of categories
copreI'/[I] — mod .,

where modJ,e; denotes the category of finitely presented J,.o;-modules.

4) Any finite-dimensional Jy.;-module can be lifted through R to an object in proI' N copreI'. Any
short exact sequence of finite-dimensional J..;-modules can be lifted through R to a triangle of
C, whose three terms are in preI' N coprI.

Proof. The proof follows the lines of that of [36, Lemma 3.2]. We give the proof of (4). It is easy
to see that we can lift the simple modules at each vertex to an object of proI' N coproI'. Let M be a
finite dimensional J,..;-module. Then M is nilpotent and it can be obtained from the simple modules by
repeated extensions. Thus, it is enough to show this property is preserved under extensions in mod.J,.¢;.

Let 0 = L — M — N — 0 be a short exact sequence where L and N are finite-dimensional. Suppose
that L and M admit lifts L and N in proI' N copr.T, respectively. Let

Pl-pPl-L -0 and PN =P - N—=0

be projective presentations of L and N , respectively. Then we have the following diagram

0 » PL Pl o PN » PN 0

0 » PE Pl o Py » P 0

0 >v M N 0
0 0 0,

where the upper two rows are split. By part (3), we lift the upper left square to a commutative diagram
in add(X7T) CC

Tt —— teTy

| |

T —— TEaTd.
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The above diagram embeds in a nine-diagram in C as follows

Tf —— 1foTN i » XTE
¢ —— T o1y ™ » DT
L » M y N » YL

ST —— ST o =T —— STV,

Thus, M is a lift of M in pre(X'T) = copre(T). Since N is in preIl’, 7'N lies in copreI'. By part
(1), the morphism L7'N — L is in [[]. According to Lemma below, M is also in prcI. Vv

Lemma 3.25. [36, Lemma 3.4] Let X — Y — Z 5 X be a triangle in C such that € lies in [T]. If
two of X, Y and Z lie in copreI', so does the third one.

Proof. The proof of [36, Lemma 3.4] also works for our situation. V

Proposition 3.26. The Higgs category H(Q, F,W) is an extension closed subcategory of C. Thus, it
becomes an extriangulated category in the sense of Nakaoka-Palu [32], cf. also [35].

Proof. Let X - Y — Z — ¥ X be a triangle in C such that X, Z € H(Q, F,W). We need to show
that Y also lies in H(Q, F, W).
Applying the functor R = Hom¢(X7!'T, ?): C — Mod.J,¢;, we get a long exact sequence

- > R(X) = R(Y) = R(Z) — Home (T, ¥2X) =0 — - - - .
Since X lies in proT', we see that Home (T, ©2X) vanishes. By the definition of the Higgs category, the
vector spaces R(X) and R(Z) are finite dimensional. Thus, R(Y) is also finite dimensional. Then by
4) of Proposition there exists an object Y/ € H(Q, F, W) such that R(Y') = R(Y).

We next show that Y also lies in copreI' = pro(37IT). Let X717 — 7MY — X — BT
and 27117 — Y7ITZ — Z — STF be add(X'T')-presentations of X and Z, respectively. Since
Home (X717, %X) = 0, the composition X71T# — Z — X factors through Y. This induces a
commutative square

YT eI —— MY

| |

Y s 7.

It can be completed into a nine-diagram

Y s X e —— 2 —— T

v ~ ~

S —— YT eI —— ST —— TS

X » Y VA XX

T* T & T? TZ.

This shows that Y is in copr,I'. By 3) of Proposition and the fact that R(Y) = R(Y’), there exist
objects T and 7" in add(T') such that Y @ T = Y’ @ T" in copr,I'. By Lemma the object Y lies in
the Higgs category H(Q, F, W).

\/
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3.5. Mutations induce equivalences. Let (Q, F, W) be an ice quiver with potential. Let I be the
complete relative Ginzburg dg algebra of 1, (Q, F, W) = (Q', F',W'). For any vertex j of Q, let T'; = ¢;,T"
and I, = ¢, I".
3.5.1. Mutation at unfrozen vertices.

Let v be an unfrozen vertex of () not involved in any oriented cycle of length 2. As seen in Sub-

section one can mutate (@, F, W) at the vertex v. We assume that v is the source of at least one
arrow.

Theorem 3.27. [42, Theorem 5.3]
1) There is a triangle equivalence @ from D(I') to D(T') sending T, to T if i # v and to the cone

I';, of the morphism
,— P T

a€Q1,s(a)=v
whose components are given by left multiplication by o if i = v. The functor ®4 restricts to
triangle equivalences from perI” to perI’ and from pvd(T’) to pvd(T).
2) The following diagram commutes

,D(F;’el)
(G'lr'el))k
D(ILx(F)) Ot
D(T).

Remark 3.28. [42, Remark 5.5] If v is the target of at least one arrow, there is also a triangle equivalence
®_: D(I,) — D(T) which, for j # v, sends the I'; to I'; and for j = v, to the shifted cone

rel
SN @D Tup T
BEQu;t(B)=v
where we have a summand I'y(g) for each arrow [ of () with target ¢ and the corresponding component
of the morphism is left multiplication by 5. Moreover, the two equivalences & and ®_ are related by

the twist functor tg, with respect to the 3-spherical object S,, i.e. ®_ =tg, o ;. For each object X
in D(T',¢;), the object tg, (X) is given by the following triangle

RHom(S,, X) ® S, = X — tg,(X) = YRHom(S,, X) @k S,.

Proposition 3.29. The functors
@ : perl' —= perl’
induce equivalences ®4 : pvd IV = pvd T and
Oy (C) =C(Q,F\ W) —=C.
We have &, ~ ®_ == ® and ® induces an equivalence H' = H(Q', F',W') = H(Q, F,W) such that
the following diagram commutes
perl' —— (C)) > H’
A b
pael' —C O H
Proof. We know that ® induces triangle equivalences pvd(I") = pvd(T). It is easy to see that we

have identities
pvd,(T) = pvd(T') N (GBZ'GFOI‘Z')J‘P“F
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and
deB(F/) = de(I‘,) ﬂ (EBiEF(SF;)J_perF/ .

~

Thus, @4 induces equivalences @4 : pvd IV = pvd, I" and

Bz (C) = Cli(Q, F.W)) == C.

On the level of objects, when j # v, it is clear that . (T"}) = ®_(T';) = I';. When j = v, then
$(T) is the cone I'y of the morphism
I, — P T
ate»s(a):v

whose components are given by left multiplication by a. Let X, be this mapping cone. It is easy to see
that RHom(S,, X)) ® S, belongs to pvd, (T"). Thus, for any vertex j € Qp, we have an isomorphism

By (T) = & _(T)

in the relative cluster category C. This shows that &, ~ ®_ :=®: (C) — C.
By [36l Proposition 2.7], we know that

prel’ = pre(ps(T)),
where 1, (T') is the I'"-I-bimodule T’} & @®;,I';. Then it is clear that ® induces an equivalence
®: priey T = pre(ps(T)).
Hence, we have an equivalence ®: pr(c),F’ = prcI'. Similarly, we have an equivalence
d: copr(c)/I" — coprcI'.
Let P! = add(e'T”) with e =3, Fy €i- Then we define Y’ to be the following full subcategory of (C)’
YV =HE20P) n (0P
Hence ® induces an equivalence
pricy (T') N coprey (T') N Y = prel N coprel N Y.
Thus, by the definition of the Higgs category, we have an equivalence
O:H = H.
v

3.5.2. Mutation at frozen vertices.

Now let v be a frozen source. As seen in Subsection one can mutate (Q,F,W) at v. Write
(QF' W) = up(Q, F,W). Let T' = T (Q, F, W) and IV =T, (Q', F', W’) be the complete relative
Ginzburg dg algebras associated to (Q, F, W) and (Q', F', W') respectively. For a vertex i, let I'; = e;,T"
and I, = ¢, I".

Theorem 3.30. [42] Theorem 6.8] We have a triangle equivalence
v, : D) — D),
which sends the T, to T'; for i # v and T, to the cone

CODG(FU — @ Ft(a)),

where we have a summand L'y, for each arrow o of F' with source v and the corresponding component
of the map is the left multiplication by o. The functor V. restricts to triangle equivalences from per(I")
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to per(T") and from pvd(I") to pvd(T'). Moreover, the following square commutes up to isomorphism

D(ILy(F)) ~““ D(I)

can | |

D(IIy(F)) D(I)
|

D(ITy(F)) —z— D(T),

where can is the canonical functor induced by an identification between Iy(F') and Ma(F) and tgvl is
the inverse twist functor with respect to the 2-spherical object S,, which gives rise to a triangle

t5H(X) — X — Homy(RHomp, (py (X, Sy), Sy) — Stg' (X)
for each object X of D(IIy(F)).

Proposition 3.31. The triangle equivalence V. : perIY — perI' induces an equivalence pvd, (I') —
pvd,(T"). Moreover we have a commutative diagram

perIIly(F') —— perlI' —— C(Q', F',W’)

tgj ocanl J\I’Jr l\IJ +
perIlly(F) —— perI' —— C(Q, F, ).
The functor V. : C(Q', F',W') — C(Q,F,W) does not take H' to H. But it takes D(Q', F',W') to
D(Q,F,W).

Proof. The equivalence ¥, : D(IV) — D(T) is the derived tensor product (see [42, Theorem 6.8])

L

?®r U,

where the I'-I'-bimodule U is given by
U=Pr;e U,

J#v

with U, = Cone(T, —(E)—> @ Ty(a)). It is clear that W, induces an equivalence ¥, : perI' —
a€cF:s(a)=v
perl’. By using a similar computation in [29, Lemma 3.12], the functor ¥, induces an equivalence
U, : pvd, (IY) — pvd,(T'). Similarly, the equivalence tgﬂl o can induces an equivalence
tgvl o can: perlly(F’') — perIly(F).

Thus, we have the following commutative diagram

perIlly(F') —— perlI' —— C(Q', F', W)

tgj ocanl l‘ll_;_ \L\IJJF

perIly(F) —— perl' —— C(Q, F, W).

The object I, lies in H' C C(Q', F',W'). The object ¥, (T',) is equal to Cone(T, CN @ Ti(a))-
a€F:s(a)=v
Since v is a frozen source, the induce map

()*: Home ( @ Ty(a), Tv) = Home (T, Ty)
a€F:s(a)=v
is not surjective. This shows that W (I")) doesn’t lie in +(X>%P). Thus, the functor ¥, does not take
H to H.
It isn’t hard to see that mutation at v doesn’t change the unfrozen part of (Q', F', W'). After deleting
the frozen part, the quiver with potential (Q’, W’) is equal to (Q, W). The functor p* : C(Q, F,W) —
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_ L _ _ _
C(Q, W) is induced by the derived tensor product ?®@rI': perl' = IT'. And p"™* : C(Q', F',W') — C(Q, W)
L _
is induced by ? ®@p I
Then we have

L L _ L L __
(?@p U)or T 2?@p (U®rT)

L __
~? @ I

This computation gives us the following commutative square
v
C(Q,7 Fl? W/) *+> C(Qv F7 W)

lp,* lp*
C(Q W) === C(Q,W).
For each object M of D(Q',F',W'), we have p*(¥,(M)) = p*(M) € D(Q,W). Thus, ¥, takes
D(Q', F', W) to D(Q, F,W).
Vv

Remark 3.32. Dually, let v be a frozen sink. One can mutate (Q, F, W) at v. Write (@', F/,W') =
wp(Q, F,W). Let T' = Toy(Q, F,W) and IV = T',.(Q', F',W') be the complete relative Ginzburg dg
algebras associated to (@, F,W) and (Q', F', W’) respectively. We also have a commutative diagram
(see [42, Theorem 6.9])

perIly(F') —— perI"Y —— C(Q', F',W’)

ts, ocanl l\ll, llll_

perlly(F) —— perI' —— C(Q, F, W).
The functor V_: C(Q', F',W') — C(Q,F,W) does not take H' to H. But it takes D(Q’, F',W') to
D(Q,F,W).

3.6. Iyama—Kalck—Wemyss—Yang’s theorem without the Noetherian hypothesis. Let £ be a
Frobenius category and P C £ the subcategory of projective-injective objects. For each P € P, we put
PN =P(?,P): P’ — Modk. We denote by ModP the category of right P-modules. Then we have a
functor

H: & — ModP

which maps X to £(7, X)|p.

Lemma 3.33. 1) For any object X in &, the right P-module H(X) is pseudo-coherent.
2) For any objects X € € and P € P, we have Extl(H(X), P") =0, Vi > 0.

Proof. 1) Choose conflations
QX — Py — QX fori>1 with proj-inj P;_;.
Their images under Homg (P, ?) are exact, VP € P. So the following exact sequence
— H(P)—---— H(P) > H(P)—HX)—0

is a resolution for H(X) € ModP.
2) Choose a resolution ... — P, — P, — Py — X — 0 as in 1). Its image under H is a resolution of
H(X) in ModP. Since P is also injective, the homologies of

Hom(H Py, HP) —— Hom(HP;, HP) —— Hom(HP,, HP) — ---

- ; !
Hom(Py, P) Hom(P, P) Hom(P,, P)

vanish in all degrees ¢ > 0. vV
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Let M C & be a full additive subcategory stable under direct factors such that P C M and gldimM <
n. An object X of ModP is called M-pseudo-coherent if X is pseudo-coherent and X = X ®p M admits
a finitely generated projective resolution.

We say that P is fp.,-Gorenstein of dimension at most n with respect to M if Ext%(X, PY =0
for all ¢ > n + 1 and all M-pseudo-coherent X € ModP and similarly for P°P. Let fp P be the full
subcategory of ModP whose objects are the pseudo-coherent P-modules. If P is fp -Gorenstein of
dimension at most n with respect to M, we denote by

g1 (P) = {X € fp P | Exth(X, P") = 0 for any i > 0 and P € P},

the category of fp.,-Gorenstein projective modules X over P and by grpS™(P) the full subcategory of
grp.. (P) whose objects are the M-pseudo-coherent P-modules.

Theorem 3.34. Let £ be an idempotent complete Frobenius category with projE = P. Assume that
there exists a full additive subcategory M C &€ which is stable under direct factors such that P C M
and gldimM < n. The category P is fp..-Gorenstein of dimension at most n with respect to M and
the functor H: & — ModP induces an equivalence

£ = grp(P).

Proof. Let L be a M-pseudo-coherent P-module. Since the global dimension of M is at most n,
there exists a a finitely generated projective resolution in ModM

0—Lp—Lpq—-—Lo—L—0.

We restrict this resolution to P and get a finitely generated projective resolution in ModP of length n.
This shows that Ext%;(L, P") =0 for all i > n+ 1. The dual argument shows the situation in ModP?.

By Lemma and the argument above, the subcategory P is fp,,-Gorenstein of dimension at most
n. It is obvious that H is fully faithful. Let X be an object of grpS"P. Choose a projective resolution
with finitely generated terms

0— M) M) | == M) - X — 0.
Then we have a complex

(1) 0 M, I o 2 6

in £ with M; € M such that

H n an,1
! i

0—~HM, — HM, 1 - >HMy —- X —0

is exact.
For any object P of P, we have a commutative diagram

(Mo, P) —— (M1, P) » (M,,,P) ——— 0
(H(Mo), H(P)) —— (H(M), H(P)) » (H(My),H(P)) — 0,

where the lower sequence is exact since X € grp$"P. Thus the upper sequence is also exact.
Applying [20, Lemma 2.6] repeatedly to the complex (1)), we get an E-acyclic complex in & (i.e.
obtained by splicing conflation of &)
0 M, I 2% My 5 X S0
and that H(X’) = X. It follows that H induces an equivalence
£ = grpM(P).
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4. RELATIONSHIP WITH PLAMONDON’S CATEGORY D(Q, W)

Let (Q, F,W) be an ice quiver with potential. From now on, we make the following technical assump-
tion:

Assumption 1. The additive subcategory P = add(eT') is functorially finite in add(T").

Remark 4.1. The above assumption is equivalent to the following conditions:

e Homper(el', e;I) is a finitely generated right Endpe,r(eI')-module, and
e Homper (eI, el) is a finitely generated left Endperr(eI')-module for all vertices i € Qo \ Fo.

Remark 4.2. Suppose add(T') = T is a cluster-titling subcategory in a stably 2-Calabi—Yau Frobenius
category £ whose subcategory of pro-injectives is P C 7. Then the above assumption clearly holds.
One of our aims is to construct such a Frobenius category £ when (@, W) is Jacobi-finite.

Example 4.3. The assumption does not hold for the example below.

/ \3

4.1. Plamondon’s category D(Q,W). In [36], Plamondon generalized Amiot’s ([I]) construction of
generalized cluster categories to the case of any quiver with potential. Let (Q, W) be any quiver with
potential and T'(Q, W) the associated Ginzburg algebra. The (generalized) cluster category (see [1]) of
(Q, W) is defined as the idempotent completion of the triangulated quotient

C(Q7 W) = perI‘(Q, W)/de(F(Q7 W))

Definition 4.4. [36, Definition 3.9] The subcategory D(Q, W) is the full subcategory of proI'(Q, W) N
copreI'(Q, W) whose objects are those X such that Exté(Q w) (T'(Q, W), X) is finite-dimensional.

W =0.

In our situation, let Q be the quiver obtained from @ by deleting all vertices in F' and all arrows
incident with vertices in F'. Let W be the potential on () obtained by deleting all cycles passing through
vertices of F' in W. Let I’ be the Ginzburg algebra of (¢, W). Then we have

D(Q,W) = {X € preIL NcopreT | Exté@ ) (T, X) is finite-dimensional}.

Proposition 4.5. The category D(Q,W) is an extension closed subcategory of C(Q,W). Thus, it
becomes an extriangulated category in the sense of Nakaoka-Palu [32].

Proof. It follows from Proposition for the case when F' is empty. Vv
Recall that the functor p*: perI' — perL is the extension of scalars along the dg quotient functor
p: T =>T=T(Q,W).
Proposition 4.6. The functor p*: perI' = perL induces an equivalence of k-linear categories
prpl/[P] = prpT,
where D = D(T(Q, F,W)) and D = D(T(Q,W)).
Proof. Let X be an object in prff C perl. By definition, X fits into the following triangle in perl’
P35 P—X—>XP
with Py, P; € addT'. Since we have an equivalence of additive categories
p*: addI'/[P] = addT,

there exists a morphism 5’: M; — M) in addI" such that p*(M;) = Py, p*(M{)) = Py and p*(f') = «a.
Let v: M1 — Qg be a left P-approximation of M;. We define

(M1 ﬁ) M()) = (Ml M} Mé () Qo)
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Then we still have p*(f) = a. Moreover, Hom(f, I') is surjective for any object I in P. Thus, the object
U = Cone(B) is in F"¢ and p*(U) = X. Hence, the functor p*: F"¢ — F is dense.

Next we show that p*: prZF)I‘ — prff is full. Let f: X — Y be a morphism in prﬁf We have the
following diagram in perl’

(=)

P—%,p b, Xx y NP,

o

Ql P Qo P > Y > 2@1

with Py, Py, Q1,Qo € addT.

Since Homperf(Po, ¥Q1) = 0, there exists a morphism e: Py — (g such that fb = de. Then there
exists a morphism g: P, — @1 such that ea = cg. We lift the above commutative diagram to a
commutative diagram in perI’. Then we find a morphism 3 in F"¢ such that p*(8) = f.

It remains to show that the map priT'/[P](M, N) — prsL(p* (M), p*(IN)) is injective for any M, N €
Frel. Assume that a morphism a € prh(M,N) is zero in perT'/thick(P) = per[. Then it fac-
tors through thick(P) = per(el'e), that is, there exist 7' € thick(P), u € Homper(M,T), and v €
Hompe,r (7, N) such that o = vu.

Since eI is a silting object of thick(P), the pair (thick(P)sq, thick(P)<o) is a bounded co-t-structure
(see [22], Proposition 2.8]) on thick(P), where

thick(P)>; = thick(P)siy = S "Px-x 2P« D7P
n=0

and
thick(P)<; = thick(P)<pyr = [ J TP+ P D7 HHP,
n=0
Take a triangle
Too 5 T 5 Ty — ST
with T € thick(P)>o and T € thick(P)<o. Since Homperr (750, N) = 0, we have vb = 0. Thus, there
exists d € Hompe,r(T<o, N) such that v = de.

Tog —2— T —5— Teg
/ x ld
M _ N
Since T<q € thick(P)<o, we have triangle

P—TyS3Ty— TP

with P € P and T« € thick(P)<g. Then we have ecu = 0 by M € addT’ and T<( € thick(P)<g. Thus,
cu factors through P and o = deu = 0 in priST'/[P].
\/

Proposition 4.7. The functor p*: perI’ — perT induces an equivalence of k-linear categories
F F
51 N copry T — —
. PIp PIp — prpl N coprpIl.
[P]
Proof. By Proposition [4.6] it is enough to show that the induced functor

*

p*: proT N coprbT — prsI N coprsT

is dense. Let M be an object of prff N coprff. By Proposition there exists an object X € prgI‘
such that p*(X) = M in perT.

Since M is also in coprzl’, we see that XM € prz(T). Again by Proposition there exists an
object Y € prET such that p*(Y) = XM in perl.

Thus, we have p*(X) 2 p*(X71Y) = M. Notice that priT' and coprsT' are subcategories of Z ==+
(>0P) N (2<9P)L. By Proposition there exist objects Py, Py in P = add(eI") such that

XaP2x'YoP.
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Then the object X & Py belongs to prisT' NcoprT and p*(X & Py) & M. This shows that the functor
p*: proT N coprbT — prsI N coprsT
is dense. V
Similarly, we have the following propositions.

Proposition 4.8. The functor p*: C(Q, F,W) — C(Q, W) induces the following equivalences of k-linear
categories

= r5T N coprf T — _
p*:prgI‘/[P]%prEI‘, p*.pc [P]pc = prgl’ N coprgT,

where C = C(Q,F,W) and C =C(Q,W).

Corollary 4.9. We have an equivalence of k-linear categories
Pt H/[P] = D(@Q,W).
Proof. It follows from the Lemma below and Proposition V

Lemma 4.10. Let Y be an object of pr; TN copry ET. For any object X in
Y="1(E""P)n(ZP) CC@. F W),
we have
Home (X, XY) ~ Homg g g (p*(X), Xp*(Y)).

Proof. The category P = eI is functorially finite in prg TN coprg IT. We take a left P-approximation
f:Y — P of Y. Then we have a triangle in C

y4hpor oy,

with p*(T') =2 XY. Since f is a left P-approximation, we see that T is in ). Applying the functor
Home (X, ?7) to the above triangle, we get a long exact sequence

— Home (X, P) 2 Home (X, T) — Home(X, XY) — 0.

Thus, by Proposition we have

Home (X, YY) ~ Home (X, T) /Im(P)
~ Y/[PIX,T)
=~ Home, g 377 (" (X)), *(T))

~ HomC(QW)(
Vv
Proposition 4.11. We have bifunctorial isomorphisms DExt}, (X,Y) ~ Ext},(Y, X) for all X,Y € H.

Proof. It follows from [36, Proposition 2.16] and Lemma [1.10] Vv

4.2. The case where (Q,W) is Jacobi-finite. Let (Q, F, W) be an ice quiver with potential. In this
subsection, we assume that (Q, W) is Jacobi-finite.

By Corollary the relative t-structure on D(T') restricts to the perfect derived category perI’. For
any object X of per’, the canonical triangle corresponding to the relative ¢t-structure is given by

TQ;lX — X — Trd — ETQ%X

such that TgifX € perT" belongs to D" and T”el(X) = pu(Ton(p* X)) belongs to p>ntl

rel rel

Recall that the fundamental domain F (see [T, Lemma 2.10]) of perT is defined as
F = addT * Yaddl = prT" C perT.
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Proposition 4.12. [1, Proposition 2.9] The projection functor 7: perT’ — C(Q, W) induces a k-linear
equivalence between F and C(Q,W).

Let r be a non-negative integer. Let H(r) be the full subcategory of Y = LE>P)n(Z<0P)t CcC
whose objects are those X such that p*(X) is isomorphic to X"Y in perI’ for some object Y € F. By
Proposition and Corollary we see that H = H(0).

Proposition 4.13. Let r be a positive integer and X an object of H(r). Then there exists an object Y
in H(r — 1) such that 724 Y = X in C.

Proof. By definition, there exist an object Y of F such that p*(X) = Y'Y in perl'. We set

Z = ¥17"p*(X) = XY. By [1l, Proposition 2.9], there exists a triangle in perl’
YP = SP)— Z = X°Py

with Py and P; in addT'. Denote by v the Nakayama functor on the projectives of modH°(T'). Let M’
be the kernel of the morphism vHY(P;) — vH°(P,). We define M to be X" "!p,(M’). Tt is easy to see
that M lies in pvd,(T) C Y = (Z>9P) N (2<P)L C C.

By [, Lemma 2.11], we have an isomorphism of functors

Hom, (7, Z]Z)|mod]-10( T) =~ HommodHO(r‘)(?a M.
By the relative 3-Calabi—Yau property (see Proposition , we have an isomorphism
Hompe,r (M, X)) :DHomporp(EX Y2, (M)
~DHom  #(Zp" X, »r2MY
~Hom, (X" M', Xp" (X))
=Hom,, . +(p" (M), Xp*(X)).

Therefore we have
Hompe,r (M, XX) :Hom p* (M), ¥p*(X))

.l
~Hom,, (="' M', 3p*(X))
(M', 2 7p*(X))
(M',%7).

:JHomp o

:JHomp o

Let € be the preimage of the identity map on M’ under the isomorphism
Hompe,r (M, X)) ~ HomperF(M' ZZ)|m0dHO( T) ™ HommOdHo( )(M' M.
We form the corresponding triangle in perI’
X—>L—>MS3X.
Similarly, let € be the preimage of the identity map on M’ under the isomorphism
Hom,,, t(M’, 5*7"p*(X)) = Hom,,,q 0 (M, M)

Then we form the corresponding triangle in perT’
SR (X) = L — M — 277pH(X).
We see that p*(L) is isomorphic to X" 1L/
By [I, Lemma 2.11], the object L’ is in the fundamental domain F C per[. So L is an object of
H(r —1). Next, we will show that 7'261 oL is isomorphic to X.

Since X € D(I‘) S, mand 77 L € D(T)>; ", the space Homp (X, 2% ! L) vanishes. Hence, we obtain
a commutative diagram of triangles

rel




24 BERNHARD KELLER AND YILIN WU

By the octahedral axiom, we have the following commutative diagram

L M X YL

L——s7(L) —— %2 [ —— %L

|

Cone(d1) — — > XCone(dy) — XM

>M ¥2X

and the object Cone(d) is isomorphic to ¥Cone(d2) in perI'.
Since 7% L € D(I)S,;" and X € D(T)S, ", the object Cone(ds) is also in D(T')S,". Thus YCone(ds)

rel rel rel
is in D(T)5, """, On the other hand, M and 72¢ (L) are in D7, (T'). Thus Cone(d;) is in D2, " (T).
Hence we can conclude that Cone(d;) = XCone(d2) is zero.

Thus, the relative truncation TgelTL of L is isomorphic to X.

\/
Lemma 4.14. Let X be an object of H. For any positive integer [, there exist objects an object U € ‘H
and a triangle in C(Q, F, W)
PLxyUuosp
with f a right (P * XP % - -- X" VP)-approzimation, i.e. for each object P in P+ XP % ---X"1P, the
induced map f, : Home (P, P) — Home (P!, X) is surjective.
Dually, for any positive integer m, there exist an object V- € H and a triangle in C(Q, F,W)
UL VAN QN BN Y i %
with g a left (X"™P % --- S~ VP x P)-approzimation, i.e. for each object Q' in "™P % --- N 1PxP |
the induced map g* : Home(Q, Q') — Home (X, Q') is surjective.

Proof. We only show the existences of the first statement since the second one can be shown
dually. Let [ be a positive integer. By Theorem below, the Higgs category H is a Frobenius
extriangulated category with projective-injective objects P = add(eI'). Thus, we have the following
triangles in C(Q, F, W)

QX - P — X = XQX,
PX - P — QX — 202X,

AX 5P — Q07X 5 20X,
where for each 0 < i <[ — 1, the object P; lies in P and Q21X lies in H.
By the first two triangles and the octahedral axiom, we have

PP—— QX — 5 Y02X — %P

P1 > Po > Pll > EPl

£OX — - $20X.
Then we get the following triangle in C(Q, F, W)

P - X = ¥%Q0X — ¥P]
with P] in P % XP.
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Repeating this process until the last triangle, we get a triangle in C(Q, F, W)

P L x 5xlo-lx 5 wp

with P/, in P P« -« X71P. Since Q71X lies in H, the space
Home (P % XP - -+ S71P Bl

vanishes. Thus, for each object P’ in P % P % --- X!"1P_ the induced map f : Home(P', P_;) —
Hom¢ (P, X) is surjective.
vi

Recall that an extriangulated category £ is Frobenius if £ has enough projectives and enough injectives
and if moreover the projectives coincide with the injectives (see [30, Definition 3.2]).

Theorem 4.15. The Higgs category H(Q, F,W) is a Frobenius extriangulated category with projective-
injective objects P = add(eI'). In this case, we have equalities

D(Q, W) =C(Q,W)
and
D(Q,F,W)=C(Q,F,W).
Moreover, for any object X of C(Q, F,W), there exist | € Z, U € H and P € thicke(P) ~ per(el'e) such
that we have a triangle in C

(2) P— X XU - %P
Dually, there exist m € Z, V € H and Q € thicke(P) ~ per(ele) such that we have a triangle in C

(3) >V o X L Q —» nmtly,

Proof.

Step 1. The Higgs category H(Q, F, W) is a Frobenius extriangulated category with projective-injective
objects P = add(eI).

Since (Q, W) is Jacobi-finite, by [36, Remark 3.11], we have an equality

D(Q, W) =C(Q,W).
Let I be an object in P. For any distinguished triangle in H
X=Y =7 —5—>,
the space Home (X717, I) & Hompe,r (X717, I) vanishes. Thus, we have an exact sequence
Home¢ (Y, I) — Home (X, I) — 0.
This shows that any object in P is injective.
Let X be an object of H. By definition, we have a triangle in C
xhrntn sex
with T; € addI'. Since the category P is functorially finite in addI’, there exists a left PP-approximation
T LN Iy, i.e. Home(h, I) is surjective for any I € P. Thus, we get a triangle in C

x MY o1 o ex
with Iy € P and T{ € Y =+ (2>P) N (£<9P)L. Thus T7 is an object of H(1).

By Proposition 4.13|7 there exists an object I1 € H such that Tge_lljl is isomorphic to 77 in perT.
Thus I; is isomorphic to 7] in C. We get a triangle in C

XM s sex

with Ip, I1 € H. Therefore, H has has enough injectives.

Dually, we show that any object in P is projective and H has enough projectives. Thus, the Higgs
category H is a Frobenius extriangulated category with projective-injective objects P = add(eT’).

By the definition of D(Q, F, W) (see Deﬁnition, it is clear that we have an identity D(Q, F, W) =
C(Q.F,W).
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Step 2. The existences of triangles (@ and @

We only show the existences of the first triangle since the second one can be shown dually.

By using the canonical co-t-structure on perI', we see that perI’ = tripe,r(addI’), i.e. the smallest
triangulated subcategory of perI’ containing addI'. Since 77 (addI") lies in H, we have

C(Qv F, W) = trlC(%)
Let K be the full subcategory of C(Q, F, W) whose objects are those X which satisfy the following
condition:
For any [ > 0, there exist objects P € thicke(P), U € H and a triangle in C(Q, F, W)

P X YU —s¥2p

such that P lies in 3*1P % 52 x ... « ¥*sP for some integers ki, ko, - - - , ks less than 1.
By Lemma |4.14] we have H C K. We next show that IC is closed under shifts and extensions. It is easy
to see that IC is closed under shifts.

We next show that K is closed under extensions. Suppose we are give a triangle X’ — X — X" — 2 X’
in C(Q, F,W) with X’ and X” in K. For any [ > 0, we have the following triangles in C(Q, F, W)
P 5 X' 5 xu - 2P,
P'— X" - 5lu” — 2P’
with U’ and U” in H and P’ € SF1P «Tk2 s ...« TEP P € SFIP 5 Tk ...« ©F7 P for some integers
Ky Ky oo JEL KL RD -+ (K less than 1.

y Vs

By using the fact that Home(P”, £1U’) = 0 and Proposition we get the following diagram

P X' sy ¥ =
P X YU s NP
P// X// N EIVU// E P//

P —— XX —— ¥y —— ¥2p.
This shows that X also lies in K. Hence K is closed under extension. By the above arguments, we have
tric(H) C K. Thus the category K is equal to C(Q, F, W). v

By Proposition the Higgs category H = H(Q, F, Q) is an extriangulated category. The extrian-
gulated structure (H,E,s) can be described as follows:

(1) For any two objects X,Y of H, the E-extension space E(X,Y’) is given by
E(X,Y) = Home(X, XY).
(2) For any 0 € E(X,Y), take a distinguished triangle
xLy%zhvx
and define s(0) = [X Ly Z]. Then s(0) does not depend on the choice of the distinguished
triangle above.

Proposition 4.16. The functor p*: C — C(Q, W) induces an equivalence of triangulated categories
p*: H/[P] = D(Q,W) =C(Q,W).

Proof. Since (Q, W) is Jacobi-finite, the Higgs category H is a Frobenius extriangulated category. By
[30, Lemma 3.12], the stable category H /[P] also has an extriangulated structure where the distinguished
triangles in (H/[P],E,5) are the images of distinguished triangles in (H,E,s). By Corollary and
Lemma we get this equivalence of triangulated categories.
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4.3. Summary of results. Let £ be a Frobenius category and M a full subcategory of £ which contains
the full subcategory P of £ formed by the projective-injective objects. We denote by K°(€) and DP(E)
respectively the bounded homotopy category and the bounded derived category of £.

We say that a complex X: --- — X! — X — X1 — ... in K(€) is E-acyclic if there are
conflations Z¢ —— Xt —™ 4 Zi+l guch that di = 1" o7 for each i € Z.

We also denote by K%__.(£), K*(P), K*(M) and K%_,.(M) the full subcategory of K°(E) whose
objects are the £-acyclic complexes, the complexes of projective objects in &£, the complexes of objects
of M and the &-acyclic complexes of objects of M respectively.

Combining Corollary Theorem [4.15] and Theorem [3.34] we have the following result.

Theorem 4.17. Let (Q,F,W) be an ice quiver with potential such that P = add(el') is functorially
finite in add(T).
1) We have an equivalence of k-categories
H(Q, F,W)/[P] = D(Q,W).

2) If (Q, W) is Jacobi-finite, then H(Q, F, W) is a Frobenius extriangulated category with projective-
injective objects P = add(eI') and the equivalence in 1) preserves the extriangulated structure.
Moreover, we have equalities

D(Q,W)=C(Q, W)
and
D(Q,F,W)=C(Q,F,W).

3) If moreover T is concentrated in degree 0, then the boundary algebra B =eJ,e is fp,,-Gorenstein
of injective dimension at most g < 3 with respect to I' and the Higgs category H is equivalent to
the category gprS2 B. Moreover, T' is a canonical cluster-tilting object of H with endomorphism
algebra Endy(T) = J(Q, F,W).

4) Let M = add(T') C H. Under the condition of 3), the exact sequence of triangulated categories

0 — pvd, (') — perI' = C(Q, F, W) — 0

s equivalent to
0 — Ky ge(M) = KP(M) — D(H) — 0.
In particular, the relative cluster category C(Q, F,W) is equivalent to the bounded derived cate-

gory D°(H) of H.

Proof. 1), 2) and 3) follow from Corollary Theorem and Theorem respectively.

Let perM be the full subcategory of the derived category of modules over M generated by all rep-
resentable functors and let per,,M be its full subcategory consisting of complexes whose cohomologies
are in modM = modI. Here M is the additive quotient of M by P. By [34, Lemma 2], we have the
following exact sequence

0= K3 _ae(M) = KP(M) = DO(H) — 0.
By [34, Lemma 7], the Yoneda equivalence of triangulated categories K®(M) — perM = perT induces
a triangle equivalence
K5, pe( M) — per pM = pvd, (T).
Thus, we finish the proof of 4). V

5. CLUSTER CHARACTERS

Suppose k = C. Let (Q,F,W) be an ice quiver with potential. Let I" be the associated complete
relative Ginzburg algebra. Let Qo = {1,2,...,n} D Fy = {r +1,...,n} for some integer 1 < r < n.
We denote by I'; = ¢;T" the indecomposable direct summand of I' associated with the vertex i. Then
P = add(eT) is exactly the additive category add(L'y41 @ ... ®T,). For 1 <i < n, let S; be the simple
Jrei-module associated with the vertex i. Let e = Zie r € be the idempotent associated with the set
of frozen vertices. We assume that P = add(el") is functorially finite in add(T"). Let H be the Higgs
category of (Q, F,W).
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+1 +1

Definition 5.1. A cluster character on the Higgs category H with values in Q[z,41,...,2,)[z7 25 ,..., @
is a map X7: obj(H) = Q[zrs1, . .., x,)[zE, 22!, ..., 2] such that

1) we have X, = X/ if L and L’ are isomorphic,
2) we have X1gn = XXy for all objects L and M and
3) (multiplication formula) if L and M are objects such that Ext}, (L, M) is one-dimensional (hence
Ext},(M, L) is one-dimensional) and
LsE-M2 and M- E -3
are non-split triangles, then we have

X Xyy=Xg+ Xpg.

5.1. Index. Let X be an object of proI'. We define the index with respect to I' of X as the element of
Ky(addI') given by

indp X = [T5°] - [T7"],
where T{% — TOX — X — N7} is an (addT')-presentation of X. If X is the preimage of X under the

k-linear equivalence
prpI' = proI’

induced by 7™ (cf. Proposition [3.16), then indp(X) identifies with the class of X in
Ky(addI') = Ky(perT').
Thus, it is independent of the choice of presentation.

Lemma 5.2. Let X be an object in preT NcopreT such that R(X) = Ext(T, X) is finite-dimensional.
Then the sum indrX + indrXX only depends on the dimension vector of F(X).

Proof. The proof follows the lines of that of [36, Lemma 3.6]. We leave it to the reader. V

For a dimension vector e, we denote by I(e) the sum indprX + indpr¥ X, where dim R(X) = e. By the
above lemma, this does not depend on the choice of such X.

The following Lemma will be very useful in the proof of our main result.

Lemma 5.3. Let X &V 5 7 2 X be a triangle in C with X,Z € proI' such that coker(R(f)) is
finite-dimensional.

a) We have Y € preT'.
b) Let C be an object of preI' N copreI such that R(C) = coker(R(S3)). Then we have

indpX + indrZ = indpC + 1(C).
Proof. The proof in [36, Lemma 3.5] also works. We leave it to the reader. V
Now we define the map
(4) X7: 0bj(H) = Qri, ..., xp)[aEt adt, L 2k
as follows: for any object M of H, we put
Xy = zmdrM Z X(Gre(RM))z 1),
e

where the sum ranges over all the elements of the Grothendieck group; for a J,.¢-module L, the notation
Gr.(L) denotes the projective variety of submodules of L whose class in the Grothendieck group is e;
for an algebraic variety V over C, the notation x (V') denotes the Euler characteristic.

Theorem 5.4. The map X+ defined above is a cluster character on H.

We prove this Theorem in the next subsection.
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5.2. Multiplication formula. Let L and M be objects of H such that dim Ext%_t(L, M) = 1. By
Proposition we also have dim Ext}, (M, L) = 1. Let
LYEL MS YL
and ‘ )
MSESLLSYM
be non-split triangles in C. Recall that R is the functor R = Exté(l",?): C — modd,e. For any
submodules U of R(L) and V of R(M), define

Guy ={W € | JGre(R(E)) | (Ri)™' (W) = U, (Bp)(W) = V}

and

vy =W e JGre(R(E) |(RI) (W) =V, (Bp)(W) = U}.

Proposition 5.5. Let U and V' as above. Then exactly one of Gyy and Gy, is non-empty.

Proof. It follows from Lemma and [36], Proposition 3.13]. vV
For any dimension vectors e, f and g, define the following varieties:

Geg= U Guy
dimU=e
dimV=f

! !
ef = U GU,V
dimU=e
dimV=f

G7 = Gey N Gry(R(E))
GY ;= Go N Grg(R(E")).
Lemma 5.6. [36, Lemma 3.17] With the notations above, we have

X(Gre(R(L))) - x(Grs(R(M))) = Y (x(Gr! ;) + x(Gr))).

g
Lemma 5.7. [30, Lemma 3.18] If G*va is not empty, then we have

dim(cokerR(X71p)) =e+ f —g.

Proof of Theorem It is easy to see that X satisfies the first two conditions of Definition 5.1} It
enough to show the multiplication formula holds.
Let L and M be objects of H such that Ext}, (L, M) is one-dimensional. Then we have

X -Xum :xiner-‘rindrM Z X(GTQ(RL)) . X(GI‘f(RM)).%'_l(E—"_f)

e,f
:xiner—&—indrM—l(e-‘rf) Z(X(Grg,f) + X(Gl"gf)
e.f.9
ln 11 1m T 1
dr L+indr M —I(dim coker(R(X~'p))— Z X GI‘ ,f
e.f.9
xiner—&—indrM—l(diimcoker(R(Eilp’))—l(g) Z X(Gr;g )

e.f.9

:xiner+indrM—l(diimcoker(R(Zflp)) Z X(Grg,f)w—l(g)_‘_

e.f.g
1n in im r 1y -
dr L+indr M —I(dim coker(R(X~'p’)) Z X /gf)$ I(g)

e f,9
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= gindr® Z X(Gre(RE))x*l(g) + gindrE’ Z X(Gre(RE'))x*l(g)
g g
=Xg+ Xpg.

The second equality is due to Lemma [5.6 The third one follows from Lemma The fifth is a
consequence of Lemma This finishes the proof.
Vv

5.3. Commutative diagram. Recall that T is the Ginzburg algebra associated with (Q,W) and
C(Q,W) is the corresponding cluster category. The functor H — D(Q, W) induced by the quotient
functor p*: C(Q, F,W) — C(Q, W) induces an equivalence

H —D(Q,W).
For an object X of pre g, W)f C D(Q, W), the index (see [36]) with respect to T is given by

indsX = [U] — [U7*] € Ko(addT),

where UiX — U(f( - X = Zle is an addI-presentation of X. As in Subsection we see that it does
not depend on the choice of a presentation.
Let R be the functor
EXté(QW) (T,?): D(Q,W) — modJ(Q,W).

Let X be an object in D(Q,W). For a dimension vector dimRX = e, denote by I(e) the sum I(e) =
indgX + indgXX. By [36, Lemma 3.6], I(e) only depends on the dimension vector of RX.
In [36, Theorem 3.12], Plamondon defined the canonical cluster character

CC:D(Q,W) — Q[zi!, ... 2
taking T'; = ¢;T'(Q, W) to z;. It is given as follows: for any object X of D(Q, W), put
CO(X) = o™X 3™y (Gre(RX))2 1),

where the sum ranges over all the elements of the Grothendieck group.
Let S be the subcategory of perI’ formed by the modules S; associated with unfrozen vertices 7 €
Qo \ Fy. Consider the following subcategory of perl’

W = (22°8)F nH(E%0s).
Since (Q, W) is Jacobi-finite, by Proposition the following composition

W s perl =55 C(Q, F, W)

induces a k-linear equivalence

W 5 C(Q, F,W).
Remark 5.8. When the frozen part I is empty, the category W is equal to
YF = YaddT'(Q, W) x X2add T'(Q, W),
i.e. the shift of the fundamental domain, see [23, Theorem 2.12].

Definition 5.9. For any object X of C(Q, F,W), let X’ be a pre-image of £X in W under m}¢/. We
define [X]¥ to be the image of the class —[X’] of Ky(addI') under the projection onto Kg(add(eI))
along Ky(add(1 —e)T).

Remark 5.10. By Definition the Higgs category H is a full subcategory of preI' N copreI'. By
Proposition and Corollary let H’ be the pre-image of H under the equivalence

Trel - pPrpI’ N coprpl’ = preI' N copreI.
It is not hard to see that XH' is a subcategory of W.
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Let X be an object of #. We denote by indk (X) the image of the class indp(X) of Ky(addT') under
the projection onto Ky(add(eI')) along Ky(add(1 — e)T'). Then we see that indh(X) is equal to [X].
Moreover, we have [X]F + indg(p* (X)) = indp(X).

Theorem 5.11. Let (Q,F,W) be an ice quiver with potential such that P = add(el') is functorially
finite in add(T"). We assume that (Q, W) is Jacobi-finite. Consider the following diagram

H— C(Q,F,W) CClog Q[az{d, e ,:L‘;H,:Uf_&l, =
p* xi—1 Vi>r
H C(Q,W) < Q[xlﬂ, o

There is a unique map
CCloc: C(Q, F, W) — @[mlﬂ, o arh x,jil, ]

such that the above diagram commutes and

1) for each triangle in C(Q, F,W)

P—-X—+M-—=%XP
with P € thicke(P), we have
CCloc(X) = CCloe(P) - CCloe(M).
2) The restriction CCloe|yy is the cluster character X, defined in .
3) For each object P in thicke(P), we have CCioe(P) = zF1, where [P] € Ko(perT') ~ Z".

Proof. Let us show that C'Cj,. is unique if it exists. Let n be a positive integer and M an object
of H. By our assumption, H is a Frobenius extriangulated category. Therefore, we have the following
triangles in C(Q, F, W)

QY (M) = P, — M — 20N (M),
Q*(M) = Py — Q(M) — SQ*(M),

Q" (M) — P, — Q" Y (M) — Q" (M),
where P, € P = add(el') and Q(M) € H for each i € {1,...,n}. By the property 1), we have the
following formula

CCloe(S7"M) = CCloe(S7"P1) - CCloe(S7" T Py) -+ CCloe(S7' Po) - CCle (V' (M)).
Dually, we have the following triangles in C(Q, F, W)
M — I — M) - XM,
ol(M) = I, —» ©*(M) — o' (M),

" (M) = I, — 0" (M) — £O" (M),
where I; € P and ©/(M) € H for each i € {1,...,n}. By the properties 1) and 3), we have the following
formula
CCloe(E"M) = CCloe(S"11) - CCloe(S" ' I) -+ - CClpe(S1) - CCroc (O™ (M)).
Now let X be an any object of C(Q, F, W). By Theorem we have a triangle in C(Q, F, W)
P—-X—-Y"M— XP,
where m is an integer, P € thicke(P) and M € H. Hence we have a formula
CCloe(X) = CClope(P) - CCloe(E™M).

Thus, this shows the uniqueness of C'Cj,.

Now it remains to show the existence. For any object X of C(Q, F, W), we define

CCloe(X) = 2X1" . CO(p* (X)),
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where [X]¥ is defined in Definition [5.9/and p* is the quotient functor C(Q, F, W) — C(Q, W). It is clear
that C'Cj,. satisfies condition 3). For a finite dimensional .J (Q, W)-module with dimension vector e, we
have i(e) = I(e). And by Remark the map C'Cj,, also satisfies condition 2).
Let
P%X—M—XP

be a triangle in C(Q, F, W) with P € thicke(P). Suppose that X’ is an object of W such that W%Z(X/)
is isomorphic to XX in C(Q, F, W).
Since we have an isomorphism
Homyy(SP, X') 2 Home (SP, £X),

there exists a morphism a’: P — X’ in W such that 7}¢(a’) = Xa. We form a triangle

»P Y X 5 M - %P
in perT. It is easy to see that M’ lies in W and nl¢/(M') = S M. Then it follows that
[X]" =[P} + [M]"
and
CCloc(X) = CCloc(P) - CCloc(M).

Hence C'Cj,. also satisfies condition 1).

v

6. APPLICATIONS TO QUASI-CLUSTER HOMOMORPHISMS

In this section, we first recall the definition of quasi-cluster homomorphism defined by Fraser in [14].
Then our aim is to show that the decategorification of the equivalence associated with the mutation at
a frozen source (or sink) is a quasi-cluster isomorphism.

Definition 6.1. [14], Definition 1.2] A labeled r-regular tree, Ty, is an r-regular tree with edges labeled

by integers so that the set of labels emanating from each vertex is [1,7] = {1,2,...,r}. We write ¢ LA
to indicate that vertices t, t' are joined by an edge with label k. An isomorphism T, — T, of labeled
trees sends vertices to vertices and edges to edges, preserving incidences of edges and the edge labels.
Such an isomorphism is uniquely determined by its value at a single vertex t € T,.

Let (@, F) be a finite ice quiver, where @ has no oriented cycles of length < 2. We suppose that
Qo=A{1,....,n} D Fy={r+1,...,n}. We denote by P the tropical semifield Trop(x;41,...,2,). Let
F be the field of fractions of the ring of polynomials in r indeterminates with coefficients in QP.

Definition 6.2. A seed is a pair ((Q, F'), x), where (Q, F') is an ice quiver as above, and x = {x1,...,2,}
is a free generating set of the field F.

Given a vertex i of Qo\ Fy, the mutation of the seed ((Q, F'),x) at the vertex i is the pair u; ((Q, F'),x) =
(@, F'),x'), where
e (@', F') is the mutated ice quiver p;(Q, F);
o x' =x\ {z;} U{a}}, where ] is obtained from the exchange relation

vai= I wme+ I %
a€Q1,s(a)=1 a€Q1,t(a)=i
It is easy to see that the mutation at a fixed vertex is an involution.
Let T, be the r-regular labeled tree with root tg.
Definition 6.3. [14, Definition 1.3] A collection of seeds in F, with one seed X(t) = ((Q(t), F'(t)),x(t))

for each t € T,, is called a seed pattern if, for each edge t LAY , the seeds 3(t) and X(t') are related by
a mutation in direction k. The seed () at the root ty is called the initial seed and the seed pattern
is denoted by £.

Fix an initial seed ((Q, F),x).

e The sets x’ obtained by repeated mutation of the initial seed are the clusters.
e The elements of the clusters are the cluster variables.
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e The corresponding cluster algebra with invertible coefficients Agq is the ZP-subalgebra of F
generated by all cluster variables.

As in the previous section, we denote by @ the full subquiver of @) on the non-frozen vertices. Then the
associated cluster algebra without coefficients is denoted by .AQ. It is a quotient of Ag/(m—1,Vm € P).
For any t € T,, let Q(¢t) be the mutated quiver associated with ¢ € T,. The associated exchange

matrix B(t) = (b;;(t)) is defined by
big(t) = [0 = jin Q)Y — [{j i @)}
and the associated 7-tuple of hatted variables {y;(t)|j =1,...,7} is given by
~ bii(t
TIOE | [
1€Q0
Now let (@', F’) be another ice quiver, where @’ has no oriented cycles of length < 2, and Qf, =

{1,...,n} D Fj={r+1,...,n}. The corresponding seed pattern is . It is built on a second copy of
the r-regular tree, T...

Definition 6.4. [14, Definition 3.1] Let Ag and Ay be the associated cluster algebras with invertible
coeflicients, respectively. A quasi-cluster homomorphism ¢: Ag — A is an algebra morphism such
that

a) ¢(P) C P’ and for each cluster variable z of Ag), there is a cluster variable =’ of Ag/ such that
o(x) e P -2
b) the induced algebra morphism p: A@ — A@ is an isomorphism of cluster algebras taking the
initial seed (Q,T) to a seed (Q’,2');
c) We have ¢(y;(to)) = gj’j/ (t'), where j',t' satisfy
B(xj(to)) = 2 (1)), VI<j<r

Remark 6.5. In c), we have used the fact that each cluster x(t) = {z;(t))|1 < j < r} uniquely
determines a seed (x(t), Q(t)), cf. [21].

Let (Q, F,W) be an ice quiver with potential such that P = add(el) is functorially finite in add(T").
We assume that (Q, W) is Jacobi-finite.

Proposition 6.6. Let v € Fy be a frozen source and (Q', F’ W’) = wy(Q, F,W). Then there ezxists
a unique isomorphism 1 : Q[xllﬂ, . ,x;ﬂ, ;fl, e ;Iil] — Q[azl = xfil, o, x5 such that
the following diagram commutes

CCZI ,:I:l / /:tl ’
C(Q,F'\ W' —= Qzy ,...,xrﬂ,xrﬂ,... x, ]

(5) lm lm -

cay +1
C(Q,F,W) —% Qlzf ,...,xfl,mrﬂ,...,wﬁl].
Proof. We define an algebra morphism
'+1 '+1 /41 £E +1 41 +1
Yo Q.2 T, T, ]%@[ml e T Ty Ty |
as follows:
’ T 5 ifj 75 v
17[}4’(33‘7) — H’u*}kEFl Tk f -
— 1 ifj=w

It is clear that v is an isomorphism. Let X be an object of C(Q', F',W'). By the proof of Proposi-

tion we have p*(VU (X)) = p*(X). Hence we have the following identity
CT* (X)) = CO (W4(X))).
The equivalence ¥ : perIV — perI induces an equivalence between their Grothendieck groups
[\I/+] : Ko(addI") — Ko(addI‘)
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which maps [I'}] to T; for ¢ # v and I}, to Z [T4(a)] — [T']. This implies that
a€Fy:s(o)=v

b (/X7 = Lo+ (O
According to the proof of Theorem [5.11] we have
CCoe(X) = 2™ CC (" (X))
and . .
CCoe(W4(X)) = 2+ OO p* (04.(X))) = 2"+ OT COp™(X)).

Therefore we obtain the equality ¢, (CCj (X)) = CCloe(¥4(X)). This shows the commutativety of

diagram . By the equality ¢4 o CCjoe(T) = CCloe 0 ¥ (T, we see that such map ¢ is unique.
Vv

Remark 6.7. Let R be the class of rigid indecomposables reachable (by left and right mutations)
from I". Denote by rch(Q, F, W) the full subcategory of C(Q,F,W) obtained as the closure of R
under suspensions and desuspensions, extensions by objects in thick(P), finite direct sums and direct

summands. Similarly, we define rch(Q', F/,W') C C(Q', F',W'). The commutative diagram |5 induces
the following commutative diagram

coy
I'Ch(Q,, F/, W/) & AQ/

J/\ILF lﬂ#
reh(Q, F, W) S Aq.
Moreover, 1y : Agr — Aq is a quasi-cluster isomorphism.

We have the dual statement of Proposition for mutation at a frozen sink.

Proposition 6.8. Let v € Fy be a frozen sink and (Q', F',W') = pn,(Q,F,W). Then there exists a
unique isomorphism

"+1 '£1 /41 '+1 +1 +1 . +1 +1
Yo QT T,z ] = Qa1
xh s xy, if i A v

Hk—)UGFl Tk

/
X,
v Ty
such that the following diagram commutes
Ccloc ’ / ! !
C(Q,F'\ W'y —% Qlz T, ..., xril,:rrf_ll, I
(6) bp -
CCloc
C(Q, F,W) —= Q[x‘;d, .. ,x}l,xf_&l, I

Remark 6.9. The commutative diagram [6] induces the following commutative diagram

cacy
rch(Q', F/\W') —=5% Ag

l\p, lw_
reh(Q, F, W) <92y Aq.

And ¥_: Agr — Ag is a quasi-cluster isomorphism.
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7. EXAMPLES FROM POSTNIKOV DIAGRAMS

With each connected Postnikov diagram D in the disc, one can associate a canonical ice quiver with
potential (Qp, Fp,Wp). The corresponding relative Jacobian algebra Jp = J(Qp, Fp, Wp) is known
as the dimer algebra of the diagram. Pressland has shown in [38] that it is internally 3-Calabi—Yau
in the sense of his earlier work [37]. As a consequence, he obtains that the category of Gorenstein
projective modules over the corresponding boundary algebra yields an additive categorification of the
cluster algebra associated with the ice quiver (Qp, Fp). Notice that, by a recent result of Galashin—
Lam [I6], after inverting the coefficients, this cluster algebra becomes isomorphic to the homogeneous
coordinate algebra of the (open) positroid variety associated with D in the Grassmannian. In this
section, we explain how this class of ice quivers with potential fits into the theory developed in this
article. In particular, the categories of Gorenstein projective modules studied by Pressland turn out to
be examples of Hom-infinite Higgs categories as constructed in section

Let D be a connected Postnikov diagram in the disc (see [38, Definition 2.1]). With D, we can
associate an ice quiver with potential (Qp, Fp, Wp) (see [38, Definition 2.4]). By [38, Theorem 3.7]
and [42] Lemma 5.11], the corresponding complete relative Ginzburg algebra I'p = T'(Qp, Fp, Wp)
is concentrated in degree 0. From [38, Proposition 4.4], we see that .Jp is Noetherian and (Qp, Wp)
is Jacobi-finite. Put e = queFD ey. The boundary algebra Bp is defined as eJpe. It inherits the
Noetherian property from Jp.

For each vertex v of @ p, choose a path t, : v — v representing a fundamental cycle (see [38, Definition
2.4]). Let t = ZvGQD t,. The element ¢ is central in Jp so that Jp becomes an algebra over the power
series algebra Z = C[[T]]. By Proposition 2.11 of [38], for all vertices v, w of Qp, the Z-module e, Jpe,
is free of rank 1. Thus, the algebra Jp is a finitely generated free Z-module (of rank equal to the square
of the number of vertices of Qp) and so is the boundary algebra (of rank equal to the square of the
number of frozen vertices in @p). It follows that for each P in add(eI'p) and each M in add(I'p), the
End(P)-modules Hom(P, M) and Hom(M, P) are finitely generated so that the subcategory add(eI'p)
is functorially finite in add(T'p).

Thus, the associated ice quiver with potential (Qp, Fp, Wp) satisfies Assumption |1fof section Then
by Theorem the corresponding Higgs category H is equivalent to gpr$3(Bp) = gpr(Bp) which is
exactly Pressland’s category in [38, Theorem 4.5]. Under this equivalence, the canonical cluster-tilting
object T'p of H corresponds to the canonical cluster-tilting object T' = Jpe of gpr(Bp). Moreover, the
relative cluster category C(Qp, Fp, Wp) is equivalent to the bounded derived category D°(gpr(Bp)) of
gpr(Bp). In particular, by section 1.3 of [38], the category of Cohen-Macaulay modules introduced by
Jensen—King—Su in [24] is equivalent to a Higgs category and the bounded derived category of their
algebra A is equivalent to a relative cluster category.

Recall from Theorem 6.1 of [3§] that the Frobenius category H = gpr(Bp) with the cluster-tilting
object T is part of an additive categorification of the cluster algebra associated with the diagram D.
The corresponding cluster character evaluated at an object M € gpr(Bp) is given by Fu—Keller’s [15]
formula

(7) CC(M) = XN " (Gra(Exty ) (T, M)z~ IV,
d
Here we denote
a) by F be the functor
Homgpr(BD)(T, ?) : gpr(Bp) — mod(Jp) ;
b) by [M] the class of a Jp-module M in the Grothendieck group Ko(perJp) = Ko(projJp), which
we identify with ZV via the choice of the basis formed by the classes [P], i € (Qp)o = {1,...,N}
of the indecomposable projective Jp-modules associated with the vertices of Qp ;
c) by [N] the class in Ky(perJp) of any object N with dimension vector d (this class is independent
of the choice of N as in the proof of [I5, Proposition 3.2]).
Then it isn’t hard to see that ¢(Ne) is equal to Xy (defined by formula (4))) for each object N € H
under the equivalence H = grp(Bp) : N — Ne.
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APPENDIX A. FROBENIUS CATEGORIFICATION OF QUASI-CLUSTER MORPHISMS, BY C. FRASER AND
B. KELLER

A.1. Quasi-cluster morphisms. We recall the notion of quasi-cluster morphism from [I4]. Let @ be
an ice quiver with frozen subquiver F' C ). Let us assume that the set of non frozen vertices is formed
by the integers 1, ..., r and the set of frozen vertices by 41, ..., n. Let T, be the r-regular tree with
root tp. Let Ag be the cluster algebra with invertible coefficients associated with Q. Let us write x1,
..., x, for its initial cluster variables. Let P be its coefficient group, i.e. the group of Laurent monomials

€r41 e .
x N xt e €L

in the frozen variables. Let @ be the full subquiver on the non frozen vertices of ) and A@ the associated
cluster algebra without coefficients. For a vertex t of T,., we denote by Q(t) denote the associated iterated
mutation of @, by B(t) = (b;j(t)) the associated exchange matrix and by x;(t) the associated cluster
variables for 1 < j < n. Moreover, for each non frozen vertex j, we put

~ b;i
() = [ =7
1€Q0

Lemma A.1. The specialization map

Q[xf,...,a:f@fﬂ,...,xf] — Q[xf,,xf]

taking the xj, j > r, to 1 induces a cluster algebra isomorphism from the quotient Ag/(m —1,m € P)
onto Az.
Q

Let Q' be another ice quiver and P’ the associated coefficient group. Slightly simplifying definition 3.1
of [14] we define a quasi-cluster morphism ¢ : Ag — A¢q to be a Q-algebra morphism such that
a) we have p(P) C P’ and for each cluster variable = of Ag, there is a cluster variable 2’ of Ag
such that ¢(x) C P'a/;
b) the induced morphism @ : A@ — A@ is an isomorphism of cluster algebras taking the initial
seed (X, Q) to a seed (X', Q) (with the same quiver Q);
c¢) we have
p(T;(to)) =y'y (')
where ¢ and j" are defined by the condition $(z;(to)) = 2, (t') for 1 < j <r.
Notice that thanks to condition b), in condition c), there is a unique cluster 27, (¢'), 1 < j" < r, obtained
as the image under ® of the cluster z;(¢p), 1 < j < r, and that it determines the associated exchange
matrix by Corollary 3.6 of [21]. Let us denote by Ug the upper cluster algebra with invertible coefficients
associated with Q). We define a quasi-cluster morphism f : Ug — Ug to be a ring homomorphism
inducing a quasi-cluster morphism Ag — Ag.
As a simple example, consider the ice quiver

2]
%X
3] « - 1

Let us denote the initial cluster variables by x1, p1 = x2 and ps = x3. Then the only other cluster
variable is

/ p1+ P2
"'Ul — .
T

The associated cluster algebra with invertible coefficients is

Ag = Qlzy, 24, p7, 3]/ (212} — p1 — p2)
and we have 4 = p1/p2. The associated cluster algebra without coefficients is

Ag = Qla1,2/z1).
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Define the algebra automorphism o : Ag — Ag to send p; to 1/p;, 1 to i} /p2 and 2} to x1/p;. We
have

~ _ a(p) 1/p1  p2 ~

5= T = o)
"YTolp)  1pe m

so that ¢ is indeed a quasi-cluster automorphism.

A.2. Frobenius categorification of cluster algebras with coefficients. As before, let () be an

ice quiver. Denote by A5 the cluster algebra with non invertible coefficients associated with (). For
example, for the quiver

we have

A = Qa1, 2, p1, pal /(w12 — p1 — p2).
Now let k be an algebraically closed field and assume that (£,7) is a Frobenius categorification of the
quiver ). By definition, this means that

a) & is a k-linear Krull-Schmidt Frobenius category which is enriched over the monoidal category
of pseudo-compact vector spaces, cf. section 4 of [4];
b) the stable category £ is Hom-finite and 2-Calabi—Yau, i.e. we have bifunctorial isomorphisms

DHomg(X,Y) = Homg (Y, 22X)

for X,Y € &£, where D is the duality over the ground field k;

c) T is a basic cluster-tilting object of £ and we are given an isomorphism between ) and the
quiver of the endomorphism algebra A of T such that the frozen vertices correspond to the
projective-injective indecomposable direct factors of 7', the number of frozen arrows from ¢ to j
is

dim Ext} (S, S;) — dim Ext? (S;, S;)
and the number of non frozen arrows from ¢ to j is
dim EXti(Si, S])
for all vertices ¢ and j.

d) the basic cluster-tilting objects of £ determine a cluster structure on £ in the sense of section I.1
of [2].

By Theorem 1.1.6 of [loc. cit.], if conditions a)—c) hold, then condition d) holds if no cluster-tilting
object of £ has loops or 2-cycles in the quiver of its endomorphism algebra. By Prop. 2.19 (v) of [19],
this holds for many stably 2-CY categories occuring in Lie theory.

Let us assume that T is basic and that we have numbered its indecomposable direct factors T;,
1 < i < n, such that T; is projective for ¢ > r and non projective for ¢ < r. Then, by iterated
mutation, with each vertex ¢ of the regular tree T,, we associate a basic cluster-tilting object T'(t) whose
endomorphism algebra has the quiver Q(¢) obtained from Q(tp) = @ by iterated mutation.

Let us assume from now on the k£ = C is the field of complex numbers. Then with T, we have an
associated cluster character CC = CCr : € — Ug with values in the upper cluster algebra Uy and
defined by the formula (7} The following theorem is a combination of results from [15] and [6].

Theorem A.2. The map L — CC(L) induces bijections
- from the set of isoclasses of reachable rigid indecomposables of £ to the set of cluster variables
Of AJr’.
- from the set of isoclasses of reachable cluster-tilting objects of € to the set of clusters of Aa
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As an example, let us consider the category & = modA of finite-dimensional modules over the pre-
projective algebra A of type As given by the quiver

with the relations ab = 0 and ba = 0. Then £ contains four isoclasses of indecomposable objects
represented by the two simple modules S; and So and the two indecomposable projective modules P;
and P», where P; is the projective cover of S;, ¢ = 1,2. The object T = 51 ® P; ® P>, is cluster-tilting.
Its endomorphism algebra is given by the quiver

% X
- 1

with the relations ab = 0, bc = 0. Here the vertex 1 corresponds to S, the vertex 2 to P, and the
vertex 3 to P». Notice that the endomorphism algebra is also the relative Jacobian algebra of the
same quiver endowed with the potential W = abc. The cluster character associated with T takes the
indecomposables respectively to z1, x2, p1 and ps. The space Ext}g(Sl, Ss) is one-dimensional and we
have the associated exchange conflations

Sl >—>P24)'>SQ andSQ>—>P1%>Sl.
They decategorify to the exchange relation
CC(51)CC(S2) = CC(P1) + CC(Py) respectively x1z2 = p1 + pa.

Our first aim in this appendix is to propose a categorical interpretation of expressions like 1/pj,
x2/p1, ... which have monomials in frozen variables as denominators. We will use objects of the derived
category D°(&) for this purpose, cf. Theorem below.

A.3. On split Grothendieck groups of Frobenius categories. Let £ be a Krull-Schmidt Frobe-
nius category and P C & its full subcategory of projective-injectives. We denote by Ki¥(&) the split
Grothendieck group of £ which has a basis given by the isomorphism classes of the indecomposables in
E. Exceptionally, in this section, we will denote by X +— X[1] the suspension functor of the derived
category D°(E). We denote by K 7(D’(E)) the split Grothendieck group of D°(€) and by Kgp its
quotient by the subgroup generated by all elements [P] — [X] + [Y], where P, X and Y appear in a
triangle
P—X—Y — P[]

of DP(£) and P is isomorphic to a bounded complex of projectives of €.

Proposition A.3. The morphism ¢ : K7 () — K¢ p induced by the canonical functor & — D*(E) is
bijective.

Proof. We will construct the inverse 1 of ¢. Let C7*(P) denote the category of right bounded
complexes X with components in P which are acylic in all degrees n < 0, which means that we have
conflations

ZMX) — X" - Z"T(X).
The corresponding homotopy category H™*(P) is canonically equivalent to D°(£). Thus it suffices to
construct an element ¢ (X) in K" (€) for each complex X in C~%(P) such that
a) we have ¢(X) = ¢(X') if X and X’ are homotopy equivalent;
b) we have )(P) 4+ (Y) = ¢(X) whenever there is a triangle

P—X—>Y — P[1]

of H~?(P), where P is bounded;
¢) the induced map ¢ : Kgp — Kj'(€) is inverse to .
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1st step: For each n < 0, we define 1(X) for complezes X in C™%(E) which have non zero components
only in degrees < n and admit a conflation
ZMX)— X" >Y
as well as conflations
ZP(X) — XP — ZPTL(X)
for all p < n — 1. In other words, such a complex is a projective resolution of Y'[n]. For this, we choose

an injective resolution
0-Y 1" T1t— ...

From the conflation
Y — 1" %3y

we deduce that in K¢ p, we have
Y]] = [ZY] - [1°]
and by induction that we have

i
L

[X] = [Y[n]l = Z"Y] + (=1)" }_(=1DP[I"]

i
o

in K¢ p. Therefore, we define the element 1 (X) of K*(£) by
n—1
Y(X) = [ZY]+ (D)"Y (=1)P[I7].
p=0
It is clear that ¢ (X) does not change if we replace X with a homotopic complex X’ concentrated in
degrees < n and that p(¢(X)) = [X].
2nd step: We define 1(X) for bounded complexes X with projective components by

B(X) = (-1P[X7].
PEZL
3rd step: We define (X)) for general X in C~*(P). For this, we choose N < 0 such that X is acyclic
in degrees n < N. We then have a a triangle

o>N(X) = X = o<n(X) = (058 (X))[1]

and we define

P(X) = ¢(o>n (X)) + Plo<n (X))
using the first and the second step. One checks that this element of K;’(€) does not depend on the
choice of N and that we have properties a), b) and c) above. v

A.4. Extension of cluster characters to the derived category. Let £ be a Krull-Schmidt Frobe-
nius category which is stably 2-Calabi—Yau. Suppose that CC : £ — R is a cluster character with values
in a commutative domain R. Suppose that the isomorphism classes of the indecomposable projectives
of £ are represented by objects P11, ..., P, and put ; = CC(F;) forr +1 < i <mn. Let ¢ : R — Rjoc
be a ring homomorphism to a domain which makes z,11, ..., x, invertible. Let us also denote the
canonical functor £ — DY(E) by ¢. Let 7 : Rjo. — R be a ring homomorphism which sends the «(z;) to
1,741 <14 <n. Let us also denote by = : Db(é') — &£ the canonical triangle functor. Let CC : £ — R
be the cluster character induced by CC.

Theorem A .4. a) There is a unique map CCloe : DY(E) — Rype such that
1) the following diagram commutes
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2) whenever we have a triangle
P— X —=Y — P[]
of (&), where P is a bounded complex of projectives, we have
CCloc(X) = CCloe(P)CCloe(Y).
b) Let X and Y be objects of D°(E) such that the space EXté(TI’X, wY') is one-dimensional. Let E
and E' be the middle terms of triangles
Y—E—-X—=Y[lland X - E' - Y — X][1]
of Db(&) whose images in E are non split. Then we have

CCloc(X)CCloc(Y) = Ccloc(E) + CClOC(E/)'

Proof. a) We consider 1o CC as a map defined on K;’(£) with values in the multiplicative group of
non zero elements of the fraction field of Rj,.. By Proposition [A.3] this map admits a unique extension
CC1 to K¢ p such that for each triangle

P—X—>Y — P[1]
of DP(€), where P is a bounded complex of projectives, we have
CCL1(X) = CCL(P)CCL(Y).

An inspection of the proof of Proposition shows that C'Cy actually takes values in Rj,.. Thus, if
we define CCj,. to be the map X +— CC1(X) from D°(&) to Ry, then the top square of the diagram
commutes. Moreover, by the definition of CC, the outer rectangle commutes. By the surjectivity of the
map K" (€) — K¢ p, the bottom square also commutes.

b) Suppose first that X and Y belong to & C D°(E). Then clearly, the claim holds for X and Y. Let
us check it for X[1] and Y[1]. Let us choose conflations

X—IX—»¥YXandY — IY - XY
with injective /X and IY. Then we can construct conflations
E—IY®IX »XEand B — IX®IY - LE.
We have
CCre(X[1])) = CO(EX)CC(IX)™?

and similarly for CCi(U) for U € {Y, E, E'}. This immediately implies that the formula holds for X[1]
and Y[1]. By induction, we obtain it for X[n] and Y'[n] for n > 0. Now let X and Y be arbitrary objects
of D(&). For some N < 0, we may assume that XP is projective for all p > N and X? = 0 for all

p < N —2 and similarly for Y, E and E’. Moreover, we may assume that we have EP = XP ¢ YP = E'P
for p > N and that we have conflations

XN—l — EN—l %—)YN_l and YN—l — E/N—l —»XN_l.
Notice that up to suspension, these give rise in the stable category £ to the images of the chosen
triangles linking X and Y in D’(€). By our assumption on the extension groups between 7X and

7Y, these conflations are therefore exchange conflations between X¥~! and Y¥~! in £. We have the
componentwise split conflation of complexes

osn(X) — X = XN7H1 - N).
Since o>n(X) is bounded with projective components, we have
CCroe(X) = CCloe( XN 1 = N))CClpe(0>n (X))
and similarly for Y, ' and E’. The componentwise split conflations of complexes
o>N(Y) = 0xn(E) - o>y (X) and 05N (X) — oxn(E') - oxn(Y)

yield
CCloc(02N(E)) = CCloc(0>N(X)CCloc(02n(Y)) = CCloc(0>n(E)).
Together with the formula for XV ~1[1 — N] and Y ~1[1 — N], this implies the formula for X and Y. /
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Remark A.5. Let X and X’ be objects of D?(£) whose images in the stable category D°(E)/Hb(P) = £
are isomorphic. By the calculus of fractions for this Verdier quotient, there are triangles of D?(&)
P X" X —=P[1]and P" - X" — X' — P'[1]
such that P’ and P” belong to H®(P). It follows that we have
CCloc(X') = M - CCroe(X)
for a Laurent monomial M in the CCj,e(P), P € P.

Example A.6. Let us continue the example from the end of section[A.3. With the notations used there,
we clearly have CC(Py[1]) = 1/p1. Moreover, the triangle

P — 52 — Sl[l] — Pg[l]

shows that we have CC(S1[1]) = x2/p2. In fact, it is not hard to check that we have a commutative
square

Dh(E) 55 Ag

m| |-

Dh(E) £ Ap.

This can be interpreted by saying that the suspension functor [1] of D*(E) categorifies the quasi-cluster
automorphism o of Ag.

A.5. Categorification of quasi-cluster morphisms. Let (£,7T) be a Frobenius categorification (cf.
section of the ice quiver of Q of a cluster algebra A with invertible coefficients. Let A" be the cor-
responding cluster algebra with non invertible coefficients and define & and U™ to be the corresponding
upper cluster algebras. Let ® : £ — U™ be the cluster character associated with T. Let P C £ be the
full subcategory of the projective-injectives. Using part 1) of Theorem [A.4]we extend CC = ® to a map
CClee : D*(E) — U, which we will still denote by ®. Let (£/,7") be a Frobenius categorification of the
ice quiver Q' of another cluster algebra A" with invertible coefficients. We define the notations A", I/,
U'"T, ® and P’ in the obvious way.

Theorem A.7. A ring homomorphism f : U — U is a quasi-cluster morphism if there is a triangle
functor F : D°(E) — DY(E') such that
1) F takes P to HP(P') C DV(E);
2) the induced functor F : £ — &' is a triangle equivalence taking T to a cluster tilting object T"
reachable from T';
3) there is a triangle functor F : HP(add(T)) — HP(add(T")) making the following square commute
(up to isomorphism)

HP(add(T)) — Db(€)

| |r
Hb(add(T")) —— DP(E') ,

where the horizontal arrows are induced by the inclusions add(T) C € and add(T") C &’.
4) the square

add(T) —2— Y+

Fl Jf
Db(EN) — U

commutes.

Remark A.8. We thank Matthew Pressland for suggesting the weak hypothesis 4). In [40], he has
recently applied this theorem to prove a conjecture by Muller—Speyer [31, Rem. 4.7] linking the two
canonical cluster structures on a positroid variety by a quasi-cluster isomorphism.
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Proof. Since P is contained in add(7"), conditions 1) and 4) imply that f maps frozen variables of
AT to Laurent monomials in frozen variables of A'". Let Ty be an indecomposable summand of 7" and
xo € AT the associated initial cluster variable. By condition 2), there is an indecomposable reachable
rigid object Uy which becomes isomorphic to FTy in £. By Remark we have ®'(FTy) = M - @' (Uy)
for a Laurent monomial M in the frozen variables of A'*. Thus, the image f(zo) = f(®(Tp)) = ®'(FTy),
where we have used condition 4), is a product of the cluster variable ®'(Uy) with a Laurent monomial
in frozen variables. Thanks to part b) of Theorem condition 4) implies the commutativity of the
square

add(T") —2— U+

Fl lf
DHE) —5 U

for any cluster-tilting object T” of £ reachable from T. We conclude that for any cluster variable x
of A", its image f(z) is the product of a cluster variable of A" with a Laurent monomial in frozen
variables.

Let A and A’ denote the cluster algebras without coefficients associated with A" and A'*. By
Lemma and condition 2), the morphism f takes the initial seed of A to a seed of A’ with the same
quiver. Thus, the morphism f is a cluster algebra isomorphism.

It remains to check condition c¢) of section After composing f with a cluster isomorphism we
may assume that f takes the initial seed of A to the initial seed of A’. Let B = (b;;) and B’ denote
the corresponding exchange matrices with 1 <4 < mn and 1 < j < r, where n is the number of all and
r < n the number of non-frozen initial cluster variables. We have to show that B = B’. Thanks to
the work [34] of Palu, we can deduce this from condition 3). Indeed, as shown in [loc. cit.], if we put
M = add(T), we have a short exact sequence of triangulated categories

0— H2 (M) = HA (M) = D°(E) =0,

where H?.(M) denotes the kernel of the canonical functor H°(M) — DP(£), i.e. the full subcategory
whose objects are the complexes with components in M which are acyclic as complexes over £. The
triangulated category H%,.(M) admits a bounded non degenerate t-structure whose heart identifies with
the category of finite-dimensional modules over the stable endomorphism algebra Endg (7). If T; is
an indecomposable non projective summand of T, the simple quotient S; of the projective module
Homg (T, Tj) corresponds to the acyclic complex

0T, -E—E —-T; -0
(with the last copy of T} in degree 0) obtained by splicing the two exchange conflations
T;‘>—>E'—»Tj and Tj — E — T7.

Thus, the matrix of the morphism in the Grothendieck groups induced by the functor H2,.(M) — H*(M)
in the bases given by the [S;] and the [T}] is (bi;). The triangle functors F' and F induce isomorphisms
in the Grothendieck group which are compatible with the morphism induced by H%.(M) — H*(M) and
clearly preserve the bases. Thus, we have B = B’ as claimed.

We keep the notations introduced at the beginning of this section. In the following variant of the
above theorem, we make a slightly stronger assumption in condition 1) but do not suppose that we are
given a ring homomorphism A4 — A’ from the outset.

Theorem A.9. Let I : D*(£) — DY(E') be a triangle functor such that
1) F takes P to H°(P') C DY(E') and induces an isomorphism Ko(P) = Ko(P').

2) the induced functor F : £ — &' is a triangle equivalence taking T to a cluster tilting object T"
reachable from T';
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3) there is a triangle functor F : H(add(T)) — HP(add(T")) making the following square commute
(up to isomorphism)

Hb(add(T)) —— D*(E)

7| |7
H’(add(T")) —— D*(&') ,
where the horizontal arrows are induced by the inclusions add(T) C € and add(T") C &’.

Then there is a unique quasi-cluster isomorphism f : A = A’ taking the initial variable x; to ®'(FT;),
1<i<n.

Proof. Let (Q, (z;)) be the inital seed of A and (@', (z})) that of A’. By condition 2), both have the

same number r of non frozen initial cluster variables. Moreover, the isomorphism
Ko(F) : Ko(P) = Ko(P')

of condition 1) yields an isomorphism between the groups of Laurent monomials in the frozen variables
for @ and Q’. Put u; = ®'(FT;). Let (z) be the cluster of A" associated with the reachable cluster-
tilting object of &£’ lifting F'T € £'. Since FT; and 1] are isomorphic in &', by Remark we have
u; = m;x} for 1 <14 <r, where the m; are Laurent polynomials in the frozen variables. Therefore, the
ui, 1 < i <r, are algebraically independent over the Laurent polynomial algebra in the frozen variables
of A'. So there is a well-defined algebra morphism f : U — Q(z},1 < i < n) such that f(z;) = w;,
1 < i < r, and f induces the isomorphism given by K(F') in the coefficient groups. From part b)
of Theorem we deduce by induction that the image under f of each cluster variable of A is the
product of a cluster variable of A’ with a Laurent monomial in the frozen variables. Thus, the image of
each cluster of A lies in A" and f(A) C A’. We even have f(A) = A’ since T” is reachable from FT in
&. Thus, we have a ring isomorphism f : A — A’ taking the z; to the u;, 1 <i < n. Clearly, it satisfies
the assumptions of Theorem and thus is a quasi-cluster isomorphism. v

Example A.10. Let us generalize Example [A.6. We use the notations introduced at the beginning
of this section. Suppose that the cluster-tilting object XT of £ is reachable. For each indecomposable
summand T; of T, we choose an inflation

T, — I, - XT;.

We define

u; = CCle(Ti[1]) = CC(BT)CC(I) ™" ;1 <i <.
Clearly the shift functor D’(E) = DP(E) satisfies the hypotheses of Theorem . Thus, we have a
unique quasi-cluster isomorphism DT : A = A taking x; to u;, 1 < i < n. It is called the twist or the
Donaldson—-Thomas transformation of A.

Acknowledgments. We thank Matthew Pressland for inspiring discussions and encouragment. We
are grateful to Yilin Wu for comments on a preliminary version of this appendix.
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