INTRODUCTION TO TEICHMULLER THEORY 2023/2024

Problem set 2: Teichmiiller theory for tori

Exercise 1 (A fundamental domain and a generating set). Let

1 1
F = {Z €H2, |Z| > ]., —5 < RG(Z) < 5}
(a) Prove that for all 7 € H? there exists an element g € PSL(2,Z) so that gr € F. Hint: try
maximizing Im(g7).

a b

Solution: Let z € H? and g = € PSL(2,Z). A direct computation (that we have

d
performed multiple times by now) shows that
Im(z)
I e GO
m(g2) lcz + d|?

Now let 7 € H? and let g € PSL(2,Z) be an element such that Im(g7) is maximal. Note
that this is an honest maximum, since the number of integers so that |cz +d| < K is finite
for any K > 0.

Since

11
T = [0 | } € PSL(2,7),

we can always post-compose with 7% for some k € Z to make sure that —% < Re(gr) < %
Now suppose that |g7| < 1. Since

0 —1
S:L 0 ]EPSL(Q,Z)

this leads to a contradiction, because S(g7) would have a larger imaginary part (this follows
directly from our formula for Im(S(gz))). So, we conclude that we can indeed move every
7 € H? into F using PSL(2,7Z).

(b) Prove that

— if 7 € F then
(PSL(Q, Z) - r> NF={r},

— if Re(7) = 5 then
<PSL(2,Z) -7') NF={r1+1},

— if Re(r) = —3 then
<PSL(2,Z) : 7') NF={r,7—-1}



— and if |7| = 1 then
(PSL(2.2) - 7) N F = {r,~1/7}.

Solution: Suppose both z and gz lie in F for some g € PSL(2,Z). Without loss of generality,
we assume that Im(gz) > Im(z). This implies that

lcz +d| < 1.

Using that z € F this implies that ¢ € {—1,0,1}. If ¢ = 0, then d = 1 and we obtain

o= 1]

for some k € Z. Now using that z € F, we see that either k € {£1} and Re(z) € {£3} or
k= 0.

If ¢ = =41, then d = 0 and |2| = 1 and hence

-[% 2]

which gives us the |7| = 1 case.

Use the above to show that

11 0 —1
T—{O 1} and S—{l 0}

generate PSL(2,Z). Hint: given g € PSL(2,Z), bring g - 2i back to F.

Solution: Observe that in the solution to (a), we used exactly the matrices 7" and S to
bring a point any F. Let h denote the word in 7%' and S*!' we generate to bring g - 2i to

JF and write
o — a b
9= ¢ al"

Since h - g - 2i € F, we have

2

sy mhg-2)z

MES

This means that ¢ = 0 (since 2/4 < v/3/2). That in turn implies that 1 = det ( CCL 2 > =
ad, so a = d = £1. This means that

11
Re(h-g-2i) =Re(2i+0b)=b¢€ l—§, 5}
and hence that b = 0. Which implies that - g = 1 in PSL(2,Z). So g = h™'. h (and
hence h™!) being a word in T#!' and S*!, this writes g as a word in 7! and S**.



(d) Conclude that SL(2,Z) can be generated by
11 0 —1
( 01 ) and ( 1 0 ) .

Solution: Because T" and S generate PSL(2,7Z), we can, for every A € SL(2,Z), write at
least one of {A, —A} as a word in

1 1 +1 d O _1 +1

0 1 an 1 0 '
0 -1\ (-1 0
10 /) Lo -1

so we can in fact obtain A itself.

Moreover

Exercise 2 (Moduli spaces of lattices in R" and flat tori). A lattice A < R™ is a discrete
subgroup of finite covolume. Alternatively, it’s the Z-linear span of a a basis of R"”. The quotient
R™/A is an n-dimensional torus with a flat Riemannian metric (that descends from the Euclidean
metric of R™). The goal of this exercise is to study moduli spaces of lattices and flat tori. Our end
goal is to prove Mahler’s compactness criterion. For more on these spaces and other spaces like
them, we refer to Andrés Sambarino’s courses Géométrie des espaces globalement symétriques
and Sous-groupes discrets des groupes de Lie.

(a) Let vy,...,v, € R form a basis and let A denote the matrix that has these vectors as
columns. Show that vy, ..., v, generate a lattice of covolume 1 if and only if det(A) € {%1}.
Conclude that every lattice of covolume 1 in R™ is of the form

A-7Z"

for some A € SL(n,R).

Solution: The set

where A is the matrix whose columns are the vectors v;, forms a fundamental domain for
the action of A on R™. We have

1 1
1—vol(f)—/dm1-~~dxn—|det(A)|-/ / dys - - dyy, = | det(A)|
F 0 0

So det(A) € {£1}. If det(A) = —1, then we replace v; by —v; and obtain a matrix A’
with det(A’) = 1. This doesn’t change the lattice.



(b)

Suppose that vq,...,v, and wy,...,w, are lattice bases for the same lattice A < R" (i.e.
spang(vy, ..., v,) = spang(wy,...,w,)). Show that there exists a matrix A with integral
entries such that det(A) € {£1} and

w,=A-v, i=1,...,n.
Conclude that the set of lattices of covolume 1 in R" can be identified with

SL(n,Z)\SL(n,R)

Solution: Since the vectors w; € spany(vy,...,v,) there exists a matrix A with integer

entries such that
’U,)i:A’Ui, z':l,...,n

Likewise, let B be the integral matrix such that
Bv,=w;, 1=1,...,n.
This implies that B = A~!. Taking determinants, we obtain
1 = det(BA) = det(B) det(A).

Since det(A),det(B) € Z, we obtain that det(A),det(B) € {£1} as required.

We have seen that every lattice of covolume 1 is of the form A-Z" for some A € SL(n, R).
Now suppose vy, ..., v, and wy, ..., w, corresponding to matrices A, B € SL(n,R) respec-
tively generate the same lattice. Then B = C'- A where C is some matrix in SL(n,Z) (the
determinant needs to be 1 because of multiplicativity of determinants). So we conclude
we can identify the set of lattices with SL(n,Z)\SL(n, R)

Show that the space of (isometry classes of) flat n-dimensional tori of volume 1 can be
identified with
SL(n,Z)\SL(n,R)/SO(n,R)

Solution: If two lattices differ by a rotation, they yield the same flat torus.

Conversely, by the Killing—Hopf theorem, all flat n-dimensional tori are of the form
R"™/A
for some lattice A < R"™. Now suppose
¢ :R"/A; — R"/A

is an isometry. We may lift ¢ to an isometry ¢ : R" — R" that satisfies p(A;) = As and
©(0) = 0. Since the only isometries of R™ that preserve the origin are linear isometries, we
may identify ¢ with an element of SO(n,R).



(d) (Blichfeld’s theorem) Suppose that A < R™ is a lattice of covolume 1 and that S C R”
is measurable with vol(S) > 1. Show that S contains two distinct points v,w € S with
v—w €A

Solution: Consider the projection of S to the quotient torus R"/A. Because the volume of
S is more than that of R"/A, S contains two elements v and w that project to the same
point in R"/A, i.e. v —w € A.

(e) (Minkowski’s first theorem) Suppose that A < R" is a lattice of covolume 1 and suppose
that C' C R™ is convex and centrally symmetric (i.e. C' = —C'). Suppose moreover that
vol(C') > 2". Show that C' contains a non-zero lattice vector. Hint: Consider the set

~ 1 1
Czé-C:{é-x,xEC’}.

Solution: We have

vol (@) = 2invol(C') > 1,

so by (d), there exist z,y € C such that z—y € A\{0}. The vectors 2z, 2y € C. Moreover,
because C'is centrally symmetric, —2y € C as well. Finally, because C' is convex:

1 1

(f) (Minkowski’s second theorem) Suppose that A < R™ is a lattice of covolume 1. Define the
succesive minima of A by

mi(A) = min {r > 0; dim{spang (ANB,(0)) >k},

where B,.(0) denotes the closed ball of radius r around 0 € R”. Show that:

n

[[me(n) < 27/vol (B1(0)).

k=1

Solution: Let vy, ... v, be a set of n vectors realizing the successive minima and let vy, ..., v,
denote their Gram-Schmidt orthonormalization.

Consider the ellipsoid

E= ~,L' € Rn, k <1;.
(S 3 e <)
Its volume is

vol(E) = vol (By(0)) - [ [ ().

5



So, if we show that it contains no non-zero lattice vectors, we obtain the inequality we're
after from Minkowski’s first theorem.

Given w € A\ {0}, let £k =1,...,n be maximal such that ||w| > my(A). So, we can write

k
w = Zaﬁi
i=1
with a; = (w,v;) for i =1,... k. We get
n a2 k a2 k )
1 o wll
7 Z = >
D P (A 2 R 22 = g 2

So, indeed w ¢ E and hence Minkowski’s first theorem applies.

(Korkine—Zolotarev—Hermite reduction) Let A < R" be a lattice. Our next goal is to find
a “short” basis for A. The vectors realizing the successive minima (or rather some subset
thereof) might seem like natural candidates. It however turns out that it’s not always
possible to extract a basis from this set of vectors. So we need something else.

- A lattice basis (vy,...,v,) is called size reduced if its Gram—Schmidt orthogonaliza-
tion, defined recursively by

j—1

vy =v; and v;:vj—z<‘1’};’z‘}’12> vy, for j > 2
i—1

satisfies
{vj, v7)
072
Show that A admits a size reduced
nalization.

< forall 1 <i<j<n

N =

on

asis that has the same Gram—Schmidt orthogo-

Solution: Suppose (vy,...,v,) is any lattice basis for A. We will recursively change
the basis so that it becomes size reduced. We will write

o <Uj’U;k>
R (0

So ’
j
P .. *
by = § HijU; -
1=1

Suppose that
forall 1 <1<y <k,

N =

|pij] <

but |u;| > 1. We can set N
Vi = VU + mu;



for some m € Z such that

i . ) tme -1 2
= Ui +m - = Uk; + M ——,=.
l’[/k’] lukij ”U;”Z /"ij 27 2

By orthogonality, this doesn’t influence pi; for i < j , S0 we can successively change the
coefficients to make them all lie in the interval [—3, 3]. Moreover, it doesn’t influence
the Gram-Schmidt orthonormalization either. Indeed, to obtain v}, the component
in the v;-direction is removed again.

For:=1,...n, let m; : R — R" denote the orthogonal projection onto

spang (v, ..., v;_1)" = spang (v}, ..., v5).

Observe that m;(A) is a lattice in m;(R™). A basis (vy,...,v,) is called Korkine—
Zolotarev—Hermite (KZH) reduced if:

x it’s size reduced, and

« for i =1,...,n, v} is the shortest lattice vector in m;(A).

Show that every lattice admits a KZH reduced basis.

Solution: We first recursively try to find candidates for the Gram—Schmidt orthogo-
nalization of our basis. Observe that m, by definition, is the identity.

« Let v} denote the shortest lattice vector of A, this defines 7o

x For i > 2, let v} the shortest lattice vector of 7;(A). This defines ;4 (if ¢ < n).
Now, for i = 1,...,n, we let v; € A be some arbitrary vector such that m;(v;) = v}
Observe that this implies that (v],...,v}) is the Gram—Schmidt orthogonalization of
(U1, ..., V).
We claim that (vy,...,v,) forms a lattice basis for A. By construction, these vectors

form a basis for R™. So, all we need to show is that the vectors in A have integral
coefficients with respect to this basis. So, given w € A, write

n
i=1

Suppose that \; ¢ Z and i is maximal with respect to this (i.e. Ajy1,..., A\, € Z).
Potentially exchanging w for —w, suppose that A; > 0. Because the vector

w =w— [ N] v — Z/\U]

Jj=i+1
is a lattice vector as well, so we may assume that 0 < \; < land \jy; =... =\, =0.
We have
m(w’) = )\ﬂT,L(’Uz) = )\ZU;k
which is strictly shorter than v}, a contradiction. So indeed, (vy,...,v,) forms a basis.

Finally, we can turn it into a size reduced basis, without changing the Gram—Schmidt
orthogonalization, using the previous point.



(h)

Show that if (vy,...,v,) is a KZH reduced basis for the lattice A, then

4+ 3
loal2 < 52 ma(n)?

Hint: Show that

my(mi(A)) < mi(A)

Solution: Let us first show the inequality from the hint. Take n linearly independent vectors

wy, ..., w, € A with ||w;|]| = m;(A). Since m; is a projection onto a space of dimension
n — i+ 1, there is at least one vector w; among wy, ...,w; such that m;(w;) # 0. This
means that

[07 ] = ma (mi(A)) < lmi(w)) || < my(A) < mi(A),

thus proving the inequality from the hint.

Now we have

i—1
(vi, v})
||U2H2 = ”U: + Z’* ]2 U;HQ
2T
i—1 <’UZ,U;> 2

v 11®

[51
< [lv7II* + ZHU I

1+ 3
4

IN

as required.

(Mahler’s compactness criterion) Show that C' C SL(n,Z)\SL(n,R) is compact if and only
if it’s closed and
inf{|[v]|; v € A € C} > 0.

Solution: First suppose that C' C SL(n, Z)\SL(n,R) is compact, which implies it’s closed,
so we only need to show that the shortest lattice vector is uniformly bounded from below
on C. The key observation is that the function m; : SL(n,Z)\SL(n,R) — (0,00) that
associates the shortest lattice vector to the lattice A € SL(n,Z)\SL(n,R) is continuous.
Indeed, at SL(n,Z) - A € SL(n,Z)\SL(n,R), the shortest lattice vectors is realized by a
finite number of lattice vectors (Z-linear combinations of the columns of A) and all the
other lattice vectors are stricly larger. So in some small open neighborhood of SL(n,Z) - A,
the shortest lattice vector is realized by one of these linear combinations. The length of
a fixed linear combination of the columns of A is a continuous function. So locally, the
shortest lattice vector is the minimum of a finite number of continuous functions, and
hence continuous. This means that m,(C) C (0, 00) is compact and thus that

inf{||v|; ve A€ C} > 0.

8



Conversely, if C' is closed and inf{|v||; v € A € C} > 0, then by (f) and (h), all lattices
A € C admit a lattice basis whose vectors have norms uniformly bounded from below and
above. In other words, they can all be represented by matrices A € SL(n,R) the norm
of whose columns is uniformly bounded from below and above, which implies that C' is
compact.

Show that C' C SL(n,Z)\SL(n,R)/SO(n,R) is compact if and only if it’s closed and
inf{systole(T"); T"€ C} > 0,

here the systole of a flat torus T is the length of the shortest closed geodesic in T'.

Solution: First we observe that systole(R"/A) = m4(A). Moreover, since SO(n,R) is

a compact group, C' C SL(n,Z)\SL(n,R)/SO(n,R) is compact if and only if 7=1(C) C
SL(n, Z)\SL(n, R) is compact, where 7 : SL(n,Z)\SL(n,R) — SL(n,Z)\SL(n,R)/SO(n, R)
is the projection map. So the claim follows from Mahler’s compactness criterion.

Connect this up to the moduli space M; of Riemann surfaces of genus 1.

Solution: We’ve seen that Riemann surfaces of genus 1 correspond one-to-one to flat 2-tori
of area 1 up to isometry (we said metrics up to isometry and rescaling, but we can always
pick a representative of area 1). So we should have

PSL(2,Z)\H? = M; = SL(2,7Z)\SL(2,R)/SO(2, R).

Indeed, we can identify H? with SL(2,R)/SO(2, R), because SL(2, R) acts on H? by Mdbius
transformations (this is the same action as that of PSL(2,R), except that it’s not faithful,

—1 . - o

< 0 _01 > acts trivially) and the stabilizer of a point is SO(2,R). For the same reasons,

PSL(2,Z)\H? = SL(2,Z)\H?. Mahler’s compactness criterion implies that the systoles of
y

a sequence of tori (normalized to have area 1) corresponding to a sequence of points in

PSL(2,Z)\H? tend to 0 if and only if the points go up into the cusp of PSL(2, Z)\H?.



