
Introduction to moduli spaces of Riemann surfaces 2025/2026
Problem set 4: Beltrami differentials and quasiconformal maps

Exercise 1 (Beltrami differentials).

(a) Let S, X1 and X2 be Riemann surfaces and let

S
f−→ X1

g−→ X2

be orientation preserving diffeomorphisms. Prove that:

µg ◦ f =

(
∂f

∂z

/ (∂f

∂z

))
· µg◦f − µf

1− µf · µg◦f
.

Solution: We will write fz := ∂f/∂z and fz := ∂f/∂z in order to make the equations
slightly shorter. The reader should however note that in general fz does not equal f z (but
rather f z). That is, attention should be paid to where the bar ends.

We compute, using the chain rule:

µg◦f =
(g ◦ f)z
(g ◦ f)z

=
(gz ◦ f) · fz + (gz ◦ f) · f z

(gz ◦ f) · fz + (gz ◦ f) · f z

So

fz

fz
· µg◦f − µf

1− µf · µg◦f
=

fz

fz
·
(gz ◦ f) · fz + (gz ◦ f) · f z − fz

fz
· (gz ◦ f) · fz − fz

fz
· (gz ◦ f) · f z

(gz ◦ f) · fz + (gz ◦ f) · f z − fz
fz

· (gz ◦ f) · fz − fz
fz

· (gz ◦ f) · f z

=
(gz ◦ f) · (|fz|2 − |fz|2)
(gz ◦ f) · (|fz|2 − |fz|2)

=
(gz ◦ f)
(gz ◦ f)

= µg ◦ f.

where we have used that f z = fz and f z = fz.

(b) Prove the following lemma about compositions of quasiconformal maps: Suppose X, Y
and Z are Riemann surfaces and f : X → Y and g : Y → Z are orientation preserving
diffeomorphisms. Then the following holds:

(1) We have that
Kf ≥ 1

with equality if and only if f is a biholomorphism.

(2) We have that
Kg◦f ≤ Kg ·Kf .

(3) Finally,
Kf−1 = Kf .
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Hint for (2): Since Kf (z) depends only on the Jacobian matrix Jf (z) of f at z, this is a
linear algebra question.

Solution: Recall that

Kf = sup
z∈X

Kf (z), where Kf (z) =
1 + |µf (z)|
1− |µf (z)|

.

We have seen that µf (z) = 0 if and only if f is holomorphic at z. So Kf (z) ≥ 1 with
equality if and only if f is holomorphic at z. So this proves the inequality and also that
in the equality case, f is holomorphic at all z ∈ X. Because f is invertible (and invertible
holomorphic functions have holomorphic inverses), f is biholomorphic. This proves (1).

For (2), we use the hint. Write A for the Jacobian matrix of f and B for that of g, both
with respect to some holomorphic coordinates on X, Y and Z. Kf can be computed as
the ratio (major axis)/(minor axis) of the ellipse

∥A−1 · z∥ = 1

thinking of z as a real 2-dimensional vector

(
x
y

)
. Using the standard inner product

⟨·, ·, ⟩ the equation for the ellipse is equivalent to

⟨
(
A−1

)t · A−1z, z⟩ = 1

wher (A−1)
t
denotes the transpose of A−1. The matrix (A−1)

t · A−1 is positive definite,
so it has two orthogonal eigendirections (corresponding to the axes of the ellipse) and the
ratio

Kf (z) =
major axis

minor axis
=

√
λ+
A

λ−
A

where λ+
A denotes the maximal eigenvalue of (A−1)

t · A−1 and λ−
A denotes the minimal

eigenvalue of (A−1)
t · A−1. Note that(

λ+
A

)1/2
= ∥A−1∥∞ and

(
λ−
A

)−1/2
= ∥A∥∞

(the latter holds because the top eigenvalue of A ·At is the inverse of the bottom eigenvalue
of (A · At)−1 = (A−1)

t · A−1. So

Kf (z) = ∥A−1∥∞ · ∥A∥∞, Kg(f(z)) = ∥B−1∥∞ · ∥B∥∞

and
Kg◦f (z) = ∥B−1A−1∥∞ · ∥AB∥∞.

This means that submultiplicativity of operator norms of matrices implies the inequality
we’re after.

Property (3) follows from the fact that Kf (z) = ∥A−1∥∞ · ∥A∥∞.
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Exercise 2 (Grötschz’s theorem) Suppose that R1 = [0, a]× [0, 1] and R2 = [0, K · a]× [0, 1]
are two rectangles in the plane, where a > 0 and K ≥ 1. The goal of this exercise is to prove:

Theorem (Grötschz’s theorem) Suppose R1 and R2 are as above and f : R1 → R2 is a
homeomorphism that is smooth and orientation preserving away from a finite number of points.
Then

Kf ≥ K

with equality if and only if f is the affine map

(x, y) ∈ R1 7→ (K · x, y) ∈ R2.

(a) Writing Kf (x, y) for the quasiconformal dilatation of f at (x, y) ∈ R1, prove that∣∣∣∣∂f∂x (x, y)
∣∣∣∣2 ≤ Kf (x, y) · det(Jf (x, y)), (1)

where Jf (x, y) denotes the Jacobian matrix of f at (x, y) ∈ R1.

Solution: Writing

M = sup
{ ∣∣df(x,y)(v)∣∣ ; v ∈ T 1

(x,y)R1

}
and

m = inf
{ ∣∣df(x,y)(v)∣∣ ; v ∈ T 1

(x,y)R1

}
,

We have Kf (x, y) = M/m, det(Jf (x, y)) = M ·m and |∂f
∂x
(x, y)|2 ≤ M2, which proves the

claim.

(b) Prove that: ∫
R1

∣∣∣∣∂f∂x (x, y)
∣∣∣∣ dxdy ≥ K · area(R1) (2)

Solution: This is the observation that for almost all y ∈ [0, 1],
∫ a

0
|∂f
∂x
(x, y)|dx ≥ K · a, by

the substitution rule. Integrating with respect to y gives the desired inequality.

(c) Use the inequalities above to show that

(K · area(R1))
2 ≤ K · area(R1) ·Kf · area(R1).

Thus yielding that Kf ≥ K.
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Solution: We have

(K · area(R1))
2

(2)

≤
(∫

R1

∣∣∣∣∂f∂x (x, y)
∣∣∣∣ dxdy)2

(1)

≤
(∫

R1

√
Kf (x, y) ·

√
det(Jf (x, y))dxdy

)2

Cauchy–Schwarz

≤
∫
R1

Kf (x, y)dxdy ·
∫
R1

det(Jf (x, y))dxdy

≤ area(R2) ·Kf · area(R1)

= K · area(R1) ·Kf · area(R1).

(d) We have seen during the course that the affine map realizes equality. Prove that this is
the only such map.

Solution: We observe that
∂f

∂x
=

∂f

∂z
+

∂f

∂z

and recall from the course that

Kf (z) =

∣∣∂f
∂z

∣∣+ ∣∣∂f
∂z

∣∣∣∣∂f
∂z

∣∣− ∣∣∂f
∂z

∣∣ and det(Jf (z)) =

∣∣∣∣∂f∂z
∣∣∣∣2 − ∣∣∣∣∂f∂z

∣∣∣∣2 .
So √

Kf (z) · det(Jf (z)) =
∣∣∣∣∂f∂z

∣∣∣∣+ ∣∣∣∣∂f∂z
∣∣∣∣ .

This means that equality in the first inequality above means that∣∣∣∣∂f∂z +
∂f

∂z

∣∣∣∣ = ∣∣∣∣∂f∂z
∣∣∣∣+ ∣∣∣∣∂f∂z

∣∣∣∣
almost everywhere and thus that the argument of ∂f/∂z and ∂f/∂z is the same almost
everywhere.

Equality in the last inequality means that Kf (x, y) is constant almost everywhere and
equal to K. Combining the above, we see that µf coincides with the Beltrami coefficient
of the affine map f0. The result of Exercise 1(a), applied to f ◦ f−1

0 now gives that this
map is conformal. An argument similar to that of the proof of Proposition 7.1.9 from the
course now allows us to conclude.
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