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Abstract

Given a quiver Q, a formal potential is called analytic if its coefficients are bounded by the
terms of a geometric series. As shown by Toda, the potentials appearing in the deformation
theory of objects on complex projective Calabi-Yau threefolds are analytic. Our paper con-
sists of two parts. In the first part, we establish the foundations of the differential calculus of
quivers with analytic potentials and prove two fundamental results: the inverse function the-
orem and Moser’s trick. As an application, we prove finite determinacy of analytic potentials
with finite-dimensional Jacobi algebra, answering a question of Ben Davison. We also prove a
Mather-Yau type theorem for analytic potentials with finite-dimensional Jacobi algebra, extend-
ing previous work by the first author with Zhou. In the second part, we define the (weighted)
Donaldson-Thomas invariants of quiver with analytic potential and study the transformation
of DT invariants under mutation. We construct a canonical perverse sheaf of vanishing cycles
on the moduli stack of finite dimensional modules over the formal Jacobi algebra of a quiver
with analytic potential. By proving a separation lemma for analytic potentials we show that the
mutation of an analytic potential is analytic, which allows us to construct a canonical perverse
sheaf on the moduli stack of finite dimensional modules over the Jacobi algebra of an arbitrary
iterated mutation of a quiver with nondegenerate analytic potential. Finally, we show that the
(weighted) DT invariants satisfy Nagao’s transformation formula under mutation by replacing
Nagao’s integration map by its weighted counterpart.
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1 Introduction

The differential calculus of quivers with potentials has been an important subject in noncommutative
geometry since the work of Ginzburg [9] and Van den Bergh [20]. However most research was
done in the formal context. Our paper is an attempt towards the analytic theory of quivers with
potentials. This is not only by theoretical curiosity but motivated by applications in cluster algebras
and algebraic geometry, where the notion of analytic potential appears naturally. Our results on
analytic potentials also lead to solutions to some open problems in Donaldson-Thomas theory of
quivers with potentials.

Let Q be a finite quiver. A (formal) potential is an infinite (complex) linear combination∑
c

ac c ,

where c runs through the cyclic paths of Q and the ac are complex numbers. The space of potentials

ĈQcyc is defined to be ĈQ/[ĈQ, ĈQ]cl where ĈQ is the complete path algebra and [ĈQ, ĈQ]cl

is the closure of the space of commutators. Potentials should be viewed as formal functions on a
noncommutative space since we impose no growth condition on the coefficients ac. Formal differential
calculus of quivers with potentials has been studied extensively. In particular, we are inspired by
the work of Derksen, Weyman and Zelevinsky [5], where they establish the calculus of mutations of
quivers with potentials. Their results have important applications in the study of cluster algebras,
cf. [6, 17, 16]. In [12], the first author and Zhou study the singularity theory of formal potentials.
The results in [12] have applications to 3-dimensional birational geometry. For example, in [10],
we prove that the underlying singularity of a 3-dimensional flopping contraction is determined by
the derived Morita equivalence class of the noncommutative deformation algebra of the exceptional
curve together with the class represented by the potential.

We call a potential analytic if its coefficients are bounded by a geometric series, i.e. there is a
constant C > 0 such that |ac| ≤ C |c|, where |c| is the length of the cycle c. The differential calculus of
analytic potentials is significantly harder than that of formal ones. The main difficulty is to control
the convergence radius. Before stating our main results, let us briefly recall how analytic potentials
appear in algebraic geometry and cluster algebras.

Let X be a complex projective Calabi-Yau 3-fold. Let E1, . . . , En be a collection of coherent
sheaves such that dim Hom(Ei, Ej) = δij . We can associate to it a finite quiver Q called the Ext-
quiver of the collection. In particular, the set of nodes Q0 is {1, 2, . . . , n} and the number of arrows
from i to j is equal to dim Ext1(Ei, Ej). By the Calabi-Yau property, one can produce [20] a formal
potential Φ on Q which is unique up to right equivalence. The cyclic derivatives of Φ control the
deformation-obstruction theory of

⊕n
i=1 Ei. Using ideas of Kuranishi and Fukaya, Toda proves that

there exists an analytic representative in the right equivalence class of Φ [19]. We may simply assume
that Φ itself is analytic. Let E1, . . . , En be a collection of mutually non isomorphic stable sheaves
of the same slope. The moduli stack of semi-stable sheaves near the polystable sheaf

⊕n
i=1 Ei can

be locally embedded into the moduli stack of finite dimensional representations of Q as the critical
stack of the trace of Φ, which is called the Chern-Simons functions of the moduli stack (see [19]).

The link between Donaldson-Thomas theory and cluster algebras was first pointed out by Kont-
sevich and Soibelman [14]. Given a 3-Calabi-Yau category satisfying suitable conditions, one can
define two types of invariants: the topological and the weighted DT invariants. In the geometric con-
text, one may consider Db(coh(X)) for a projective CY 3-fold X. If we fix a stability condition, the
moduli stack of semi-stable objects carries an intrinsic constructible function ν, the Behrend function
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(see [1] [13]). Roughly speaking, the topological and weighted DT invariants are defined respectively
to be the topological and the ν-weighted Euler characteristics of the moduli stack. DT-invariants
admit various refinements where the Euler characteristic is replaced by suitable cohomological or
motivic enhancements. In order to define the refined DT invariants, or to study the transformation of
DT invariants under change of stability, one needs to prove the existence of Chern-Simons functions
(see [14] [13]). They are analytic functions whose critical stacks give local models for the moduli
stack. The topological and the weighted DT invariants share some nice properties. For example,
they both satisfy the wall crossing formula (see [13]). However, a major difference is that only the
weighted one is invariant under deformation (cf. Corollary 5.28 of [13]).

DT invariants also appear in a purely algebraic context. Given a quiver with potential (Q,Φ),
the derived category of the Ginzburg algebra provides another example of a 3CY–category fitting
into the framework of Kontsevich–Soibelman. The topological DT invariants are defined to be the
Euler characteristics of the moduli stacks of finite dimensional modules over the Jacobi algebra. In
[16], Nagao studied the transformation of the topological DT invariants under mutation and used
it to give an alternative proof to several conjectures in cluster algebra by Fomin and Zelevinsky
[7]. The refined DT invariants are closely related to quantum cluster algebras. Nagao’s work is
promising since it provides another way to understand quantum cluster algebras. However, one
major technical issue in this subject is that mutations of potentials with finitely many terms may
have infinitely many terms. Therefore, unless we can control the growth of the coefficients of the
mutated potential one cannot expect the existence of Chern-Simons functions on the moduli stack
of the mutated quiver with potential. This is the reason why Nagao was not able to deal with
the weighted Euler characteristic. Analytic potentials provide a quite satisfactory solution to this
problem.

The major results of this paper can be summarized as follows.

Noncommutative differential calculus We prove several theorems in differential calculus of
analytic potentials, which should have independent interests for people working in noncommutative
geometry. The results are

• inverse function theorem (Proposition 3.13),

• Moser’s trick (Proposition 3.20),

• separation lemma (Proposition 6.3),

• finite determinacy of Jacobi-finite potential (Theorem 4.4),

• noncommutative Mather-Yau theorem (Theorem 4.5).

Among them, Theorem 4.4 answers a question in Donaldson–Thomas theory posed by Ben Davison
in Remark 3.10 of [4].

Donaldson–Thomas theory of quivers with analytic potentials As an application of non-
commutative differential calculus of analytic potentials, we construct a canonical perverse sheaf on
the moduli stack of finite dimensional modules over the Jacobi algebra.

Theorem 1.1. (Theorem 5.4, Corollary 5.5, Proposition 6.6, Proposition 6.10, Corollary 6.11) Let

Q be a finite quiver and Φ be an analytic potential. Denote by Λ̂(Q,Φ) and Λ̃(Q,Φ) the formal and
analytic Jacobi algebra.
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(1) There is a canonical perverse sheaf of vanishing cycles defined on the moduli stack of finite

dimensional modules over Λ̂(Q,Φ). 1

(2) If Λ̃(Q,Φ) is finite dimensional then the above mentioned perverse sheaf only depends on the

isomorphism class of the pair (Λ̃(Q,Φ), [Φ]Φ) where [Φ]Φ is the class of Φ in Λ̃(Q,Φ)cyc.

Let Q be a finite quiver with neither loops nor 2-cycles.

(3) A mutation of an analytic potential is analytic.

(4) There exists a nondegenerate analytic potential.

(5) If Φ is nondegenerate then there is a canonical perverse sheaf on the moduli stack of finite
dimensional modules over formal Jacobi algebra of arbitrary iterated mutation of (Q,Φ).

When the potential Φ is algebraic, i.e. contains only finitely many terms, this perverse sheaf was
constructed in [14] for the algebraic Jacobi algebra. However, it is not compatible with mutation
since the mutation of an algebraic potential is no longer algebraic in general (see Remark 0.1 of
[16]). Parts (1), (3) and (5) of the above theorem provide a solution to this problem. We believe
that the perverse sheaf that we constructed can be used to define refined DT invariants for quivers
with analytic potentials, a problem which is left for future research.

Part (2) leads to a rigidity result for DT theory. Let Φ be a quasi-homogeneous analytic potential
with finite dimensional Jacobi algebra. Then its refined DT theory is completely determined by the
isomorphism class of the Jacobi algebra. If the quasi-homogeneous assumption is dropped, then we
get a slightly weaker statement, i.e. the refined DT theory is determined by the pair (Λ̃(Q,Φ), [Φ]Φ).
There are some interesting examples from geometry and algebra with finite dimensional Jacobi
algebras, e.g. the potentials coming from 3-dimensional flopping contractions (see [10], [4]).

Theorem 1.2. (Proposition 5.6, Theorem 6.12) Let Q be a finite quiver and Φ be an analytic
potential. The weighted integration map Iν is a Poisson algebra morphism. If Q has neither loops
nor 2-cycles and Φ is nondegenerate, then the Donaldson–Thomas invariants defined by Iν satisfy
the Nagao’s transformation formula.

Our theorem leads to a new version of the F -series, which can be called the perverse F-series.
Recall that the F -series is called F-polynomial in cluster theory, where it is indeed a polynomial.
The perverse F -series is defined to be the image of the quiver Grassmannian under the weighted
integration map. We expect that it can also be defined as the generating series of the Euler charac-
teristics of the canonical perverse sheaf of vanishing cycles. As in the geometric case, the perverse
F -series satisfies the same transformation formula as the ordinary F -series under mutation. How-
ever, we expect that the perverse F -series should behave better under deformation. On the other
hand, it is an interesting question to ask whether the perverse F -series can serve to construct a basis
for the cluster algebra.

The paper is organized as follows. After setting up the notation in Section 2, we recall foundations
on formal differential calculus of quivers with potentials in Sections 3.1 and 3.2. In the rest of Section
3, we establish the foundations of differential calculus of analytic potentials. Two fundamental

1In general Λ̂(Q,Φ) and Λ̃(Q,Φ) are not necessarily isomorphic. However, they have equivalent categories of finite

dimensional modules (see Proposition 5.3). So for the study of DT theory, it is equivalent to consider Λ̂(Q,Φ) or

Λ̃(Q,Φ).
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theorems: the inverse function theorem and Moser’s trick (or Cauchy-Kowalevski theorem) for
analytic potentials are proved. In Section 4, we prove the finite determinacy and the Mather-Yau
theorem for J̃-finite analytic potentials. In Section 5, we construct the perverse sheaf of vanishing
cycles on the moduli stack of finite dimensional modules over the Jacobi algebra of a quiver with
analytic potential. And we prove that the weighted integration map is a Poisson morphism. In
Section 6, we prove the separation lemma for analytic potentials and establish the transformation
formula for DT invariants under mutation.

Acknowledgments. We are very much indebted to Ben Davison for inspiring discussion and for
drawing our attention to the work of Toda on Ext-quivers. The Jacobi algebra of an analytic potential
has been considered in [4] in some special case. The first author would like to thank Lev Borisov for
useful suggestions for the proof of Proposition 3.20, and Gui-song Zhou for interesting comments.
The research of the first author is supported by RGC General Research Fund no. 17330316, no.
17308017 and no. 17308818.

2 Preliminaries

Throughout, we fix a commutative base ring k and a finite rank k-algebra l = ke1 + . . . + ken for
central orthogonal primitive idempotents ei. Unadorned tensor products are taken over k.

Derivations, double derivation and cyclic derivations. An l-algebra A is a k-algebra A
equipped with a k-algebra monomorphism η : l → A. Note that the image of l is in general not
central even though l is commutative.

We denote A⊗Aop by Ae. We write A
out
⊗ A (resp. A

in
⊗ A) for the A-bimodule A⊗A endowed

with the outer (resp. inner) action of Ae. Because l is a sub algebra of A, these A-bimodules are

in particular l-bimodules. The flip map τ : A
out
⊗ A → A

in
⊗ A, which takes a′⊗a′′ to a′′⊗a′, is an

isomorphism of A-bimodules, µ : A
out
⊗ A → A is a homomorphism of A-bimodules but in general

µ : A
in
⊗ A → A is not. Unless otherwise stated, we simply view A⊗A as the bimodule A

out
⊗ A.

Also, the category of A-bimodules is denoted by A−Bimod.
A (relative) l-derivation of A in an A-bimodule M is defined to be a le-linear map δ : A → M

satisfying the Leibniz rule, that is δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ A. It follows that δ(l) = 0 and
δ(Aij) ⊂ Mij , where Mij := eiMej . Denote by Derl(A,M) the set of all l-derivations of A in M ,
which naturally carries a k-module structure. The elements of

Derl(A) := Derl(A,A) (resp. Derl(A) := Derl(A,A⊗A))

are called the l-derivations of A (resp. double l-derivations of A). For a general double derivation
δ ∈ DerlA and a ∈ A, we shall write in Sweedler’s notation

δ(a) = δ(a)′⊗δ(a)′′. (2.1)

The inner bimodule structure of A⊗A naturally yields a bimodule structure on Derl(A). In contrast,
Derl(A) does not have canonical left nor right A-module structures in general. The multiplication
map µ induces a k-linear map µ ◦ − : Derl(A) → Derl(A) given by δ 7→ µ ◦ δ. We refer to µ ◦ δ as
the l-derivation corresponding to the double l-derivation δ.
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Let us put on the space of k-module endomorphisms Homk(A,A) the A-bimodule structure
defined by

a1fa2 : b 7→ a1f(b)a2, f ∈ Homk(A,A), a1, a2, b ∈ A.

Though the map Derl(A)
µ◦−−−−→ Homk(A,A) does not preserve the bimodule structures, the map

µ ◦ τ ◦ − : Derl(A)→ Homk(A,A)

is clearly a homomorphism of A-bimodules. Denote the image of this map by cDerl(A) and call its
elements cyclic l-derivations of A. For a double l-derivation δ ∈ Derl(A), we shall refer to µ ◦ τ ◦ δ
as the cyclic l-derivation corresponding to δ. Note that by definition cDerl(A) is an A-subbimodule
of Homk(A,A), and hence is itself an A-bimodule.

We collect some trivial properties o (cyclic) derivations in the following lemma.

Lemma 2.1. [12, Lemma 1.1] Let A be an l-algebra and fix an element Φ ∈ Acyc := A/[A,A]. Let
π : A→ Acyc be the canonical projection and φ ∈ A a representative of Φ.

(1) ξ([A,A]) ⊆ [A,A] for every ξ ∈ Derl(A). Consequently, the assignment Derl(A) 3 ξ 7→ π(ξ(φ))
only depends on Φ and defines a k-linear map Φ# : Derl(A)→ Acyc.

(2) D([A,A]) = 0 for every D ∈ cDerl(A). Consequently, the assignment cDerl(A) 3 D 7→ D(φ)
only depends on Φ and defines an A-bimodule morphism Φ∗ : cDerl(A)→ A.

(3) We have the following commutative diagram:

Derl(A)
µ◦τ◦−

// //

µ◦−
��

cDerl(A)
Φ∗ // A

π

��

Derl(A)
Φ#

// Acyc.

(2.2)

Consequently, if Derl(A)
µ◦−−−−→ Derl(A) is surjective then im(Φ#) = im(π ◦ Φ∗).

Quivers. A (finite) quiver Q is a tuple (Q0, Q1, s, t) where Q0, Q1 are finite sets and s, t are maps
from Q1 to Q0. Elements of Q0 and Q1 are called nodes and arrows respectively. Given a ∈ Q1, s(a)
and t(a) are called the source and target of a. The path algebra of Q with coefficients in k is denoted
by kQ. Elements of kQ are finite k-linear combination of paths, which will be denoted by

∑
aww.

Here w is a path or word (of finite length) and aw is nonzero only for finitely many w. Denote by |w|
the length of w. For each node i ∈ Q0, we denote by ei the lazy (i.e. length 0) path that starts and
ends at i. We specialize l to kQ0 :=

⊕
i∈Q0

kei. The path algebra kQ is an l-algebra. Let m be the

two-sided ideal generated by the arrows. Denote by k̂Q the m-adic completion of kQ, which we call

the complete path algebra. An element of k̂Q is an infinite linear combination
∑
w aww. We denote

by m̂ the (closed) ideal of k̂Q generated by all arrows. Clearly, m = m̂ ∩ kQ and k̂Q/m̂ = kQ0.

Power series. Let R = k[[x1, . . . , xk]] be the power series ring. We denote an element of R
by
∑
amm with am ∈ k where the sum is over all monomials m. Given a vector F (x) of power

series, we denote by [m]F (x) the coefficient vector of the monomial m. We view elements of k̂Q as
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noncommutative formal series. Given a vector N(z) of such elements, where z = Q1, we denote by
[w]N(z) the coefficient vector of the word (path) w. For a noncommutative formal series φ, define
ord(φ) to be min{|w||aw 6= 0}. For a noncommutative power series, the order is defined to be the
minimal length of a path with non zero coefficient. For a vector N(z), define ord(N(z)) to be the
minimal order of its components.

Given i ∈ Q0, let Q
(ii)
1 := {a ∈ Q1|s(a) = t(a) = i}, i.e. the set of loops based at i. Denote

by k[[Q
(ii)
1 ]] the commutative power series ring generated by Q

(ii)
1 . Let ι(i) : k̂Q→ k[[Q

(ii)
1 ]] be the

algebra homomorphism that abelianizes the set of loops a ∈ Q(ii)
1 and maps the other arrows to zero.

Clearly,
∑
i∈Q0

ι(i) is the abelianization map of k̂Q. For φ ∈ k̂Q, denote by φab its abelianization.
Given a formal series φ (commutative or noncommutative), we denote its multiplicative inverse

(suppose it exists) by φ−1 and its composition inverse (suppose it exists) by φ〈−1〉. For a vector
N(z), only the composition inverse N 〈−1〉(z) makes sense.

Trees. Let T be a finite rooted tree. We denote by |T | the total number of vertices of T and by

l(T ) the number of leaves. Denote by T̂ the rooted tree obtained by deleting all leaves of T . The
empty tree is denoted by ∅. The tree with a single vertex is denoted by ◦. Denote by BP the set
of rooted plane binary trees, and by BPm the subset of such trees with m leaves. As a convention,
we let ∅, ◦ ∈ BP . Given T1, T2 ∈ BP , denote by B+(T1, T2) the rooted binary tree constructed by
attaching T1 and T2 (from left to right) to the root. On the other hand, for any T ∈ BP that is not
empty or a singleton, we may write T = B+(TL, TR) where TL and TR are the left and the right
branches of T . Given T ∈ BP \ {∅, ◦}, we recursively define

T ! := |T | · TL!TR! ,

where ◦! = 1.

3 Differential calculus of quivers with potentials

3.1 Algebraic case

Let Q be a finite quiver and let l := kQ0. Let

kQcyc := kQ/[kQ, kQ]

be the trace space of kQ. An element of kQcyc is called a potential of Q.
Apply Lemma 2.1 with A = kQ and l = kQ0. For Φ ∈ kQcyc, we get a commutative diagram.

Derl(kQ)
µ◦τ◦−

// //

µ◦−
����

cDerl(kQ)
Φ∗ // kQ

π

��

Derl(kQ)
Φ#

// kQcyc.

(3.1)

For each a ∈ Q1 we have a double derivation

∂

∂a
: kQ→ kQ⊗kQ, Q1 3 b 7→ δa,b es(a)⊗et(a).
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Moreover, every double derivation of kQ has a unique representation of the form∑
a∈Q1

∑
u,v

A(a)
u,v u ∗

∂

∂a
∗ v, A(a)

u,v ∈ k, (3.2)

where u, v run over all paths in Q, and ∗ denotes the scalar multiplication of the bimodule structure
of Derl(kQ). For each a ∈ Q1, let

Da := µ ◦ τ ◦ ∂
∂a
∈ cDerl(kQ).

These cyclic derivations were first studied by Rota, Sagan and Stein [18]. By (3.2), every cyclic
derivation of kQ has a decomposition (not necessarily unique) of the form∑

a∈Q1

∑
u,v

A(i)
u,v u ·Da · v, A(i)

u,v ∈ k. (3.3)

Let π : kQ→ kQcyc be the canonical projection. Given a potential Φ ∈ kQcyc, there are two linear
maps

Φ# : Derl(kQ)→ kQcyc, ξ 7→ π(ξ(φ))

Φ∗ : cDerl(kQ)→ kQ, D 7→ D(φ),

where φ is any representative of Φ. Clearly Φ# and Φ∗ are independent of the choice of the repre-
sentative φ. Note that Φ∗ is a homomorphism of kQ-bimodules. So im(Φ∗) is a two-sided ideal of
kQ. Moreover, it is generated by DaΦ for all a ∈ Q1.

Definition 3.1. Let Φ ∈ kQcyc be a potential. The Jacobi ideal of Φ, denoted by J(Q,Φ), is defined
to be the ideal im(Φ∗). The associative algebra

Λ(Q,Φ) := kQ/J(Q,Φ),

is called the Jacobi algebra associated to (Q,Φ).

3.2 Formal case

Clearly, l-derivations of k̂Q are uniquely determined by their values at all a ∈ Q1. However, this is

generally not true for l-derivations of k̂Q with values in an arbitrary k̂Q-bimodule. In particular, it

is false for the k̂Q-bimodule k̂Q⊗k̂Q which admits only finite sums. Thus we need an alternative to

the algebraic double derivations of k̂Q to deal with noncommutative calculus on k̂Q.

Let k̂Q⊗̂k̂Q be the vector space over k whose elements are formal series of the form
∑
u,v au,v u⊗v,

where u, v runs over paths in Q and au,v ∈ k. This is nothing but the adic completion of kQ⊗kQ
with respect to the ideal m⊗kQ+kQ⊗m. It contains kQ⊗kQ as a subspace under the identification

(
∑
u

a′u u)⊗(
∑
v

a′′v v) 7→
∑
u,v

a′ua
′′
v u⊗v.

There are two obvious k̂Q-bimodule structures on k̂Q⊗̂k̂Q, which we call the outer and the inner
bimodule structures defined respectively by

a(b′⊗b′′)c := ab′⊗b′′c and a ∗ (b′⊗b′′) ∗ c := b′c⊗ab′′.
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Unless otherwise stated, we view k̂Q⊗̂k̂Q as a k̂Q-bimodule with respect to the outer bimodule
structure.

We write
D̂erl(k̂Q) := D̂erl(k̂Q, k̂Q⊗̂k̂Q)

and call its elements (formal) double derivations of k̂Q. The inner bimodule structure on k̂Q⊗̂k̂Q
naturally yields a bimodule structure on D̂erl(k̂Q). For any δ ∈ D̂erl(k̂Q) and any a ∈ k̂Q, we write
δ(a) in Sweedler’s notation as

δ(a) = δ(a)′⊗δ(a)′′. (3.4)

One has to bear in mind that this notation is an infinite sum. Clearly, double derivations of k̂Q are
uniquely determined by their values on arrows. Thus, for each a ∈ Q1, we have a double derivations

∂

∂a
: k̂Q→ k̂Q⊗̂k̂Q, Q1 3 b 7→ δa,b es(a)⊗et(a).

Moreover, every double derivation of k̂Q has a unique representation of the form∑
a∈Q1

∑
u,v

A(a)
u,v u ∗

∂

∂a
∗ v, A(a)

u,v ∈ k, (3.5)

where u, v run over all paths in Q, and ∗ denotes the scalar multiplication of the bimodule structure

of Derl(k̂Q). The infinite sum (3.5) makes sense in the obvious way. It is easy to check that D̂erl(k̂Q)

is isomorphic to the (m⊗kQ+ kQ⊗m)-adic completion of Derl(kQ) as a k̂Q-bimodule.

There are two obvious linear maps µ̂ : k̂Q⊗̂k̂Q → k̂Q and τ̂ : k̂Q⊗̂k̂Q → k̂Q⊗̂k̂Q given respec-
tively by

µ̂(
∑
u,v

au,vu⊗v) =
∑
w

(
∑
w=uv

au,v) w and τ̂(
∑
u,v

au,vu⊗v) =
∑
u,v

av,uu⊗v,

extending µ and τ . We put on Hom(k̂Q, k̂Q) the k̂Q-bimodule structure defined by

a1 · f · a2 : b 7→ a1f(b)a2, f ∈ Hom(k̂Q, k̂Q), a1, a2, b ∈ k̂Q.

Then, although the map D̂erl(k̂Q)
µ̂◦−−−−→ Hom(k̂Q, k̂Q) does not preserve the bimodule structures,

the map

µ̂ ◦ τ̂ ◦ − : D̂erl(k̂Q)→ Hom(k̂Q, k̂Q)

is clearly a homomorphism of k̂Q-bimodules. We write

ĉDerl(k̂Q) := im(µ̂ ◦ τ̂ ◦ −)

and call its elements (formal) cyclic derivations of k̂Q. Note that by definition ĉDerl(k̂Q) is a

k̂Q-sub-bimodule of Hom(k̂Q, k̂Q), and hence is itself an k̂Q-bimodule. For each a ∈ Q1, let

Da := µ ◦ τ ◦ ∂
∂a
∈ ĉDerl(k̂Q).
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Every cyclic derivation of k̂Q has a decomposition (not necessarily unique) of the form∑
a∈Q1

∑
u,v

A(a)
u,v u ·Da · v, A(a)

u,v ∈ k. (3.6)

Let
k̂Qcyc := k̂Q/[k̂Q, k̂Q]cl

with [k̂Q, k̂Q]cl being the adic closure of the algebraic commutators. Elements of k̂Qcyc are called

(formal) potentials of k̂Q. Let π̂ : k̂Q → k̂Qcyc be the canonical projection. Given a potential

Φ ∈ k̂Qcyc, there are two linear maps

Φ̂# : D̂erl(k̂Q)→ k̂Qcyc, ξ 7→ π̂(ξ(φ))

Φ̂∗ : ĉDerl(k̂Q)→ k̂Q, D 7→ D(φ),

where φ is any representative of Φ. Since all derivations and cyclic derivations of k̂Q are continuous,

ξ([k̂Q, k̂Q]cl) ⊆ [k̂Q, k̂Q]cl for each derivation ξ ∈ D̂erl(k̂Q) and D([k̂Q, k̂Q]cl) = 0 for each cyclic

derivation D ∈ ĉDerl(k̂Q), whence Φ̂# and Φ̂∗ are independent of the choice of φ. Note that Φ̂∗ is

a homomorphism of k̂Q-bimodules. So im(Φ̂∗) is a two-sided ideal of k̂Q. Moreover, it is easy to
check that the following diagram is commutative:

D̂erl(k̂Q)
µ̂◦τ̂◦−

// //

µ̂◦−
����

ĉDerl(k̂Q)
Φ̂∗ // k̂Q

π̂
����

Derl(k̂Q)
Φ̂#

// k̂Qcyc.

(3.7)

Definition 3.2. Let Φ ∈ k̂Qcyc be a potential. The (formal) Jacobi ideal of Φ, denoted by Ĵ(Q,Φ),

is defined to be the ideal im(Φ̂∗). The associative algebra

Λ̂(Q,Φ) := k̂Q/Ĵ(Q,Φ),

is called the (formal) Jacobi algebra associated to Φ.

If k is a field then k̂Q and D̂erl(k̂Q) are pseudocompact vector spaces with respect to the adic
topology, i.e. the topology is generated by the subspaces of finite codimension. Pseudocompact vec-
tor spaces form an abelian category (see page 393 of [8]). In particular, the image of any continuous
(linear) map between pseudocompact vector spaces is closed.

For simplicity, we write Λ̂ := Λ̂(Q,Φ) and Ĵ = Ĵ(Q,Φ). Let m̂Φ ⊂ Λ̂ be the image of m̂. By

the above comment, the Jacobi ideal Ĵ ⊂ ĈQ is closed. Therefore the m̂Φ-adic topology on Λ̂ is
Hausdorff. We define Λ̂cyc to be the quotient space Λ̂/[Λ̂, Λ̂]cl (which coincides with the topological

Hochschild homology group HH0(Λ̂). By the closeness of the range, we have

Λ̂/[Λ̂, Λ̂]cl = k̂Q/
(

[k̂Q, k̂Q] + Ĵ
)cl

= k̂Q/
(

[k̂Q, k̂Q]cl + Ĵ
)
.
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The second equality holds because [k̂Q, k̂Q]cl + Ĵ is the image of the continuous addition map

[k̂Q, k̂Q]cl⊕Ĵ → k̂Q. As a consequence, we get a natural map k̂Qcyc → Λ̂cyc. We denote the

image of Φ by [Φ]Φ. If Λ̂ is finite dimensional, then the m̂Φ-adic topology on it is discrete and

Λ̂cyc = Λ̂/[Λ̂, Λ̂].

Definition 3.3. We call a potential Φ ∈ k̂Qcyc quasi-homogeneous if [Φ]Φ is zero in Λ̂(Q,Φ)cyc, or

equivalently, if Φ is contained in π̂(Ĵ(Q,Φ)).

Definition 3.4. Let k be a field. A potential Φ ∈ k̂Qcyc is called Ĵ-finite if its Jacobi algebra

Λ̂(Q,Φ) is finite dimensional.

We denote by Ĝ := Autl(k̂Q, m̂) the group of l-algebra automorphisms of k̂Q that preserve m̂. It

is a subgroup of Autl(k̂Q), the group of all l-algebra automorphisms of k̂Q. In the case where k is

a field, the group Ĝ equals Autl(F̂ ). It acts on k̂Qcyc in the obvious way.

Definition 3.5. For potentials Φ,Ψ ∈ k̂Qcyc, we say Φ is (formally) right equivalent to Ψ and write

Φ ∼ Ψ, if Φ and Ψ lie in the same Ĝ-orbit.

Given an integer r ≥ 0, the r-th jet space of k̂Q is defined to be the quotient l-algebra J r :=

k̂Q/m̂r+1. Clearly, the projection map k̂Q→ J r induces a canonical surjective map

qr : k̂Qcyc → J rcyc := J r/[J r,J r]

with kernel π(m̂r+1). The image of a potential Φ ∈ k̂Qcyc under this map is denoted by Φ(r).

Given an integer r ≥ 0, let Gr be the group of all l-algebra automorphisms of J r = k̂Q/m̂r+1

preserving m̂/m̂r+1. Clearly, the canonical map Ĝ → Gr is surjective. A potential Φ ∈ k̂Qcyc is

called r-determined (with respect to Ĝ) if Φ(r) ∈ Gr · Ψ(r) implies Φ ∼ Ψ for all Ψ ∈ k̂Qcyc. It is

equivalent to the condition that the equality Φ(r) = Ψ(r) implies Φ ∼ Ψ for all Ψ ∈ k̂Qcyc. If Φ is

r-determined for some r ≥ 0, then it is called finitely determined (with respect to Ĝ).

3.3 Analytic series and its properties

In this subsection, we take the commutative base ring k to be C.

Definition 3.6. Given a positive constant C, a formal series

φ =
∑
w

aww

of ĈQ is called analytic of convergence radius 1/C if there exists 0 < C1 < C |aw| ≤ C
|w|
1 for w

such that |w| � 0. Denote by C̃QC the subspace consisting of such series. We simply call a series

analytic if there exists some C > 0 such that |aw| ≤ C |w|. We denote by C̃Q the subspace consisting
of analytic series.

It is clear that
C̃Q =

⋃
C>0

C̃QC .
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Lemma 3.7. A formal series
∑
w aww is analytic if and only if there exists a positive constant C

such that
∑
|w|=n |aw| ≤ Cn for any n ≥ 0.

Proof. The if part is obvious. Suppose that |Q1| = k. The only if part follows from the inequality∑
|w|=n

|aw| ≤ knCn.

Lemma 3.8. Both C̃Q and C̃QC are subalgebras of ĈQ.

Proof. We will prove the C̃QC case. It suffices to prove that C̃QC is closed under multiplication.
Given two analytic series

φ :=
∑
u

auu, ψ :=
∑
v

bvv,

we have
[w](φ · ψ) =

∑
w=uv

aubv.

Assume that |au| ≤ C
|u|
1 and |bv| ≤ C

|v|
1 for C1 < C and |u|, |v| � 0. The claim follows from the

inequality ∣∣∣∣∣ ∑
w=uv

aubv

∣∣∣∣∣ ≤ (|w|+ 1)C
|w|
1 ≤ (C1 + ε)|w|

for any ε > 0 and |w| � 0.

Lemma 3.9. Let φ be an analytic series without a constant term. Then eφ is also analytic. If φ is

an analytic series with constant term 1, then φ is a unit in C̃Q.

Proof. Let φ =
∑
u,|u|>0 auu. Then the first claim follows from

∣∣[w]eφ
∣∣ =

∣∣∣∣∣∣
|w|∑
d=1

1

d!

∑
w=u1u2...ud

au1
. . . aud

∣∣∣∣∣∣
≤
|w|∑
d=1

1

d!

(
|w| − 1

d− 1

)
C |w|

≤ (2C)|w| .

Suppose the series

φ = 1−
∑
|w|≥1

aww

12



satisfies that |aw| < C |w|. Clearly φ admits a formal inverse. It is indeed analytic by the estimate

∣∣[w]φ−1
∣∣ =

∣∣∣∣∣∣
|w|∑
d=1

∑
w=u1u2...ud

au1 . . . aud

∣∣∣∣∣∣
≤
|w|∑
d=1

(
|w| − 1

d− 1

)
C |w|

≤ (2C)|w|

It follows from the previous lemma that m̃ := m̂ ∩ C̃Q is the Jacobson radical of C̃Q.

Lemma 3.10. Suppose φ ∈ ĈQ is analytic. Then each component of φab is analytic.

Proof. Recall from Section 2 that the components of φab are the images of the maps ι(i) : ĈQ →
C[[Q

(ii)
1 ]]. Without loss of generality, we may assume that Q has a single node and k loops. Suppose

that φ =
∑
w aww and |aw| ≤ C |w|. Let

φab =
∑
m

Amm

summed over all monomials. We denote by |m| the degree of the monomial m. Then∑
|m|=n

|Am| ≤
∑
|w|=n

|aw|.

By Lemma 3.7, we have
∑
|m|=n |Am| ≤ (kC)n and φab is convergent in the polydisc of radius

1
kC .

The opposite statement is clearly wrong. For example, the abelianization of∑
n

n!(xy − yx)n

is zero.

Definition 3.11. An endomorphism H of ĈQ is called analytic if it maps analytic series to analytic
series.

Lemma 3.12. An endomorphism H is analytic if and only if for any a ∈ Q1, H(a) is analytic.

Proof. Set k = |Q1|. The only if part is obvious. Let

H(a) =
∑
u

γa,uu

such that |γa,u| ≤ C |u| for any a ∈ Q1. Given an analytic series φ =
∑
v bvv, we have

H(φ) =
∑
v

bvH(v).
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Without loss of generality, we may assume that bv ≤ C |v|. Since H preserves the ideal m, for a
path w, the w-coefficient of H(φ) receives only contributions by those v such that |v| ≤ |w|. Given
a1, . . . , ad ∈ Q1 with d ≤ |w|, we have

∣∣∣[w]
(
H(a1)H(a2) . . . H(ad)

)∣∣∣ ≤ ∣∣∣∣∣ ∑
w=u1u2...ud

γa1,u1
. . . γad,ud

∣∣∣∣∣ ≤
(
|w| − 1

d− 1

)
C |w|.

Therefore, the series H(φ) is analytic since we have

|[w]H(φ)| ≤

∣∣∣∣∣∣
∑

v=a1...ad,d≤|w|

bv
∑

w=u1u2...ud

γa1,u1
. . . γad,ud

∣∣∣∣∣∣ ≤
|w|∑
d=1

kd
(
|w| − 1

d− 1

)
C |w|+d ≤ (2kC2)|w|

The following proposition is the noncommutative version of the analytic inverse function theorem.

Proposition 3.13. Let H be an analytic endomorphism. If H induces an isomorphism on m̃/m̃2

then H〈−1〉 is analytic.

Proof. Since m̃/m̃2 ∼= m̂/m̂2, by [12, Lemma 2.13], the endomorphism H is formally invertible. With-
out loss of generality, we assume that H induces the identity map on m̂/m̂2. Let Q1 = {z1, . . . , zk}
and let z = (z1, . . . , zk). Set

H(z) = z −M(z) = z −
∑
|u|>1

Auu ,

where Au = (A1,u, . . . , Ak,u) ∈ Ck. Let

H〈−1〉(z) = z +N(z) = z +
∑
|w|>1

Bww

be the formal inverse of the endomorphism H.
By comparison of coefficients, we find that Bw can be expressed as a vector of polynomials Pw =

(P1,w, . . . , Pk,w) in Ai,u for i = 1, . . . , k with |u| ≤ |w|. We now recall a combinatorial description of

Pw due to Zhao (Theorem 6.2 [22]). Given zi ∈ Q1 and a formal series Fi(z) ∈ ĈQ, denote by Fiδzi
the derivation that sends zi to Fi and zj to 0 if j 6= i. Given a vector F (z) = (F1(z), . . . , Fk(z)),
denote by F (z)δz the derivation (F1δz1 , . . . , Fkδzk). Define a sequence of vectors of formal series
NT (z) indexed by T ∈ BP as follows:

NT (z) =


z T = ∅
M(z) T = ◦
(NTL

(z)δz)NTR
(z) T = B+(TL, TR).

Intuitively, NT (z) can be viewed as a rooted binary tree T , whose leaves are decorated by M(z),
whose left pointed edges are decorated by the operator 1 and whose right pointed edges are decorated
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by δz. At every node, we take the product of the output from the left branch with the output from
the right branch. Then we have

N(z) =
∑

T∈BP \∅

1

T̂ !
NT (z) =

∑
m≥1

∑
T∈BP

m

1

T̂ !
NT (z).

It is easy to check that we have ord(NT (z)) ≥ l(T ) + 1. Therefore, for any word w, the following
holds

Pw = [w]N(z) = [w]

|w|−1∑
m=1

∑
T∈BP

m

1

T̂ !
NT (z)

 .

Recall that M(z) =
∑
u,|u|>1Au · u. For T ∈ BPm, the components of [w]NT (z) are finite sums of

monomials Ai1,u1
Ai2,u2

. . . Aim,um
where |u1|+ . . .+ |um| = |w|+m− 1. If we set deg(Ai,u) = |u|,

then we have deg(Pi,w) = 2|w| − 2. From the definition of NT (z), we see that Pi,w has positive
coefficients. As a consequence, we must have∣∣∣Pi,w(Aj,u)

∣∣∣ < Pi,w(Aj,u = 1) · C2|w|−2.

Note that Pi,w(Aj,u = 1) is simply Bi,w for the special series M(z) =
∑
u,|u|>1 u. Hence it suffices

to show that such a special H(z) = z −M(z) admits an analytic inverse for composition.
Now we assume that Q0 is a singleton. Later we will prove that the general case can be reduced

to this special case. Since Q0 is a singleton, ĈQ is the complete free algebra C〈〈z1, . . . , zk〉〉, whose

abelianization is the formal power series ring C[[z1, . . . , zk]]. Given an automorphism H ∈ Autl(ĈQ),
define Hab(z) := (H(z))ab, which is an automorphism of C[[z1, . . . , zk]]. Denote by M(z) the formal
series

∑
u,|u|>1 u. Then Mab(z) is analytic, and Hab(z) = z −Mab(z) is an analytic automorphism

of C[[z]]. Since
(
H〈−1〉

)ab

=
(
Hab

)〈−1〉
, we have

(
Hab(z)

)〈−1〉
= z +Nab(z).

By the inverse function theorem for analytic maps, there exists C > 0 such that we have∑
m,|m|=d

∣∣∣[m]Nab(z)
∣∣∣ ≤ Cd

for any d ≥ 2.
Since the coefficients [w]N(z) are positive for any word w, we have∑

|w|=d

[w]N(z) =
∑
|m|=d

[m]Nab(z) ≤ Cd,

which means that N(z) is analytic.

The above equality does not hold for ĈQ for a general quiver because the abelianization only
remember loops. For a general quiver Q with |Q1| = k, consider the k-loop quiver qk and fix a

bijection between Q1 and set of loops of qk. For H ∈ Autl(ĈQ), we consider the automorphism
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h ∈ Aut(Ĉqk) obtained by replacing arrows in Q with the corresponding loops in qk in the expression
for H. Without loss of generality, we set Ai,u = 1 for all zi ∈ Q1 and u. Set

BQw = [w]H〈−1〉(z), Bqw = [w]h〈−1〉.

Since we have
BQw = Bqw,

the general case follows from the k-loop case.

3.4 Analytic derivations and analytic Jacobi algebra

As a consequence of the inverse function theorem, the group of formal automorphisms Autl(ĈQ)

has a well-defined subgroup Autl(C̃Q) consisting of the analytic l-automorphisms. Since we work
over C, all l-automorphisms preserve m̃.

The set of l-derivation of C̃Q, denoted by Derl(C̃Q), forms a Lie subalgebra of Derl(ĈQ). Denote

by Der+
l (C̃Q) its Lie subalgebra consisting of the l-derivations that preserve m̃. Using a similar

argument as in the proof of Lemma 3.12, we can show that a derivation δ is analytic if and only if
δ(a) is analytic for all a ∈ Q1.

Denote by C̃Q⊗̃C̃Q the subspace of ĈQ⊗̂ĈQ consisting of the infinite sums∑
u,v

Au,vu⊗v

such that there exists C > 0 such that |Au,v| ≤ C |u|+|v|.
Clearly, C̃Q⊗̃C̃Q carries an outer and inner C̃Q-bimodule structure under the obvious actions.

Denote by D̃erl(C̃Q) the space of derivations Derl(C̃Q, C̃Q⊗̃C̃Q). It is equipped with a bimodule

structure by the inner bimodule structure on C̃Q⊗̃C̃Q. We denote by D̃er
+

l (C̃Q) the subspace

consisting of the double derivations that map m̃ to m̃⊗̃C̃Q+ C̃Q⊗̃m̃.
Let

C̃Qcyc := C̃Q/[C̃Q, C̃Q]cl.

Note that the map C̃Qcyc → ĈQcyc induced by the inclusion C̃Q→ ĈQ is injective, since we have

[C̃Q, C̃Q]cl =
⋂
n≥0

(
[C̃Q, C̃Q] + m̃n

)
=
⋂
n≥0

(
([ĈQ, ĈQ] + m̂n) ∩ C̃Q

)
= [ĈQ, ĈQ]cl ∩ C̃Q.

Thus we may identify C̃Qcyc with a subspace of ĈQcyc via the canonical injection. Fix C > 0, we
define

C̃Qcyc,C := C̃QC/[ĈQ, ĈQ]cl ∩ C̃QC .

We have natural inclusions C̃Qcyc,C ⊂ C̃Qcyc ⊂ ĈQcyc.

A (formal) potential Φ ∈ ĈQcyc is called analytic if it is contained in C̃Qcyc, or equivalently if

it is the image of an analytic series under the map π̂ : ĈQ → ĈQcyc. A formal potential Φ can be
expressed as an infinite sum

∑
c acc where the sum is over all cyclic words and the ac are uniquely
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determined. In other words, ĈQ admits a topological basis given by the cyclic words with the adic

topology. A formal potential Φ is called analytic of convergence radius 1/C if Φ ∈ C̃Qcyc,C .
For any analytic potential Φ, we have a commutative diagram analogous to the formal case:

D̃erl(C̃Q)
µ̃◦τ̃◦−

// //

µ̃◦−
����

c̃Derl(C̃Q)
Φ̃∗ // C̃Q

π̃
��

Derl(C̃Q)
Φ̃#

// C̃Qcyc,

(3.8)

Definition 3.14. The analytic Jacobi ideal of Φ, denoted by J̃(Q,Φ), is defined to be im(Φ̃∗). The
analytic Jacobi algebra is defined to be

Λ̃(Q,Φ) := C̃Q/J̃(Q,Φ).

Since J̃(Q,Φ) ⊂ Ĵ(Q,Φ) ∩ C̃Q, the analytic and formal Jacobi algebras are related by the
following sequence of morphisms:

C̃Q/J̃(Q,Φ)→ C̃Q/Ĵ(Q,Φ) ∩ C̃Q ∼= C̃Q+ Ĵ(Q,Φ)/Ĵ(Q,Φ)→ ĈQ/Ĵ(Q,Φ),

and the diagram

C̃Q

��

// ĈQ

��

Λ̃(Q,Φ) //// Λ̂(Q,Φ)

commutes.
Define Λ̃(Q,Φ)cyc to be the quotient of Λ̃(Q,Φ) by the preimage of [Λ̂(Q,Φ), Λ̂(Q,Φ)]cl under

the canonical map Λ̃(Q,Φ)→ Λ̂(Q,Φ). As vector spaces, we have

Λ̃(Q,Φ)cyc = C̃Q/
(

[C̃Q, C̃Q]cl + J̃(Q,Φ)
)
.

By an abuse of notations, we write [Φ]Φ for the class in Λ̃(Q,Φ)cyc represented by Φ. The natural

morphism Λ̃cyc → Λ̂cyc sends [Φ]Φ to the corresponding class of its underlying formal potential in

Λ̂cyc.

Definition 3.15. We call a potential Φ ∈ C̃Qcyc quasi-homogeneous if [Φ]Φ is zero in Λ̃(Q,Φ)cyc,

or equivalently, if Φ is contained in π̃(J̃(Q,Φ)).

If an analytic potential Φ is quasi-homogeneous, then its underlying formal potential is also
quasi-homogeneous.

Definition 3.16. A potential Φ ∈ C̃Qcyc is called J̃-finite if its Jacobi algebra Λ̃(Q,Φ) is finite
dimensional.
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Since any analytic potential has an underlying formal potential, we have two notions of J-
finiteness depending on whether the formal or analytic Jacobi algebra is used. The following lemma
clarifies the relation between the Jacobi algebra of an analytic potential and its underlying formal
potential.

Lemma 3.17. Let Φ ∈ C̃Qcyc be an analytic potential. If Λ̃(Q,Φ) is finite dimensional then there

is an isomorphism Λ̂(Q,Φ) ∼= Λ̃(Q,Φ).

Proof. For simplicity, we write J̃ = J̃(Q,Φ), Ĵ = Ĵ(Q,Φ), Λ̃ = Λ̃(Q,Φ) and Λ̂ = Λ̂(Q,Φ). Since

m̃n = m̂n∩ C̃Q, there is an isomorphism C̃Q/m̃n ∼= ĈQ/m̂n. Therefore, ĈQ is the m̃-adic completion

of C̃Q. Similarly Λ̂ is the m̃-adic completion of Λ̃. If Λ̃ is finite dimensional, then J̃ is closed in C̃Q,
i.e. ∩n(m̃n + J̃) = J̃ . It follows that the canonical map Λ̃→ Λ̂ is injective. It is surjective because

Λ̂ is the completion of Λ̃ and m̃n ⊂ J̃ for n� 0.

Remark 3.18. We do not know whether finite dimensionality of Λ̂ will imply finite dimensionality
of Λ̃ or not.

The automorphism group G̃ := Autl(C̃Q) acts on C̃Qcyc naturally.

Definition 3.19. For potentials Φ,Ψ ∈ C̃Qcyc, we say Φ is analytically right equivalent to Ψ and

write Φ ∼a Ψ, if Φ and Ψ lie in the same G̃-orbit.

Since C̃Q/m̃r+1 ∼= ĈQ/m̂r+1, we use J r to denote both quotients. By the inverse function

theorem 3.13, the canonical map G̃ → Gr is surjective. The notions of r-determined and finitely
determined analytic potential are defined in analogy with the formal case by replacing Ĝ with G̃.
If an analytic potential Φ is finitely determined, then its underlying formal potential is finitely
determined.

3.5 Moser’s trick

In this section, we prove the (local) integrability of a one parameter family of analytic derivations
for quivers with analytic potentials. This can be viewed as a noncommutative geometric version of
Moser’s trick, or the noncommutative version of the Cauchy-Kowalevski theorem. The formal version
has been proved in [12]. Throughout this section, we let Q be a quiver with Q1 = {z1, . . . , zk}.

A U -family of formal noncommutative series is a formal series

f(z, t) =
∑
w

λw(t)w

where the λw(t) are analytic functions on an open subset U ⊂ C for any path w. Such a family
f(z, t) is said to be analytic if there exists a positive constant C such that for any t ∈ U

|λw(t)| ≤ C |w|.

Let F(z, t) := (Fa(t))a∈Q1 be a vector of U -families of analytic noncommutative series

Fa(t) =
∑

w,|w|>0

λa,w(t)w.
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Let u(z, t) = (ub(z, t))b∈Q1 be a vector of noncommutative formal series with coefficients being
local analytic functions at 0 ∈ C, i.e.

ub(z, t) =
∑
w

γb,w(t)w.

Define ∂tu(z, t) to be the vector of formal series with coefficients being the t-derivatives of those
of u(z, t). If there exists a neighborhood U ′ of 0 such that all γb,w(t) are analytic on U ′ then the

vector u(z, t) is a U ′-family of endomorphism of ĈQ, while F(z, t) can be understood as a U -family
of analytic derivations. The composition F(u(z, t), t) can be interpreted as the pull back of the
derivation by the endomorphism. The initial value problem

∂tu(z, t) = F(u(z, t), t), u(z, 0) = z (3.9)

is an infinite hierarchy of ordinary differential equations for all b ∈ Q1
γ′b,w(t) =

∑
w=u1u2...ud

∑
a1,...,ad∈Q1

λb,a1...ad(t)
(
γa1,u1(t)γa2,u2(t) . . . γad,ud

(t)
)

γb,w(t) = 0 for any w such that s(b) 6= s(w) or t(b) 6= t(w),

γb,a(0) = δb,a,

γb,w(0) = 0 for all w such that |w| ≥ 2.

(3.10)

A partition of the word w = u1u2 . . . ud is equivalent with a composition |w| = n1+n2+. . .+nd (with

ni > 0). Therefore the sum on the right hand side of the differential equation has
∑|w|
d=1

(|w|−1
d−1

)
kd

terms.

Proposition 3.20. There exists a neighborhood V of 0 such that system 3.10 has a unique analytic
solution γb,w(t) on V for every b ∈ Q1 and every word w and u(z, t) = (ub(z, t))b∈Q1 is invertible.
Moreover, u(z, t) is a vector of V -family of analytic series.

Proof. The first part of the proposition i.e. the solvability of system 3.10 has already been proved

in Lemma 3.17 of [12]. 2 The solution is a family of formal automorphisms of ĈQ. Here we will
prove that by restricting to probably smaller open set we get a family of analytic automorphisms.

We adopt the following probably nonstandard notation. For an analytic function f(t), denote

by f (n)(t) the normalized derivative 1
n!
dnf
dtn (t). Let δ be a positive number such that the closed disc

centered at 0 of radius δ is contained in U . Since |λb,w(t)| < C|w| on U , by the Cauchy integration
formula, we have

|λ(m)
b,w (0)| ≤ δ−mC |w|. (3.11)

Define C1 := max{C, δ−1}. Then |λ(m)
b,w (0)| ≤ C |w|+m1 .

When w = c ∈ Q1, equation 3.10 reduces to

γ′b,c(t) =
∑
a∈Q1

λb,a(t)γa,c(t).

2In [12], the λb,w(t) are assumed to be entire functions. However, the same proof is valid for the case when the
defining domain is an arbitrary open subset of complex plane.
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If we differentiate with respect to t, we find

γ
(n+1)
b,c (t) =

1

n+ 1

∑
a∈Q1

n∑
m0=0

λ
(m0)
b,a γ(n−m0)

a,c

=
1

n+ 1

∑
a1,a2

∑
m1+m2=n−m0−1

1

n−m0
λ

(m0)
b,a1

λ(m1)
a1,a2

γ(m2)
a2,c

=
1

n+ 1

∑
a1,a2,a3

∑
m2+m3=n−m0−m1−2

1

(n−m0)(n−m0 −m1 − 1)
λ

(m0)
b,a1

λ(m1)
a1,a2

λ(m2)
a2,a3

γ(m3)
a3,c

. . .

Let us evaluate at t = 0 and apply the initial condition that γa,c(0) = δa,c. We obtain

γ
(n+1)
b,c (0) =

1

n+ 1

n∑
d=0

∑
a1,...,ad

∑
∑d

i=0 mi=n−d

1∏d−1
i=0 (n−

∑i
j=0mj − i)

λ
(m0)
b,a1

(0)λ(m1)
a1,a2

(0) . . . λ(md)
ad,c

(0)

(3.12)

The d = 0 term is λ
(n)
b,c (0).

For a general w, in equation 3.10, we differentiate both sides n times to get

γ
(n+1)
b,w (t) =

1

n+ 1

∑
w=u1...ud

∑
a1,...,ad∈Q1

∑
m0+...+md=n

λ
(m0)
b,a1...ad

(t)γ(m1)
a1,u1

(t) . . . γ(md)
ad,ud

(t) (3.13)

Note that the ui are subwords of w and mi ≤ n. By applying successively formula 3.13 iteratively,
formula 3.12 and the boundary condition

γa,u(0) =

{
0 |u| > 1

δa,u |u| = 1

we can express γ
(n+1)
b,w (0) as a finite sum of monomials in the λ

(m)
a,u (0), where a ∈ Q1, |u| ≤ |w| and

m ≤ n. Note that the same monomial might occur in the result more than once. However we do
NOT combine them. We denote this polynomial by Pn+1

b,w . Clearly, all its coefficients lie in the
interval (0, 1]. Define

deg(γ
(n+1)
b,w (0)) = n+ |w|, deg(λ(m)

a,u (0)) = m+ |u|.

Then equation 3.13 is homogeneous with respect to this grading. It follows that every monomial in

P
(n+1)
b,w has total degree n+ |w|. By 3.11, the absolute value of the monomial is bounded by C

n+|w|
1 .

Now we estimate the total number of monomials in P
(n+1)
b,w . Denote by Na,n,w the number of

monomials (again we do NOT simplify!) in P
(n+1)
a,w . We would like to understand the growth of

Na,n,w with respect to n and w. Since Na,n,w only depends on a, n, |w|, we write Na,n,|w| = Na,n,w.
It follows from the boundary condition that for any a ∈ Q1, we have Na,0,1 ≤ 1 and Na,0,i = 0 when
i > 1. Set Nn,|w| := max{Na,n,|w||a ∈ Q1}.
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The recursion 3.13 gives the inequality

Nn+1,|w| ≤
∑

|u1|+...+|ud|=|w|

∑
m0+...+md=n

kd ·Nm1,|u1| · . . . ·Nmd,|ud|.

Consider the recursive system{
N ′n+1,|w| =

∑
|u1|+...+|ud|=|w|

∑
m0+...+md=n k

d ·N ′m1,|u1| · . . . ·N
′
md,|ud|

N ′0,1 = 1, N ′0,i = 0 for i > 1

Since Nn,|w| ≤ N ′n,|w|, it suffices to bound the growth of N ′n,|w|. We introduce a generating
function

G(x, y) :=
∑

n≥0,|w|≥1

N ′n,|w|x
ny|w|.

Fix d ≥ 1 and m0 ≥ 0. The coefficient of xny|w| for (kG)dxm0 is∑
|u1|+...+|ud|=|w|

∑
m0+...+md=n

kd ·N ′m1,|u1| · . . . ·N
′
md,|ud|.

It follows that the coefficient of xny|w| in
∑
d≥1,m0≥0(kG)dxm0 is equal to N ′n+1,|w|. This leads to a

quadratic equation satisfied by the generating series:

G− y
x

=
∑

n≥0,|w|≥1

N ′n+1,|w|x
ny|w| =

kG

kG− 1
· 1

1− x

To show the first equality, we need to apply the initial condition

N ′0,1 = 1, N ′0,i = 0 for i > 1.

Since the equation can be solved near x = 0, y = 0 analytically, we conclude that

Nn,|w| ≤ N ′n,|w| ≤ C
n+|w|
2

for some constant C2 independent of n,w. Therefore, we get

|γ(n+1)
b,w (0)| ≤ |Pn+1

b,w | ≤ C
n+1+|w|
2 C

n+|w|
1 ≤ Kn+1+|w|

with K = max{C1 · C2, 1}.
By holomorphicity of γb,w(t) at t = 0 and the initial condition γb,w(0) = 0, we have

|γb,w(t)| ≤
∑
n≥1

Kn+|w||t|n ≤ K |w| K|t|
1−K|t|

≤ K |w|

when |t| ≤ 1
2K . Set V to be the disc centered at 0 of radius 1

2K .
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4 Noncommutative Mather-Yau theorem for analytic poten-
tials

Let us begin by fixing some notations. Let U be a proper open subset of the complex plane. We
denote by KU the C-algebra of analytic functions on U . The base rings k that we need below are C
and KU . Denote by K̃UQ the subalgebra of K̂UQ consisting of the elements φt =

∑
w aw(t)w such

that
|aw(t)| ≤ C |w|

in U for some C > 0 . For any s ∈ U , there is an evaluation map from K̂UQ to ĈQ given by φ 7→ φs.

Clearly, it restricts to a map from K̃UQ to C̃Q.
For simplicity of notation, we will omit the subscript U when the open set is fixed.

Let L = KQ0 and ñ (resp. n̂) be the ideal of K̃Q (resp. K̂Q) generated by arrows. Let K̃Qcyc

(resp. K̂Qcyc) be the quotient K̃Q/[K̃Q, K̃Q]cl (resp. K̂Q/[K̂Q, K̂Q]cl) where [K̃Q, K̃Q]cl (resp.

[K̂Q, K̂Q]cl) is the ñ-adic (resp. n̂-adic) closure of [K̃Q, K̃Q] (resp. [K̂Q, K̂Q]) in K̃Q (resp. K̂Q).

Let AutL(K̂Q, n̂) be the group of L-automorphisms of K̂Q that preserves n̂. Define AutL(K̃Q, ñ)

to be the set consisting of the H ∈ AutL(K̂Q, n̂) such that H preserves K̃Q. By the same argument

as in the proof of Lemma 3.12 and Proposition 3.13, AutL(K̃Q, ñ) is a subgroup of AutL(K̂Q, n̂).

We identify C̃Q (resp. C̃Qcyc) with a subspace of K̃Q (resp. K̃Qcyc) in the natural way. Since

l-algebra automorphisms of C̃Q and L-algebra automorphisms of K̃Q are both uniquely determined

by their values on the arrows, one may naturally identify the group Autl(C̃Q) = Autl(C̃Q, m̃) with

a subgroup of AutL(K̃Q, ñ).

Given H ∈ AutL(K̃Q, ñ) and s ∈ U , there is an evaluation map given by sending H to Hs ∈
Autl(C̃Q, m̃). Denote by D̃erL(K̃Q) the subspace of D̂erL(K̂Q) consisting of the double derivations

δt =
∑
a∈Q1

∑
u,v

A(a)
u,v(t)u ∗

∂

∂a
∗ v

such that for t ∈ U , we have |A(a)
u,v(t)| ≤ C |u|+|v| for some C > 0. In particular, for any s ∈ U

the specialization δs belongs to D̃erl(C̃Q). Similarly, we define c̃DerL(K̃Q) to be im(µ̃ ◦ τ̃). Given

Φ ∈ K̃Qcyc, there is a commutative diagram

D̃er
+

L(K̃Q)
µ̃◦τ̃◦−

// //

µ̃◦−
����

c̃Der
+

L(K̃Q)
Φ̃∗ // K̃Q

π̃
����

Der+
L(K̃Q)

Φ̃#
// K̃Qcyc.

(4.1)

Given a formal series f =
∑
w aw(t)w ∈ K̂Q, the derivative df

dt is defined to be the formal series∑
w a
′
w(t)w. It is easy to check that taking derivatives preserves the cyclic equivalence relation on

K̂Q. Consequently, one may naturally define dΦ
dt for any potential Φ ∈ K̂Qcyc.

The following three lemmas are the analytic analogies of Lemma 3.19, Lemma 3.3 and Proposition
3.13 of [12]. Since the proofs are the same as those in [12], we will skip them.
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Lemma 4.1. For any potential Φ ∈ C̃Qcyc ⊆ K̃Qcyc, we have

Φ̃∗
(
c̃Der

+

l (C̃Q)
)
⊇ m̃r ⇐⇒ Φ̃∗

(
c̃Der

+

L(K̃Q)
)
⊇ ñr, r > 0.

Lemma 4.2. Let Φ ∈ C̃Qcyc and H ∈ G̃. Then

H(J̃(Q,Φ)) = J̃(Q,H(Φ)).

Consequently, H induces an isomorphism of l-algebras Λ̃(Q,Φ) ∼= Λ̃(Q,H(Φ)).

Proposition 4.3. Let and Φ ∈ C̃Qcyc be a potential of order ≥ 2. Suppose Φ is J̃-finite. Then

(1) Φ ∈ π̃(J̃(Q,Φ)) (i.e. Φ is quasi-homogeneous) if and only if Φ ∈ π(m̃ · J̃(Q,Φ) + J̃(Q,Φ) · m̃).

(2) For any potential Ψ ∈ C̃Qcyc of order ≥ 2 with J̃(Q,Ψ) = J̃(Q,Φ), it follows that Φ − Ψ ∈
π̃(J̃(Q,Φ)) if and only if Φ−Ψ ∈ π̃(m̃ · J̃(Q,Φ) + J̃(Q,Φ) · m̃).

The following theorem is the analytic version of Theorem 3.16 of [12]. It provides a positive
answer to the question proposed in Remark 3.10 of [4].

Theorem 4.4. Let Q be a finite quiver and Φ ∈ C̃Qcyc a potential. If Φ is J̃-finite then Φ is finitely

determined. More precisely, if J̃(Q,Φ) ⊇ m̃r for some integer r ≥ 0 then Φ is (r + 1)-determined.

Proof. Since Φ is J̃-finite, there exists r > 0 such that J̃(Q,Φ) ⊇ m̃r. We proceed to show Φ
is (r + 1)-determined. It will follow that Φ is analytically right equivalent with Φ(r+1). Suppose

Ψ ∈ C̃Qcyc such that Ψ(r+1) = Φ(r+1). Let

Θt := Φ + t(Ψ− Φ) ∈ K̃Qcyc,

where K = KU for some proper open subset set containing the line segment [0, 1]. Clearly, we have

Φ̃∗
(
c̃Der

+

l (C̃Q)
)
⊇ m̃r+1.

Then Lemma 4.1 tells us

Φ̃∗
(
c̃Der

+

L(K̃Q)
)
⊇ ñr+1.

Since Θt and Φ have the same (r + 1)-jet in K̃Qcyc, it follows readily that

Θ̃t∗
(
c̃Der

+

L(K̃Q)
)

+ ñr+2 = Φ̃∗
(
c̃Der

+

L(K̃Q)
)

+ ñr+2 ⊇ ñr+1.

Then the Nakayama lemma tells us

Θ̃t∗
(
c̃Der

+

L(K̃Q)
)
⊇ ñr+1.

Consequently,

Θ̃t#

(
Der+

L(K̃Q)
)

= π̃
(
Θ̃t∗

(
c̃Der

+

L(K̃Q)
))
⊇ π̃(ñr+1) 3 Ψ− Φ =

dΘt

d t
.
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Suppose dΘt

d t = Θ̃t#(ξ) = Θ̃t#(µ̃ ◦ δt) for a double L-derivation

δt =

n∑
a∈Q1

∑
u,v

A(a)
u,v(t) u ∗

∂

∂a
∗ v ∈ D̃er

+

L(K̃Q),

where u and v runs over paths with t(u) = t(a) and s(v) = s(a) respectively. In K̃Qcyc, we have

Θ̃t#(ξ) = π

(
Θ̃t∗

(
µ̃ ◦ τ̃ ◦ δt

))
= π

( ∑
a∈Q1

∑
u,v

A(a)
u,v(t) u · Θ̃t∗(Da) · v

)
= π

( ∑
a∈Q1

∑
u,v

A(a)
u,v(t) vu · Θ̃t∗(Da)

)
= π

( ∑
a∈Q1

ξ(a) · Θ̃t∗(Da)
)

Set F = ξ. For any t0 ∈ [0, 1], the initial value problem{
∂tu = F(u, t)

u|t=t0 = Id

admits a unique V -family of analytic solution u = Ht(a) in a neighborhood V containing t0 by

Proposition 3.20. Then {Ht|t ∈ V } is an analytic family of automorphisms of C̃Q. By the noncom-

mutative chain rule ([12, Lemma 2.11]) in K̃Qcyc, we have

dHt(Θt)

d t
= Ht(

dΘt

d t
) + π

( ∑
a∈Q1

dHt(a)

d t
·Ht

(
Θ̃t∗(Da)

))

= Ht

(
Θ̃t#(ξ)− π

( ∑
a∈Q1

ξ(a) · Θ̃t∗(Da)
))

= 0.

For t1 ∈ V , Ht1(Θt1) = Ht0(Θt0), i.e. Θt1 ∼a Θt0 in C̃Q. By compactness, we can cover [0, 1] ⊂ U
by finitely many open subsets where in each open subset the evaluation of Θt are analytically right
equivalent. Therefore, Φ = Θ0 is analytically right equivalent to Ψ = Θ1.

The following theorem is the analytic version of the noncommutative Mather-Yau theorem for
formal potentials proved in [12].

Theorem 4.5. Let Q be a finite quiver and Φ,Ψ be two J̃-finite analytic potentials of order ≥ 3.
Then the following are equivalent

(1) There exists an l-algebra isomorphism γ : Λ̃(Q,Φ) ∼= Λ̃(Q,Ψ) so that γ∗([Φ]Φ) = [Ψ]Ψ.

(2) Φ and Ψ are analytically right equivalent.
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Proof. By Proposition 4.2, it is easy to see that (2) implies (1). Next we show the converse.

First we claim that γ can be lifted to an l-algebra automorphism of C̃Q. By abuse of notation,
denote the images of the arrows a ∈ Q1 in Λ̃(Q,Φ) and Λ̃(Q,Ψ) both by a. Fix a lifting ha ∈
es(a) · C̃Q · et(a) of γ(a) for every a ∈ Q1. Then we have an l-algebra endomorphism H : a 7→ ha of

C̃Q which lifts γ. In other words, we have a commutative diagram of l-algebra homomorphisms:

C̃Q

��

H // C̃Q

��

Λ̃(Q,Φ)
γ
// Λ̃(Q,Ψ).

Define m̃Φ ⊂ Λ̃(Q,Φ) to be m̃/J̃(Q,Φ) and similarly for m̃Ψ ⊂ Λ̃(Q,Ψ). Because Φ and Ψ are of
order ≥ 3, there is a canonical isomorphism of l-bimodules m̃/m̃2 ∼= m̃Φ/m̃

2
Φ
∼= m̃Ψ/m̃

2
Ψ. Because

γ induces an isomorphism on m̃Φ/m̃
2
Φ
∼= m̃Ψ/m̃

2
Ψ, H induces an isomorphism on m̃/m̃2. Thus H is

invertible by the inverse function theorem 3.13.
By the assumption γ∗([Φ]Φ) = [Ψ]Ψ we have [H(Φ)]Ψ = [Ψ]Ψ, and by Proposition 4.2 we have

J̃(Q,Ψ) = H(J̃(Q,Φ)) = J̃(Q,H(Φ)).

Thus, without loss of generality, we may replace Φ by H(Φ) and assume a priori that

J̃(Q,Φ) = J̃(Q,Ψ) and [Φ]Φ = [Ψ]Ψ.

Let r be the minimal integer so that J̃(Q,Φ) ⊇ m̃r. By finite determinacy (Theorem 4.4), it
suffices to show that Φ(s) and Ψ(s) lie in the same orbit of Gs = Autl(J s) for s = r+1. If Φ(s) = Ψ(s),
then there is nothing to prove. So we may assume further that Φ(s) 6= Ψ(s).

Since J scyc := J s/[J s,J s] is a finite dimensional vector space, it has a natural complex manifold
structure. Also, it is not hard to check that Gs is a complex Lie group which acts analytically

on J scyc. So the orbit Gs · Ξ(s) is an immersed submanifold of J scyc for any potential Ξ ∈ C̃Qcyc.

We proceed to calculate TΞ(s)(Gs · Ξ(s)), the tangent space of Gs · Ξ(s) at Ξ(s). Let Der+
l (J s) be

the space of l-derivations of J s satisfying that δ(m̃/m̃s+1) ⊆ m̃/m̃s+1. Clearly, the canonical map

ρs : Der+
l (C̃Q)→ Der+

l (J s) is surjective. We have a commutative diagram of vector spaces over C
as follows:

D̃er
+

l (C̃Q)
µ̃◦τ̃◦−

// //

µ̃◦−
����

c̃Der
+

l (C̃Q)
Ξ̃∗ // C̃Q

π̃

��

Der+
l (C̃Q)

ρs
����

Ξ̃#
// C̃Qcyc

qs

��

Der+
l (J s)

(Ξ(s))#
// J scyc,

where (Ξ(s))# is constructed in Lemma 2.1. Recall that Der+
l (J s) is the tangent space of Gs at the

identity map, we have

TΞ(s)(Gs · Ξ(s)) = im((Ξ(s))#) = qs

(
π̃
(
m̃ · J̃(Q,Ξ) + J̃(Q,Ξ) · m̃

))
.
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Now consider the complex line L := { Θ
(s)
t = tΨ(s) + (1− t)Φ(s) | t ∈ C } contained in J scyc. By

the assumption that J̃(Q,Φ) = J̃(Q,Ψ), we have

TΨ(s)(Gs ·Ψ(s)) = TΦ(l)(Gs · Φ(s)) = qs

(
π
(
m̃ · J̃(Q,Φ) + J̃(Q,Φ) · m̃

))
,

as subspaces of J scyc. It follows that for any t, the tangent space T
Θ

(s)
t

(Gs · Θ(s)
t ) is a subspace of

qs

(
π
(
m̃ · J̃(Q,Φ) + J̃(Q,Φ) · m̃

))
. Let L0 be the subset of L consisting of those Θ

(s)
t such that

T
Θ

(s)
t

(G ·Θ(s)
t ) = qs

(
π
(
m̃ · J̃(Q,Φ) + J̃(Q,Φ) · m̃

))
.

Then Φ and Ψ are both in L0. It remains to show that L0 lies in the orbit Gs ·Φ(s). By a standard
lemma in the theory of Lie groups (cf. Lemma 1.1 [21]), it suffices to check that

(1) The complement L\L0 is a finite set (so L0 is a connected smooth submanifold of J scyc).

(2) The dimension of T
Θ

(s)
t

(Gs ·Θ(s)
t ) does not depend on the choice of Θ

(s)
t ∈ L0.

(3) For all Θ
(s)
t ∈ L0, the tangent space T

Θ
(s)
t

(L0) is contained in T
Θ

(s)
t

(Gs ·Θ(s)
t ).

Condition (1) holds because L\L0 corresponds to the locus of the parameters t ∈ C where the
continuous family

{(Θ(s)
t )# : Der+

l (J s)→ J scyc}t∈C
of linear maps between two finite dimensional spaces has non maximal rank. Condition (2) follows
from the construction of L0. Note that the tangent space of L0 at each of its point is spanned by
Φ(s) −Ψ(s) = qs(Φ−Ψ) in J scyc. By Proposition 4.3 (2), condition (3) holds if Φ−Ψ ∈ π̃(J̃(Q,Φ)),
which is equivalent to the assumption that [Φ]Φ = [Ψ]Ψ.

5 Donaldson-Thomas invariant of quiver with potential

5.1 Moduli of finite dimensional modules over the Jacobi algebra

Let Q be a finite quiver and Φ ∈ ĈQ be a potential. A finite dimensional representation V of Q
is a finite dimensional (left) module over CQ. In particular, to each i ∈ Q0 we associate a finite
dimensional vector space Vi and to each a ∈ Q1 we associate a linear operator in HomC(Vs(a), Vt(a)).

Given a vector v ∈ N|Q0|, we denote by Repv(Q) the space of representations of Q with dimension
vector v. Clearly,

Repv(Q) ∼=
∏
a∈Q1

Hom(Cvs(a) ,Cvt(a)).

Denote by Gv the algebraic group Πi∈Q0GLvi . It acts on Repv(Q) by conjugation. The moduli
stack of representations of Q with dimension vector v is defined to be

Mv(Q) := [Repv(Q)/Gv].
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It has a coarse moduli space, defined by the semi-simplification map

pv :Mv(Q)→Mv(Q) := Repv(Q) �Gv.

A (finite dimensional) representation V is called nilpotent if all a ∈ Q1 act on V by nilpotent ma-
trices. More generally, for an algebra A an A-module M is called nilpotent if there exists N > 0 such
that mNM = 0 where m is the Jacobson radical of A. Nilpotent representations of Q are precisely

ĈQ modules. Denote by Repnpv (Q) ⊂ Repv(Q) the subset of nilpotent representations. Clearly, it
is stable under the Gv-action. Let [0] ∈ Mv(Q) be the point represented by the isomorphism class
of the semisimple module 0 :=

⊕
i∈Q0

Si⊗Vi, where Si is the simple module corresponding to the
node i. Then

Repnpv (Q) = p−1
v (0).

In other words, a representation is nilpotent if it is a finite iterated extension of the Si.

Fix a lift φ ∈ ĈQ of Φ. For any v ∈ N|Q0|, let

φv :
∏
a∈Q1

Homk(Vs(a), Vt(a))→ Endk(
⊕
i∈Q0

Vi)

be the formal series of matrix variables for φ. It can be viewed as a matrix valued formal function
at 0 ∈ Repv(Q). Then tr(φv) is a scalar valued formal function at 0 ∈ Repv(Q), where tr is defined
to be

∑
i∈Q0

trglvi . Since this is independent of the choice of a lift, we will write Φv := tr(φv). We
call Φv the formal Chern-Simons function. Note that Φv is Gv-invariant.

Proposition 5.1. Given Φ ∈ C̃Qcyc,C and a dimension vector v, the Chern-Simons functional Φv

is absolutely convergent in a neighborhood of Repnpv (Q) ⊂ Repv(Q). For C ′ > C and Φ′ the image of

Φ under the natural monomorphism C̃Qcyc,C → C̃Qcyc,C′ , we have Φ′v = Φv in some neighborhood
of Repnpv (Q). Moreover, a point in Repnpv (Q) is a critical point of Φv if and only if it is a module

over Λ̃(Q,Φ) with dimension vector v.

Proof. The first half of the proposition has already been proved by Toda (see Lemma 2.15 [19]).
We include a proof just for the convenience of the reader. Set m = |Q0|, k = |Q1| and v =
(v1, . . . , vm). A representation V of Q with dimension vector v corresponds to a family (Aa)a∈Q1

∈∏
a∈Q1

Homk(Vs(a), Vt(a)), where Vi ∼= Cvi . Given a noncommutative series f ∈ ĈQ, denote by

(Aa) 7→ fv(Aa) the matrix valued formal map from
∏
a∈Q1

Homk(Vs(a), Vt(a)) to Endk(
⊕m

i=1 Vi).

We fix a lift φ ∈ C̃QC for Φ. Then Φv = tr(φv(Aa)). Write

||Aa|| =

∑
i,j

|Aija |2
1/2

for the Frobenius norm. For ε > 0, let ∆ε := {(Aa)a∈Q1 |||Aa|| < ε}. Since any nilpotent orbit
contains 0 in its closure, the set Uv,ε := Gv ·∆ε contains Repnpv (Q). If ε < 1

kC then∣∣∣∣∣aw · tr ∏
w=a1...ad

Aa1
. . . Aad

∣∣∣∣∣ ≤ C |w|
|w|∏
i=1

||Aai || = (εC)|w|,
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and
||Φv|| <

∑
|w|

(kεC)|w| < +∞,

i.e. Φv is absolutely convergent in Uv,ε. For C ′ > C, Φ′v is clearly the restriction of Φv in the
neighborhood with ε < 1

kC′ .

By definition, V = (Vi, Aa|i ∈ Q0, a ∈ Q1) is a representation of C̃Q if and only if for any

f ∈ C̃Q the formal map fv(Aa) is convergent. We will see that V must be nilpotent (Lemma 5.2).
Let Eija ∈ Homk(Vs(a), Vt(a)) be the elementary matrix for a choice of basis. Then

∇Φv(Aa|a ∈ Q1) = 0 ⇔ lim
δ→0

tr φv(Ab + δEijb )− tr φv(Aa)

δ
= 0 for any b ∈ Q1 and i, j

⇔ tr
(

(DbΦ)v(Aa) · Eijb
)

= 0 for any b ∈ Q1 and i, j

⇔ (DbΦ)v(Aa) = 0.

Equivalently, the image of

Φ̃∗ : c̃Derl(C̃Q)→ C̃Q

vanish at the point (Aa)a∈Q1
, i.e. when (Aa)a∈Q1

defines a Λ̃(Q,Φ)-module.

Lemma 5.2. Any finite dimensional module over C̃Q is nilpotent.

Proof. Let m̃ be the two-sided ideal of the analytic Jacobi algebra C̃Q generated by the arrows.
Then every element of 1 + m̃ is invertible by Lemma 3.9. Hence m̃ is contained in the Jacobson

radical, i.e. the intersection of the annihilators of all the simple modules. Since the quotient of C̃Q
by m̃ is semi-simple, the ideal m̃ in fact equals the Jacobson ideal. In particular, the ideal m̃ acts
nilpotently on each finite-dimensional module.

Although the natural map Λ̃(Q,Φ) → Λ̂(Q,Φ) for a general analytic potential Φ is neither
injective nor surjective, they have isomorphic categories of finite dimensional modules.

Proposition 5.3. Let Φ be an analytic potential. Then the natural morphism Λ̃(Q,Φ) → Λ̂(Q,Φ)
induces an isomorphism between the categories of finite dimensional modules.

Proof. For simplicity, we write Λ̃ = Λ̃(Q,Φ), Λ̂ = Λ̂(Q,Φ), J̃ = J̃(Q,Φ) and Ĵ = Ĵ(Q,Φ). Let M

be a finite dimensional module over Λ̃. By Lemma 5.2, M is nilpotent over C̃Q. Since Ĵ ⊂ J̃ + m̂N

for any N > 0, we obtain that M is a Λ̂ module. As a consequence, the restriction along Λ̃ → Λ̂
induces a bijection on the class of finite-dimensional modules. The restriction along Λ̃ → Λ̂ also
induces a bijection in the morphism spaces, since a C-linear map between finite-dimensional modules

commutes with the action of the arrows of Q iff it is ĈQ-linear iff it is C̃Q-linear. Therefore, the
natural functor is an isomorphism between the categories of finite dimensional modules.

Theorem 5.4. Let Q be a quiver and Φ be an analytic potential on Q. The moduli stack of finite
dimensional Λ̂(Q,Φ)-modules is equipped with a canonical perverse sheaf of vanishing cycles.
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Proof. Modules of Λ̂(Q,Φ) with fixed dimension form an algebraic stack. We refer to Section 6 of
[16] for the construction. By Lemma 5.2 and Proposition 5.3, the moduli stack of finite dimensional

Λ̂(Q,Φ)-modules coincides with the moduli stack of finite dimensional Λ̃(Q,Φ)-modules, which em-
beds into the moduli stack of finite dimensional nilpotent representations of Q. Moreover, it is the
intersection of the critical stack [{∇Φv = 0}/Gv] and [Repnpv (Q)/Gv] when the dimension vector
is v. The restriction of the Gv-equivariant perverse sheaf of vanishing cycles defines the desired
perverse sheaf.

The following corollary is an immediate consequence of Theorem 5.4 and Theorem 4.5.

Corollary 5.5. Let Q be a finite quiver and Φ,Ψ two J̃-finite analytic potentials of order ≥ 3.
Suppose

γ : Λ̃(Q,Φ) ∼= Λ̃(Q,Ψ)

is a CQ0-algebra isomorphism such that γ∗([Φ]Φ) = [Ψ]Ψ. Then γ induces an isomorphism between
the canonically defined perverse sheaves of vanishing cycles. If Φ is further assumed to be quasi-
homogeneous, then the isomorphism class of the perverse sheaf is determined by the isomorphism
class of the Jacobi algebra Λ̃(Q,Φ).

5.2 Motivic Hall algebra and integration map

The main purpose of this subsection is to define Donaldson-Thomas invariants for quivers with
analytic potentials. Our setup is parallel to [16], where the topological Euler characteristic version
of DT invariants is studied. The novelty of this paper is that the Behrend function is taken into
account. The case of algebraic potentials has already been considered in [13] and [14]. However, we
should emphasize that even for algebraic potentials the DT theory of the algebraic Jacobi algebra
and the DT theory of the formal Jacobi algebra are not the same. For the applications to cluster
algebras, we need to consider the formal Jacobi algebra while only algebraic Jacobi algebras were
considered in [13] and [14]. It turns out that the analytic potentials provide a more flexible framework
so that the invariants are still well defined after mutations (see next section).

The foundations for the study of the motivic Hall algebra were established in [13] and [14]. We
refer to Section 7 of [16] for the precise definitions. Fix a finite quiver Q with n nodes and an analytic

potential Φ. Denote by Λ̂ := Λ̂(Q,Φ) the formal Jacobi algebra. The motivic Hall algebra of the

category of finite dimensional Λ̂-modules is denoted by MHΛ̂. It is equipped with an associative
product. The Hall algebra is graded by Nn:

MHΛ̂ =
⊕
v∈Nn

MHΛ̂(v).

The elements of MHΛ̂(v) are equivalence classes of stack morphisms X → modv − Λ̂, where the

latter is the moduli stack of Λ̂-modules of dimension vector v. By an abuse of notation, we use the
same symbol to denote the category as well as the classifying stack of objects in the category. We
may consider a subquotient MHΛ̂,sc of the Hall algebra (see definition in Section 7.1.3 of [16]) called

the semiclassical limit of MHΛ̂. It is indeed a (commutative) Poisson algebra ([16, Theorem 7.2]).
We put

TQ := C[y±1
1 , . . . , y±1

n ], T∨Q := C[x±1
1 , . . . , x±1

n ], TQ := T∨Q⊗CTQ.
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The quantum torus QT is defined to be the group algebra of Zn over the coefficient field C(t). To
be more specific,

QT =
∑
v∈Zn

C(t) · yv

where yv =
∏n
i=1 y

vi
i . Denote by QT0 the C[t±1]-subalgebra of QT generated by the yv. We put

QTsc := QT0/(t− 1)QT0.

The topological integration map is the Zn-graded linear map

I : MHΛ̂,sc → QTsc

defined by

I
(

[f : X → modv − Λ̂]
)

:= χ(X) · yv,

where χ(X) is the topological euler characteristic of X. Joyce and Song (in [13]) have proved that
I is a Poisson morphism with respect to the Poisson structures on MHΛ̂,sc (defined in Section 7.1.3

of [16]) and the Poisson structure on QTsc defined by

{ya,yb} := χ(a, b) · ya+b,

where χ is the euler pairing on the finite derived category of the Ginzburg algebra ΓQ,Φ for (Q,Φ).

Given a Z-valued constructible function ν on modv − Λ̂, the weighted integration map

Iν : MHΛ̂,sc → QTsc

is defined by

Iν
(

[f : X → modv − Λ̂]
)

:= χ(X, f∗ν) · yv,

where χ(X, f∗ν) =
∑
n∈Z n · χ((f∗ν)−1(n)).

By Proposition 5.3, modv − Λ̂ is equivalent to modv − Λ̃ as stacks. By Proposition 5.1, there is
an embedding of analytic stacks

modv − Λ̂ = [({∇Φv = 0} ∩ Repnpv (Q)) /Gv]
jC // [({∇Φv = 0}) /Gv] .

For any v, let ν be the jC-pullback of the Behrend function (for the definition of the Behrend
function on a stack, see Section 4 of [13]). It is a constructible function on the moduli stack

modfd − Λ̂, independent of C when C � 0. We will simply write j for jC .
The following theorem is essentially due to Joyce and Song. We include a proof because the

setup in [13] is slightly different. Our moduli stack modv − Λ̂ is not locally a critical stack. Instead,
it embeds into a critical stack as a closed substack.

Theorem 5.6. ([13, Theorem 5.11]) Iν is a Poisson algebra morphism with the Poisson structure
on QTsc defined to be

{ya,yb} := (−1)χ(a,b)χ(a, b) · ya+b.
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Proof. It is well known (c.f. Theorem 5.2 [3]) that to prove that Iν is a Poisson algebra morphism

it suffice to verify that ν satisfies the identities in Theorem 5.11 [13], i.e. for all E1, E2 ∈ modfd− Λ̂

ν(E1⊕E2) = (−1)χ(E1,E2)ν(E1)ν(E2), (5.1)

∫
[F ]∈PExt1(E2,E1)

ν(F )dχ−
∫

[F̃ ]∈PExt1(E1,E2)

ν(F̃ )dχ (5.2)

=
(
dim Ext1(E2, E1)− dim Ext1(E1, E2)

)
ν(E1⊕E2).

Suppose the dimension vectors of E1 and E2 are v1 = (v1,1, . . . , v1,n) and v2 = (v2,1, . . . , v2,n).

For simplicity, we denote by MΛ̂
v the moduli stack of Λ̂-modules with dimension vector v. By

Proposition 5.1, there exists a Gv-invariant analytic neighborhood Uv ⊃ Repnpv (Q) such that Φv is
convergent on Uv, and there is an embedding of analytic stacks:

j :MΛ̂
v → [ZΦv/Gv]

where ZΦv is the critical scheme of Φv. The image of j coincides with [ZΦv ∩ Repnpv (Q)/Gv]. Set

v = v1 + v2. Let [E1⊕E2] be the point in MΛ̂
v represented by the Λ̂-module E1⊕E2, and let

p = j([E1⊕E2]) be its image. By an abuse of notation, we also use p to denote a critical point
that is represented by E1⊕E2. Note that this is uniquely defined up to Gv-action. Recall that the
Behrend function of the global quotient stack is defined to be

ν[ZΦv/Gv](p) = (−1)dimGvνZΦv
(p) = (−1)dimGv+dimUv(1− χ(MFΦv(p)))

where MFΦv(p) is the Milnor fiber of the analytic function Φv at the critical point p. For simplicity,
we write νΦv = νZΦv

.
Note that Repv(Q) can be identified with

g := Ext1(

n⊕
i=1

S⊕vii ,

n⊕
i=1

S⊕vii ),

which has a splitting
g = g11⊕g22⊕g12⊕g21

where gii = Repvi
(Q) for i = 1, 2 and

g12 = Ext1(

n⊕
i=1

S
⊕v1,i

i ,

n⊕
i=1

S
⊕v2,i

i ), g21 = Ext1(

n⊕
i=1

S
⊕v2,i

i ,

n⊕
i=1

S
⊕v1,i

i ).

We remark that the trivial module
⊕n

i=1 S
⊕vi
i is mapped to 0 by j. Let T be the one parameter

subgroup of Gv that fixes
⊕n

i=1 S
⊕v1,i

i but scales
⊕n

i=1 S
⊕v2,i

i by λ ∈ C×. Denote by gT the fixed
locus of the T -action on g. Clearly,

gT = g11 × g22 × {0} × {0}.

Since Uv is Gv-invariant, it is T -invariant in particular. Moreover, the fixed loci of the critical scheme
of Φv can be identified with the critical scheme of the restriction of Φv on the fixed subspace, i.e.

31



ZTΦv
= ZΦv|gT

. Let pii ∈ gii be a point representing the Λ̂-module Ei for i = 1, 2. We have

p = (p11, p22, 0, 0) ∈ gT . The Gvi
-orbit of pii, or the point in the quotient stack is uniquely defined.

By the Thom-Sebastiani theorem, we have

νΦv|gT
(p) = νΦv1

(p11) · νΦv2
(p22).

By localization at the T -fixed points, we have

νΦv(p) = (−1)dim g12+dim g21νΦv|gT
(p).

Since ν is defined to be the pull back of the Behrend function, we have

ν(E1⊕E2) = (−1)dimGvνΦv(p) = (−1)dimGv+dim g12+dim g21νΦv1
(p11) · νΦv2

(p22)

= (−1)dimGv+dim g12+dim g21+dimGv1
+dimGv2 ν(E1) · ν(E2)

Since modfdΛ̂ is the heart of a t-structure on the finite derived category of the Ginzburg algebra of
ΓQ,Φ, we have

Extd(Ei, Ej) = ExtdΓQ,Φ
(Ei, Ej) for d = 0, 1.

Therefore,

(−1)dimGv+dim g12+dim g21+dimGv1
+dimGv2

= (−1)dim Hom(E,E)+dim Ext1(E1,E2)+dim Ext1(E2,E1)+dim Hom(E1,E1)+dim Hom(E2,E2)

= (−1)dim Hom(E1,E2)+Ext1(E1,E2)+Ext1(E2,E1)+Hom(E2,E1)

= (−1)χ(E1,E2).

The last equality follows from the Serre duality on the finite derived category of ΓQ,Φ. So we have
proved identity 5.1.

Let F be the module that fits into the short exact sequence

0 // E1
// F // E2

// 0

corresponding to the class [F ] ∈ PExt1(E2, E1). Let q := (p11, p22, 0, p21) ∈ g be a point representing

F . Similarly, let q̃ := (p11, p22, p12, 0) be a point representing F̃ with

0 // E2
// F̃ // E1

// 0.

Then we have
ν(F ) = ν[Z/Gv](q) = (−1)dimGvνΦv(q)

and
ν(F̃ ) = ν[Z/Gv](q̃) = (−1)dimGvνΦv(q̃).

By the identity 5.1 and the definition of Behrend function, to prove the identity 5.2, it suffices to
show that∫

[p21]∈PExt1(E2,E1)

(1− χ(MFΦv(q))) dχ−
∫

[p12]∈PExt1(E1,E2)

(1− χ(MFΦv(q̃))) dχ

=
(
dim Ext1(E2, E1)− dim Ext1(E1, E2)

)
· (1− χ(MFΦv1+Φv2

(p11, p22))).

This is proved by Joyce and Song in Section 10.2 of [13] using the blow-up formula for the Milnor
number (Theorem 4.11 [13]).
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For a fixed stability condition σ, we may define the Donaldson-Thomas invariant of σ-semistable
modules of Λ̂(Q,Φ) by taking the Iν-image of certain element in MHΛ̂,sc determined by the moduli
stack of σ-semistable modules. Since we will not use them in this paper, we refer the readers to
Definition 7.15 of [13] for details.

6 Mutation and transformation of Donaldson-Thomas in-
variants

6.1 Mutation of quivers with analytic potential

We follow Derksen-Weyman-Zelevinsky’s fundamental article [5]. Let Q be a finite quiver. Denote

by l the subalgebra CQ0. Let ĈQ be the completed path algebra. The continuous zeroth Hochschild

homology of ĈQ is the vector space HH0(ĈQ) obtained as the quotient of ĈQ by the closure of

the subspace generated by all commutators, i.e. HH0(ĈQ) = ĈQcyc. It admits a topological basis

formed by the cycles of Q. In particular, the space ĈQcyc is a product of copies of C indexed by the

vertices if Q does not have oriented cycles. A potential Φ ∈ ĈQcyc is reduced if it ord(Φ) ≥ 3. If the

potential Φ is reduced and the Jacobian algebra Λ̂(Q,Φ) is finite-dimensional, its associated quiver
is isomorphic to Q.

As typical examples, we may consider the quiver Q

2

a

��
1

b

@@

3
c

oo

(6.1)

with the potential Φ = abc or with the potential Φ = (abc)2.
In order to define the mutation of a quiver with potential (Q,Φ) at a vertex k, we need to recall

the construction of a reduced quiver with potential from an arbitrary quiver with potential. Two
quivers with potential (Q,Φ) and (Q′,Φ′) are right equivalent if Q0 = Q′0 and there exists a l-algebra

isomorphism H : ĈQ → ĈQ′ such the induced map in topological Hochschild homology takes Φ to
Φ′. A quiver with potential (Q,Φ) is trivial if Φ is a linear combination of 2-cycles and Λ̂(Q,Φ) is
isomorphic to l. If (Q,Φ) and (Q′,Φ′) are two quivers with potential such that the sets of vertices
of Q and Q′ coincide, their direct sum (Q,Φ)⊕ (Q′,Φ′) is defined as the pair consisting of the quiver
with the same vertex set, with set of arrows the disjoint union of those of Q and Q′, and with the
potential equal to the sum Φ + Φ′.

Theorem 6.1 ([5], Theorem 4.6 and Proposition 4.5). Any quiver with potential (Q,Φ) is right
equivalent to the direct sum of a reduced one (Qred,Φred) and a trivial one (Qtriv,Φtriv), both

unique up to right equivalence. Moreover, the inclusion induces an isomorphism from Λ̂(Qred,Φred)

onto Λ̂(Q,Φ).

The quiver with potential (Qred,Φred) is the reduced part of (Q,W ). Warning: Qred might
contain 2-cycles.

We can now define the mutation of a quiver with potential. Let (Q,Φ) be a quiver with potential
such that Q does not have loops. Let k be a vertex of Q not lying on a 2-cycle. The mutation µk(Q,Φ)
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is defined as the reduced part of the pre-mutation, i.e. of the quiver with potential µ̃k(Q,Φ) =
(Q′,Φ′), which is defined as follows:

a) (i) To obtain Q′ from Q, add a new arrow [αβ] for each pair of arrows α : k → j and β : i→ k
of Q and

(ii) replace each arrow γ with source or target k by a new arrow γ∗ with s(γ∗) = t(γ) and
t(γ∗) = s(γ).

b) Put Φ′ = Φ + ∆, where

(i) Φ is obtained from Φ by replacing, in a representative of Φ given as an infinite linear
combination of paths non of which starts or ends at k, each occurrence of αβ by [αβ], for
each pair of arrows α : i→ k and β : k → j of Q;

(ii) ∆ is the sum of the cycles [αβ]β∗α∗ taken over all pairs of arrows α : k → j and β : i→ k
of Q.

If k is not contained in a 2-cycle of µk(Q,Φ) then µk(µk(Q,Φ)) is right equivalent to (Q,Φ) (The-
orem 5.7 of [5]). As examples, consider the mutation at 2 of the cyclic quiver (6.1) endowed with
the potential Φ = abc and with Φ′ = (abc)2. For Φ = abc, the mutated quiver with potential is the
acyclic quiver

2

b∗

��
1 3

a∗
^^ (6.2)

with the zero potential. But for Φ′ = (abc)2, the mutated quiver with potential is

2

b∗

��
1

e // 3

a∗
^^

c
oo

(6.3)

with the potential ecec+ eb∗a∗.
The general construction implies that if neither Q nor the quiver Q′ in (Q′,Φ′) = µk(Q,Φ) have

loops or 2-cycles, then Q and Q′ are linked by the quiver mutation rule (cf. Prop. 7.1 of [5]) . Thus,
if we want to ‘extend’ this rule to quivers with potentials, it is important to ensure that no 2-cycles
appear during the mutation process.

Let Q be a finite quiver. A polynomial function on ĈQcyc is the composition of a polynomial

function on a finite-dimensional vector space V with a continuous linear map ĈQcyc → V . A

hypersurface in ĈQcyc is the set of zeroes of a non zero polynomial function.

Theorem 6.2 ([5], Cor. 7.4). Let Q be a finite quiver without loops nor 2-cycles. There is a countable

union of hypersurfaces ∆ ⊂ ĈQcyc such that for each Φ not belonging to ∆, no 2-cycles appear in
any iterated mutation of (Q,Φ).

A potential Φ not belonging to ∆ is called nondegenerate. So if Q is a quiver without loops
nor 2-cycles and Φ a nondegenerate potential, we can indefinitely mutate the quiver with potential
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(Q,Φ) and the mutation of the underlying quivers is given by the quiver mutation rule. Notice that
the potential Φ = (abc)2 on the quiver (6.1) is degenerate, which is compatible with the appearance
of a 2-cycle in (6.3).

The following proposition is a noncommutative version of the separation lemma for analytic
functions. The formal analogue has been proved by Derksen, Weyman and Zelevinsky (see Lemma
4.7 [5]).

Proposition 6.3. Let Q be a finite quiver with two distinct arrows y, z such that s(y) = t(z), s(z) =
t(y). Let Q1 = {y, z, x3, . . . , xk}. Let Φ be a potential of the form

Φ = yz − F (y, z, x),

where F (y, z, x) is an analytic series in y, z, x3, . . . , xk of order ≥ 3. Then there exists an analytic
automorphism H such that

H(Φ) = yz − v(x),

where v(x) is an analytic series in x3, . . . , xk of order ≥ 3. Here the equality is understood up to
cyclic permutations of words.

Proof. By the trick at the end of the proof of Proposition 3.13, it suffices to prove the proposition
for the k-loop quiver. We may write

F (y, z, x) = yf(y, z, x) + zg(y, z, x) + u(x)

where f, g, u are analytic series and the equality holds up to cyclic permutation of words. This can
be done as follows. It is clear that u(x) is the sum of components of F that do not involve y, z. So
every word in F (y, z, x)− u(x) must contain either y or z. We locate either y or z in the word and
apply a cyclic permutation so that it becomes the initial letter. In this way, we fix a representative∑
|w|≥3 cww for F (y, z, x)−u(x), where the sum is over all words w with initial letter being either y

or z and cw = 0 if w doesn’t occur. Warning: since Φ is defined up to cyclic permutation of words
the splitting of F is not unique but depends on choices of representatives. We write

f =
∑

u,|u|≥2

auu, g =
∑

u,|u|≥2

buu.

By analyticity, we have |au| ≤ C |u| and |bu| ≤ C |u| for some constant C > 0. Define for d > 1

[d]f :=
∑
|u|=d

([u]f)u,

and similarly for [d]g.
Let H0 be the identity automorphism and let Φ0 = Φ, f0 = f , g0 = g and u0 = u(x). And let

H1(y) = y + [2]g, H1(z) = z + [2]f, H1(xi) = xi, i = 3, . . . , k.

Now set Φ1 = H1(Φ0). By the algorithm described above, we choose a decomposition

Φ1 = yz − yf1(y, z, x)− g1(y, z, x)z − u1(x).
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Recursively, we define

Hi+1(y) = Hi(y) + [i+ 2]gi, Hi+1(z) = Hi(z) + [i+ 2]fi, H1(xi) = xi, i = 3, . . . , k,

and write
Φi+1 := Hi(Φ) = yz − yfi+1(y, z, x)− gi+1(y, z, x)z − ui+1(x).

Since
ord(fi+1) > ord(fi), ord(gi+1) > ord(gi), ord(ui+1) ≥ 3,

the sequence of automorphisms Hi converges to a formal automorphism H, where H(Φ) = yz−v(x)
holds up to cyclic permutation of words.

It is easy to check that H satisfies the following properties

(1) For a fixed word w, [w]H(y) and [w]H(z) are polynomials in au, bu with |u| ≤ |w|+ 1.

(2) We denote the above polynomials by Pw,y and Pw,z respectively. They both have positive
coefficients.

(3) The degrees of Pw,y and Pw,z are no bigger than 2|w|+ 2.

By properties (2) and (3),

|Pw,y| ≤ |Pw,y(au = bu = 1)| · C2|w|+2.

A similar estimate holds for Pw,z as well. Now it suffices to prove the proposition assuming that f
and g are the sums of all words of length ≥ 2 (of coefficient 1).

First we focus on the case where Q is a two loop quiver, i.e. Q1 = {y, z}, and set

Φ := yz −
∑

w,|w|≥3

w.

In this case, the above mentioned automorphism H admits an alternative description. First note
that

Φ = yz −
∑
m≥3

(y + z)m.

We may verify that

H(y) = y +
∑
m≥2

Nm(y + z)m, H(z) = z +
∑
m≥2

Nm(y + z)m

for fixed constants Nm. The equation
H(Φ) = yz,

determines the coefficients Nm uniquely. We can easily compute the first few terms:

N2 = 1, N3 = 6, N4 = 45.

To study the growth of Nm, we set G(t) =
∑
m≥2Nmt

m. Then we have the equality

(y +G(y + z))(z +G(y + z))− (y + z + 2G(y + z))3

1− (y + z + 2G(y + z))
= yz
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which holds up to cyclic permutation of words. As a consequence, G(t) satisfies the cubic equation

10G3 + (15t− 1)G2 + (7t2 − t)G+ t3 = 0.

Set G = t2G. The above equation is equivalent to

10t3G
3

+ (15t2 − t)G2
+ (7t− 1)G+ 1 = 0.

By the implicit function theorem, the equation has an analytic solution G near t = 0. As a conse-
quence, Nm is bounded by a geometric series.

Now we deal with the case where Q is a k-loop quiver for arbitrary k ≥ 2. In this case, set

Φ := yz − (y + z)
∑
m≥3

(y + z + x3 + . . .+ xk)m−1.

We have

H(y) = y +
∑
m≥2

Nm(y + z + x3 + . . .+ xk)m, H(z) = z +
∑
m≥2

Nm(y + z + x3 + . . .+ xk)m

such that
H(Φ) = yz − v(x).

Then Nm is bounded by a geometric series by a similar argument.

Remark 6.4. Proposition 6.3 allows us to construct an analytic representative of the reduction of
an analytic potential (cf. the proof of Proposition 6.6 below). However, the reduction involves the
non canonical choice of a splitting so that the analytic right equivalence class of this representative
might be non unique. Its formal right equivalence class is nevertheless uniquely determined thanks
to the following Lemma.

Lemma 6.5. [5, Proposition 4.9] Let (Q,Φ) and (Q,Ψ) be two quivers with reduced formal potentials,
and (C, T ) be a quiver with trivial potential. If (Q ⊕ C,Φ + T ) is (formally) right equivalent to
(Q⊕ C,Ψ + T ) then (Q,Φ) is (formally) right equivalent to (Q,Ψ).

Proposition 6.6. Let Q be a finite quiver without loops and 2-cycles. Let Φ be an analytic potential
with ord(Φ) ≥ 3. Given j ∈ Q0, the formal right equivalence class of the mutated potential µj(Φ)
contains an analytic representative.

Proof. The pre-mutation of Φ is

µ̃jΦ = Φ +
∑

t(β)=s(α)=j

β∗α∗[αβ],

where Φ is obtained from Φ by replacing αβ by the new arrow [αβ] in µ̃jQ. Let Φ =
∑
aww such

that |aw| ≤ C |w|. Then
|w| < 2|w|.

The inequality is strict since Q has no 2-cycles. Thus we have

|[u]Φ| < C2|u|.
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Since the second component of µ̃jΦ is finite, it follows that µ̃jΦ is also analytic.
Now µ̃jΦ contains finitely many 2-cycles {y1z1, . . . , ydzd}. We apply Proposition 6.3 iteratively

and show that µ̃jΦ is analytically right equivalent to

d∑
i=1

yizi + µjΦ

where µjΦ contains no arrows {y1, z1, . . . , yd, zd}. Thus µjΦ is analytic.

Remark 6.7. For the reason explained in Remark 6.4, we do not know whether the analytic
representative in the above Proposition is unique up to analytic equivalence. For J̃-finite potential,
the answer is positive due to the following proposition.

Proposition 6.8. Let (Q,Φ) and (Q,Ψ) be two quivers with reduced J̃-finite analytic potentials,
and (C, T ) be a quiver with trivial potential. If (Q ⊕ C,Φ + T ) is analytically right equivalent to
(Q⊕ C,Ψ + T ) then (Q,Φ) is analytically right equivalent to (Q,Ψ).

Proof. Suppose H is an analytic automorphism of C̃Q⊕T such that H(Φ+T ) = Ψ+T . It restricts to

an analytic automorphism HQ of C̃Q such that HQ(Φ)−Ψ ∈ π(J̃(Q,H(Φ))2) where π : C̃Q→ C̃Qcyc

is the natural projection. Without loss of generality, we may simply assume that Ψ−Φ ∈ π(J̃(Q,Φ)2)

to begin with. We claim that J̃(Q,Φ) = J̃(Q,Ψ). It is obvious that J̃(Q,Ψ) ⊂ J̃(Q,Φ). To show
the opposite direction, note that

J̃(Q,Φ) ⊂ J̃(Q,Ψ) + m̃J̃(Q,Φ) + J̃(Q,Φ)m̃

since J̃(Q,Φ) ⊂ m̃3. Iterating the above inclusion, we obtain that

J̃(Q,Φ) ⊂ J̃(Q,Ψ) + m̃n

for any n ≥ 3. Since Ψ is J̃-finite, J̃(Q,Ψ) is m̃-adic closed in C̃Q. So we conclude that J̃(Q,Φ) =

J̃(Q,Ψ). Let Θt := Φ + t(Ψ − Φ) be the linear family connecting Φ and Ψ. Then the proof of
Theorem 4.4 and Theorem 4.5 shows that Φ ∼a Ψ.

Thanks to the Artin approximation theorem, even though Φ and Ψ are not comparable as analytic
potentials in general, we are able to compare the analytic Chern-Simons functionals Φv and Ψv.

Proposition 6.9. Let Q be a finite quiver and Φ,Ψ be two analytic potentials. Suppose that Φ is
formally right equivalent to Ψ. Given any dimension vector v, the analytic Chern-Simons functionals
Φv and Ψv are analytically right equivalent in a neighborhood of Repnpv (Q).

Proof. By Lemma 5.1, we may assume that Φv and Ψv are Gv-invariant analytic functions in
an open neighborhood of the moduli space of nilpotent representations Repnpv (Q). Let H be an

automorphism of ĈQ such that H(Φ) = Ψ. It induces a Gv-equivariant automorphism Hv of the
formal completion of Repv at the semi-simple representation

⊕
i∈Q0

S⊕vii , such that Hv(Φv) = Ψv.
We consider the equation

Ψv(x)− Φv(y) = 0

on the affine space gv × gv with coordinates x and y respectively. A formal solution y = y(x) can
be interpreted as a formal endomorphism of gv that sends Φv to Ψv. Since Gv is reductive by the
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equivariant version of Artin’s approximation theorem (Theorem A of [2]), Hv is well approximated
by a Gv-equivariant analytic solution. Then by Proposition 3.13, Φv and Ψv are analytically right
equivalent.

Proposition 6.10. Fix a finite quiver Q and C > 0. There exists a nondegenerate analytic potential
of convergence radius 1/C.

Proof. Recall an analytic potential Φ =
∑
c acc is of convergence radius 1/C if there exists 0 < C1 <

C such that |ac| ≤ C
|c|
1 for |c| � 0. The space of such potentials is denoted by C̃Qcyc,C . Suppose

that k = |Q1|. We claim that the norm

||Φ||C :=
∑
c

|ac|
(

1

kC

)|c|
makes C̃Qcyc,C into a Banach space. We will prove the C = 1/k case. The general case is similar.

Let Φ1,Φ2, . . . be a Cauchy sequence of potentials in C̃Qcyc,1/k. We write

Φi =
∑
w

aiww.

For every ε > 0, there exists N > 0 such that for n,m > N

||Φn − Φm||1/k =
∑
w

|anw − amw | < ε

It follows that for any fixed w, {anw}n form a Cauchy sequence. Since C is complete, limn→∞ anw = a∞w
exists. Denote by Φ∞ the formal series

∑
w a
∞
w w. Again by the Cauchy sequence property,∑

|w|≤p

|anw − amw | < ε

for any p > 0. By taking m→∞, we have
∑
|w|≤p |anw − a∞w | < ε. Take p→∞, we show that

||Φn − Φ∞||1/k < ε

if n > N . So we prove that Φn converges to Φ∞. By the triangle inequality, ||Φ∞||1/k < +∞, i.e.

Φ∞ ∈ C̃Qcyc,1/k.
Since being nondegenerate is a property of the underlying formal potential, by Corollary 7.4 of [5]

the set of nondegenerate elements in C̃Qcyc,C is the complement of countably many hypersurfaces.
Since a hypersurface is nowhere dense, by the Baire category theorem, the set of nondegenerate

elements in C̃Qcyc,C is nonempty.

Corollary 6.11. Let Q be a finite quiver without loops and 2-cycles and Φ a nondegenerate analytic
potential. Then there exists a canonical perverse sheaf of vanishing cycles defined on the moduli
stack of finite dimensional modules on the formal Jacobi algebra of any iterated mutation of (Q,Φ).
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Proof. For the initial quiver with potential (Q,Φ), there exists a canonical perverse sheaf of vanishing
cycles by Corollary 5.4. By Proposition 6.6, the mutation of an analytic potential Φ is analytic. Let
Φ and Φ′ be analytic potentials that are analytically right equivalent. Their mutations µjΦ and µjΦ

′

are formally equivalent by Proposition 6.5. Therefore, the formal right equivalence class of µjΦ is
independent of the choice of a splitting in Proposition 6.3, which also implies that there exists an
analytic representative in the equivalence class. By Proposition 6.9, all analytic representatives in
the formal equivalence class of µjΦ define analytically equivalent Chern-Simons functions. Therefore,
the perverse sheaf of vanishing cycles is canonically defined on the moduli stack of finite dimensional
modules over Λ̂(µjQ,µjΦ).

6.2 Transformation of DT invariants under mutation

In this section, we fix a finite quiver Q with n nodes without loops and 2-cycles, and a nondegenerate
analytic potential Φ. Denote by Λ̂ the formal Jacobi algebra Λ̂(Q,Φ). For simplicity, we denote the

abelian category Mod−Λ̂ of all pseudocompact Λ̂-modules by A and its abelian subcategory modfd−
Λ̂ of finite-dimensional modules by A. For i ∈ Q0, denote by Pi the projective indecomposable Λ̂ei.
For v ∈ Nn, the noncommutative Hilbert scheme is defined to be

HilbΛ̂(i; v) := {Pi � V |V ∈ modv − Λ̂}.

It is equipped with a natural stack morphism

HilbΛ̂(i; v)→ modv − Λ̂

given by forgetting the map from Pi. Define the generating series of DT invariants of the noncom-
mutative Hilbert scheme by

Zi
Λ̂,ν

:=
∑
v∈Nn

Iν([HilbΛ̂(i; v)→ modv − Λ̂]).

We define an algebra automorphism DTΛ̂,ν of an appropriate completion T̂A (see definition in Section

5.2.2 of [16]) of the semiclassical limit of the quantum double torus TQ by

DTΛ̂,ν(xi) := xi · ZiΛ̂,ν , DTΛ̂,ν(yi) := yi ·
∏
j

(
Zj

Λ̂,ν

)χ(j,i)

where
χ(j, i) := χ(j, i)− χ(i, j), χ(i, j) = #{a ∈ Q1|s(a) = i, t(a) = j}.

For a sequence of vertices k = (k1, . . . , kl) ∈ Ql0, let µk(Q,Φ) denote the iterated mutation

µkl ◦µkl−1
. . .◦µ1(Q,Φ), and let Λ̂k denote the formal Jacobi algebra associated to µk(Q,Φ). Denote

by Γ(Q,Φ) the Ginzburg dg-algebra of (Q,Φ). Keller and Yang [15] and Nagao [16] prove that there
exists a canonical derived equivalence

ψk : DΓ(Q,Φ)
∼→ DΓµk(Q,Φ).

such that the image of the canonical heart of DΓ(Q,Φ) consists of objects with homology only in

degrees 0 and 1. Set Ak := ψ−1(Mod − Λ̂k). There exists a torsion pair (T k,Fk) of A such that
Ak is the left tilt of A with respect to (T k,Fk) (see Theorem 3.5 of [16]). Set

Ak := ψ−1
k (Mod− Λ̂), Tk := T k ∩ A, Fk := Fk ∩ A.
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For i ∈ Q0, consider a rigid module Rk,i ∈ Tk defined by

Rk,i := H0
A(ψ−1

k (Γµk(Q,Φ)ei)).

The quiver Grassmannian is defined to be

Grass(k; i,v) := {Rk,i � V |V ∈ modv − Λ̂}.

It has a natural stack morphism to modv − Λ̂. Let Σ be the involution of TµkQ that

Σ : xi ↔ x−1
i , yi ↔ y−1

i .

We define an automorphism of the double torus TµkQ by

AdTk[−1](xk,i) := xk,i ·

(∑
v∈Nn

Σ ◦ Iν([Grass(k; i,v)→ modv − Λ̂])

)
,

AdTk[−1](yk,i) := Σ ◦

y−1
k,i ·

∏
j

(∑
v∈Nn

Iν([Grass(k; i,v)→ modv − Λ̂])

)χ(j,i)


where xk,i and yk,i correspond to the K-theory classes of Γµk(Q,Φ)ei and the simple Si respectively.
We set

AdTk := Σ ◦AdTk[−1]
◦ Σ.

With the topological integration map I replaced by the weighted integration map Iν (defined in
Section 5.2), Nagao’s argument indeed shows that the same transformation formula also holds for
the weighted DT invariants (by ν) of the noncommutative Hilbert schemes.

Theorem 6.12. (c.f. [16, Theorem 5.7]) We have the following identity of automorphisms of T̂Ak
:

DTΛ̂k,ν
= Ad−1

Tk ◦DTΛ̂,ν ◦AdTk[−1].

Proof. We only need to verify that DTΛ̂k,ν
is well defined. By Proposition 6.3, µkΦ is formally

right equivalent to an analytic potential. According to Lemma 6.5, the formal right equivalence
class of µkΦ is uniquely determined. If we fix an analytic representative then by Proposition 6.9,
the analytic right equivalence class of its associate Chern-Simons functional is uniquely determined.
Therefore DTΛ̂k,ν

is well defined.

6.3 Perverse F-series

Let Q be a quiver, Φ be an analytic potential and Λ̂ be its formal Jacobi algebra. Given a finite
dimensional Λ̂-module P , define the quiver Grassmannian

Grass(P,v) := {P � V |V ∈ modv − Λ̂}.

The F-series of P is defined to be

F (P ) :=
∑
v

I
(

[f : Grass(P,v)→ modv − Λ̂]
)
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The perverse F-series of P is defined to be

F ν(P ) :=
∑
v

Iν
(

[f : Grass(P,v)→ modv − Λ̂]
)
.

The perverse F -series is usually different from the ordinary F-series. We will exhibit an example.
Let f : Y → X be a 3-dimensional simple flopping contraction, which means

(1) Y is a smooth quasi-projective 3-fold;

(2) f is a birational morphism that is an isomorphism in codimension one;

(3) The exceptional fibers of f are irreducible.

Let p be a singular point of X and R̂ be the formal completion of X. Then R̂ is a complete Noetherian
hypersurface ring of Krull dimension 3, i.e. R̂ ∼= C[[x, y, z, w]]/(g). Denote by f̂ : Ŷ → X̂ := Spec R̂
the base change of f . Denote by C the reduced fiber of p. The Ext-quiver Q of OC is a k-loop
quiver for k = 0, 1, 2 and the formal Jacobi algebra Λ̂ in this case is finite dimensional (c.f. [10]).

The perverse F -series of Λ̂ has been calculated in Section 4 of [11] using a wall crossing formula:

F ν(Λ̂) =

l∏
j=1

(
1− (−1)jyj

)jnj

where l is the length of C and the positive integers nj are the Gopakumar-Vafa invariants (see [11]).
The length l takes values in {1, 2, 3, 4, 5, 6} and can be computed by taking a generic hyperplane

section of X̂. The curve C has length 1 if and only if Λ̂ ∼= C[[t]]/tn1 . In this case, we have

F ν(Λ̂) = (1 + y)n1 . If l = 1, then we have

F (Λ̂) = 1 + y + . . .+ yn1 ,

since the module Λ̂ ∼= C[[t]]/tn1 has exactly one quotient module of dimension d for 1 ≤ d ≤ n1.
From this example, we see that even though the definition of perverse F -series only makes sense

under more restrictive hypotheses than that of the ordinary F -series (e.g. it requires the potential
to be analytic), the calculation of it might be easier than the ordinary F -series since the exponents
nj are deformation invariants and therefore can be computed using degeneration methods.
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