
Introduction to Teichmüller Theory 2023/2024
Problem set 2: Teichmüller theory for tori

Exercise 1 (A fundamental domain and a generating set). Let

F =

{
z ∈ H2; |z| ≥ 1, −1

2
≤ Re(z) ≤ 1

2

}
(a) Prove that for all τ ∈ H2 there exists an element g ∈ PSL(2,Z) so that gτ ∈ F . Hint: try

maximizing Im(gτ).

Solution: Let z ∈ H2 and g =

[
a b
c d

]
∈ PSL(2,Z). A direct computation (that we have

performed multiple times by now) shows that

Im(gz) =
Im(z)

|cz + d|2
.

Now let τ ∈ H2 and let g ∈ PSL(2,Z) be an element such that Im(gτ) is maximal. Note
that this is an honest maximum, since the number of integers so that |cz+ d| ≤ K is finite
for any K > 0.

Since

T =

[
1 1
0 1

]
∈ PSL(2,Z),

we can always post-compose with T k for some k ∈ Z to make sure that −1
2
≤ Re(gτ) ≤ 1

2
.

Now suppose that |gτ | < 1. Since

S =

[
0 −1
1 0

]
∈ PSL(2,Z)

this leads to a contradiction, because S(gτ) would have a larger imaginary part (this follows
directly from our formula for Im(S(gz))). So, we conclude that we can indeed move every
τ ∈ H2 into F using PSL(2,Z).

(b) Prove that

– if τ ∈ F̊ then (
PSL(2,Z) · τ

)
∩ F = {τ},

– if Re(τ) = 1
2
then (

PSL(2,Z) · τ
)
∩ F = {τ, τ + 1},

– if Re(τ) = −1
2
then (

PSL(2,Z) · τ
)
∩ F = {τ, τ − 1}.

1



– and if |τ | = 1 then (
PSL(2,Z) · τ

)
∩ F = {τ,−1/τ},

Solution: Suppose both z and gz lie in F for some g ∈ PSL(2,Z). Without loss of generality,
we assume that Im(gz) ≥ Im(z). This implies that

|cz + d| ≤ 1.

Using that z ∈ F this implies that c ∈ {−1, 0, 1}. If c = 0, then d = ±1 and we obtain

g =

[
1 k
0 1

]
for some k ∈ Z. Now using that z ∈ F , we see that either k ∈ {±1} and Re(z) ∈ {±1

2
} or

k = 0.

If c = ±1, then d = 0 and |z| = 1 and hence

g =

[
0 1
−1 0

]
which gives us the |τ | = 1 case.

(c) Use the above to show that

T =

[
1 1
0 1

]
and S =

[
0 −1
1 0

]
generate PSL(2,Z). Hint: given g ∈ PSL(2,Z), bring g · 2i back to F .

Solution: Observe that in the solution to (a), we used exactly the matrices T and S to
bring a point any F . Let h denote the word in T±1 and S±1 we generate to bring g · 2i to
F and write

h · g =

[
a b
c d

]
.

Since h · g · 2i ∈ F , we have

2

4c2 + d2
= Im(h · g · 2i) ≥

√
3

2

This means that c = 0 (since 2/4 <
√
3/2). That in turn implies that 1 = det

(
a b
c d

)
=

ad, so a = d = ±1. This means that

Re(h · g · 2i) = Re(2i+ b) = b ∈
[
−1

2
,
1

2

]
and hence that b = 0. Which implies that h · g = 1 in PSL(2,Z). So g = h−1. h (and
hence h−1) being a word in T±1 and S±1, this writes g as a word in T±1 and S±1.
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(d) Conclude that SL(2,Z) can be generated by(
1 1
0 1

)
and

(
0 −1
1 0

)
.

Solution: Because T and S generate PSL(2,Z), we can, for every A ∈ SL(2,Z), write at
least one of {A,−A} as a word in(

1 1
0 1

)±1

and

(
0 −1
1 0

)±1

.

Moreover (
0 −1
1 0

)2

=

(
−1 0
0 −1

)
so we can in fact obtain A itself.

Exercise 2 (Moduli spaces of lattices in Rn and flat tori). A lattice Λ < Rn is a discrete
subgroup of finite covolume. Alternatively, it’s the Z-linear span of a a basis of Rn. The quotient
Rn/Λ is an n-dimensional torus with a flat Riemannian metric (that descends from the Euclidean
metric of Rn). The goal of this exercise is to study moduli spaces of lattices and flat tori. Our end
goal is to prove Mahler’s compactness criterion. For more on these spaces and other spaces like
them, we refer to Andrés Sambarino’s courses Géométrie des espaces globalement symétriques
and Sous-groupes discrets des groupes de Lie.

(a) Let v1, . . . , vn ∈ Rn form a basis and let A denote the matrix that has these vectors as
columns. Show that v1, . . . , vn generate a lattice of covolume 1 if and only if det(A) ∈ {±1}.
Conclude that every lattice of covolume 1 in Rn is of the form

A · Zn

for some A ∈ SL(n,R).

Solution: The set

F =

{∑
i

λivi; λ1, . . . λn ≥ 0 and
∑
i

λi ≤ 1

}
= A · [0, 1]n

where A is the matrix whose columns are the vectors vi, forms a fundamental domain for
the action of Λ on Rn. We have

1 = vol(F) =

∫
F
dx1 · · · dxn = | det(A)| ·

∫ 1

0

· · ·
∫ 1

0

dy1 · · · dyn = | det(A)|

So det(A) ∈ {±1}. If det(A) = −1, then we replace v1 by −v1 and obtain a matrix A′

with det(A′) = 1. This doesn’t change the lattice.
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(b) Suppose that v1, . . . , vn and w1, . . . , wn are lattice bases for the same lattice Λ < Rn (i.e.
spanZ(v1, . . . , vn) = spanZ(w1, . . . , wn)). Show that there exists a matrix A with integral
entries such that det(A) ∈ {±1} and

wi = A · vi, i = 1, . . . , n.

Conclude that the set of lattices of covolume 1 in Rn can be identified with

SL(n,Z)\SL(n,R)

Solution: Since the vectors wi ∈ spanZ(v1, . . . , vn) there exists a matrix A with integer
entries such that

wi = Avi, i = 1, . . . , n

Likewise, let B be the integral matrix such that

Bvi = wi, i = 1, . . . , n.

This implies that B = A−1. Taking determinants, we obtain

1 = det(BA) = det(B) det(A).

Since det(A), det(B) ∈ Z, we obtain that det(A), det(B) ∈ {±1} as required.

We have seen that every lattice of covolume 1 is of the form A ·Zn for some A ∈ SL(n,R).
Now suppose v1, . . . , vn and w1, . . . , wn corresponding to matrices A,B ∈ SL(n,R) respec-
tively generate the same lattice. Then B = C ·A where C is some matrix in SL(n,Z) (the
determinant needs to be 1 because of multiplicativity of determinants). So we conclude
we can identify the set of lattices with SL(n,Z)\SL(n,R)

(c) Show that the space of (isometry classes of) flat n-dimensional tori of volume 1 can be
identified with

SL(n,Z)\SL(n,R)/SO(n,R)

Solution: If two lattices differ by a rotation, they yield the same flat torus.

Conversely, by the Killing–Hopf theorem, all flat n-dimensional tori are of the form

Rn/Λ

for some lattice Λ < Rn. Now suppose

φ : Rn/Λ1 −→ Rn/Λ2

is an isometry. We may lift φ to an isometry φ̃ : Rn → Rn that satisfies φ̃(Λ1) = Λ2 and
φ̃(0) = 0. Since the only isometries of Rn that preserve the origin are linear isometries, we
may identify φ̃ with an element of SO(n,R).
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(d) (Blichfeld’s theorem) Suppose that Λ < Rn is a lattice of covolume 1 and that S ⊂ Rn

is measurable with vol(S) > 1. Show that S contains two distinct points v, w ∈ S with
v − w ∈ Λ.

Solution: Consider the projection of S to the quotient torus Rn/Λ. Because the volume of
S is more than that of Rn/Λ, S contains two elements v and w that project to the same
point in Rn/Λ, i.e. v − w ∈ Λ.

(e) (Minkowski’s first theorem) Suppose that Λ < Rn is a lattice of covolume 1 and suppose
that C ⊂ Rn is convex and centrally symmetric (i.e. C = −C). Suppose moreover that
vol(C) > 2n. Show that C contains a non-zero lattice vector. Hint: Consider the set

Ĉ =
1

2
· C =

{
1

2
· x; x ∈ C

}
.

Solution: We have

vol
(
Ĉ
)
=

1

2n
vol(C) > 1,

so by (d), there exist x, y ∈ Ĉ such that x−y ∈ Λ\{0}. The vectors 2x, 2y ∈ C. Moreover,
because C is centrally symmetric, −2y ∈ C as well. Finally, because C is convex:

1

2
· 2x+

1

2
· −2y = x− y ∈ C.

(f) (Minkowski’s second theorem) Suppose that Λ < Rn is a lattice of covolume 1. Define the
succesive minima of Λ by

mk(Λ) = min
{
r > 0; dim{spanR

(
Λ ∩ Br(0)

)
≥ k

}
,

where Br(0) denotes the closed ball of radius r around 0 ∈ Rn. Show that:

n∏
k=1

mk(Λ) ≤ 2n
/
vol

(
B1(0)

)
.

Solution: Let v1, . . . vn be a set of n vectors realizing the successive minima and let ṽ1, . . . , ṽn
denote their Gram-Schmidt orthonormalization.

Consider the ellipsoid

E =

{
n∑

k=1

akṽi ∈ Rn;
n∑

k=1

a2k
mk(Λ)2

< 1

}
.

Its volume is

vol(E) = vol
(
B1(0)

)
·

n∏
k=1

mk(Λ).
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So, if we show that it contains no non-zero lattice vectors, we obtain the inequality we’re
after from Minkowski’s first theorem.

Given w ∈ Λ \ {0}, let k = 1, . . . , n be maximal such that ∥w∥ ≥ mk(Λ). So, we can write

w =
k∑

i=1

aiṽi

with ai = ⟨w, ṽi⟩ for i = 1, . . . , k. We get

n∑
i=1

a2i
mi(Λ)2

=
k∑

i=1

a2i
mi(Λ)2

≥ 1

mk(Λ)2

k∑
i=1

a2i =
∥w∥2

mk(Λ)2
≥ 1.

So, indeed w /∈ E and hence Minkowski’s first theorem applies.

(g) (Korkine–Zolotarev–Hermite reduction) Let Λ < Rn be a lattice. Our next goal is to find
a “short” basis for Λ. The vectors realizing the successive minima (or rather some subset
thereof) might seem like natural candidates. It however turns out that it’s not always
possible to extract a basis from this set of vectors. So we need something else.

- A lattice basis (v1, . . . , vn) is called size reduced if its Gram–Schmidt orthogonaliza-
tion, defined recursively by

v∗1 = v1 and v∗j = vj −
j−1∑
i=1

⟨vj, v∗i ⟩
∥v∗i ∥2

v∗i , for j ≥ 2

satisfies ∣∣∣∣⟨vj, v∗i ⟩∥v∗i ∥2

∣∣∣∣ ≤ 1

2
for all 1 ≤ i < j ≤ n

Show that Λ admits a size reduced basis that has the same Gram–Schmidt orthogo-
nalization.

Solution: Suppose (v1, . . . , vn) is any lattice basis for Λ. We will recursively change
the basis so that it becomes size reduced. We will write

µij =
⟨vj, v∗i ⟩
∥v∗i ∥2

.

So

vj =

j∑
i=1

µijv
∗
i .

Suppose that

|µij| ≤
1

2
for all 1 ≤ i < j < k,

but |µkj| > 1
2
. We can set

ṽk = vk +mvj
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for some m ∈ Z such that

µ̃kj = µkj +m ·
⟨vj, v∗j ⟩
∥v∗j∥2

= µkj +m ∈
[
−1

2
,
1

2

]
.

By orthogonality, this doesn’t influence µki for i < j, so we can successively change the
coefficients to make them all lie in the interval [−1

2
, 1
2
]. Moreover, it doesn’t influence

the Gram-Schmidt orthonormalization either. Indeed, to obtain v∗k, the component
in the vj-direction is removed again.

- For i = 1, . . . n, let πi : Rn → Rn denote the orthogonal projection onto

spanR(v1, . . . , vi−1)
⊥ = spanR(v

∗
i , . . . , v

∗
n).

Observe that πi(Λ) is a lattice in πi(Rn). A basis (v1, . . . , vn) is called Korkine–
Zolotarev–Hermite (KZH) reduced if:

∗ it’s size reduced, and

∗ for i = 1, . . . , n, v∗i is the shortest lattice vector in πi(Λ).

Show that every lattice admits a KZH reduced basis.

Solution: We first recursively try to find candidates for the Gram–Schmidt orthogo-
nalization of our basis. Observe that π1, by definition, is the identity.

∗ Let v∗1 denote the shortest lattice vector of Λ, this defines π2

∗ For i ≥ 2, let v∗i the shortest lattice vector of πi(Λ). This defines πi+1 (if i < n).

Now, for i = 1, . . . , n, we let vi ∈ Λ be some arbitrary vector such that πi(vi) = v∗i .
Observe that this implies that (v∗1, . . . , v

∗
n) is the Gram–Schmidt orthogonalization of

(v1, . . . , vn).

We claim that (v1, . . . , vn) forms a lattice basis for Λ. By construction, these vectors
form a basis for Rn. So, all we need to show is that the vectors in Λ have integral
coefficients with respect to this basis. So, given w ∈ Λ, write

w =
n∑

i=1

λivi.

Suppose that λi /∈ Z and i is maximal with respect to this (i.e. λi+1, . . . , λn ∈ Z).
Potentially exchanging w for −w, suppose that λi > 0. Because the vector

w′ = w − ⌊λi⌋ · vi −
n∑

j=i+1

λjvj

is a lattice vector as well, so we may assume that 0 < λi < 1 and λi+1 = . . . = λn = 0.
We have

πi(w
′) = λiπi(vi) = λiv

∗
i

which is strictly shorter than v∗i , a contradiction. So indeed, (v1, . . . , vn) forms a basis.

Finally, we can turn it into a size reduced basis, without changing the Gram–Schmidt
orthogonalization, using the previous point.
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(h) Show that if (v1, . . . , vn) is a KZH reduced basis for the lattice Λ, then

∥vi∥2 ≤
i+ 3

4
·mi(Λ)

2

Hint: Show that
m1(πi(Λ)) ≤ mi(Λ)

Solution: Let us first show the inequality from the hint. Take n linearly independent vectors
w1, . . . , wn ∈ Λ with ∥wi∥ = mi(Λ). Since πi is a projection onto a space of dimension
n − i + 1, there is at least one vector wj among w1, . . . , wi such that πi(wi) ̸= 0. This
means that

∥v∗i ∥ = m1(πi(Λ)) ≤ ∥πi(wj)∥ ≤ mj(Λ) ≤ mi(Λ),

thus proving the inequality from the hint.

Now we have

∥vi∥2 = ∥v∗i +
i−1∑
j=1

⟨vi, v∗j ⟩
∥v∗j∥2

v∗j∥2

= ∥v∗i ∥2 +
i−1∑
j=1

∣∣∣∣⟨vi, v∗j ⟩∥v∗j∥2

∣∣∣∣2 ∥v∗j∥2
≤ ∥v∗i ∥2 +

1

4

i−1∑
j=1

∥v∗j∥2

≤ i+ 3

4
·mi(Λ)

2

as required.

(i) (Mahler’s compactness criterion) Show that C ⊆ SL(n,Z)\SL(n,R) is compact if and only
if it’s closed and

inf{∥v∥; v ∈ Λ ∈ C} > 0.

Solution: First suppose that C ⊂ SL(n,Z)\SL(n,R) is compact, which implies it’s closed,
so we only need to show that the shortest lattice vector is uniformly bounded from below
on C. The key observation is that the function m1 : SL(n,Z)\SL(n,R) → (0,∞) that
associates the shortest lattice vector to the lattice Λ ∈ SL(n,Z)\SL(n,R) is continuous.
Indeed, at SL(n,Z) · A ∈ SL(n,Z)\SL(n,R), the shortest lattice vectors is realized by a
finite number of lattice vectors (Z-linear combinations of the columns of A) and all the
other lattice vectors are stricly larger. So in some small open neighborhood of SL(n,Z) ·A,
the shortest lattice vector is realized by one of these linear combinations. The length of
a fixed linear combination of the columns of A is a continuous function. So locally, the
shortest lattice vector is the minimum of a finite number of continuous functions, and
hence continuous. This means that m1(C) ⊂ (0,∞) is compact and thus that

inf{∥v∥; v ∈ Λ ∈ C} > 0.
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Conversely, if C is closed and inf{∥v∥; v ∈ Λ ∈ C} > 0, then by (f) and (h), all lattices
Λ ∈ C admit a lattice basis whose vectors have norms uniformly bounded from below and
above. In other words, they can all be represented by matrices A ∈ SL(n,R) the norm
of whose columns is uniformly bounded from below and above, which implies that C is
compact.

(j) Show that C ⊂ SL(n,Z)\SL(n,R)/SO(n,R) is compact if and only if it’s closed and

inf{systole(T ); T ∈ C} > 0,

here the systole of a flat torus T is the length of the shortest closed geodesic in T .

Solution: First we observe that systole(Rn/Λ) = m1(Λ). Moreover, since SO(n,R) is
a compact group, C ⊂ SL(n,Z)\SL(n,R)/SO(n,R) is compact if and only if π−1(C) ⊂
SL(n,Z)\SL(n,R) is compact, where π : SL(n,Z)\SL(n,R) → SL(n,Z)\SL(n,R)/SO(n,R)
is the projection map. So the claim follows from Mahler’s compactness criterion.

(k) Connect this up to the moduli space M1 of Riemann surfaces of genus 1.

Solution: We’ve seen that Riemann surfaces of genus 1 correspond one-to-one to flat 2-tori
of area 1 up to isometry (we said metrics up to isometry and rescaling, but we can always
pick a representative of area 1). So we should have

PSL(2,Z)\H2 = M1 = SL(2,Z)\SL(2,R)/SO(2,R).

Indeed, we can identify H2 with SL(2,R)/SO(2,R), because SL(2,R) acts on H2 by Möbius
transformations (this is the same action as that of PSL(2,R), except that it’s not faithful,(

−1 0
0 −1

)
acts trivially) and the stabilizer of a point is SO(2,R). For the same reasons,

PSL(2,Z)\H2 = SL(2,Z)\H2. Mahler’s compactness criterion implies that the systoles of
a sequence of tori (normalized to have area 1) corresponding to a sequence of points in
PSL(2,Z)\H2 tend to 0 if and only if the points go up into the cusp of PSL(2,Z)\H2.
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