
Journal of the Inst. of Math. Jussieu (2010) 9(3), 481–599 481
doi:10.1017/S1474748010000022 c© Cambridge University Press 2010

MOTIVES OF AZUMAYA ALGEBRAS

BRUNO KAHN1 AND MARC LEVINE2
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Introduction

Voevodsky [59] has defined an analog of the classical Postnikov tower in the setting of
motivic stable homotopy theory by replacing the classical suspension Σ := − ∧ S1 with
t-suspension ΣT := −∧P1; we call this construction the motivic Postnikov tower. In this
paper, we use this idea to associate invariants to a central simple algebra A over a field
k, and to study them.

For this, we consider the motivic Postnikov tower in the category of S1-spectra,
SHS1(k), and its analog in the category of effective motives, DM eff(k). In the setting of
S1-spectra, we look at the presheaf of the K-theory spectra KA:

Y �→ KA(Y ) := K(Y ; A),

where K(Y ; A) is the K-theory spectrum of the category of OY ⊗k A-modules which
are locally free as OY -modules. In the motivic setting, we study the motive M(X) ∈
DM eff(k), where X is the Severi–Brauer variety of A.

Of course, KA is a twisted form of the presheaf K of K-theory spectra Y �→ K(Y )
and X is a twisted form of a projective space over k, so one would expect the layers
in the respective Postnikov towers of KA and M(X) to be twisted forms of the layers
for K and M(Pn). The second author has shown in [33] that the nth layer for K is the
Eilenberg–Mac Lane spectrum for the Tate motive Z(n)[2n]; similarly, the direct sum
decomposition

M(PN ) =
N⊕

n=0

Z(n)[2n]

shows that nth layer for M(PN ) is Z(n)[2n] for 0 � n � N , and is 0 for n outside this
range. The twisted version of Z(n) turns out to be ZA(n), where ZA ∈ DM eff(k) is
the subsheaf of the constant sheaf with transfers Z whose sections ZA(Y ) on a smooth
irreducible k-scheme Y are the subgroup of Z(Y ) = Z equal to the image of the reduced
norm map

Nrd : K0(A ⊗k k(Y )) → K0(k(Y )) = Z.

We like to call ZA the motive of A.
Letting sn and smot

n denote the nth layer of the motivic Postnikov tower in SHS1(k) and
DM eff(k), respectively, and letting EMA1 : DM eff(k) → SHS1(k) denote the Eilenberg–
Mac Lane functor [44], our main results are the following theorems.

Theorem 1. Let A be a central simple algebra over a field k. Then

sn(KA) = EMA1(ZA(n)[2n])

for all n � 0.
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Theorem 2. Let A be a central simple algebra over a field k of prime degree � �= char k,
X := SB(A) the associated Severi–Brauer variety. Then

smot
n (M(X)) = ZA⊗n+1(n)[2n]

for 0 � n � � − 1, 0 otherwise.

See Theorems 6.5.5 and 7.4.2, respectively, in the body of the paper.

Remark 1. Let A be a quaternion algebra over k. Then ZA is in DM eff
gm(k). Indeed, by

Theorem 2, we have the distinguished triangle

Z(1)[2] → M(SB(A)) → ZA → Z(1)[3].

We do not know if ZA is in DM eff
gm(k) for A of larger degree.

Since snKA and smot
n M(X) are the layers in the respective motivic Postnikov towers

· · · → fn+1K
A → fnKA → · · · → f0K

A = KA,

0 = fmot
� M(X) → fmot

�−1 M(X) → · · · → fmot
0 M(X) = M(X),

our computation of the layers gives us some handle on the spectral sequences

Ep,q
2 := π−p−q(s−qK

A(Y )) =⇒ π−p−qK
A(Y )

and

Ep,q
2 := Hp+q(Y, smot

−q M(X)(n)) =⇒ Hp+q(Y, M(X)(n))

arising from the towers. In fact, we use a version of the first sequence to help compute
the layers of M(X). Putting our computation of the layers into the KA-spectral sequence
gives us the spectral sequence

Ep,q
2 := Hp−q(Y, ZA(−q)) =⇒ K−p−q(Y ; A)

generalizing the Bloch–Lichtenbaum/Friedlander–Suslin spectral sequence from motivic
cohomology to K-theory [8,16]. In particular, taking Y = Spec k, we get

K1(A) = H1(k, ZA(1))

and for A of square-free index, prime to the characteristic,

K2(A) = H2(k, ZA(2)).

See Theorem 6.7.1 and Theorem 6.8.2.
To go further, we must use the Beilinson–Lichtenbaum conjecture. Recall that this

conjecture is equivalent to the Milnor–Bloch–Kato conjecture relating Milnor’s K-theory
with Galois cohomology [18,56]. It seems to be now a theorem (see [66]), thanks to work
of Rost and Voevodsky; accepted proofs are certainly that of Merkurjev and Suslin in the
special case of weight 2 [38] and that of Voevodsky at the prime 2 (in all weights) [61].
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Since this seems important to some people, we shall specify in what weights we need the
Beilinson–Lichtenbaum (or Milnor–Bloch–Kato) conjecture for our statements.

We use our knowledge of the layers of M(X), together with the Beilinson–Lichtenbaum
conjecture, to deduce a result comparing Hp(k, ZA(q)) and Hp(k, Z(q)) via the reduced
norm map

Nrd : Hp(k, ZA(q)) → Hp(k, Z(q)),

this just being the map induced by the inclusion ZA ⊂ Z. By identifying Nrd with the
change of topologies map from the Nisnevich to the étale topology (using the fact that
ZA(n)ét = Z(n)ét), a duality argument leads to the following corollary.

Corollary 1. Let A be a central simple algebra of square-free index e over k, with
(e, char k) = 1. Let n � 0 and assume the Beilinson–Lichtenbaum conjecture in weights
w � n + 1 at all primes dividing the index of A. Then

Nrd : Hp(k, ZA(n)) → Hp(k, Z(n))

is an isomorphism for p < n, and we have an exact sequence

0 → Hn(k, ZA(n)) Nrd−−→ Hn(k, Z(n)) 	 KM
n (k)

∪[A]−−−→ Hn+2
ét (k, Z/e(n + 1)) → Hn+2

ét (k(X), Z/e(n + 1)).

Here [A] ∈ H3
ét(k, Z(1)) = H2

ét(k, Gm) is the class of A in the Brauer group of k, and
the map ∪[A] is shorthand for the composition

Hn(k, Z(n)) ∼−→ Hn
ét(k, Z(n))

∪[A]−−−→ Hn+3
ét (k, Z(n + 1))

(note that this cup-product map lands into eH
n+3
ét (k, Z(n + 1)) 	 Hn+2

ét (k, Z/e(n + 1)),
the latter isomorphism being a consequence of the Beilinson–Lichtenbaum conjecture in
weight n + 1).

See Theorem 8.2.2 in the body of the paper for this result.
Combining this result with our identification above of K1(A) and K2(A) as ‘twisted

Milnor K-theory’ of k, we have the following corollary (see Theorem 8.2.2).

Corollary 2. Let A be a central simple algebra over k of square-free index e, with
(e, char k) = 1. Then the reduced norm maps on K0(A), K1(A) and K2(A)

Nrd : Kn(A) → Kn(k), n = 0, 1, 2,

are injective; in fact, we have an exact sequence

0 → Kn(A) Nrd−−→ Kn(k) = Hn(k, Z(n))
∪[A]−−−→ Hn+2

ét (k, Z/e(n + 1)) → Hn+2
ét (k(X), Z/e(n + 1))

for n = 0, 1, 2. (For n = 2 we need the Beilinson–Lichtenbaum conjecture in weight 3.)
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For n = 2, this proves a conjecture of Merkurjev [36, p. 81].
The injectivity of Nrd on K1(A) is Wang’s theorem [64], and it was proved for K2(A)

and A a quaternion algebra by Rost [51] and Merkurjev [35]. They used it as a step
towards the proof of the Milnor conjecture in degree 3; conversely, the Milnor conjecture
in degree 3 was used in [26, proof of Theorem 9.3] to give a simple proof of the injectivity
in this case. This proof was one of the starting points of the present paper.

For n = 0, the exact sequence reduces to Amitsur’s theorem that ker(Br(k) →
Br(k(X))) is generated by the class of A [1]. For n = 1, the exactness at K1(k) is
due to Merkurjev–Suslin [38, Theorem 12.2] and the exactness at H3

ét(k, Z/e(2)) could
be extracted from Suslin [53]. For n = 1 and A a quaternion algebra, the exactness at
H3

ét(k, Z/2) is due to Arason [2, Satz 5.4]. For n = 2 and a quaternion algebra, it is due
to Merkurjev [37, Proposition 3.15].

The injectivity for K2(A) with A of square-free index has also been proven by Merkur-
jev and Suslin [39, Theorem 2.4]; their method also relies on the Beilinson–Lichtenbaum
conjecture, using it to give a computation of the motivic cohomology of the ‘Čech co-
simplicial scheme’ Č(X).

This paper is divided into three parts. Part I is foundational material concerning the
slice filtration in both the homotopical and the motivic context, and their comparisons: it
may be skipped at first reading by those readers primarily interested in the applications to
central simple algebras, which can be found in Part II. Part III contains three appendices.

We begin in § 1 with a quick review of the motivic Postnikov tower in SHS1(k) and
DM eff(k), recalling the basic constructions and properties. In § 2, we recall from [33] the
homotopy coniveau tower and its relation to the motivic Postnikov tower in SHS1(k); we
also explain how to modify this theory to give an analogous homotopy coniveau tower
for motives. We discuss well-connected spectra in § 3, showing how the slices for these
spectra can be expressed using a generalization of Bloch’s cycle complexes. In § 4 we
recall some of the first author’s theory of birational motives∗ as well as pointing out the
role these motives play as the Tate twists of slices of an arbitrary T -spectrum.

We proceed in § 5 to define and study the special case of the birational motive ZA

arising from a central simple algebra A over k; we actually work in the more general
setting of a sheaf of Azumaya algebras on a scheme. In § 6 we prove our first main
result: we compute the slices of the ‘homotopy coniveau tower’ for the G-theory spectrum
G(X; A), where A is a sheaf of Azumaya algebras on a scheme X. This result relies on
some regularity properties of the functors Kp(−, A) which in turn rely on results due
to Vorst and generalized by van der Kallen; we collect and prove what we need in this
direction in Appendix B. We also recall some basic results on Azumaya algebras in
Appendix A. Specializing to the case in which X is smooth over a field k and A is the
pullback to X of a central simple algebra A over k, the results of [33] translate our
computation of the slices of the homotopy coniveau tower to give Theorem 1.

We also give in § 6.9 a construction of homomorphisms from SK1 and SK2 of a central
simple algebra A to quotients of étale cohomology groups of k, in the spirit of an idea

∗ Work done jointly with Sujatha.
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of Suslin [54,55], albeit with a very different technique (for SK2 we need the Beilinson–
Lichtenbaum conjecture in weight 3).

We turn to our study of the motive of a Severi–Brauer variety in § 7, proving Theorem 2
there. We conclude in § 8 with a discussion of the reduced norm map and the proofs of
Corollaries 1 and 2. In Appendix C, we recall the construction and basic properties of
the category of motives DM eff(S) over a regular base S, as well as the version for the
étale topology DM eff(S)ét.

Notation

For a scheme B, let SchB denote the category of finite type B-schemes, and Sm/B the
full subcategory of smooth quasi-projective B-schemes. For B = Spec R, we often write
SchR and Sm/R for SchB and Sm/B. We let Ord denote the usual indexing category for
(co)simplicial objects, that is, Ord has objects the sets [n] := {0, 1, . . . , n} and morphisms
[n] → [m] the non-decreasing maps of sets. We write ∆[n] for the representable simplicial
set HomOrd(−, [n]). For a set S, Z[S] denotes the free abelian group on S; for a simplicial
set S, Z[S] is the corresponding simplicial abelian group n �→ Z[Sn].

For categories A and C, with C essentially small, we let PSA(C) denote the category
of A-valued presheaves on C; in case A is the category of sets, we just write PS(C), and
for the category of pointed sets we write PS•(C). Since an A-valued presheaf on Ord is
just a simplicial object of A, we write sA for PSA(Ord).

For an additive category A, we let C(A) denote the category of complexes over A, with
differential of degree +1. We let K(A) denote the homotopy category of complexes, with
the standard structure of a triangulated category. If A is an abelian category, we denote
the derived category by D(A). We have as well the bounded versions C?(A), K?(A),
D?(A), with ? = ∅, +,−, b. We let C�0(A) denote the category of complexes supported
in non-positive degrees. We will systematically use the cohomological translation functor:
(E[1])n := En+1. On the occasion that we use a homological complex C∗, we will always
consider C∗ as a cohomological complex by setting Cn := C−n, and the translation
functor will be applied to C∗. As homological complexes, we thus have (C∗[1])n = Cn−1.

Part I. Slice filtrations and birational motives

1. The motivic Postnikov tower in SHS1(k) and DMeff (k)

In this section, we assume that k is a perfect field. We review Voevodsky’s construction of
the motivic Postnikov tower in SHS1(k), as well as the analog of the tower in DM eff(k).
We also give the description of these towers in terms of the homotopy coniveau tower,
following [33].

1.1. Constructions in A1 stable homotopy theory

We start with the unstable A1 homotopy category over k, H•(k), which is the homotopy
category of the category Spc•(k) of pointed presheaves of simplicial sets on Sm/k, with
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respect to the Nisnevich- and A1-local model structure defined in [15, § 2] (in [15] Spc•(k)
is denoted M and the model structure Mmo is called the motivic model structure). We
recall that the cofibrations in Spc•(k) are generated by maps of the form

hX ∧ ∂∆[n] → hX ∧ ∆[n], n = 0, 1, . . . ,

where hX is the pointed representable presheaf hX(U) := HomSm/k(U, X)+.
Spc•(k) contains the category of simplicial sets by taking the constant presheaf; in

particular, we have the suspension operation

Σs : Spc•(k) → Spc•(k)

defined by ΣsX := X ∧ S1. For S ∈ Spc•(k), we have the associated A1-homotopy sheaf
πA

1

n (S), this being the Nisnevich sheaf associated to the presheaf

U �→ HomH•(k)(Σn
s hU , S).

We note that the weak equivalences in Spc•(k) are the maps inducing an isomorphism
on πA

1

n for all n � 0.∗ Below, we simplify the notation πA
1

n into πn.
We let SptS1(k) denote the category of Σs-spectra in Spc•(k), i.e. the category with

objects sequences (E0, E1, . . . ) in Spc•(k) together with bonding maps εn : ΣsEn →
En+1; morphisms are sequences of morphisms in Spc•(k) commuting with the bonding
maps. Thus, SptS1(k) is just the category of presheaves of classical spectra on Sm/k.

For E = (E0, E1, . . . ) ∈ SptS1(k), one has the stable homotopy sheaf

πs
n(E) := lim−→

N

πn+NEN .

A map f : E → F in SptS1(k) is a stable weak equivalence if f∗ : πs
n(E) → πs

n(F ) is an
isomorphism for all n.

Hovey [21, § 3] defines the stable model structure on SptS1(k). It follows from [21,
Theorem 4.12] that the weak equivalences are the stable weak equivalences. We denote
the homotopy category of SptS1(k) by SHS1(k).

Remark 1.1.1. There is a natural functor

SHS1
(k) → SHS1(k),

where SHS1
(k) is the stable A1-homotopy category defined by Morel in [40, § 3.2]. This

functor is in fact an equivalence of categories.
To see this, we use the Nisnevich-local model structure Ms on M := Spc•(k) defined

in [15]. The results of Hovey [21, Theorems 3.4, 4.9 and 4.12] tell us that the fibrant
objects in SptS1(Ms) are (up to weak equivalence) the S1-spectra E = (E0, E1, . . . ) such
that En is fibrant in Ms and En → ΩsEn+1 is a weak equivalence in Ms. Changing Ms

to Mmo gives us a similar description of the fibrant objects in SptS1(Mmo) =: SptS1(k).
∗ To see this, note that, for a map f between fibrant objects, this implies that f induces an isomorphism

on the homotopy presheaves U �→ HomH•(k)(Σn
s hU , −), and the Σn

s hU generate.
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As Mmo is the Bousfield localization of Ms with respect to A1-homotopy, it is then easy
to see that the Bousfield localization of SptS1(Ms) with respect to A1-homotopy has the
same fibrant objects as SptS1(Mmo), from which it follows that the respective homotopy
categories are equal.

We shall not however use this identification of the category SHS1
(k) of [40] with

SHS1(k) in this paper.

The infinite suspension functor

Σ∞
s : Spc•(k) → SptS1(k), Σ∞(X) := (X, ΣsX, Σ2

sX, . . . )

admits as right adjoint the 0-space functor (E0, E1, . . . ) �→ E0, giving the Quillen adjoint
pair (Σ∞

s , Ω∞
s ) and inducing the pair of adjoint functors on the homotopy categories

Σ∞
s : Spc•(k) � SHS1(k) : Ω∞

s .

Let Gm be the pointed space (A1 \{0}, 1). Let T denote the pointed presheaf S1 ∧Gm,
and ΣT the operation −∧T . The functor ΣT on SptS1(k) has as right adjoint the T -loops
functor ΩT := Hom(T, −). These functors form a Quillen pair of adjoint functors on the
model category SptS1(k) and thus define an adjoint pair of functors

ΣT : SHS1(k) � SHS1(k) : ΩT

on the homotopy category SHS1(k).
We have the pointwise model structure on SptS1(k), with the same cofibrations as

above, and with the weak equivalences the maps E → F for which E(Y ) → F (Y ) is a
weak equivalence of spectra for each Y ∈ Sm/k. We write HSptS1(k) for the homotopy
category of SptS1(k) with respect to the pointwise model structure.

Remark 1.1.2. For E ∈ SptS1(k), define ΩP1E(X) as the homotopy fibre

ΩP1E(X) := fib(E(X × P1) → E(X × ∞)).

As T ∼= (P1,∞) in H•, the adjoint functors ΣT , ΩT on SHS1(k) are isomorphic to
ΣP1 , ΩP1 ; we often use the model ΩP1E for ΩT E.

We let Spc• denote the category of pointed simplicial sets, Spt the category of spectra
(i.e. − ∧ S1 spectra in Spc•) and SH the homotopy category of Spt, i.e. the classical
stable homotopy category. For each Y ∈ Sm/k, the evaluation functor at Y defines as
usual an exact functor

RΓ (Y,−) : SHS1(k) → SH
with RΓ (Y, E) := Efib(Y ), where E → Efib is a fibrant model. As we will usually apply
RΓ (Y,−) to presheaves E for which E(Y ) → Efib(Y ) is a weak equivalence for all Y , we
usually will write E(Y ) for RΓ (Y, E).

Remark 1.1.3. There are other model structures on Spc•(k) and SptS1(k) with the
same weak equivalences, and thus yielding the same homotopy categories as above; see
for instance [24,41,49].
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1.2. Postnikov towers for S1-spectra

Voevodsky [59] has defined a canonical tower on the motivic stable homotopy category
SHS1(k), which we call the motivic Postnikov tower.

Recall from [42, Definition 3.2.6] that a thick subcategory A of a triangulated category
T is a localizing subcategory if each (not necessarily finite) coproduct of objects of A
that exists in T is in A. Let Σn

T SHS1(k) be the localizing subcategory of SHS1(k)
generated by objects of the form Σn

T E, E ∈ SHS1(k). This gives us the tower of localizing
subcategories

· · · ⊂ Σn+1
T SHS1(k) ⊂ Σn

T SHS1(k) ⊂ · · · ⊂ SHS1(k).

Take E ∈ SHS1(k) and consider the cohomological functor

HomΣn
T SHS1 (k)(−, E) : Σn

T SHS1(k) → Ab .

By Neeman’s version [42, Theorem 8.3.3] of Brown representability, this functor is rep-
resented by an object rnE of Σn

T SHS1(k); sending E to rnE defines a right adjoint
rn : SHS1(k) → Σn

T SHS1(k) to the inclusion in : Σn
T SHS1(k) → SHS1(k). Let

fn := in ◦ rn with counit fn → id. Thus, for each E ∈ SHS1(k), there is a canoni-
cal tower in SHS1(k)

· · · → fn+1E → fnE → · · · → f0E = E, (1.1)

the motivic Postnikov tower for S1-spectra. We write fn/n+rE for the cofibre of fn+rE →
fnE; we use the notation sn := fn/n+1 to denote the nth slice in the Postnikov tower.

By [33, Theorem 7.4.2], the T -loops functor ΩT is compatible with the truncation
functors fn up to canonical isomorphism

ΩT ◦ fn+1 ∼= fn ◦ ΩT . (1.2)

1.3. The motivic Postnikov tower for motives

There is an analogous Postnikov tower for motives, where the corresponding category
of motives is the enlargement DM eff(k) of the category DM eff

− (k). For details on the
construction and basic properties of DM eff(k), we refer the reader to Appendix C.

Let DM eff(k)(n) be the localizing subcategory of DM eff(k) generated by objects
M(X)(n)[2n], X ∈ Sm/k, giving the tower of localizing subcategories (for n � 0)

· · · ⊂ DM eff(k)(n + 1) ⊂ DM eff(k)(n) ⊂ · · · ⊂ DM eff(k)(0) = DM eff(k).

Just as for SHS1(k), we have the right adjoint rmot
n : DM eff(k) → DM eff(k)(n) to the

inclusion imot
n . Thus, for E in DM eff(k), we have the motivic Postnikov tower in DM eff(k)

· · · → fmot
n+1E → fmot

n E → · · · → fmot
0 E = E (1.3)

with fmot
n := imot

n ◦ rmot
n .

Remark 1.3.1. We lift the functors sn, fn to operations on SptS1(k) by taking the
fibrant model of the corresponding object in SHS1(k); we make a similar lifting to
C(PST(k)) for the functors fmot

n , smot
n .
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1.4. Comparing Postnikov towers

We use the motivic Eilenberg–Mac Lane functor to compare the Postnikov towers
in SHS1(k) and DM eff(k); we begin by recalling the construction of the Eilenberg–
Mac Lane functor from [45, § 1].

We recall the Dold–Kan correspondence [14,28]. Sending a simplicial abelian group
n �→ Cn to the normalized chain complex (NC, d):

NC−n :=
n⋂

i=1

ker(di : Cn → Cn−1), d = d0,

defines an equivalence of categories

N : sAb → C�0(Ab).

The inverse is the Dold–Kan functor

DK : C�0(Ab) → sAb,

where DK(C) is the simplicial object

q �→ HomC�0(Ab)(NZ[∆[q]], C).

If C is a category, applying the functors N and DK pointwise gives an equivalence of
presheaf categories C�0(PSAb(C)) ∼ s PSAb(C).

We have the forgetful functor

U : PST(k) → PS•(Sm/k)

sending a presheaf with transfers P to the associated presheaf of sets (pointed by 0). U
induces the functor

sU : s PST(k) → Spc•(k)

on the associated categories of simplicial objects. Sending hX ∧∆[n] to Ztr(X) ⊗ Z[∆[n]]
extends, by taking the left Kan extension, to a functor

Ztr : Spc•(k) → s PST(k)

left adjoint to sU .
Composing with the Dold–Kan functor DK : C�0(PST(k)) → s PST(k) gives

DK ◦ sU : C�0(PST(k)) → Spc•(k),

with left adjoint
N ◦ Ztr : Spc•(k) → C�0(PST(k)).

One defines a model structure C�0(PST(k))A1 on C�0(PST(k)) with the cofibrations
generated by maps of the form

Ztr(X)[n − 1] → Dtr(X)[n], n � 1, and 0 → Ztr(X), X ∈ Sm/k,
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where Dtr(X) is the complex Ztr(X) id−→ Ztr(X), concentrated in degrees 0, 1, the weak
equivalences the maps in C�0(PST(k)) which are weak equivalences in C(PST(k))A1 ,
and the fibrations are the maps having the right lifting property with respect to acyclic
cofibrations. It is easy to show that N ◦ Ztr defines a left Quillen functor with right
adjoint DK ◦ sU (see [45, § 2] for details).

Let Spt(C�0(PST(k))) be the category of spectrum objects in C�0(PST(k)) with
respect to the suspension operator ΣC := C[1]. As C[1] = (Z[1]) ⊗ C, Hovey’s
methods apply to give a stable model category structure Spt(C�0(PST(k)))A1 to
Spt(C�0(PST(k))). (N ◦ Ztr, DK ◦ sU) extends to a Quillen adjoint pair (Spt(N ◦
Ztr),Spt(DK ◦ sU)) on the spectrum categories.

Sending (C0, C1, . . . ) to lim−→n
Cn[−n] defines a left Quillen equivalence

Spt(C�0(PST(k))A1 → C(PST(k))A1 ,

with inverse the functor

[C ∈ C(PST(k))] �→ (τ�0C, τ�0(C[1]), . . . , τ�0(C[n]), . . . ).

Thus, on the homotopy categories, (Spt(N ◦ Ztr),Spt(DK ◦ sU)) induces the pair of
adjoint functors (Mot, EMA1):

Mot : SHS1(k) � DM eff(k) : EMA1 .

Remark 1.4.1. Actually, Østvær–Röndigs define the adjoint pair (Mot, EMA1) between
the category of T -spectra SH(k), and the category of Z(1)[2]-spectra DM(k). The con-
structions of [44,45] work in the (somewhat simpler) setting described above, by replacing
the T -suspension functor used in [44,45] with the S1-suspension Σs.

Remark 1.4.2. Replacing PST(k) with Ab and Spc•(k) with Spc•, exactly the same
construction gives the classical Eilenberg–Mac Lane functor

EM : D(Ab) → SH .

For Y ∈ Sm/k, F ∈ DM eff(k), we have a canonical isomorphism in SH,

EM(F(Y )) ∼= (EMA1 F)(Y ),

as follows from the adjunction computation for a general E ∈ SH:

HomSH(E, EM(F(Y ))) 	 HomD(Ab)(C∗E, F(Y ))

	 HomDMeff (k)(C∗E ⊗ M(Y ),F)

	 HomDMeff (k)(Mot(E ∧ Y ),F)

	 HomSHS1 (k)(E ∧ Y,EMA1 F)

	 HomSH(E, (EMA1 F)(Y )),

where C∗ is the left adjoint of EM and the third isomorphism uses the fact that Mot is
a strict monoidal functor.
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Lemma 1.4.3. For every n � 0, we have Mot(Σn
T SHS1(k)) ⊂ DM eff(k)(n) and

EMA1(DM eff(k)(n)) ⊂ Σn
T SHS1(k).

Proof. Note that, as the infinite suspension spectra Σ∞
s hX+ are generators for SHS1(k),

the Σn
T Σ∞

s hX+ generate Σn
T SHS1(k) as a localizing subcategory of SHS1(k). Since Mot

is exact and commutes with colimits, we need only show that Mot(Σn
T Σ∞

s hX+) is in
DM eff(k)(n) for each X ∈ Sm/k.

Since
Ztr(X × P1) = Ztr(X) ⊗tr Ztr(P1) ∼= Ztr(X) ⊕ Ztr(X)(1)[2],

we have
Mot(ΣT (Σ∞hX+)) ∼= Mot(Σ∞hX×P1/hX) ∼= M(X)(1)[2],

and similarly, Mot(Σn
T (Σ∞hX+)) ∼= M(X)(n)[2n]. This verifies the first inclusion.

The second inclusion is more subtle; we will postpone the proof until we introduce the
homotopy coniveau construction in § 2.2 (see Remark 2.2.4). �

Proposition 1.4.4. We have canonical isomorphisms for all n � 0,

EMA1 ◦ fmot
n

∼= fn ◦ EMA1 , EMA1 ◦ smot
n

∼= sn ◦ EMA1 ,

inducing an isomorphism of distinguished triangles

EMA1 ◦ fmot
n+1

��

�
��

EMA1 ◦ fmot
n

��

�
��

EMA1 ◦ smot
n

�
��

�� EMA1 ◦ fmot
n+1[1]

�
��

fn+1 ◦ EMA1 �� fn ◦ EMA1 �� sn ◦ EMA1 �� fn+1 ◦ EMA1 [1]

Proof. By Lemma 1.4.3 and the fact that EMA1 is a right adjoint, we see that
EMA1(fmot

n F) → EMA1(F) satisfies the universal property of fn EMA1(F) → EMA1(F),
giving the canonical isomorphism

EMA1 ◦ fmot
n

∼= fn ◦ EMA1 .

Let Σn+1
T SHS1(k)⊥ ⊂ Σn

T SHS1 denote the right perpendicular of Σn+1
T SHS1(k) in

Σn
T SHS1 , and similarly let DM eff(k)(n + 1)⊥ ⊂ DM eff(k)(n) be the right perpendicular

of DM eff(k)(n + 1) in DM eff(k)(n). For E ∈ Σn
T SHS1 , the distinguished triangle

fn+1E → E → snE → fn+1E[1]

is characterized as the unique distinguished triangle A → E → B → A[1] with A ∈
Σn+1

T SHS1(k) and B ∈ Σn+1
T SHS1(k)⊥. We have an analogous characterization of the

distinguished triangle
fmot

n+1F → F → smot
n F → fmot

n+1F [1]

for F ∈ DM eff(k)(n). Since

Mot(Σn+1
T SHS1(k)) ⊂ DM eff(k)(n + 1),
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the right adjoint EMA1 satisfies

EMA1(DM eff(k)(n + 1)⊥) ⊂ Σn+1
T SHS1(k)⊥.

Thus the isomorphisms

EMA1 ◦ fmot
n

∼= fn ◦ EMA1 ,

EMA1 ◦ fmot
n+1

∼= fn+1 ◦ EMA1

extend to an isomorphism of distinguished triangles

EMA1 ◦ fmot
n+1

��

�
��

EMA1 ◦ fmot
n

��

�
��

EMA1 ◦ smot
n

�
��

�� EMA1 ◦ fmot
n+1[1]

�
��

fn+1 ◦ EMA1 �� fn ◦ EMA1 �� sn ◦ EMA1 �� fn+1 ◦ EMA1 [1]

completing the proof. �

2. The homotopy coniveau tower

The homotopy coniveau tower gives a fairly explicit construction of the motivic Postnikov
towers in SHS1(k) and DM eff(k). We review the main results of [33] on the homotopy
coniveau tower for SptS1(k), and show how these can be modified to give analogous
results for C(PST(k)).

2.1. Purity

Let E be in SHS1(k), Y ∈ Sm/k and W ⊂ Y a closed subset. We let EW (Y ) denote
the homotopy fibre of

Ẽ(Y ) → Ẽ(Y \ W ),

where Ẽ is a fibrant model of E in SptS1(k). We make a similar definition for F ∈
C(PST(k)). If E is homotopy invariant and satisfies Nisnevich excision, then the map of
the homotopy fibre of E(Y ) → E(Y \ W ) to EW (Y ) is a weak equivalence [43]; in this
setting, we will sometimes use the homotopy fibre spectrum for EW (Y ) without explicit
mention.

Let i : W → Y be a closed immersion in Sm/k such that the normal bundle ν :=
NW/Y admits a trivialization ϕ : Oq

W → ν. This gives us the Morel–Voevodsky purity
isomorphism [41, Theorem 2.23] in SH

θϕ,E : EW (Y ) → (Ωq
T E)(W ) (2.1)

and the isomorphism on homotopy groups

θϕ,n,E : πn(EW (Y )) → πn((Ωq
T E)(W )). (2.2)

In general, the θϕ,n,E depend on the choice of ϕ.
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2.2. The tower

The construction of the homotopy coniveau tower relies on the cosimplicial scheme of
algebraic n-simplices

n �→ ∆n := Spec k[t0, . . . , tn]/
∑

i

ti − 1,

with coface and codegeneracy maps defined as in the topological setting (see, for example,
[6]). We recall that a face of ∆n is a subscheme defined by equations of the form ti1 =
· · · = tir = 0.

Definition 2.2.1.

(1) For X ∈ Schk, locally equidimensional over k, and q, n � 0 integers, set

S(q)
X (n) := {W ⊂ X × ∆n | W is closed, and codimX×F W ∩ X × F � q

for all faces F ⊂ ∆n}.

Set

X(q)(n) := {w ∈ X ×∆n | w is the generic point of some irreducible W ∈ S(q)
X (n)}.

(2) For E ∈ SptS1(k), X ∈ Sm/k and integer q � 0, define

fq(X, n; E) = lim−→
W∈S(q)

X (n)

EW (X × ∆n).

(3) For E ∈ SptS1(k), X ∈ Sm/k and integer q � 0, define

sq(X, n; E) = lim−→
W∈S(q)

X (n)
W ′∈S(q+1)

X (n)

EW\W ′
(X × ∆n \ W ′).

For fixed q, the cosimplicial structure on n �→ ∆n makes n �→ S(q)
X (n) a simplicial

set, and n �→ fq(X, n; E), n �→ sq(X, n; E) similarly form simplicial spectra. We let
fq(X, −; E) and sq(X, −; E) denote the respective total spectra.

For F ∈ C(PST(k)), we make the analogous definition yielding the simplicial complexes
n �→ fq

mot(X, n; F) and n �→ sq
mot(X, n; F); we let fq

mot(X, ∗; F) and sq
mot(X, ∗; F) be the

associated total complexes. It follows from Remark 1.4.2 that we have isomorphisms in
SH:

EM(fq
mot(X, ∗; F)) ∼= fq(X, −; EMA1(F)),

EM(sq
mot(X, ∗; F)) ∼= sq(X, −; EMA1(F)).

}
(2.3)

The following result relates the homotopy coniveau construction to the motivic Post-
nikov tower.



496 B. Kahn and M. Levine

Proposition 2.2.2 (Levine [33, Theorem 7.1.1]). Take X ∈ Sm/k and q � 0 an
integer. Let E ∈ SptS1(k) be homotopy invariant and satisfy Nisnevich excision. Then
there are isomorphisms in SH

αX,q;E : fq(X, −; E) ∼−→ fq(E)(X).

The maps αX,q;E define an isomorphism of towers in SH

αX,−;E : f (−)(X, −; E) ∼−→ f(−)(E)(X)

and induce isomorphisms in SH

βX,q;E : sq(X, −; E) ∼−→ sq(E)(X).

All these transformations are natural in X (with respect to smooth maps in Sm/k) and
in E.

We have as well a version in C(PST(k)).

Proposition 2.2.3. Take X ∈ Sm/k and q � 0 an integer. Let F ∈ C(PST(k)) be homo-
topy invariant and satisfy Nisnevich excision. Then there are isomorphisms in D(Ab)

αmot
X,q;F : fq

mot(X, −; F) ∼−→ fmot
q (F)(X).

The isomorphisms αmot
X,q;F define an isomorphism of towers in D(Ab)

αmot
X,−;F : f

(−)
mot(X, −; F) ∼−→ fmot

(−) (F)(X)

and induce isomorphisms in D(Ab)

βmot
X,q;F : sq

mot(X, −; F) ∼−→ smot
q (F)(X).

All these transformations are natural in X (with respect to smooth maps in Sm/k) and
in F .

Proof. The proof of Proposition 2.2.3 goes by constructing a functorial model for the
fq
mot(X, −; E), as in [32, Theorems 2.6.2 and 7.4.1], and then following the proof of [33,

Theorem 7.1.1], changing presheaves of spectra to complexes of presheaves with transfer
throughout. We give an outline of the proof, referring to the relevant results in [32,33]
as needed.

Step 1. Take F ∈ C(PST(k)) which is homotopy invariant and satisfies Nisnevich
excision. We apply the method of [32] to define f̃q

mot(F) ∈ C(PST(k)), forming a tower
in C(PST(k))

· · · → f̃q+1
mot (F) → f̃q

mot(F) → · · · → f̃0
mot(F),

and, for each X ∈ Sm/k, an isomorphism of towers in D(Ab)

γ(−),X,F : f̃
(−)
mot(F)(X) ∼−→ f

(−)
mot(X, ∗; F),

natural in F and natural in X for smooth maps.
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To form the tower f̃
(−)
mot(F), we apply the functoriality results [32, Theorems 2.6.2

and 7.4.1], replacing the presheaf of spectra in that result with the complex of presheaves
F , throughout. As the results of [32] construct a presheaf on Sm/k, rather than on
SmCor(k), we need to make a few modifications to achieve this extension. Fortunately,
the main technical result [32, Theorem 2.6.2] does not need to be modified at all, we
need only modify the application to functoriality given in [32, Theorem 7.4.1] as follows
(we use the notation of [32, § 7]).

(1) We replace the category L(Sm/k) (see [32, § 7.4]) with a version adapted to finite
correspondences and defined as follows: L(SmCor(k)) has objects the morphisms f :
X ′ → X in SmCor(k) such that

(i) f is an effective (finite) cycle on X ′ × X,

(ii) X ′ can be written as a disjoint union, X ′ = X ′
0 � X ′

1 such that the restriction of f

to f0 : X ′
0 → X is the graph of an isomorphism f0 : X ′

0 → X in Sm/k.

The choice of the decomposition of X ′ as a disjoint union is not part of the data. We
identify f : X ′ → X with f � p : X ′ � X ′′ → X if p =

∑
j mjpj : X ′′ → X with each pj

the graph of a smooth morphism in Sm/k, and we identify f : X ′ → X with f ◦ g :
X ′′ → X for g : X ′′ → X ′ the graph of an isomorphism in Sm/k.

HomL(SmCor(k))(fX : X ′ → X, fY : Y ′ → Y ) is by definition the subgroup of
HomSmCor(k)(X, Y ) generated by effective g ∈ HomSmCor(k)(X, Y ) such that there is
a morphism q =

∑
i niqi : X ′ → Y ′ in SmCor(k), with ni > 0 and with each qi the graph

of a smooth morphism in Sm/k, such that g ◦ fX = fY ◦ q. The choice of q is not part
of the data; composition is the composition in SmCor(k).

(2) Let f : Y → X be a morphism in SmCor(k), with f =
∑

i niZi and the Zi ⊂ Y × X

integral. Let pi : Zi → X be the projection, giving us the subset

S(q)
i (X)(p) = {W ∈ S(q)(X)(p) | (pi × id∆p)−1(W ) ∈ S(q)(Zi)(p)}.

Define
S(q)

f (X)(p) := ∩iS(q)
i (X)(p).

Given F ∈ PST(k), define

fq
mot(X, p, F)f := lim−→

W∈S(q)
f (X)(p)

FW (X × ∆p)

giving us the associated simplicial complex p �→ fq
mot(X, p, F)f and total complex

fq
mot(X, ∗,F)f .
If we take W ∈ S(q)

f (X)(p), then, as each Zi is finite over Y , there is a unique minimal
closed subset W ′ ∈ S(q)(Y )(p) such that

pY ×∆p(Zi ⊗ δ∆p ∩ p−1
X×∆p(W )) ⊂ W ′,
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where δ∆p is the diagonal correspondence. Thus, the correspondence Z ⊗ δ∆p gives a
well-defined map of complexes

Z∗ : fq
mot(X, ∗,F)f → fq

mot(Y, ∗,F).

More generally, if g : (fX : X ′ → X) → (fY : Y ′ → Y ) is a morphism in L(SmCor(k)),
we have a well-defined map of complexes

g∗ : fq
mot(X, ∗,F)fX

→ fq
mot(Y, ∗,F)fY

(cf. [32, Lemma 7.4.3]). Thus, sending fX : X ′ → X to fq
mot(X, ∗,F)fX

defines a presheaf
of complexes on L(SmCor(k)).

Noting this, and making the two changes described above, the proof of [32, Theo-
rem 7.4.1] goes through word for word as in [32, § 7.4] to give us the tower of presheaves
f̃

(−)
mot(F)Nis and an isomorphism of towers in D(ShAb(XNis)):

f̃
(−)
mot(F)Nis|XNis

∼= f
(−)
mot(XNis, ∗; F).

Letting f̃
(−)
mot(F) be a fibrant model of the Nisnevich sheafification of f̃

(−)
mot(F)Nis in

C(Shtr
Nis(k)) and recalling that f

(−)
mot(XNis, ∗; F) has the Brown–Gersten property on

XNis, we have the tower f̃
(−)
mot(F) in C(Shtr

Nis(k)) with value f̃
(−)
mot(F)(X) isomorphic to

f
(−)
mot(X, ∗; F) in D(Ab), naturally in X for smooth morphisms.
We conclude by defining s̃q

mot(F) as the cone of f̃q+1
mot (F) → f̃q

mot(F); the isomorphisms
f̃

(−)
mot(F)(X) ∼= f

(−)
mot(X, ∗; F) extend to an isomorphism in D(Ab)

s̃q
mot(F)(X) ∼= sq

mot(X, ∗; F)

with the same naturality as above.

Step 2. We now just repeat the proof of [33, Theorem 7.1.1], replacing presheaves of
spectra on Sm/k with complexes of presheaves F on SmCor(k). Making this change,
the proofs of the preliminary results [33, Theorem 5.3.1 and Lemmas 7.3.1, 7.3.2, 7.3.3
and 7.3.4] as well as the concluding argument following [33, Lemma 7.3.4] finish the proof
of Proposition 2.2.3. �

Remark 2.2.4. We can now finish the proof of Lemma 1.4.3.
Take F ∈ DM eff(k)(n); we may assume that F is fibrant in C(PST(k))A1 . For each

Y ∈ Sm/k, we have isomorphisms in SH:

sm(EMA1(F))(Y ) ∼= sm(Y,−, EMA1(F))
∼= EM(sm

mot(Y, ∗,F))
∼= EM(smot

m (F)(Y )),

using Proposition 2.2.2, Proposition 2.2.3 and (2.3). But smot
m (F) = 0 for 0 � m < n,

hence sm(EMA1(F)) = 0 for 0 � m < n, so EMA1(F) is in Σn
T SHS1(k).

The identity (1.2) is also valid for the truncation functors fmot
n .
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Proposition 2.2.5. For each n � 0, we have a natural isomorphism

ΩT ◦ fmot
n+1

∼= fmot
n ◦ ΩT . (2.4)

Proof. One repeats the argument for (1.2) given in [33, Theorem 7.4.2], changing
SptS1(k) to C(PST(k)) throughout, as in the proof of Proposition 2.2.3. �

Remark 2.2.6. As a particular case, Proposition 2.2.2 gives an explicit description of the
0th slice of E ∈ SptS1(k), assuming E is A1-homotopy invariant and satisfies Nisnevich
excision, as follows. For Y ∈ Sm/k, (s0E)(Y ) can be described using the cosimplicial
scheme of semi-local �-simplices ∆̂� (denoted ∆�

0 in [33]). In fact, for Y ∈ Sm/k, let
O(�)k(Y ),v be the semi-local ring of the set v of vertices of ∆�

k(Y ) and set

∆̂�
k(Y ) := SpecO(�)k(Y ),v.

Clearly, � �→ ∆̂�
k(Y ) forms a cosimplicial subscheme of ∆∗

k(Y ). It follows from Proposi-
tion 2.2.2 that (s0E)(Y ) weakly equivalent to total spectrum E(∆̂∗

k(Y )) of the simplicial
spectrum

� �→ E(∆̂�
k(Y )).

Proposition 2.2.3 yields a similar description of smot
0 F(Y ), for F ∈ C(PST(k)) which

is A1-homotopy invariant and satisfies Nisnevich excision: smot
0 F(Y ) is represented by

the total complex F(∆̂∗
k(Y )) associated to the simplicial object of C(Ab)

� �→ F(∆̂�
k(Y )).

The construction in [25, Definition 2.14] is closely related to this.

2.3. Miscellaneous results

We conclude this section recalling a few results from [33] that will be useful later.

Lemma 2.3.1. Let W ⊂ Y be a closed subset, Y ∈ Sm/k, such that codimY W � q

for some integer q � 0. For E ∈ SHS1(k), the canonical map fqE → E induces a weak
equivalence

(fqE)W (Y ) → EW (Y ).

Proof. This is [33, Lemma 7.3.2]. �

Lemma 2.3.2. Let E be in SHS1(k). Let W ⊂ Y be a closed subset, Y ∈ Sm/k.

(1) Suppose codimY W > q. Then sq(E)W (Y ) ∼= 0 in SH.

(2) Suppose that codimY W � q. Let Y
(q)
W be the set of points generic points w of W

with codimY w = q. For y ∈ Y , let Yy := SpecOY,y. Then the restriction map

sq(E)W (Y ) →
⊕

w∈Y
(q)

W

sq(E)w(Yw)

is an isomorphism in SH.
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Proof. It follows from Lemma 2.3.1 that the canonical map

fq+1(E)W (Y ) → fq(E)W (Y )

is an isomorphism in SH, hence the cofibre sq(E)W (Y ) is zero, proving (1). For (2),
if W 0 ⊂ W is a closed subset with codimY W 0 > q, then we have the homotopy fibre
sequence

sq(E)W 0
(Y ) → sq(E)W (Y ) → sq(E)W\W 0

(Y \ W 0),

hence by (1), the restriction map sq(E)W (Y ) → sq(E)W\W 0
(Y \ W 0) is an isomorphism

in SH. Now (2) follows by taking the limit over W 0 ⊂ W . �

For E ∈ SHS1(k), we have the diagram

E
τq←− fqE

πq−→ sqE.

Lemma 2.3.3. Take E ∈ SHS1(k), X ∈ Sm/k and integers q, n � 0. For all p � q the
map τq : fqE → E induces weak equivalences

fp(X, n; fqE)
τq−→ fp(X, n; E),

sp(X, n; fqE)
τq−→ sp(X, n; E).

Proof. That τq : fp(X, n; fqE) → fp(X, n; E) is a weak equivalence follows from
Lemma 2.3.1. We have the map of distinguished triangles

fp+1(X, n; fqE) ��

τq

��

fp(X, n; fqE) ��

τq

��

sp(X, n; fqE)

τq

��
fp+1(X, n; E) �� fp(X, n; E) �� sp(X, n; E)

hence τq : sp(X, n; fqE) → sp(X, n; E) is also a weak equivalence. �

Proposition 2.3.4. Take E ∈ SHS1(k), X ∈ Sm/k and an integer q � 0.

(1) For all p � q, the map τq : fqE → E induces weak equivalences

fp(X, −; fqE)
τq−→ fp(X, −; E),

sp(X, −; fqE)
τq−→ sp(X, −; E).

(2) The map πq : fq → sq induces a weak equivalence

sq(X, −; fqE)
πq−→ sq(X, −; sqE).
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Proof. Item (1) follows from Lemma 2.3.3. For (2), we have the commutative diagram
in SH

sq(X, −; fqE)

βX,q;fqE

��

πq �� sq(X, −; sqE)

βX,q;sqE

��
sq(fqE)(X)

sq(πq)
�� sq(sqE)(X)

with vertical arrows isomorphisms. The bottom horizontal diagram extends to the dis-
tinguished triangle

sq(fq+1E) → sq(fqE)
sq(πq)−−−−→ sq(sqE) → sq(fq+1E)[1]

and we have the defining distinguished triangle for sq:

fq+1(fq+1E) → fq(fq+1E) → sq(fq+1E) → fq+1(fq+1E)[1].

Since fq+1E is in Σq+1
T SHS1(k) ⊂ Σq

T SHS1(k), the canonical maps

fq+1(fq+1E) → fq+1E, fq(fq+1E) → fq+1E

are isomorphisms, hence sq(fq+1E) ∼= 0 and sq(πq) is an isomorphism. �

Remark 2.3.5. Making the evident changes, the analogues of Lemma 2.3.1, Lemma 2.3.3
and Proposition 2.3.4 hold for F ∈ DM eff(k).

3. Slices and cycles

We show how, for special objects in SptS1(k), the well-connected spectra, the slices in
the motivic Postnikov tower have a cycle-theoretic description via a generalization of
Bloch’s cycle complex. This material is taken largely from [33, §§ 5, 6].

3.1. Connected spectra

We continue to assume the field k is perfect.

Definition 3.1.1. Call E ∈ SHS1(k) connected if for each X ∈ Sm/k, the spectrum
Ẽ(X) is −1 connected, where Ẽ ∈ SptS1(k) is a fibrant model for E.

Note that this is a global, quite strong notion.

Lemma 3.1.2. Let E ∈ SHS1(k) be connected. Then

(1) For each q � 0, Ωq
T E is connected.

(2) For X ∈ Sm/k and W ⊂ X a closed subset, the spectrum with supports EW (X)
is −1 connected.
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(3) Let j : U → X be an open immersion in Sm/k, W ⊂ X a closed subset. Then

j∗ : π0(EW (X)) → π0(EW∩U (U))

is surjective.

Proof. For (1) it suffices to prove the case q = 1. Take X ∈ Sm/k. Since ∞ ↪→ P1

is split by P1 → Spec k, (ΩT E)(X) is a retract of E(X × P1). Since E(X × P1) is −1
connected by assumption, it follows that (ΩT E)(X) is also −1 connected, hence ΩT E is
connected.

For (2), suppose first that i : W → X is a closed immersion in Sm/k and that the
normal bundle ν of W in X admits a trivialization, ν ∼= Oq

W . We have the Morel–
Voevodsky purity isomorphism (2.1)

EW (X) ∼= (Ωq
T E)(W ).

By (1) (Ωq
T E)(W ) is −1 connected, verifying (2) in this case.

In general, we proceed by descending induction on codimX W , starting with the trivial
case codimX W = dimk X + 1, i.e. W = ∅. In general, suppose that codimX W � q for
some integer q � dimk X. Then there is a closed subset W ′ ⊂ W with codimX W ′ > q

such that W \ W ′ is smooth and has trivial normal bundle in X \ W ′. We have the
homotopy fibre sequence

EW ′
(X) → EW (X) → EW\W ′

(X \ W ′)

thus the induction hypothesis, and the −1 connectedness of EW\W ′
(X \ W ′) implies that

EW (X) is −1 connected.
Item (3) follows from the homotopy fibre sequence (note that Ẽ satisfies Zariski exci-

sion)
EW\U (X) → EW (X) → EW∩U (U)

and the −1 connectedness of EW\U (X). �

Lemma 3.1.3. Suppose E ∈ SHS1(k) is connected. Then for X ∈ Sm/k and every
q, n � 0, fq(X, n; E) and sq(X, n; E) are −1 connected.

Proof. This follows from Lemma 3.1.2 (2), noting that fq(X, n; E) and sq(X, n; E) are
colimits over spectra with supports EW (X × ∆n), EW\W ′

(X × ∆n \ W ′). �

Proposition 3.1.4. Suppose E ∈ SHS1(k) is connected. Then for every q � 0, fqE and
sqE are connected.

Proof. Take X ∈ Sm/k. By Proposition 2.2.2, we have isomorphism in SH:

fqE(X) ∼= fq(X, −; E), sqE(X) ∼= sq(X, −; E).

By Lemma 3.1.3, the total spectra fq(X, −; E) and sq(X, −; E) are −1 connected, whence
the result. �
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Definition 3.1.5. Fix an integer q � 0 and let W ⊂ Y be a closed subset with Y ∈ Sm/k

and codimY W � q. For E ∈ SHS1(k), define the comparison map

ψE
W (Y ) : π0(EW (Y )) → π0(sq(E)W (Y ))

as the composition

π0(EW (Y )) ∼←− π0((fqE)W (Y )) → π0(sq(E)W (Y )),

noting that π0((fqE)W (Y )) → π0(EW (Y )) is an isomorphism by Lemma 2.3.1.

Lemma 3.1.6. Let w ∈ Y (q) be a codimension q point of Y ∈ Sm/k and let Yw :=
Spec OY,w. Take E ∈ SHS1(k) and suppose that E is connected. Then the comparison
map

ψE
w (Yw) : π0(Ew(Yw)) → π0(sq(E)w(Yw))

is an isomorphism.

Proof. Recall from Remark 2.2.6 the cosimplicial subscheme ∆̂∗
k(Y ) of ∆∗

k(Y ).
Since ∆̂0

k(Y ) = Spec k(Y ), we have the natural map

π0((Ω
q
T E)(k(Y ))) → π0((Ω

q
T E)(∆̂∗

k(Y ))),

which is an isomorphism. Indeed, by Lemma 3.1.2 (1), Ωq
T E is connected for all q � 0.

In particular, (Ωq
T E)(∆̂n

k(Y )) is −1 connected for all Y and all n � 0. Thus we have the
presentation of π0((Ω

q
T E)(∆̂∗

k(Y ))):

π0((Ω
q
T E)(∆̂1

k(Y )))
i∗
0−i∗

1−−−→ π0((Ω
q
T E)(k(Y ))) → π0((Ω

q
T E)(∆̂∗

k(Y ))) → 0.

By Lemma 3.1.2 (3) and a limit argument, the map

π0((Ω
q
T E)(∆1

k(Y ))) → π0((Ω
q
T E)(∆̂1

k(Y )))

is surjective; since ∆1
k(Y ) = A1

k(Y ) and Ωq
T E is homotopy invariant, the map i∗0 − i∗1 is the

zero map.
Choose a trivialization of the normal bundle ν of w ∈ Yw, k(w)q ∼= ν. This gives

us the purity isomorphisms Ew(Yw) ∼= (Ωq
T E)(w), (sqE)w(Yw) ∼= s0(Ω

q
T E)(w); from

Remark 2.2.6 we have the isomorphism s0(Ω
q
T E)(w) ∼= (Ωq

T E)(∆̂∗
k(w)). This gives us the

commutative diagram

π0(Ew(Yw))
ψE

w (Yw)��

��

π0(sq(E)w(Yw))

��
π0(Ω

q
T E(w)) �� π0((Ω

q
T E)(∆̂∗

k(w)))

with the two vertical arrows and the bottom horizontal arrow isomorphisms. Thus
ψE

w (Yw) is an isomorphism. �
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Lemma 3.1.7. Suppose E ∈ SHS1(k) is connected. Fix an integer q � 0 and let W ⊂ Y

be a closed subset, with Y ∈ Sm/k and codimY W � q. Then the comparison map

ψE
W (Y ) : π0(EW (Y )) → π0(sq(E)W (Y ))

is surjective.

Proof. Recall that Y
(q)
W denotes the set of generic points w of W with codimY w = q.

Let YW := SpecO
Y,Y

(q)
W

. By Lemma 2.3.2, the restriction map

sq(E)W (Y ) →
∐

w∈Y
(q)

W

sq(E)w(YW )

is a weak equivalence. By Lemma 3.1.6,

ψE
w (YW ) : π0(Ew(YW )) → π0(sq(E)w(YW ))

is an isomorphism for all w ∈ Y
(q)
W . Thus we have the commutative diagram

π0(EW (Y ))
ψE

W (Y ) ��

��

π0(sq(E)W (Y ))

��⊕
w∈Y

(q)
W

π0(Ew(YW ))
ΣwψE

w (YW )
��

⊕
w∈Y

(q)
W

π0(sq(E)w(YW ))

By Lemma 2.3.2, the right-hand vertical arrow is an isomorphism; the bottom horizontal
arrow is an isomorphism by Lemma 3.1.6. It follows from Lemma 3.1.2 (3) that the left-
hand vertical arrow is surjective, hence ψE

W (Y ) is surjective as well. �

Lemma 3.1.8. Suppose that E ∈ SHS1(k) is connected. Take Y ∈ Sm/k, w ∈ Y (q)

and let Yw := SpecOY,w. Then the purity isomorphism

θϕ,0,E : π0(Ew(Yw)) → π0(Ω
q
T E(w))

is independent of the choice of trivialization ϕ.

Proof. We have the commutative diagram of isomorphisms

π0(Ew(Yw))
ψE

w (Yw) ��

θϕ,0E

��

π0(sq(E)w(Yw))

θϕ,0,sqE

��
π0(Ω

q
T E(w)) �� π0((Ω

q
T E)(∆̂∗

k(w)))

By [33, Corollary 4.2.4], θϕ,0,sqE is independent of the choice of ϕ, whence the result. �
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Take E ∈ SHS1(k) connected. For each closed subset W ⊂ Y , Y ∈ Sm/k, EW (Y ) is
−1 connected, giving us the canonical map

ρE,Y,W : EW (Y ) → EM(π0(EW (Y ))).

Definition 3.1.9. Let E ∈ SHS1(k) be connected. Let Y be in Sm/k and let W ⊂ Y

be a closed subset of codimension � q. The cycle map

cycW
E (Y ) : EW (Y ) → EM

( ⊕
w∈Y

(q)
W

π0((Ω
q
T E)(w))

)

is the composition

EW (Y )
ρE,Y,W−−−−−→ EM(π0(EW (Y )))

res−−→ EM
( ⊕

w∈Y
(q)

W

π0(Ew(Yw))
)

θϕ,0,E−−−−→ EM
( ⊕

w∈Y
(q)

W

π0((Ω
q
T E)(w))

)
.

We let
π0(cycW

E (Y )) : π0(EW (Y )) →
⊕

w∈Y
(q)

W

π0((Ω
q
T E)(w))

be the map on π0 induced by cycW
E (Y ).

Definition 3.1.10. Let E ∈ SHS1(k) be connected. For X ∈ Sm/k and integers q, n � 0
define

zq(X, n; E) :=
⊕

w∈X(q)(n)

π0((Ω
q
T E)(w)).

Taking the limit of the maps cycW\W ′

E (X × ∆n \ W ′) for E ∈ SHS1(k) connected,
W ∈ S(q)

X (n), W ′ ∈ S(q+1)
X (n) we have the maps of spectra

cycE(X, n) : sq(X, n; E) → EM(zq(X, n; E)) (3.1)

and the maps of abelian groups

π0(cycE(X, n)) : π0(sq(X, n; E)) → zq(X, n; E).

Lemma 3.1.11. Let E ∈ SHS1(k) be connected and let X be in Sm/k. Then

π0(cycsqE(X, n)) : π0(sq(X, n; sqE)) → zq(X, n; sqE)

is an isomorphism.
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Proof. First note that, by Proposition 3.1.4, sqE is connected, hence all terms in the
statement are defined. By Lemma 2.3.2, the restriction map

π0((sqE)W (Y )) →
⊕

w∈Y
(q)

W

π0((sqE)w(YW ))

is an isomorphism; since π0(cycsqE(X, n)) is constructed by composing restriction maps
with purity isomorphisms, this proves the result. �

Proposition 3.1.12. Let E ∈ SHS1(k) be connected and let X be in Sm/k. There is
a unique structure of a simplicial abelian group

n �→ zq(X, n; E)

such that the maps π0(cycE(X, n)) define a map of simplicial abelian groups

[n �→ π0(sq(X, n; E))]
π0(cycE(X,−))−−−−−−−−−→ [n �→ zq(X, n; E)].

Proof. Since E is connected, the cycle maps

π0(EW (Y )) res−−→
⊕

w∈Y
(q)

W

π0(Ew(YW )) ∼=
⊕

w∈Y
(q)

W

π0(Ω
q
T E(w))

are surjective. Thus π0(cycE(X, n)) is surjective, which proves the uniqueness.
For existence, the map π0(cycE(X, n)) is natural with respect to E. In addition, by

Proposition 3.1.4, both fqE and sqE are connected; applying π0(cyc?(X, n)) to the dia-
gram

E ← fqE → sqE

gives the commutative diagram

π0(sq(X, n; E))

π0(cycE(X,n))
��

π0(sq(X, n; fqE))

π0(cycfqE(X,n))

��

���� π0(sq(X, n; sqE))

π0(cycsqE(X,n))

��
zq(X, n; E) zq(X, n; fqE)�� �� zq(X, n; sqE)

By Lemma 2.3.3, the left-hand map in the top row is an isomorphism. The maps in the
bottom row are induced by maps

π0((Ω
q
T E)(w)) ← π0((Ω

q
T fqE)(w)) → π0((Ω

q
T sqE)(w)).

By (1.2), Ωq
T fqE = f0(Ω

q
T fqE) = Ωq

T E and similarly Ωq
T sqE = s0(Ω

q
T E). Thus the

bottom row is a sum of isomorphisms (see Lemma 3.1.6)

π0((Ω
q
T E)(w)) → π0(s0(Ω

q
T E)(w)).

Finally, the right-hand vertical map is an isomorphism by Lemma 3.1.11. As the top row
is the degree n part of a diagram of maps of simplicial abelian groups, the isomorphisms

π0(sq(X, n; sqE)) → zq(X, n; sqE) ← zq(X, n; E)
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induce the structure of a simplicial abelian group from [n �→ π0(sq(X, n; sqE))] to [n �→
zq(X, n; E)], so that the maps π0(cycE(X, n)) define a map of simplicial abelian groups.

�

Remark 3.1.13. For F ∈ C(PST(k)), we call F connected if Hn(XNis,F) = 0 for n > 0,
X ∈ Sm/k. Making the obvious modifications, all the results of this section carry over
from SHS1(k) to DM eff(k).

We use the above results to give a generalization of the higher cycle complexes of
Bloch.

Definition 3.1.14. Let E ∈ SptS1(k) be connected, homotopy invariant and satisfy
Nisnevich excision. For X ∈ Sm/k, and q, n � 0 integers, let zq(X, ∗; E) be the complex
associated to the simplicial abelian group n �→ zq(X, n; E). Similarly, for F ∈ C(PST(k))
which is connected, homotopy invariant and satisfies Nisnevich excision, we set

zq(X, n; F) =
⊕

w∈X(q)(n)

H0((Ωq
T F)(w)),

giving the simplicial abelian group n �→ zq(X, n; F). We denote the associated complex
by zq(X, ∗; F).

For integers q, n � 0, set

CHq(X, n; E) := Hn(zq(X, ∗; E))

and

CHq(X, n; F) := Hn(zq(X, ∗; F)).

For F ∈ C(PST(k)) as above, we note that zq(X, ∗, EMA1(F)) is naturally isomorphic
to zq(X, ∗,F), via the canonical isomorphisms

H0((Ωq
T F)(w)) ∼= π0(EM((Ωq

T F)(w)))
∼= π0((EMA1 Ωq

T F)(w))
∼= π0((Ω

q
T EMA1 F)(w)).

Definition 3.1.15. Take X ∈ Sm/k. For connected E ∈ SHS1(k), let

cycE(X) : sq(X, −; E) → EM(zq(X, −; E))

be the map of spectra induced by the maps (3.1); this is well-defined by Proposi-
tion 3.1.12. Similarly, for connected F ∈ DM eff(k), let

cycF (X) : sq
mot(X, ∗; F) → zq(X, ∗; F)

be the map of complexes induced by the maps cycF (X, n) analogous to the maps (3.1).
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3.2. Well-connected spectra

Following [33] we have the following definition.

Definition 3.2.1. E ∈ SHS1(k) is well-connected if

(1) E is connected;

(2) for each Y ∈ Sm/k, and each q � 0, the total spectrum (Ωq
T E)(∆̂∗

k(Y )) has

πn((Ωq
T E)(∆̂∗

k(Y ))) = 0

for n �= 0.

Remark 3.2.2. The corresponding notion in DM eff(k) is Let F ∈ C(PST(k)) be A1

homotopy invariant and satisfy Nisnevich excision. Call F well-connected if

(1) F is connected;

(2) for each Y ∈ Sm/k, the total complex (Ωq
T F)(∆̂∗

k(Y )) satisfies

Hn((Ωq
T F)(∆̂∗

k(Y ))) = 0

for n �= 0.

Remark 3.2.3. We gave a slightly different definition of well-connectedness in [33,
Definition 6.1.1], replacing the connectedness condition (1) with: EW (Y ) is −1 connected
for all closed subsets W ⊂ Y , Y ∈ Sm/k. By Lemma 3.1.2, this condition is equivalent
with the connectedness of E.

The main result on well-connected spectra is the following theorem.

Theorem 3.2.4.

(1) Suppose E ∈ SHS1(k) is well-connected. Then

cycE(X) : sq(X, −; E) → EM(zq(X, −; E))

is a weak equivalence for each X ∈ Sm/k. In particular, there is a natural isomor-
phism

CHq(X, n; E) ∼= πn((sqE)(X)) ∼= HomSHS1 (k)(Σ∞
T X+, Σ−n

s sq(E)).

(2) Suppose F ∈ C(PST(k)) is well-connected. Then

cycmot
F (X) : sq

mot(X, ∗; F) → zq(X, ∗; F)

is a quasi-isomorphism for each X ∈ Sm/k. In particular, there is a natural iso-
morphism

CHq(X, n; F) ∼= H−n
Nis(X, smot

q F) ∼= HomDMeff (k)(M(X), smot
q (F)[−n]).
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Proof. We prove (1), the proof of (2) is the same. We have the commutative diagram
in SH:

sq(X, −; E)

cycE(X)
��

sq(X, −; fqE)

cycfqE(X)

��

τq�� πq �� sq(X, −; sqE)

cycsqE(X)

��
EM(zq(X, −; E)) EM(zq(X, −; fqE))

τq

��
πq

�� EM(zq(X, −; sqE))

By Proposition 2.3.4, the arrows in the top row are isomorphisms. As we have seen in the
proof of Proposition 3.1.12 the arrows in the bottom row are also isomorphisms. Thus,
it suffices to prove the result with E replaced by sqE.

The map cycsqE(X) is just the map on total spectra induced by the map on n-simplices

cycsqE(X, n) : sq(X, n; sqE) → EM(zq(X, n; sqE)).

By Lemma 3.1.11, the map on π0,

π0(cycsqE(X, n)) : π0(sq(X, n; sqE)) → zq(X, n; sqE),

is an isomorphism. However, since E is well-connected, and since

sq(X, n; sqE) ∼=
∐

w∈X(q)(n)

(Ωq
T sqE)(k(w)) ∼=

∐
w∈X(q)(n)

s0(Ω
q
T E)(k(w)),

it follows that
sq(X, n; sqE) = EM(π0(sq(X, n; sqE))),

and cycsqE(X, n) is the map induced by π0(cycsqE(X, n)). Thus cycsqE(X, n) is a weak
equivalence for every n, hence cycsqE(X) is an isomorphism in SH, as desired. �

We recall that the functoriality results of [32, Theorems 2.6.2 and 7.4.1] applied to the
spectra sq(X, −; E) gives a presheaf of spectra s̃q(E) on Sm/k, together with isomor-
phisms

γq,X,E : sq(X, −; E) → s̃q(E)(X)

in SH, natural in X for smooth maps in Sm/k. In addition, by [33, Theorem 7.1.1],
there is an isomorphism

ϕq,E : s̃q(E) → sq(E)

in HSptS1(k) and the isomorphism βX,q;E of Proposition 2.2.2 is the composition
ϕq,E(X) ◦ γq,X,E .

Using the same methods, we extend the assignment X �→ zq(X, −; E) to a presheaf
X �→ zq(E)(X) of simplicial abelian groups on Sm/k, together with isomorphisms

δq,X,E : zq(X, −; E) → z̃q(E)(X)
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in the homotopy category of sAb, natural in X for smooth maps in Sm/k. It follows
from the naturality of the functorial models of [32, Theorems 2.6.2 and 7.4.1] that we
have the canonical maps of presheaves on Sm/k

cycE : s̃q(E) → EM(z̃q(E)),

giving for each X ∈ Sm/k the commutative diagram

sq(X, −; E)
γq,X,E ��

cycE(X)
��

s̃q(E)(X)

cycE(X)
��

EM(zq(X, −; E))
EM(δq,X,E)

�� EM(z̃q(E))(X)

Similarly, using the functoriality machinery of [32, Theorems 2.6.2 and 7.4.1], and
the comparison results of [33, Theorem 7.1.1], extended as explained in the proof of
Proposition 2.2.3, we can extend the assignments X �→ sq

mot(X, ∗; F), X �→ zq(X, ∗; F)
to objects of C(PST(k)), s̃q

mot(F), z̃q(F), together with isomorphisms

γmot
q,X,E : sq

mot(X, ∗; F) → s̃q
mot(F)(X),

δmot
q,X,F : zq(X, ∗; F) → z̃q(F)(X)

in D(Ab), natural in X for smooth maps in Sm/k. We also have an isomorphism

ϕmot
q,F : s̃q

mot(F) → smot
q (F)

in the derived category D(PST(k)), such that the isomorphism βmot
X,q;F of Proposition 2.2.3

is the composition ϕmot
q,F (X) ◦ γmot

q,X,F .
In addition, the maps cycmot

F (X) extend to maps in C(PST(k))

cycmot
F : s̃q

mot(F) → z̃q(F)

compatible with the maps cycmot
F (X) : sq

mot(X, ∗; F) → zq(X, ∗; F) via the isomorphisms
γmot, δmot. Theorem 3.2.4 thus yields the following corollary.

Corollary 3.2.5.

(1) Suppose E ∈ SHS1(k) is well-connected. Then

cycE ◦ϕ−1
q,E : sq(E) → EM(z̃q(E))

is an isomorphism in SHS1(k).

(2) Suppose F ∈ C(PST(k)) is well-connected. Then

cycmot
F ◦(ϕmot

q,F )−1 : smot
q (F) → z̃q(F)

is an isomorphism in DM eff(k).
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4. Birational motives and higher Chow groups

Birational motives have been introduced and studied by Kahn and Sujatha in [27] and
by Huber and Kahn in [22]. In this section we reexamine their theory, emphasizing the
relation to the slices in the motivic Postnikov tower. We also extend Bloch’s construction
of cycle complexes and higher Chow groups: Bloch’s construction may be considered as
the case of the cycle complex with constant coefficients Z whereas our generalization
allows the coefficients to be in a birational motivic sheaf. Finally, we extend the identifi-
cation of Bloch’s higher Chow groups with motivic cohomology [17,60] to the setting of
birational motivic sheaves.

4.1. Birational motives

Definition 4.1.1. A motive F ∈ DM eff(k) is called birational if for every dense open
immersion j : U → X in Sm/k and every integer n, the map

j∗ : HomDMeff (k)(M(X),F [n]) → HomDMeff (k)(M(U),F [n])

is an isomorphism. If F is a sheaf, i.e. F ∼= H0(F) in D(Shtr
Nis(k)), we call F a birational

motivic sheaf.

Remark 4.1.2. For X ∈ Sm/k and F ∈ DM eff(k) ⊂ D(Shtr
Nis(k)), there is a natural

isomorphism
HomDMeff (k)(M(X),F [n]) ∼= Hn

Nis(X, F).

Thus a motive F ∈ DM eff(k) is birational if and only if the hypercohomology presheaf

U �→ Hn
Nis(U,F)

on XZar is the constant presheaf on each connected component of X, for all X ∈ Sm/k.

Lemma 4.1.3. Let F be a presheaf with transfers that is birational and homotopy
invariant. Then F is a birational motivic sheaf.

Proof. Any presheaf of sets G on Sm/k which transforms coproducts into products and
is birationally invariant in the sense that G(X) ∼−→ G(U) for any open immersion U ↪→ X

is a sheaf for the Nisnevich topology: this follows from the fact that the Nisnevich topology
is generated by elementary Nisnevich covers, see [41, Proposition 1.4, p. 96]. This shows
that F is a Nisnevich sheaf with transfers. Then we have

HomD(Shtr
Nis(k))(Z

tr(X),F [n]) = Hn
Nis(X, F);

the Nisnevich cohomology Hn
Nis(X, F) is zero for n > 0 by Lemma 4.1.4 below. In par-

ticular, F is strictly homotopy invariant and thus an object of DM eff
− (k) ⊂ DM eff(k).

Finally,

HomDMeff (k)(M(X),F [n]) = HomD(Shtr
Nis(k))(Z

tr(X),F [n]) =

{
F(X) for n = 0,

0 for n �= 0,

hence F is a birational motive. �
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Lemma 4.1.4 (Riou). Let X be a Noetherian scheme, and let F be a Nisnevich sheaf
of abelian groups over X. Assume that F is flasque viewed as a Zariski sheaf, i.e. for
any open immersion V ↪→ U in the small Nisnevich site of X, the map F(U) → F(V ) is
surjective. Then Hi

Nis(X, F) = 0 for all i > 0.

The proof is an elaboration of Godement’s proof for the Zariski topology: see [50,
Lemma 1.40].

4.2. The Postnikov tower for birational motives

In this section, we give a treatment of the slices of a birational motive. These results
are obtained in [27]; here we develop part of the theory of [27] in a slightly different and
independent way.

Let F be in DM eff(k). Since fmot
0 F → F is an isomorphism, we have the canonical

map
π0 : F → smot

0 F .

The following result is taken from [27] in slightly modified form.

Theorem 4.2.1. For F in DM eff(k), π0 : F → smot
0 F is an isomorphism if and only if

F is a birational motive. In particular, since smot
0 F = smot

0 (smot
0 F), smot

0 F is a birational
motive.

Proof. Since we have the distinguished triangle

fmot
1 F → F π0−→ smot

0 F → fmot
1 F [1],

π0 is an isomorphism if and only if fmot
1 F ∼= 0.

Suppose that π0 is an isomorphism. Let j : U → X be a dense open immersion in
Sm/k and let W = X \ U . We show that

HomDMeff (k)(M(X),F [n])
j∗

−→ HomDMeff (k)(M(U),F [n])

is an isomorphism by induction on codimX W , starting with W = ∅. We may assume
that X is irreducible.

By induction we may assume that W is smooth of codimension d � 1, giving us the
Gysin distinguished triangle

M(U)
j−→ M(X) → M(W )(d)[2d] → M(U)[1].

But as d � 1, we have

HomDMeff (k)(M(W )(d)[2d],F [n]) ∼= HomDMeff (k)(M(W )(d)[2d], fmot
1 F [n]) = 0,

hence, by adjunction, j∗ is an isomorphism.
Now suppose that F is birational. We may assume that F is fibrant as a complex of

Nisnevich sheaves, so that

HomDMeff (k)(M(X),F [n]) = Hn(F(X))

for all X ∈ Sm/k.
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Take an irreducible X ∈ Sm/k. By Remark 2.2.6, we have a natural isomorphism

HomDMeff (k)(M(X), smot
0 F [n]) ∼= Hn(F(∆̂∗

k(X))).

Also, as F is birational, the restriction to the generic point gives an isomorphism

HomDMeff (k)(M(X),F [n]) ∼= Hn(F(k(X))),

and the map

HomDMeff (k)(M(X),F [n]) π0−→ HomDMeff (k)(M(X), smot
0 F [n])

is given by the map on Hn induced by the canonical map

F(k(X)) = F(∆̂0
k(X)) → F(∆̂∗

k(X)).

On the other hand, since F is birational, the map

F(∆n
k(X)) → F(∆̂n

k(X))

is a quasi-isomorphism for all n, and hence the map of total complexes

F(∆∗
k(X)) → F(∆̂∗

k(X))

is a quasi-isomorphism. Since F is homotopy invariant, the map

F(k(X)) = F(∆0
k(X)) → F(∆∗

k(X))

is a quasi-isomorphism; thus the composition

F(k(X)) → F(∆∗
k(X)) → F(∆̂∗

k(X))

is a quasi-isomorphism as well. Taking Hn, we see that

HomDMeff (k)(M(X),F [n]) π0−→ HomDMeff (k)(M(X), smot
0 F [n])

is an isomorphism for all X ∈ Sm/k. Since the localizing subcategory of DM eff(k)
generated by the M(X) for X ∈ Sm/k is all of DM eff(k), it follows that π0 is an
isomorphism. �

Corollary 4.2.2. Let F be a birational motive. Then

fmot
m (F(n)) =

{
0 for m > n,

F(n) for m � n.

Proof. Suppose n � m � 0. As F(n) is in DM eff(k)(m), we have fmot
m (F(n)) = F(n).

Now take m > n. As a localizing subcategory of DM eff(k), DM eff(k)(m) is generated
by objects M(X)(m), X ∈ Sm/k. Thus it suffices to show that

HomDMeff (k)(M(X)(m),F(n)[p]) = 0



514 B. Kahn and M. Levine

for all X ∈ Sm/k and all p. By Voevodsky’s cancellation theorem [62], we have

HomDMeff (k)(M(X)(m),F(n)[p]) = HomDMeff (k)(M(X)(m − n),F [p]).

But since m − n � 1, we have

HomDMeff (k)(M(X)(m − n),F [p]) ∼= HomDMeff (k)(M(X)(m − n), fmot
1 F [p]),

which is zero by Theorem 4.2.1. �

Remark 4.2.3. Let F be a birational motive. Then F(n) = smot
n (F(n)) for all n � 0.

Indeed, fmot
n (F(n)) = F(n) and fmot

n+1(F(n)) = 0.

Remark 4.2.4. Let F be a birational motive. Then for all G in DM eff(k) and all integers
m > n � 0, and all p, we have

HomDMeff (k)(G(m),F(n)[p]) = 0.

Indeed, the universal property of fmot
m (F(n)) → F(n) gives the isomorphism

HomDMeff (k)(G(m), fmot
m (F(n))[p]) ∼= HomDMeff (k)(G(m),F(n)[p])

but fmot
m (F(n)) = 0 by Corollary 4.2.2.

4.3. Birational motivic sheaves

If F/k is a finitely generated field extension, we define the motive M(F ) in DM eff(k)
as the homotopy limit of the motives M(Y ) as Y ∈ Sm/k runs over all smooth models
of F . Since we will really only be using the functor HomDMeff (k)(M(F ),−), the reader
can, if she prefers, view this as a notational shorthand for the functor on DM eff(k):

M �→ lim−→
Y

k(Y )=F

HomDMeff (k)(M(Y ), M).

This limit is just
lim−→
Y

k(Y )=F

H0
Zar(Y, M),

in other words, just the stalk of the 0th hypercohomology sheaf of M at the generic point
of Y .

Lemma 4.3.1. Let F ∈ DM eff(k) be such that Hi(F) = 0 for all i > 0. Then

HomDMeff (k)(M(k(Y )),F(n)[2n + r])) = 0

for r > 0, n � 0 and for all Y ∈ Sm/k.
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Proof. Let F = k(Y ). F(n)[2n] is a summand of F ⊗M(Pn), so it suffices to show that

HomDMeff (k)(M(F ),F ⊗ M(Pn)[r]) = 0

for r > 0. We can represent F ⊗ M(Pn) by C∗(F ⊗tr Ztr(Pn)). For each n ∈ Z, let Fn

be the nth term of F (homological notation). Replacing F with the canonical truncation
τ�0F , we may assume that Fn = 0 for n < 0. We have the functorial left resolutions

L(Fn) → Fn

of Fn (as Nisnevich sheaves with transfers), where the terms in L(Fn) are direct sums of
representable sheaves; let L(F) denote the total complex of the double complex L(Fp)q.
Then we can replace C∗(F ⊗tr Ztr(Pn)) with the total complex of

· · · → C∗(L(F)n ⊗tr Ztr(Pn)) → · · · → C∗(L(F)0 ⊗tr Ztr(Pn)).

This in turn is a complex supported in (cohomological) degree � 0 with all terms direct
sums of representable sheaves Ztr(Y ), Y ∈ Sm/k. But for any X ∈ Sm/k, we have

HomDMeff (k)(M(X), M(Y )[r]) ∼= Hr
Zar(X, C∗(Y )).

Thus

HomDMeff (k)(M(F ), M(Y )[r]) ∼= Hr(C∗(Y )(F )),

which is zero for r > 0, and thus

HomDMeff (k)(M(F ),F(n)[2n + r]) ⊂ Hr(C∗(L(F) ⊗tr Ztr(Pn))) = 0

for r > 0. �

Proposition 4.3.2. Let F be a birational motivic sheaf. Then for all n � 0, F(n)[2n]
is well-connected.

Proof. We first show that F(n)[2n] is connected, i.e. that

Hr
Zar(X, F(n)[2n]) = HomDMeff (k)(M(X),F(n)[2n + r]) = 0

for all r > 0 and all X ∈ Sm/k. We have the Gersten–Quillen spectral sequence

Ep,q
1 =

⊕
x∈X(p)

HomDMeff (k)(M(k(x))(p)[2p],F(n)[2n + p + q])

=⇒ HomDMeff (k)(M(X),F(n)[2n + p + q]).

For p > n, Ep,q
1 = 0 by Remark 4.2.4. Using Lemma 4.3.1 and Voevodsky’s cancellation

theorem [62], we see that Ep,q
1 = 0 for p + q > 0, p � n, whence the claim.

Next, note that

Ωm
T (F(n)[2n]) =

{
F(n − m)[2n − 2m] for 0 � m � n,

0 for m > n.
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Indeed, note that, for G ∈ DM eff(k),

HomDMeff (k)(G, Ωm
T (F(n)[2n])) ∼= HomDMeff (k)(G(m)[2m],F(n)[2n]).

For m � n, we have the canonical evaluation map ev : F(n − m)[2n − 2m] →
Ωm

T (F(n)[2n]); the above identity says that ev induces the Tate twist map

HomDMeff (k)(G,F(n − m)[2n − 2m]) → HomDMeff (k)(G(m)[2m],F(n)[2n]),

f �→ f ⊗ idZ(m)[2m] .

Voevodsky’s cancellation theorem [62] implies that the Tate twist map is an isomorphism;
as G was arbitrary, it follows that ev is an isomorphism. For the case m > n, the right-
hand side HomDMeff (k)(G(m)[2m],F(n)[2n]) is zero by Remark 4.2.4.

Thus

smot
0 (Ωm

T (F(n)[2n])) =

{
0 for m � 0, m �= n,

F for m = n.

In fact, we need only check for 0 � m � n. If 0 � m < n, then Ωm
T (F(n)[2n]) is in

DM eff(k)(1), hence the smot
0 (Ωm

T (F(n)[2n])) = 0. Finally, Ωn
T (F(n)[2n]) = F , and thus

s0Ω
n
T (F(n)[2n]) = smot

0 (F) = F by Remark 4.2.3.
As F is a sheaf, smot

0 (Ωm
T (F(n)[2n])) is concentrated in cohomological degree 0 for all

m, which shows that F(n)[2n] is well-connected. �

Theorem 4.3.3. Let F be a birational motivic sheaf. Then for q � 0, there is a natural
isomorphism

H2q−p(X, F(q)) := HomDMeff (k)(M(X),F(q)[2q − p]) ∼= CHq(X, p; F(q)[2q]).

Proof. Since F(q)[2q] is well-connected (Proposition 4.3.2), it follows from Theo-
rem 3.2.4 that the slices smot

q (F(q)[2q]) are computed by the cycle complexes, i.e. there
is a natural isomorphism

HomDMeff (k)(M(X), smot
q (F(q)[2q])[−p]) ∼= CHq(X, p; F(q)[2q]).

But smot
q (F(q)[2q]) = F(q)[2q] by Remark 4.2.3. �

Remark 4.3.4. Let F be a birational sheaf. For Y ∈ Sm/k, we can define the group of
codimension q cycles on Y with values in F as

zq(Y )F :=
⊕

w∈Y (q)

F(k(w)),

that is, an F-valued cycle on Y is a formal finite sum
∑

i aiWi with each Wi a codimension
q integral closed subscheme of Y and ai ∈ F(k(Wi)). The canonical identification

F(k(w)) ∼= H0((F(q)[2q])W (Y ))
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for W ⊂ Y a codimension q integral closed subscheme gives the F-valued cycle groups the
usual properties of algebraic cycles, including proper pushforward, and partially defined
pullback. In particular, for F = Z, we have the identification

zq(Y )Z = zq(Y );

we will show in the next subsection that this identification is compatible with the oper-
ations of proper pushforward, and pullback (when defined).

In addition, we have

smot
0 (Ωq

T (F(q)[2q])) ∼= smot
0 (F)

∼= F ,

hence
zq(X, n; F(q)[2q]) =

⊕
w∈X(q)(n)

F(k(w)).

Thus we can think of zq(X, ∗; F(q)[2q]) as the cycle complex of codimension q F-valued
cycles in good position on X × ∆∗.

4.4. The sheaf Z

The most basic example of a birational motivic sheaf is the constant sheaf Z. Here we
show that the constructions of the previous subsection are compatible with the classical
operations on algebraic cycles.

Let W ⊂ Y be a closed subset with Y ∈ Sm/k. We let zq
W (Y ) be the subgroup of

zq(Y ) consisting of cycles with support contained in W .

Definition 4.4.1. The category of closed immersions Immk has objects (Y, W ) with
Y ∈ Sm/k and W ⊂ Y a closed subset. A morphism f : (Y, W ) → (Y ′, W ′) is a
morphism f : Y → Y ′ in Sm/k such that f−1(W ′)red ⊂ W . Let Immk(q) ⊂ Immk

be the full subcategory of closed subsets W ⊂ Y such that each component of W has
codimension at least q.

Note that for each morphism f : (W ⊂ Y ) → (W ′ ⊂ Y ′) in Immk(q), the pullback of
cycles gives a well-defined map f∗ : zq

W ′(Y ′) → zq
W (Y ).

Definition 4.4.2. Let f : Y ′ → Y be a morphism in Schk, with Y and Y ′ equidimen-
sional over k. We let zq(Y, ∗)f ⊂ zq(Y, ∗) be the subcomplex defined by letting zq(Y, n)f

be the subgroup of zq(Y, n) generated by irreducible W ⊂ Y × ∆n, W ∈ zq(Y, n), such
that for each face F ⊂ ∆n, each irreducible component of (f × idF )−1(W ∩ X × F ) has
codimension q on Y ′ × F .

Assuming that f(Y ′) is contained in the smooth locus of Y , the maps (f × id∆n)∗ thus
define the morphism of complexes

f∗ : zq(Y, ∗)f → zq(Y ′, ∗).

We recall Chow’s moving lemma in the following form.
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Theorem 4.4.3 (Bloch [7]). Suppose that Y is a quasi-projective k-scheme, and that
f : Y ′ → Y has image contained in the smooth locus of Y . Then the inclusion zq(Y, ∗)f →:
zq(Y, ∗) is a quasi-isomorphism.

Lemma 4.4.4. Take Y ∈ Sm/k, W ⊂ Y a closed subset. Suppose that each irreducible
component of W ⊂ Y has codimension at least q. Then there is an isomorphism

ρY,W,q : H2q
W (Y, Z(q)) → zq

W (Y )

such that the ρY,W,q define a natural isomorphism of functors from Immk(q)op to Ab. In
addition, the maps ρY,W,q are natural with respect to proper pushforward.

Proof. For U ∈ Sm/k, we have the sheaf zq.fin(U) ∈ Shtr
Nis(k), where for X ∈ Sm/k,

zq.fin(U)(X) is the free abelian group on the integral subschemes W ⊂ X ×k U with
W → X quasi-finite and dominant over some component of X.

Let f : (Y ′, W ′) → (Y, W ) be a map in Immk(q). By definition, Z(1)[2] is the reduced
motive of P1,

Z(1)[2] = M̃(P1) ∼= cone(M(k) i∞∗−−→ M(P1)),

and Z(q)[2q] is the qth tensor power of Z(1)[2]. Via the localization functor

RCSus
∗ : D−(Shtr

Nis(Sm/k)) → DM eff
− (k)

and using [58, Corollary 4.1.8], we have the isomorphism

Z(q)[2q] ∼= CSus
∗ (zq.fin(Aq))

and the natural identification

H2q+p(Y, Z(q)) ∼= H
p
Nis(Y, CSus

∗ (zq.fin(Aq))) ∼= Hp(CSus
∗ (zq.fin(Aq))(Y )).

In particular, we have the natural identification of the motivic cohomology with supports

H2q
W (Y, Z(q)) ∼= H0(cone(CSus

∗ (zq.fin(Aq))(Y ) → CSus
∗ (zq.fin(Aq))(Y \ W ))[−1]).

Set

CSus
∗ (zq.fin(Aq))W (Y ) := cone(CSus

∗ (zq.fin(Aq))(Y ) → CSus
∗ (zq.fin(Aq))(Y \ W ))[−1].

In addition, from the definition of the Suslin complex, we have the evident inclusion
of complexes

CSus
∗ (zq.fin(Aq))(Y ) ⊂ zq(Y × Aq, ∗)f×id ⊂ zq(Y × Aq, ∗).

It follows from [17, VI, Theorem 3.2; V, Theorem 4.2.2] that the inclusion

CSus
∗ (zq.fin(Aq))(Y ) ⊂ zq(Y × Aq, ∗)
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is a quasi-isomorphism; by Theorem 4.4.3, the inclusion

CSus
∗ (zq.fin(Aq))(Y ) ⊂ zq(Y × Aq, ∗)f×id

is a quasi-isomorphism as well.
Let U = Y \ W , U ′ := Y ′ \ W ′ and let fU : U ′ → U be the restriction of f . Setting

zq
W (Y, ∗)f = cone(zq(Y, ∗)f → zq(U, ∗)fU

)[−1],

we thus have the quasi-isomorphism

CSus
∗ (zq.fin(Aq))W (Y ) → zq

W×Aq (Y × Aq, ∗)f×id.

We have the commutative diagram

CSus
∗ (zq.fin(Aq))W (Y ) ��

(f∗,f∗
U )

��

zq
W×Aq (Y × Aq, ∗)f×id

(f×id∗,fU ×id∗)
��

CSus
∗ (zq.fin(Aq))W ′

(Y ′) �� zq
W ′×Aq (Y ′ × Aq, ∗)

Since the horizontal maps are quasi-isomorphisms, we can use the right-hand side to
compute f∗ : H2q

W (Y, Z(q)) → H2q
W ′(Y ′, Z(q)).

By the homotopy property for the higher Chow groups, and using the moving lemma
again, the pullback maps

p∗
1 : zq

W (Y, ∗)f → zq
W×Aq (Y × Aq, ∗)f×id,

p∗
1 : zq

W ′(Y ′, ∗) → zq
W ′×Aq (Y × Aq, ∗)

are quasi-isomorphisms. Thus we can use

f∗ : zq
W (Y, ∗)f → zq

W ′(Y ′, ∗)

to compute f∗ : H2q
W (Y, Z(q)) → H2q

W ′(Y ′, Z(q)).
Let d = dimk Y . Chow’s moving lemma together with the localization distinguished

triangle
zd−q(W, ∗) → zd−q(Y, ∗) → zd−q(U, ∗)

shows that the inclusion zd−q(W, ∗) ⊂ zd−q(Y, ∗)f induces a quasi-isomorphism

zd−q(W, ∗) → zq
W (Y, ∗)f .

Similarly, the inclusion zd′−q(W ′, ∗) ⊂ zd′−q(Y ′, ∗), d′ := dimk Y ′, induces a quasi-
isomorphism

zd′−q(W ′, ∗) → zq
W ′(Y ′, ∗).

Since each component of W has codimension at least q on Y , it follows that the inclusion

zd−q(W ) = zd−q(W, 0) → zd−q(W, ∗)
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is a quasi-isomorphism. As zd−q(W ) = zq
W (Y ), we thus have the isomorphism

ρY,W,q : zq
W (Y ) → H2q

W (Y, Z(q)).

In addition, the following diagram commutes:

zd−q(W ) zq
W (Y ) ��

f∗

��

zq
W (Y, ∗)f

f∗

��
zd′−q(W ′) zq

W ′(Y ′) �� zq
W ′(Y ′, ∗)

Combining this with our previous identification of H2q
W (Y, Z(q)) with H0(z

q
W (Y, ∗)f ) and

H2q
W ′(Y ′, Z(q)) with H0(z

q
W ′(Y ′, ∗)) shows that the isomorphisms ρY,W,q are natural with

respect to pullback.
The compatibility of the ρY,W,q with proper pushforward is similar, but easier, as one

does not need to introduce the complexes zq(Y × Aq, ∗)f×id, etc., or use Chow’s moving
lemma. We leave the details to the reader. �

Now take X ∈ Sm/k, W ∈ S(q)
X (n). By Lemma 4.4.4, we have the isomorphism

ρX×∆n,W,q : H2q
W (X × ∆n, Z(q)) → zq

W (X × ∆n).

In addition, if W ′ ⊂ W is a closed subset of codimension greater than q on X ×∆n, then
the restriction map

H2q
W (X × ∆n, Z(q)) → H2q

W\W ′(X × ∆n \ W ′, Z(q))

is an isomorphism. Noting that

H0((Z(q)[2q])W (X × ∆n)) = H2q
W (X × ∆n, Z(q)),

it follows from the definition of zq(X, n; Z(q)[2q]) that we have

zq(X, n; Z(q)[2q]) = lim−→
W⊂X×∆n

W∈S(q)
X (n)

H2q
W (X × ∆n, Z(q)).

Thus taking the limit of the isomorphisms ρX×∆n,W,q over W ∈ S(q)
X (n) gives the iso-

morphism
ρX,n : zq(X, n; Z(q)[2q]) → zq(X, n).

Proposition 4.4.5. For X ∈ Sm/k, the maps ρX,n define an isomorphism of complexes

zq(X, ∗; Z(q)[2q])
ρX−−→ zq(X, ∗)

natural with respect to flat pullback.

Proof. It follows from Lemma 4.4.4 that the isomorphisms ρX,W,n are natural with
respect to the pullback maps in Immk(q); in particular, with respect to flat pullback and
with respect to the face maps X×∆n−1 → X×∆n. Passing to the limit over W ∈ S(q)

X (n)
proves the result. �
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Part II. Motivic cohomology of Azumaya algebras

5. The sheaves KA
0 and ZA

In this section we develop a theory of ‘KA
0 -valued cycles’ leading to a generalization of

Bloch’s cycle complex and higher Chow groups. In the next section, we show how one
extends the Bloch–Lichtenbaum spectral sequence (as generalized in [31]) to the case
of the G-theory of an Azumaya algebra A over some scheme X, with the higher Chow
groups being replaced by our modified version.

The general theory developed in the previous sections is restricted to presheaves of
spectra on Sm/k; as we would like to have our spectral sequence for an arbitrary sheaf
of Azumaya algebras over some base-scheme X, rather than just a central simple algebra
over k, we are forced to repeat some of the constructions of the previous sections in
this more general setting. However, the proof of our main result (Theorem 6.1.3) in the
next section will be accomplished by using localization properties to reduce to the case
X = Spec k, allowing us to apply the results of the previous sections.

Returning to the case of a central simple algebra over k, we use Theorem 6.1.3 to prove
a more precise result, identifying the slice sqK

A with the Eilenberg–Mac Lane spectra
of the motive ZA(q)[2q] (Theorem 6.5.5). This is the main result we will need for our
applications to Severi–Brauer varieties and the K-theory of central simple algebras.

5.1. KA
0 : definition and first properties

Let R be a noetherian ring and fix a sheaf of Azumaya algebras A on an R-scheme of
finite type X. For p : Y → X ∈ SchX , we have the sheaf p∗A of Azumaya algebras on
Y . We may sheafify the K-groups of p∗A for the Zariski topology on Y , giving us the
Zariski sheaves KA

n on SchX .

Lemma 5.1.1. Suppose that X is regular. Then

(1) KA
0 is an A1 homotopy invariant presheaf on Sm/X;

(2) KA
0 is a birational presheaf on Sm/X, i.e. for Y ∈ Sm/X, j : U → Y a dense open

subscheme, the restriction map

j∗ : KA
0 (Y ) → KA

0 (U)

is an isomorphism; equivalently, KA
0 is locally constant for the Zariski topology on

Sm/X, hence is a sheaf for the Nisnevich topology on Sm/X.

Proof. The homotopy invariance follows from the fact that Y �→ K0(Y ; A) is homotopy
invariant, and that the restriction map K0(Y,A) → K0(U,A) is surjective for each open
immersion U → Y in Sm/X.

For the birationality property, we may assume that Y is irreducible. By Corollary A.4,
any object in the category PX;A is locally A-projective, hence it suffices to show that for
each y ∈ Y , the map

K0(A ⊗OB
OY,y) → K0(A ⊗OB

k(Y ))

is an isomorphism.
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Since Y is regular, surjectivity follows easily from Corollary A.5. On the other hand,
since OY,y is local, the category of finitely generated projective A ⊗OB

OY,y-modules has
a unique indecomposable generator (see [12] and [29, III.5.2.2]) and similarly, the cate-
gory of finitely generated projective A ⊗OB

k(Y )-modules has a unique simple generator.
Thus the map is also injective, completing the proof that KA

0 is birational.
To see that KA

0 is a sheaf for the Nisnevich topology, it suffices to check the sheaf
condition on elementary Nisnevich squares (compare proof of Lemma 4.1.3); this follows
directly from the birationality property. �

5.2. The reduced norm map

For Y ∈ Sm/X, let Spec F → Y be a point. We define a map

NrdF : Z 	 K0(AF ) → K0(F ) = Z

by mapping the positive generator of K0(AF ) to eF [F ], where eF is the index of AF .
Recall that, by definition, e2

F = [D : F ] where D is the unique division F -algebra similar
to AF .

Lemma 5.2.1. The assignment F �→ NrdF defines a morphism of sheaves on Sm/XNis

Nrd : KA
0 → Z

which realizes KA
0 as a subsheaf of the constant sheaf Z. This is the reduced norm map

attached to A.

Proof. In view of Lemma 5.1.1, it suffices to check that if L is a separable extension of
F , the diagram

K0(AL)
NrdL �� K0(L)

K0(AF )
NrdK ��

��

K0(F )

��

commutes. This is classical: by Morita invariance, we may replace AF by a similar division
algebra D. Choose a maximal commutative subfield E ⊂ D which is separable over F .
First assume that L = E: then DL is split and NrdL is an isomorphism by Morita
invariance; on the other hand, the generator [D] of K0(D) maps to e times the generator
of K0(DL), which proves the claim in this special case. The general case reduces to the
special case by considering a commutative cube involving the extension LE. �

5.3. The presheaf with transfers ZA

For a scheme X we let MX denote the category of coherent sheaves of OX -modules
on X. Given a sheaf of Azumaya algebras A on X, we let MX(A) denote the category
of sheaves of A-modules F which are coherent as OX -modules, using the structure map
OX → A to define the OX -module structure on F . We let G(X; A) denote the K-theory
spectrum of the abelian category MX(A). If f : Y → X is a morphism, we often write
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G(Y ; A) for G(Y ; f∗A). For Y ∈ Sm/X, we let Gn(Y,A) denote the Zariski sheaf on Y

associated to the presheaf U �→ Gn(U,A).
Suppose that X is regular. Let f : Z → Y be a finite morphism in SchX with Y in

Sm/X. Restriction of scalars defines a map of sheaves

f∗ : f∗K0(Z; A) → G0(Y ; A).

Using Corollary A.5, we see that the natural map

K0(Y ; A) → G0(Y ; A)

is an isomorphism, giving us the pushforward map

f∗ : KA
0 (Z) → KA

0 (Y ).

Now take Y, Y ′ ∈ Sm/X and let Z ⊂ Y ×X Y ′ be an integral subscheme which is finite
over Y and surjective onto a component of Y ; let p : Z → Y , p′ : Z → Y ′ be the maps
induced by the projections. Define

Z∗ : KA
0 (Y ′) → KA

0 (Y )

by Z∗ := p∗ ◦ p′∗. For X regular, this operation extends to CorX(Y, Y ′) by linearity.

Lemma 5.3.1. Suppose X regular. For Z1 ∈ CorX(Y, Y ′), Z2 ∈ CorX(Y ′, Y ′′) we have

(Z2 ◦ Z1)∗ = Z∗
1 ◦ Z∗

2 .

Proof. We already have a canonical operation of CorX(−,−) on the constant sheaf Z

making Z a sheaf with transfers; one easily checks that this action agrees with the action
we have defined above for A = OX . It is similarly easy to check that, for Z integral and
f : Z → Y finite and surjective with Y smooth, f∗ commutes with Nrd. Since Nrd is
injective, this implies that KA

0 is also a sheaf with transfers, as desired. �

Definition 5.3.2. Let X be a regular R-scheme of finite type, A a sheaf of Azumaya
algebras on X. We let ZA denote the Nisnevich sheaf with transfers on Sm/X defined
by KA

0 .

Remark 5.3.3. The reduced norm map Nrd : KA
0 → Z defines a monomorphism of

Nisnevich sheaves with transfers Nrd : ZA → Z.

Lemma 5.3.4. The subsheaf with transfers (ZA, Nrd) of the constant sheaf (with trans-
fers) Z only depends on the subgroup of Br(X) generated by A. In particular, it is
Morita-invariant.

Proof. Indeed, if B generates the same subgroup of Br(X) as A, there exist integers
r, s such that A⊗Xr is similar to B and B⊗Xs is similar to A. This implies readily that
A and B have the same splitting fields (say, over a point SpecF of X), hence have the
same index (say, over any extension of F ). �
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Remark 5.3.5. The maps K0(F ) → K0(AF ) given by extension of scalars also define a
morphism of sheaves Z → ZA. But this morphism is not Morita-invariant.

In case X is the spectrum of a field, Lemma 5.1.1 yields the following proposition.

Proposition 5.3.6. Take X = Spec k, k a field, and let A be a central simple algebra
over k. Then the sheaf with transfers ZA on Sm/k is a birational motivic sheaf.

5.4. Severi–Brauer schemes

Let p : SB(A) → X be the Severi–Brauer scheme associated to A.

Lemma 5.4.1. Suppose X = Spec k, k a field. Then the subgroup Nrd(K0(A)) ⊂
K0(k) = Z is the same as the image

p∗(CH0(SB(A))) ⊂ CH0(B) = Z.

Moreover, p∗ : CH0(SB(A)) → Z is injective.

Proof. This is a theorem of Panin [46], see also [10, Corollary 7.3]. We recall the
proof of the first statement. Let x = Spec K be a closed point of SB(A). Then K is a
finite extension of F which is a splitting field of A. It is classical that K is a maximal
commutative subfield of some algebra similar to A; in particular, [K : F ] is divisible by
the index of A. Conversely, replacing A by a similar division algebra D, for any maximal
commutative subfield L ⊂ D, [L : F ] equals the index of A. �

Now let us come back to the case where X is regular. Let us denote by CH0(SB(A)/X)
the sheafification (for the Zariski topology) of the presheaf on Sm/X

U �→ CHdimk U (SB(A) ×X U).

The pushforward

pU∗ : CHdimk U (SB(A) ×X U) → CHdimk U (U) = Z

defines the map
deg : CH0(SB(A)/X) → Z,

where Z is viewed as a constant sheaf on (Sm/X)Zar.

Lemma 5.4.2. The map deg identifies CH0(SB(A)/X) with the locally constant sub-
sheaf Nrd(ZA) ⊂ Z. In other words, there is a canonical isomorphism of subsheaves of
Z

(ZA, Nrd) 	 (CH0(SB(A)/X), deg).

Proof. By Lemma 5.4.1, the result is true at Spec F , F a field. For Y local, the restriction
map

j∗ : CHdim X(SB(A) ×X Y ) → CH0(SB(A ⊗OB
k(Y )))

(dimX := the Krull dimension) is surjective, from which the result easily follows. �

Remark 5.4.3. It is evident that the transfer structure of Lemma 5.3.1 on ZA coincides
with the natural transfer structure on CH0(SB(A)/X).
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5.5. KA
0 for embedded schemes

Let k be a field. We fix a sheaf of Azumaya algebras A on some finite type k-scheme
X; we do not assume that X is regular.

As a technical tool, we extend the definition of the category Immk (Definition 4.4.1)
as follows.

Definition 5.5.1. The category of closed immersions ImmX,k has objects (Y, W ) with
Y ∈ Sm/k and W ⊂ X ×k Y a closed subset. A morphism f : (Y, W ) → (Y ′, W ′) is a
morphism f : Y → Y ′ in Sm/k such that (id×f)−1(W ′)red ⊂ W .

Let Y be a smooth k-scheme, let i : W → X ×k Y be a reduced closed subscheme of
pure codimension. Letting Wreg ⊂ W be the regular locus, we have the (constant) Zariski
sheaf KA

0 defined on Wreg. We describe how to extend KA
0 to W ⊂ X ×k Y so that

(Y, W ) �→ KA
0 (W ⊂ X ×k Y )

defines a presheaf KA
0 on ImmX,k.

For this, we define KA
0 on i : W → X ×k Y to be KA

0 (Wreg), where j : Wreg → W is
the regular locus of W . The trick is to define the pullback maps.

We let GW (X ×k Y ; A) denote the homotopy fibre of the restriction map

G(X ×k Y ; A) → G(X ×k Y \ W ; A).

Lemma 5.5.2. Suppose that X is local, with closed point x. Let i : Y ′ → Y be a
closed embedding in Smess /k, with Y local having closed point y. Let W ⊂ X × Y be
a closed subset such that X × Y ′ ∩ W = (x, y) (as a closed subset). If codimX×Y W >

codimX×Y ′(x, y), then the restriction map

i∗ : GW
0 (X × Y ; A) → G

(x,y)
0 (X × Y ′; A)

is the zero map.

Proof. The proof is a modification of Quillen’s proof of Gersten’s conjecture. Making a
base-change to k(x, y), and noting that G

(x,y)
0 (X × Y ; A) = G0((x, y); A), we may assume

that k(y) = k(x) = k. Since K-theory commutes with direct limits (of rings) we may
replace Y and Y ′ with finite type, smooth affine k-schemes, and we are free to shrink to
a smaller neighbourhood of y in Y as needed.

Let W̄ ⊂ Y be the closure of p2(W ). Note that the condition codimX×Y W >

codimX×Y ′(x, y) implies that dimk W < dimk Y , hence W̄ is a proper closed subset
of Y . Take a divisor D ⊂ Y containing W̄ . Then there is a morphism

π : Y → An,

n = dimk Y − 1, such that π is smooth in a neighbourhood of y and π : D → An is finite.
Let

W ′ := π−1(π(W )).
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Choosing π general enough, and noting that

codimX×Y W ′ = codimX×Y W − 1 � codimX×Y ′(x, y) = dimk X × Y ′,

we may assume that W ′ ∩ X × Y ′ is a finite set of closed points, say T . Let S ⊂ D be
the finite set of closed points π−1(π(y)) ∩ D.

The inclusion D → Y induces a section s : D → Y ×An D to p2 : Y ×An D → D;
since π is smooth at y′, s(D) is contained in the regular locus of Y ×An D and is hence
a Cartier divisor on Y ×An D. Noting that p1 : Y ×An D → Y is finite, there is an open
neighbourhood U of S in Y such that s(D) ∩ Y ×An U is a principal divisor; let t be a
defining equation. Let DU := D ∩ U .

This gives us the commutative diagram

Y ×An DU
q ��

p

��

U

DU

s

��

i

������������

with q finite. Applying X ×k −, this gives us the commutative diagram

X ×k Y ×An DU
q̂ ��

p̂

��

X ×k U

X ×k DU

ŝ

��

î

��������������

with q̂ finite.
Thus we have, for M ∈ MX×kDU ;A, the exact sequence

0 → q̂∗(p̂∗M)
q̂∗(×t)−−−−→ q̂∗(p̂∗M) → î∗M → 0

natural in M .
Note that, if M is supported in W , then q̂∗(p̂∗M) is supported in W ′. Letting i′ : W →

W ′ be the inclusion, our exact sequence gives us the identity

[i′∗M ] = 0 in GW ′

0 (Y ; A),

hence
i∗([i′∗M ]) = 0 in GW ′∩X×kY ′

0 (Y ′; A).

Let ī : (x, y) → T := W ′ ∩ X ×k Y ′ be the inclusion. We have the commutative diagram

GW
0 (X × Y ; A)

i′
∗ ��

i∗

��

GW ′

0 (X × Y ′; A)

i∗

��
G

(x,y)
0 (X × Y ′; A)

ī∗ �� GT
0 (X × Y ′; A)
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Since T is a finite set of points containing (x, y),

GT
0 (X × Y ′; A) = G

(x,y)
0 (X × Y ′; A) ⊕ G

T\{(x,y)}
0 (X × Y ′; A),

with ī∗ the inclusion of the summand G
(x,y)
0 (X × Y ′; A), from which the result follows

directly. �

For a closed immersion i : W → X × Y , restricting to the generic points of W and
using the canonical weak equivalence

G(W ; A) → GW (X × Y ; A)

gives the map
ϕW : GW

0 (X × Y ; A) → KA
0 (W ).

Each map of pairs f : (i′ : W ′ → X × Y ′) → (i : W → X × Y ) induces a commutative
diagram of inclusions

X × Y ′ \ W ′ ��

��

X × Y ′

��
X × Y \ W �� X × Y

Noting that id×f : X × Y ′ → X × Y is a local complete intersection morphism, we may
apply G(−) to this diagram, giving us the induced map on the homotopy fibres

f∗ : GW
0 (X × Y ; A) → GW ′

0 (X ′; A).

Thus, we have the diagram

GW
0 (X × Y ; A)

f∗
��

ϕW

��

GW ′

0 (X × Y ′; A)

ϕW ′

��
KA

0 (W ) KA
0 (W ′)

In order that f∗ descend to a map

f∗ : KA
0 (W ) → KA

0 (W ′),

it therefore suffices to prove the following lemma.

Lemma 5.5.3.

(1) For each i : W → X × Y , the map ϕW is surjective.

(2) ϕW ′(f∗(ker ϕW )) = 0.



528 B. Kahn and M. Levine

Proof. The surjectivity of ϕW follows from Quillen’s localization theorem, which first
of all identifies KW

0 (X × Y ; A) with G0(W ; A) and secondly implies that the restriction
map

j∗ : G0(W ; A) → G0(k(W ); A) = K0(k(W ); A)

is surjective.
For (2), we can factor f as a composition of a closed immersion followed by a smooth

morphism. In the second case, f−1(W \ Spec k(W )) contains no generic point of W ′,
hence classes supported in W \ Spec k(W ) die when pulled back by f and restricted to
k(W ′). Thus we may assume f is a closed immersion.

Fix a generic point w′ = (x, y) of W ′. We may replace X with SpecOX,x and replace
Y with SpecOY,y. Making a base-change, we may assume that k(x, y) is finite over k.
Since X ×k Y is smooth, it follows that

codimX×Y W � codimX×Y ′(x, y).

Let W ′′ ⊂ W is a closed subset of W containing no generic point of W . Then

codimX×Y W ′′ > codimX×Y ′(x, y),

hence by Lemma 5.5.2 the restriction map

GW ′′

0 (X × Y ; A) → G
(x,y)
0 (X × Y ′; A)

is the zero map. By Quillen’s localization theorem we have

ker ϕW = lim−→ GW ′′

0 (X × Y ; A)

over such W ′′, which proves the lemma. �

5.6. The cycle complex

Let T be a finite type k-scheme. We let dimk T denote the Krull dimension of T ; we
sometimes write dT for dimk T .

We fix as above a finite type k-scheme X and a sheaf of Azumaya algebras A on X.
We let SX

(r)(n) be the set of closed subsets W ⊂ X × ∆n with

dimk W ∩ X × F � r + dimk F

for all faces F ⊂ ∆n (compare with Definition 2.2.1, where we index by codimension
instead of dimension). We order SX

(r)(n) by inclusion. If g : ∆m → ∆n is the map
corresponding to a map g : [m] → [n] in Ord, and W is in SX

(r)(n), then g−1(W ) is in
SX

(r)(m), so n �→ SX
(r)(n) defines a simplicial set. We let Xr(n) ⊂ SX

(r)(n) denote the set
of irreducible W ∈ SX

(r)(n) with dimk W = r + n.

Definition 5.6.1.
zr(X, n; A) :=

⊕
W∈Xr(n)

K0(k(W ); A).
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Remark 5.6.2. Let W ⊂ X × ∆n be a closed subset. Then restriction to the generic
points of W gives the isomorphism

KA
0 (W ⊂ X × ∆n) ∼=

⊕
w∈W (0)

K0(k(w); A).

Thus, we can identify zr(X, n; A) with the quotient:

zr(X, n; A) ∼=
lim−→W∈SX

(r)(n)
KA

0 (W ⊂ X × ∆n)

lim−→W ′∈SX
(r−1)(n)

KA
0 (W ′ ⊂ X × ∆n)

.

Suppose each irreducible W ′ ∈ SX
(r−1)(n) is contained in some irreducible W ∈ SX

(r)(n)
with dimk W = r + n; as the map

KA
0 (W ′ ⊂ X × ∆n) → KA

0 (W ⊂ X × ∆n)

is in this case the zero-map, it follows that

zr(X, n; A) ∼= lim−→
W∈SX

(r)(n)

KA
0 (W ⊂ X × ∆n)

if this condition is satisfied, e.g. for X quasi-projective over k.

Let g : ∆m → ∆n be the map corresponding to g : [m] → [n] in Ord. By Lemma 5.5.3
and the above remark, we have a well-defined pullback map

id×g∗ : zr(X, n; A) → zr(X, m; A),

giving us the simplicial abelian group n �→ zr(X, n; A). We let (zr(X, ∗; A), d) denote the
associated complex, i.e.

dn :=
n∑

i=0

(−1)i(id×δn−1
i )∗ : zr(X, n; A) → zr(X, n − 1; A).

Definition 5.6.3. We define the higher Chow groups of dimension r with coefficients in
A as

CHr(X, n; A) := Hn(zr(X, ∗; A)).

5.7. Elementary properties

The standard elementary properties of the cycle complexes are also valid with coeffi-
cients in A, if properly interpreted.

Proper pushforward

Let f : X ′ → X be a proper morphism. For Y ∈ Sm/k and W ⊂ X ′ × Y , we have the
pushforward map

f × id∗ : GW
0 (X ′ × Y, f∗A) → G

f×id(W )
0 (X × Y ; A)
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commuting with pullback by morphisms id×g, for g : Y ′ → Y in Sm/k. Thus, the maps
(f × id∆n)∗ induce a map of complexes

f∗ : zr(X ′, ∗; f∗A) → zr(X, ∗; A)

with the evident functoriality.

Flat pullback

Let f : X ′ → X be a flat morphism. For Y ∈ Sm/k and W ⊂ X ×k Y , we have the
pullback map

f × id∗ : GW
0 (X × Y,A) → G

(f×id)−1(W )
0 (X ′ × Y, f∗A)

commuting with the pullback maps id×g∗ for g : Y ′ → Y a map in Sm/k. Since f is
flat, the codimension of W is preserved, hence the pullback maps f × id∗

∆n induce a map
of complexes

f∗ : zr(X, ∗; A) → zr(X ′, ∗; f∗A)

functorially in f .

Elementary moving lemmas and the homotopy property

Definition 5.7.1. Fix a Y ∈ Sm/k and let C be a finite set of locally closed subsets of Y .
Let X ×Y C

r (n) be the set of irreducible dimension r +n closed subsets W of X ×Y ×∆n

such that W is in X × Yr(n) and for each C ∈ C

W ∩ X × C × ∆n is in SX×C
(r) (n).

We have the subcomplex zr(X × Y, ∗; F)C of zr(X × Y, ∗; F), with

zr(X × Y, n; F)C =
⊕

W∈X×Y C
r (n)

KA
0 (W ).

Exactly the same proof as for [6, Lemma 2.2], using translation by GLn, gives the
following.

Lemma 5.7.2. Let C be a finite set of locally closed subsets of Y , with Y = An or
Y = Pn−1. Then the inclusion

zr(X × Y, ∗; A)C → zr(X × Y, ∗; A)

is a quasi-isomorphism.

Similarly, we have the following lemma.

Lemma 5.7.3. The pullback map

zr(X, ∗; A) → zr+1(X × A1; A)

is a quasi-isomorphism.
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5.8. Localization

Let j : U → X be an open immersion with closed complement i : Z → X. Let Y be
in Sm/k. If W ⊂ X × Y is an irreducible closed subset supported in Z × Y , then i × id
induces an isomorphism

i × id∗ : GW
0 (Z × Y,A) → GW

0 (X × Y ; A),

which in turn induces the isomorphism

i∗ : Ki∗A
0 (W ) → KA

0 (W ).

Similarly, if the generic point of W lives over U × Y , then we have the surjection

j × id∗ : GW
0 (X × Y ; A) → GW∩U×Y

0 (U × Y,A)

inducing an isomorphism

j∗ : KA
0 (W ) → KA

0 (W ∩ U × Y ).

This yields the termwise exact sequence of complexes

0 → zr(Z, ∗,A) i∗−→ zr(X, ∗; A)
j∗

−→ zr(U, ∗,A). (5.1)

The lemma below follows from [31, § 7, Theorem 8.2].

Lemma 5.8.1. The inclusion

j∗(zr(X, ∗,A)) ⊂ zr(U, ∗,A)

is a quasi-isomorphism.

Therefore, we have the following corollary.

Corollary 5.8.2. The sequence (5.1) determines a canonical distinguished triangle in
D−(Ab), and we have the long exact localization sequence

· · · → CHr(Z, n; A) i∗−→ CHr(X, n; A)
j∗

−→ CHr(U, n; A) → CHr(Z, n − 1; A) → · · · .

This in turn yields the Mayer–Vietoris distinguished triangle for X = U ∪V , U, V ⊂ X

Zariski open subschemes

zr(X, ∗; A) → zr(U, ∗; A) ⊕ zr(V, ∗; A) → zr(U ∩ V, ∗; A) → zr(X, ∗ − 1; A). (5.2)

5.9. Reduced norm

For X ∈ Schk, A = k, the complex zr(X, ∗; k) is just Bloch’s cycle complex zr(X, ∗).
Indeed, for a field F , we have the canonical identification of K0(F ) with Z by the dimen-
sion function, giving the isomorphism

zr(X, n; k) =
⊕

w∈X(r)(n)

K0(k(w)) ∼=
⊕

w∈X(r)(n)

Z = zr(X, n).
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In addition, if W ⊂ X×∆n is an integral closed subscheme of dimension d, i : ∆n−1 → ∆n

is a codimension one face and if W is not contained in X × i(∆n−1), then it follows
directly from Serre’s intersection multiplicity formula that the image of (id×i)∗([OW ])
in

⊕
w∈(X×∆n−1)(d−1)

K0(k(w)) goes to the pullback cycle (id×i)∗([W ]) under the iso-
morphism ⊕

w∈(X×∆n−1)(d−1)

K0(k(w)) ∼= zd−1(X × ∆n−1).

Now take A to be a sheaf of Azumaya algebras on X. The collection of reduced norm
maps

NrdAk(w) : K0(k(w); A) → K0(k(w))

defines the homomorphism

NrdX,n;A : zr(X, n; A) → zr(X, n).

Lemma 5.9.1. The maps NrdX,n;A define a map of simplicial abelian groups

n �→ [NrdX,n;A : zr(X, n; A) → zr(X, n)].

Proof. We note that the maps NrdX′,n;A for X ′ → X étale define a map of presheaves
on Xét. Both zr(X, n; A) and zr(X, n) are sheaves for the Zariski topology on X and
NrdX,n;A defines a map of sheaves, so we may assume that X is local. If X ′ → X is
an étale cover, then zr(X, n; A) → zr(X ′, n; A) and zr(X, n) → zr(X ′, n) are injective,
so we may replace X with any étale cover. Since A is locally a sheaf of matrix algebras
on Xét, we may assume that A = Mn(OX). In this case, NrdX,n;A is just the Morita
isomorphism; we thus may extend NrdX,n;A to the Morita isomorphism

NrdW : GW
0 (X × ∆n; A) → GW

0 (X × ∆n)

for every W ∈ SX
(r)(n). But the pullback maps g∗ : zr(X, n; A) → zr(X, m; A) and

g∗ : zr(X, n) → zr(X, m) for g : [m] → [n] in Ord are defined by lifting elements in
zr(X, n; A) (respectively zr(X, n)) to GW

0 (X × ∆n; A) (respectively GW
0 (X × ∆n)) for

some W , applying (id×g)∗ and mapping to zr(X, m; A) (respectively zr(X, m)). Thus
the maps NrdX,n;A define an isomorphism of simplicial abelian groups, completing the
proof. �

Thus we have maps

NrdX,A : zr(X, ∗; A) → zr(X, ∗),

NrdX;A : CHr(X, n; A) → CHr(X, n).

The naturality properties of Nrd show that the maps NrdX,A are natural with respect
to flat pullback and proper pushforward (on the level of complexes).
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6. The spectral sequence

We are now ready for the first of our main constructions and results. We begin by
discussing the homotopy coniveau tower associated to the G-theory of a sheaf of Azumaya
algebras A on a scheme X. Our main result (Theorem 6.1.3) is the identification of the
layers in the homotopy coniveau tower with the Eilenberg–Mac Lane spectra associated
to the twisted cycle complex zp(X, ∗; A). The proof is exactly the same as for standard
K-theory K(X) (see [33,34]), except that at one point we need to use an extension of
some regularity results from K(−) to K(−; A); this extension is given in Appendix B.

We then turn to the case X = Spec k, where we have the motivic Postnikov tower for
the presheaf KA. We show how our computation of the layers in the homotopy coniveau
tower for KA(X) = K(X; A ⊗k OX), for each X ∈ Sm/k, lead to a computation of
the layers in the motivic Postnikov tower for KA. This completes the proof of our first
main Theorem 1 (see Theorem 6.5.5). We conclude this section with a comparison of the
reduced norm maps in motivic cohomology and K-theory, and some computations of the
Atiyah–Hirzebruch spectral sequence in low degrees.

6.1. The homotopy coniveau filtration

Following [33] we define

G(p)(X, n; A) := lim−→
W∈SX

(p)(n)

GW (X × ∆n; A)

giving the simplicial spectrum n �→ G(p)(X, n; A), with associated total spectrum denoted
G(p)(X, −; A). Note that, for all p � dX , the ‘forget supports’ map

G(p)(X, −; A) → G(X × ∆∗; A)

is an isomorphism.

Remark 6.1.1. In order that n �→ G(p)(X, n; A) form a simplicial spectrum, one needs
to make the G-theory with support strictly functorial. This is done by first replacing the
categories MX×∆n(A) with the full subcategory MX×∆n(A)′ of A-modules which are
coherent sheaves on X ×∆n and are flat with respect to all inclusions X ×F → X ×∆n,
F ⊂ ∆n a face. Quillen’s resolution theorem shows that

K(MX×∆n(A)′) → K(MX×∆n(A))

is a weak equivalence. One then uses the usual trick of replacing MX×∆n(A)′ with
sequences of objects together with isomorphisms (indexed by the morphisms in Ord) to
make the pullbacks strictly functorial.

A similar construction makes Y �→ G(X ×k Y,A) strictly functorial on Sm/k; we will
use this modification from now on without further mention.

Since G(X × −; A) is homotopy invariant, the canonical map

G(X; A) → G(dX)(X, −; A)
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is a weak equivalence. This gives us the homotopy coniveau tower

· · · → G(p−1)(X, −; A) → G(p)(X, −; A) → · · · → G(dX)(X, −; A) ∼ G(X; A). (6.1)

Setting G(p/p−r)(X, −; A) equal to the homotopy cofibre of G(p−r)(X, −; A) →
G(p)(X, −; A), the tower (6.1) yields the spectral sequence

Ep,q
2 = π−p−q(G(q/q−1)(X, −; A)) =⇒ G−p−q(X; A). (6.2)

Remarks 6.1.2.

(1) Let T be a finite type k-scheme, W ⊂ T a closed subscheme with open complement
j : U → T and A a sheaf of Azumaya algebras on T . We have the homotopy fibre
sequence

GW (T ; A) → G(T ; A) → G(U ; j∗A).

In addition, the spectra G(T ; A) and G(U ; j∗A) are −1 connected, and the restric-
tion map

j∗ : G0(T ; A) → G0(U ; j∗A)

is surjective. Thus GW (T ; A) is −1 connected, hence the spectra G(p)(X, n; A) are
−1 connected for all n and p.

(2) Noting that SX
(p)(n) = ∅ for p+n < 0, the −1 connectedness of G(p)(X, n; A) implies

that
πN (G(p)(X, −; A)) = 0

for N < −p, i.e. that G(p)(X, −; A) is −p − 1 connected. This in turn implies that
G(p/p−r)(X, −; A) is −p − 1 connected for all r � 0, that the natural map

G(X; A) → holimn G(dX/−n)(X; A)

is a weak equivalence and that the spectral sequence (6.2) is strongly convergent.

Our main result in this section is the following theorem.

Theorem 6.1.3. There is a natural isomorphism

πn(G(p/p−1)(X, −; A)) ∼= CHp(X, n; A).

Corollary 6.1.4. There is a strongly convergent spectral sequence

Ep,q
2 = CHq(X, −p − q; A) =⇒ G−p−q(X; A).

The proof is in three steps: we first define a natural ‘cycle map’

cyc : πn(G(p/p−1)(X, −; A)) → CHp(X, n; A),

which will define the isomorphism. We then go on to use the localization properties of
G(p/p−1)(X, −; A) and CHp(X, ∗; A) to reduce to the case X = Spec F , F a field, and
finally we apply Theorem 3.2.4 to complete the proof.
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6.2. The cycle map

We have already seen in Remark 6.1.2 that the spectra G(p)(X, n; A) are all −1 con-
nected. A similar argument shows that the spectra G(p/p−r)(X, n; A) are all −1 con-
nected.

Let EM(π0G(p/p−1)(X, n; A)) denote the Eilenberg–Mac Lane spectrum with π0 =
π0G(p/p−1)(X, n; A) and all other homotopy groups 0. Since G(p/p−1)(X, n; A) is −1
connected, we have the map of spectra

ϕn : G(p/p−1)(X, n; A) → EM(π0G(p/p−1)(X, n; A))

natural in n. Letting EM(π0G(p/p−1)(X, −; A)) denote the total spectrum of the simplicial
spectrum n �→ EM(π0G(p/p−1)(X, n; A)), this gives us the natural map of spectra

ϕX : G(p/p−1)(X, −; A) → EM(π0G(p/p−1)(X, −; A)).

Lemma 6.2.1. There is a natural map

ψn : π0(G(p/p−1)(X, n; A)) → zp(X, n; A),

which is an isomorphism if X = Spec F , F a field.

Proof. Let W ⊂ X × ∆n be a closed subset with generic points w1, . . . , wr. We have
the evident restriction map

GW
0 (X × ∆n; A) = G0(W ; A) →

⊕
i

G0(k(wi); A).

Since ZA(W ) =
⊕

i G0(k(wi); A), we may define

ψn : π0(G(p/p−1)(X, n; A)) → zp(X, n; A)

by projecting
⊕

i G0(k(wi); A) on the factors coming from the generic points of
W ∈ SX

(p)(n) having dimension n + r over k. By Lemma 5.5.3, ψn is natural in n.
Suppose now that X = Spec F , F a field; making a base-change and replacing p

with p − dimk X, we may assume that F = k (note that in this case we may assume
p � 0). This implies that X × ∆n ∼= An

k . It is easy to see that, for each W ∈ SX
(p)(n), the

intersection of −p hypersurfaces of sufficiently high degree, containing W , is in SX
(p)(n)

and has pure dimension p + n. Thus the closed subsets W ∈ SX
(p)(n) of pure dimension

p + n are cofinal in SX
(p)(n).

Identify zp(X, n; A) with the direct sum
⊕

w G0(k(w); A) as w runs over the generic
points of SX

(p)(n) of dimension exactly n. From the localization sequence, we see that the
map

lim−→
W∈SX

(p)(n)

G0(W ; A) →
⊕
w

G0(k(w); A)

is surjective, with kernel the subgroup generated by the image of groups G0(W ′; A)
with dimW ′ < p + n and W ′ ⊂ W for some W ∈ SX

(p)(n). The result thus follows from
Lemma 6.2.2 below. �
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Lemma 6.2.2. Suppose that X = Spec k. Let W ′ ⊂ ∆n
k be a closed subset with W ′ ∈

S(q)
X (n) and codim∆n W ′ > q. Then the natural map

G0(W ′; A) → lim−→
W∈S(q)

X (n)

G0(W ; A)

is the zero-map.

Proof. This is a modification of the proof of Sherman [52] that the Gersten complex
for An is exact. We may assume that k is infinite. Take a general linear projection

π : ∆n
k = An

k → An−1
k

and let W = π−1(π(W ′)). Then

π : W ′ → An−1
k

is finite and W is in S(q)
X (n). In addition, π makes An into a trivial A1-bundle over

An−1. Thus the canonical section s : W ′ → W ′ ×An−1 An makes W ′ ×An−1 An → W ′ into
a trivial line bundle over W ′, hence s(W ′) ⊂ W ′ ×An−1 An is a principal Cartier divisor.
Letting t be a defining equation, we have the functorial exact sequence

0 → p2∗p
∗
1(M) ×t−−→ p2∗p

∗
1(M) → i∗(M) → 0, M ∈ MW ′(A),

where p1 : W ′ ×An−1 An → W ′, p2 : W ′ ×An−1 An → W ⊂ An are the projections and i :
W ′ → W is the inclusion. Thus

i∗ : G0(W ′; A) → G0(W ; A)

is the zero-map, completing the proof. �

We denote the composition EM(ψn) ◦ ϕn by

cycn(X) : G(p)(X, n; A) → EM(zp(X, n; A))

and the map on the associated total spectra by

cyc(X) : G(p)(X, −; A) → EM(zp(X, −; A)).

6.3. Localization

Consider an open subscheme j : U → X with closed complement i : Z → X. We let
SUX

(r) (n) ⊂ SU
(r)(n) denote the set of closed subsets W ⊂ U × ∆n such that

(1) W is in SU
(r)(n),

(2) the closure W̄ of W in X × ∆n is in SX
(r)(n).
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Define the spectrum G(r)(UX , n; A) by

G(r)(UX , n; A) := lim−→
W∈SUX

(r) (n)

GW (U × ∆n; A)

giving us the simplicial spectrum n �→ G(r)(UX , n; A) and the associated total spectrum
G(r)(UX ,−; A). The restriction map

j∗ : G(r)(X, n; A) → G(r)(U, n; A)

factors through G(r)(UX , n; A), giving us the commutative diagram

G(r)(X, −; A)
ĵ∗

��

j∗
��������������

G(r)(UX ,−; A)

ψ

��
G(r)(U,−; A)

Lemma 6.3.1. The sequence

G(r)(Z,−; i∗A) i∗−→ G(r)(X, −; A)
ĵ∗

−→ G(r)(UX ,−; A)

is a homotopy fibre sequence.

Proof. In fact, it follows from Quillen’s localization theorem for G(−; A) that the
sequence

G(r)(Z, n; i∗A) i∗−→ G(r)(X, n; A)
ĵ∗

−→ G(r)(UX , n; A)

is a homotopy fibre sequence for each n, whence the result. �

The localization techniques of [31, § 7, Theorem 8.2] yield the following result.

Theorem 6.3.2. The map

ψ : G(r)(UX ,−; A) → G(r)(U,−; A)

is a weak equivalence.

Thus, we have the following corollary.

Corollary 6.3.3. The sequences

G(r)(Z,−; A) i∗−→ G(r)(X, −; A)
j∗

−→ G(r)(U,−; A)

and

G(r/r−s)(Z,−; A) i∗−→ G(r/r−s)(X, −; A)
j∗

−→ G(r/r−s)(U,−; A)

are homotopy fibre sequences.
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In addition, we have the following lemma.

Lemma 6.3.4. The diagram

G(r/r−1)(Z,−; A) i∗ ��

cyc

��

G(r/r−1)(X, −; A)
j∗

��

cyc

��

G(r/r−1)(U,−; A)

cyc

��
EM(zr(Z,−; A))

i∗
�� EM(zr(X, −; A))

j∗
�� EM(zr(U,−; A))

defines a map of distinguished triangles in SH.

Proof. It is clear the maps cycn are functorial with respect to the closed immersion i

and the open immersion j, hence the diagram

π0G(r/r−1)(Z, n; A) i∗ ��

cycn

��

π0G(r/r−1)(X, n; A)
ĵ∗

��

cycn

��

π0G(r/r−1)(UX , n; A)

cycn

��
zr(Z, n; A)

i∗
�� zr(X, n; A)

j∗
�� zr(UX , n; A)

commutes for each n. Similarly, the diagram

π0G(r/r−1)(UX , n; A)
ψ ��

cycn

��

π0G(r/r−1)(U, n; A)

cycn

��
zr(UX , n; A)

ψ
�� zr(U, n; A)

commutes for each n. The result follows directly from this. �

Proposition 6.3.5. Suppose that the map

cyc(X) : G(r/r−1)(X, −; A) → EM(zr(X, −; A))

is a weak equivalence for all X of the form X = Spec F , F a finitely generated field
extension of k. Then cyc(X) is a weak equivalence for all X essentially of finite type
over k.

Proof. This follows from Corollary 5.8.2, Corollary 6.3.3, Lemma 6.3.4 and noetherian
induction. �

6.4. The case of a field

We have reduced the proof of Theorem 6.1.3 to the case X = Spec k, where we may
apply the method of [33, § 6.4], as explained in § 3.2.

Let KA ∈ SptS1(k) be the presheaf of spectra X �→ K(X; A). We note the following
lemma.
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Lemma 6.4.1.

(1) KA is homotopy invariant and satisfies Nisnevich excision.

(2) KA is connected.

(3) KA ∼= ΩT (KA).

We have already seen (1); (2) follows from the weak equivalence K(−; A) → G(−; A)
on Sm/k; and (3) follows from the projective bundle formula (which in turn is a direct
consequence of localization and homotopy invariance)

ΩT (KA)(Y ) ∼= fib[K(Y × P1,A)
i∗
∞−−→ K(Y,A)] ∼= K(Y,A).

In particular, for Y in Sm/k and integer q � 0, we have the simplicial abelian group
zq(Y,−; KA) and the cycle map (see Definition 3.1.15)

cycKA(Y ) : sq(Y,−; KA) → EM(zq(Y,−; KA)).

Lemma 6.4.2. Let Y be in Sm/k, d = dimk Y . Fix an integer q � 0 and let r = d − q.
There is a weak equivalence of simplicial spectra

n �→ ϕn : sq(Y, n; KA) → G(r/r−1)(Y, n; A)

and an isomorphism of simplicial abelian groups

n �→ ψn : zq(Y, n; KA) → zr(Y, n; A)

such that the diagram of total spectra

sq(Y,−; KA)
ϕ ��

cycKA (Y )

��

G(r/r−1)(Y,−; A)

cyc(Y )

��
EM(zq(Y,−; KA))

EM(ψ)
�� EM(zr(Y,−; A))

commutes in SH.

Proof. We have the natural transformation of functors on Sm/k

K(−; A) → G(−; A).

In particular, for T ∈ Sm/k and W ⊂ T a closed subset, we have the map

ϕT,W : KW (T ; A) → GW (T ; A)

defining a natural transformation of presheaves of spectra on Immk. Applying ϕ−,−
to the colimit of spectra with supports forming the definition of sq(Y, n; KA) and
G(r/r−1)(Y, n; A) gives ϕn. The map ψn is defined similarly, using the maps π0(ϕT,W ).
The compatibility with the cycle maps follows directly from the definitions. �
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Thus, to prove that cyc(Y ) : G(r/r−1)(Y,−; A) → EM(zr(Y,−; A)) is an isomorphism
in SH for all r and all Y ∈ Sm/k (in particular, for Y = Spec k), it suffices to show the
following lemma.

Lemma 6.4.3. The object KA ∈ SptS1(k) is well-connected. The map

cycKA(Y ) : sq(Y,−; KA) → EM(zq(Y,−; KA))

is an isomorphism in SH for all q and all Y ∈ Sm/k.

Proof. By Theorem 3.2.4, the first statement implies the second.
We have already seen that KA is connected (Lemma 6.4.1 (2)). By Lemma 6.4.1 (3)

we need only show that
πn(K(∆̂∗

k(Y ); A)) = 0

for n �= 0.
We have shown in [33, Theorem 6.4.1] that the theory Y �→ K(Y ) is well-connected,

in particular, that πn(K(∆̂∗
k(Y ); A)) = 0 for n �= 0 and for A = k. Using the results of

Appendix B, especially Proposition B.5, the same argument shows πn(K(∆̂∗
k(Y ); A)) = 0

for n �= 0 for arbitrary A. �

This completes the proof of Theorem 6.1.3.

6.5. The slice filtration for an Azumaya algebra

By Proposition 5.3.6, ZA is a birational motivic sheaf, hence the cycle complex
zq(X, ∗; ZA(q)[2q]) is defined.

Proposition 6.5.1. Let A be a central simple algebra over a field k. For X ∈ Sm/k,
there is an isomorphism of complexes

zq(X, ∗; A)
ϕX,A−−−→ zq(X, ∗; ZA(q)[2q]),

natural with respect to proper pushforward and flat pullback.

Proof. We first define for each n, q � 0 an isomorphism

ϕX,A,n : zq(X, n; A) ∼= zq(X, n; ZA(q)[2q]).

Indeed, by definition,
zq(X, n; A) =

⊕
w∈X(q)(n)

KA
0 (k(w)).

By Remark 4.3.4, we have

zq(X, n; ZA(q)[2q]) =
⊕

w∈X(q)(n)

ZA(k(w)).

But ZA is just KA
0 considered as a sheaf with transfers, giving us the desired isomorphism.
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This isomorphism ϕX,A,n is clearly compatible with proper pushforward and flat
pullback. It thus suffices to show that the ϕX,A,n are compatible with the face maps
X × ∆n−1 → X × ∆n.

Let k → k′ be an extension of fields. As the base-change maps

zq(X, n; A) → zq(Xk′ , n; A(q)[2q]),

zq(X, n; ZA(q)[2q]) → zq(Xk′ , n; ZA(q)[2q])

are injective, it suffices to check in case A is a matrix algebra. By Morita equivalence, it
suffices to check for A = k.

Recall from Proposition 4.4.5 the isomorphism of simplicial abelian groups

n �→ [ρX,n : zq(X, n; Z(q)[2q]) → zq(X, n)]

and from § 5.9 and Lemma 5.9.1 the reduced norm map (of simplicial abelian groups)

n �→ [NrdX,n;A : zq(X, n; A) → zq(X, n)].

In case A = k, the maps NrdX,n;A are isomorphisms. It is easy to check that (for A = k)
the diagram of isomorphisms

zq(X, n; A)
ϕX,A,n ��

NrdX,n;A ������������
zq(X, n; Z(q)[2q])

ρX,n		������������

zq(X, n)

commutes. Since both the NrdX,n;A and ρX,n define maps of simplicial abelian groups,
it follows that the ϕX,A,n define maps of simplicial abelian groups as well. �

Remark 6.5.2. We have the reduced norm map NrdA : ZA → Z (as a map of Nisnevich
sheaves with transfers) inducing a reduced norm map NrdA(q) : ZA(q)[2q] → Z(q)[2q]
and thus a map of complexes

NrdA(q)X : zq(X, ∗; ZA(q)[2q]) → zq(X, ∗; Z(q)[2q]).

We have as well the reduced norm map of § 5.9:

NrdX;A : zq(X, ∗; A) → zq(X, ∗).

We claim that the diagram

zq(X, ∗; A)

ϕX,A

��

NrdX;A �� zq(X, ∗)

ϕX,k

��
zq(X, ∗; ZA(q)[2q])

NrdA(q)X

�� zq(X, ∗; Z(q)[2q])

commutes. Indeed, on zq(X, n; A) =
⊕

w KA
0 (k(w)), both compositions are just sums of

the reduced norm maps

Nrd : K0(Ak(w)) → K0(k(w)) = Z.
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Theorem 6.5.3. Let A be a central simple algebra over a perfect field k, Y ∈ Sm/k.
Then there is an isomorphism

ψp,q;A : CHq(Y, 2q − p; A) → Hp(Y, ZA(q))

natural with respect to flat pullback and proper pushforward, and compatible with the
respective reduced norm maps.

Proof. This follows from Theorem 4.3.3 and Proposition 6.5.1. �

Corollary 6.5.4. Let A be a central simple algebra over a perfect field k, Y ∈ Sm/k.
Then there is a strongly convergent spectral sequence

Ep,q
2 = Hp−q(Y, ZA(−q)) =⇒ K−p−q(Y ; A).

Proof. By Corollary 6.1.4, we have the strongly convergent E2 spectral sequence

Ep,q
2 = CH−q(Y,−p − q; A) =⇒ K−p−q(Y ; A).

By Theorem 6.5.3 we have the isomorphism

CH−q(Y,−p − q; A) ∼= Hp−q(Y, ZA(−q)),

yielding the result. �

In fact, we have the following theorem.

Theorem 6.5.5. Let A be a central simple algebra over a perfect field k. Then for each
q � 0, there is an isomorphism

sq(KA) ∼= EMA1(ZA(q)[2q]).

Proof. By Proposition 6.5.1, we have an isomorphism of complexes

zq(X, ∗, ZA(q)[2q]) ∼= zq(X, ∗; A);

as zq(X, ∗; A) ∼= zq(X, ∗; KA) (Lemma 6.4.3), this gives us an isomorphism of complexes

τX : zq(X, ∗; KA) → zq(X, ∗, ZA(q)[2q]).

Referring to the construction in § 3.2 of functorial models z̃q(KA), z̃q(ZA(q)[2q]) for
the complexes zq(X, ∗, ZA(q)[2q]), zq(X, ∗; KA), the isomorphisms τX give rise to an
isomorphism in SptS1(k)

τ : EM(z̃q(KA)) → EM(z̃q(ZA(q)[2q])).

By Proposition 5.3.6, ZA is a birational motivic sheaf, hence by Proposition 4.3.2,
ZA(q)[2q] is well-connected. KA is well-connected by Lemma 6.4.3. Thus, Corollary 3.2.5
yields isomorphisms (in HSptS1(k), D(PSAb(Sm/k)), respectively)

cycKA ◦ϕq,KA : sq(KA) → EM(z̃q(KA)),

cycmot
ZA(q)[2q] ◦ϕmot

q,ZA(q)[2q] : smot
q (ZA(q)[2q]) → z̃q(ZA(q)[2q]),
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and therefore we have an isomorphism

sq(KA) ∼= EMA1(smot
q (ZA(q)[2q]))

in SHS1(k).
Finally, as ZA is a birational motivic sheaf, it follows from Remark 4.2.3 that

smot
q (ZA(q)[2q]) ∼= ZA(q)[2q], giving us the desired isomorphism

sq(KA) ∼= EMA1(ZA(q)[2q]).

�

6.6. The reduced norm map

Let A be a central simple algebra over k. We have already mentioned the reduced norm
map

Nrd : K0(A) → K0(k)

in § 5.2; there are in fact reduced norm maps

Nrd : Kn(A) → Kn(k)

for n = 0, 1, 2. For n = 0, 1, these may be defined with the help of a splitting field L ⊃ k

for A and Morita equivalence. Use the composition A ⊂ A⊗k L ∼= Md(L) to define maps
on the K-groups

Kn(A) → Kn(AL) ∼= Kn(Md(L)) ∼= Kn(L).

For n = 0, the map K0(k) → K0(L) is an isomorphism; one checks that the resulting
map K0(A) → K0(k) is the reduced norm we have already defined. For n = 1, one can
take L to be Galois over k (with group say G) and use that fact that there is a 1-cocycle
{ḡσ} ∈ Z1(G; PGLd(L)) such that A ⊂ Md(L) is the invariant subalgebra under the G

action
(σ, m) �→ ḡσ · σm · ḡ−1

σ .

As det : K1(Md(L)) → K1(L) = L× is the isomorphism given by Morita equivalence,
one sees that the image of K1(A) in L× lands in the G-invariants, i.e. in k× = K1(k).

For n = 2, the definition of the reduced norm map (due to Merkurjev–Suslin in the
square-free degree case [38, Theorem 7.3] and to Suslin in general [53, Corollary 5.7]) is
more complicated; however, we do have the following result. Let SplA be the set of field
extensions L/k that split A.

Proposition 6.6.1. Let L ⊃ k be an extension field.

(1) For n = 0, 1, 2, the diagram

Kn(AL) Nrd ��

NmAL/A

��

Kn(L)

NmL/k

��
Kn(A)

Nrd
�� Kn(k)

commutes. Here NmAL/A : Kn(AL) → Kn(A) is the map on the K-groups induced
by the restriction of scalars functor, and similarly for NmL/k.
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(2) For n = 0, 1, the map∑
NmAL/A :

⊕
L∈SplA

Kn(AL) → Kn(A)

is surjective. If A has square free index,
∑

NmAL/A is surjective for n = 2 as well.

For a proof of the last statement, see [38, Theorem 5.2].
Let L ⊃ k be a field. Since CHm(L, n; A) = 0 for m > n, due to reasons of dimension,

we have the edge homomorphism

pn,L;A : CHn(L, n; A) → Kn(AL)

coming from the spectral sequence of Corollary 6.1.4.
Let L/k be a finite field extension. We let

NmL/k : CHq(YL, p; A) → CHq(Y, p; A)

denote the pushforward map for the finite morphism YL → Y .

Lemma 6.6.2. Let L/k be a finite field extension, f : Spec L → Spec k the corresponding
morphism. Then the diagram

CHn(L, n; A)
pn,L;A ��

NmL/k

��

Kn(AL)

NmAL/A

��
CHn(k, n; A)

pn,k;A
�� Kn(A)

commutes.

Proof. Let w be a closed point of ∆n
L, not contained in any face. We have the compo-

sition

K0(L(w); A) ∼= Kw
0 (∆n

L; A) ∼= Kw
0 (∆n

L, ∂∆n
L; A) α−→ K0(∆n

L, ∂∆n
L; A) ∼= Kn(AL)

defined as follows. The first isomorphism is obtained via the localization sequence for
K(−; A). We have the canonical map

Kw(∆n
L, ∂∆n

L; A) → Kw(∆n
L; A),

which is a weak equivalence since w ∩ ∂∆n
L = ∅, giving us the second isomorphism. The

map α is ‘forget supports’ and the last isomorphism follows from the homotopy property
of K(−; A). Denote this composition by

βw
n,L;A : K0(k(w); A) → Kn(AL).

Since zn(L, n; A) =
⊕

w K0(k(w); A), where the sum is over all closed points w ∈ ∆n
L \

∂∆n
L, the maps βw

n,L;A induce

βn,L;A : zn(L, n; A) → Kn(AL);
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we have as well the canonical surjection

γn,L;A : zn(L, n; A) → CHn(L, n; A).

It follows easily from the definitions that the diagram

zn(L, n; A)

βn,L;A 

������������
γn,L;A �� CHn(L, n; A)

pn,L;A

��
Kn(AL)

commutes.
On the other hand, it is also a direct consequence of the definitions that, for x ∈ ∆n

k

the image of w under ∆n
L → ∆n

k , we have

NmL/k ◦γn,L;A = γn,k;A ◦ NmAL(w)/Ak(x)
,

NmAL/Ak
◦βn,L;A = βn,k;A ◦ NmAL(w)/Ak(x)

,

whence the result. �

Lemma 6.6.3. For all n � 0, the map∑
L

NmL/k :
⊕

L∈SplA

CHn(L, n; A) → CHn(k, n; A)

is surjective.

Proof. In fact, the map∑
L

NmL/k :
⊕

L∈SplA

zn(L, n; A) → zn(k, n; A)

is surjective. Indeed, let x be a closed point of ∆n
k \ ∂∆n

k . Then

Ak(x) = Mn(D)

for some division algebra D over k(x). Letting L ⊂ D be a maximal subfield of D

containing k(x), L splits D, hence L/k splits A. Since L ⊃ k(x), there is a closed point
w ∈ ∆n

L \ ∂∆n
L lying over x with L(w) = L, i.e. w is an L-point.

Since L is a maximal subfield of D, the degree of L over k(x) is exactly the index of
Nrd(K0(D)) ⊂ K0(k(x)). Thus the norm map

NmL/k(x) : K0(AL) → K0(Ak(x))

is surjective, i.e. K0(Ak(x)) · x is contained in the image of NmL/k(zn(L, n; A)). As

zn(k, n; A) =
⊕

x

K0(Ak(x))

with the sum over all closed points x ∈ ∆n
k \ ∂∆n

k , this proves the lemma. �
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Recall from § 5.9 the reduced norm map

NrdY,A : zq(Y, ∗; A) → zq(Y, ∗).

Lemma 6.6.4. Let j : k ↪→ L be a finite extension field, Y ∈ Sm/k. Then the diagram

zq(YL,−; A)
NrdYL,A��

NmL/k

��

zq(YL,−)

NmL/k

��
zq(Y,−; A)

NrdY,A

�� zq(Y,−)

commutes.

Proof. Take w ∈ Y
(q)
L (n) and let x ∈ Y (q)(n) be the image of w under YL×∆n → Y ×∆n.

It is easy to check that the diagram

K0(Ak(w))
Nrd ��

NmAk(w)/Ak(x)

��

K0(k(w))

Nmk(w)/k(x)

��
K0(Ak(x)) Nrd

�� K0(k(x))

commutes, from which the lemma follows. �

Proposition 6.6.5. For n = 0, 1, 2 the diagram

CHn(k, n; A)
pn,k;A ��

Nrd
��

Kn(A)

Nrd
��

CHn(k, n)
pn,k

�� Kn(k)

commutes.

Proof. Let j : k ↪→ L be a finite extension field of k. We have the diagram

CHn(L, n; AL)

NmL/k ��������������
pn,L;A ��

Nrd

��

Kn(AL)

Nrd

��

NmL/k

�����������

CHn(k, n; A)
pn,k;A ��

Nrd

��

Kn(A)

Nrd

��

CHn(L, n)
pn,L

��

NmL/k ��������������
Kn(L)

NmL/k �����������

CHn(k, n)
pn,k

�� Kn(k)



Motives of Azumaya algebras 547

The left-hand square commutes by Lemma 6.6.4, the right-hand square commutes by
Proposition 6.6.1, and the top and bottom squares commute by Lemma 6.6.2.

Now suppose that L splits A. Then, after using the Morita equivalence, the maps
Nrd are identity maps, hence the back square commutes. Thus for b ∈ CHn(L, n; AL),
a = NmL/k(b) ∈ CHn(k, n; A), we have

Nrd(pn,k,A(a)) = pn,k(Nrd(a)).

But by Lemma 6.6.3, CHn(k, n; A) is generated by elements a of this form, as L runs
over all splitting fields of A, proving the result. �

6.7. Computations

Theorem 6.7.1 (see also Theorem 6.8.2). Let A be a central simple algebra over k.

(1) For n = 0, 1, the edge homomorphism

CHn(k, n; A)
pn,k;A−−−−→ Kn(A)

is an isomorphism.

(2) The sequence

0 → CH1(k, 3; A)
d−2,−1
2−−−−→ CH2(k, 2; A)

p2,k;A−−−−→ K2(A) → CH1(k, 2; A) → 0

is exact.

Proof. We first note that CHm(k, n; A) = 0 for m > n for dimensional reasons.
In addition z0(k,−; A) is the constant simplicial abelian group n �→ K0(A), hence
CH0(k, n; A) = 0 for n �= 0. Item (1) follows thus from the spectral sequence of Corol-
lary 6.1.4.

For (2), the same argument gives the exact sequence

0 → CH1(k, 3; A)
d−2,−1
2−−−−→ CH2(k, 2; A)

p2,k;A−−−−→ K2(A) → CH1(k, 2; A) → 0.

�

6.8. Codimension one

We recall the computation of the codimension one higher Chow groups due to Bloch.

Proposition 6.8.1 (Bloch [6, Theorem 6.1]). Let F be a field. Then

CH1(F, n) =

{
F× for n = 1,

0 for n �= 1.
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Note that CH1(F, 0) = 0 for dimensional reasons. To show that CH1(F, n) = 0 for
n > 1, let D =

∑
i niDi be a divisor on ∆n

F , intersecting each face properly, i.e. containing
no vertex of ∆n

F in its support. Suppose that D represents an element [D] ∈ CH1(F, n),
that is, dn(D) = 0. Using the degeneracy maps to add ‘trivial’ components, we may
assume that D · ∆n−1

j = 0 for all j, where ∆n−1
j is the face tj = 0.

As ∆n
F

∼= An
F , the divisor D is the divisor of a rational function f on ∆n

F . Since D

intersects each ∆n−1
j properly, the restriction fj of f to ∆n−1

j is a well-defined rational
function on ∆n−1

j ; as D · ∆n−1
j = 0, Div(fj) = 0, so fj is a unit on ∆n−1

j , that is,
fj = aj for some aj ∈ k×. Since ∆n−1

j ∩ ∆n−1
l �= ∅ for all j, l,∗ all the aj are equal, thus

fj = a ∈ k× for all j. Dividing f by a we may assume that fj ≡ 1 for all j.
Now let D be the divisor of g := tf − (1 − t) on ∆n

F × A1
F , where A1

F := SpecF [t].
As the restriction of g to ∆n−1

j × A1 is 1, D defines an element [D] ∈ CH1(A1
F , n) with

i∗0([D]) = [D], i∗1([D]) = 0. By the homotopy property, [D] = 0.
We use essentially the same argument plus Wang’s theorem [64] to complete Theo-

rem 6.7.1 as follows.

Theorem 6.8.2. Let A be a central simple algebra over a field F . Suppose A has
square-free index e, with (e, char k) = 1. Then CH1(F, n; A) = 0 for n �= 1, and the edge
homomorphism

CH2(k, 2; A)
p2,k;A−−−−→ K2(A)

is an isomorphism.

Proof. We reduce as usual to the case where deg A = p is prime (with (p, char k) = 1).
As above, the case n = 0 is trivially true. We mimic the proof for CH1(F, n) in case
n > 1.

If A = Mp(k), then CH1(F, n; A) = CH1(F, n), so there is nothing to prove; we there-
fore assume that A is a degree p division algebra over k. Then A admits a splitting field
k′ of degree p over k; since CH1(F ⊗k k′, n; A) = CH1(F ⊗k k′, n) = 0 for n > 1, a norm
argument shows that CH1(F, n; A) is p-torsion.

We have seen in Lemma 6.2.2 that the argument of Sherman [52, Theorem 2.4] for
the degeneration of the Quillen spectral sequence for K(An

F ) goes through word for word
to give the degeneration of the Quillen spectral sequence for K(An

F ; A). We will use this
fact throughout the remainder of the proof.

Let M(1)
v (∆n

F ; A) denote the category of A ⊗k O∆n
F
-modules M which are coherent as

O∆n
F
-modules, and such that the support of M has codimension at least one on ∆n

F and
contains no vertex of ∆n

F . Take a ‘divisor’ D representing a class [D] ∈ CH1(F, n; A),
that is, represent [D] by an element

D̃ :=
∑

j

αj · Dj

with each Dj an integral codimension one closed subscheme of ∆n
F , containing no vertex

of ∆n
F , αj ∈ K0(A ⊗F F (Dj)) and extend

⊕
j αj to an element D ∈ K0(M(1)

v (∆n
F ; A)).

∗ This is where we use the hypothesis n > 1.
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As above, we may assume that the restriction D̃ · ∆n−1
j of D̃ to ∆n−1

j is zero for each
j = 0, . . . , n.

Let vn denote the set of vertices of ∆n, O∆n,vn the semi-local ring of vn in ∆n. Since
K0(∆n

F ; A) = K0(A) by the homotopy property, the localization sequence

K1(A ⊗ O∆n,vn
) ∂−→ K0(M(1)

v (∆n; A)) → K0(∆n
F ; A) → K0(A ⊗ O∆n,vn)

for K(∆n
F ; A) gives us an element f ∈ K1(A ⊗ O∆n,vn

) with

∂f = D.

Since O∆n,vn is semi-local, we have a surjection

(A ⊗ O∆n,vn)× → K1(A ⊗ O∆n,vn);

we lift f to an element f̃ of (A ⊗ O∆n,vn
)×, and let f̃j ∈ (A ⊗ O∆n−1

j ,vn−1
)× denote the

restriction of f̃ to ∆n−1
j .

We have the localization sequence

0 → K1(∆n−1
j ; A) → K1(A ⊗ O∆n−1

j ,vn−1
) ∂−→ K0(M(1)

v (∆n−1
j ; A)) → .

By the degeneration of the Quillen spectral sequence on ∆n−1
j , it follows that

K0(M(1)
v (∆n−1

j ; A)) =
⊕

w∈(∆n−1
j ,vn−1)(1)

K0(A ⊗k k(w)),

where (∆n−1
j , vn−1)(1) is the set of codimension one points of ∆n−1

j whose closure con-
tains no vertex. Thus, the fact that D̃ · ∆n−1

j = 0 implies that restriction of f to
fj ∈ K1(A ⊗ O∆n−1

j ,vn−1
) lifts uniquely to K1(∆n−1

j ; A) = K1(A).
The degeneracy maps give compatible splittings to the inclusions ∆n−1

j → ∆n for
j = 1, . . . , n, so we can modify f and f̃ so that f̃ j = 1 ∈ (A ⊗ O∆n−1

j ,vn−1
)× for

j = 1, . . . , n.
Now let L := k(∆n−1

0 ) and consider f̃0 ∈ (AL)×. As n > 1, ∆n−1
0 ∩ ∆n−1

1 �= ∅;
restricting to ∆n−1

0 ∩ ∆n−1
1 shows that f0 = 1 ∈ K1(AL). Furthermore, the reduced

norm map
Nrd : K1(AL) → K1(L) = L×

is injective [64], and finally, for a ∈ (AL)×, we have

Nrd(a) =

{
ap for a ∈ L×,

NmL(a)/L(a) for a ∈ A×
L \ L×.

Now, L(f̃0) is a subfield of AL of degree at most p over L. But since A is a division
algebra and L is a pure transcendental extension of k, AL is still a division algebra,
and hence either L(f̃0) = L or L(f̃0) has degree exactly p over L. In the former case,
1 = Nrd(f̃0) = f̃p

0, and since f̃ j = 1 for j > 0, it follows that f̃0 = 1 as well.
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In case L(f̃0) has degree exactly p over L, then NmL(f̃0)/L(f̃0) = 1. Let M ⊃ L(f̃0)
be the Galois closure of L(f̃0) over L, let M0 ⊂ M be the unique subfield of index p,
and let σ ∈ Gal(M/L) be the generator for Gal(M/M0). Then NmM/M0(f̃0) = 1, so by
Hilbert’s theorem 90, there is a g̃ ∈ M× with

f̃0 =
gσ

g
.

Looking at the proof of Hilbert’s theorem 90, we see that we may take g in the integral
closure of O∆n−1

0 ,vn−1
, with g ≡ 1 over all generic points of ∂∆n−1

0 .
By the Skolem–Noether theorem, there is an element ag ∈ A×

M0
with gσ = a−1

g gag, i.e.

f̃0 = a−1
g gagg

−1.

As above, we may take ag to be a unit in the integral closure of A ⊗ O∆n−1
0 ,vn−1

.
Let L̂ := k(∆n), and let M̂ ⊃ L̂(f̃) be the Galois closure of L̂(f̃) over L̂. Lift g to

ĝ ∈ M̂ (or rather, in the integral closure R̂ of O∆n,vn in M̂), with ĝ ≡ 1 over the generic
point of ∆n−1

j , for each j > 0. Lift ag similarly to âg. Let d = [M̂0 : L̂]. We may replace
f̃d with

f̂ := NmAM̂0
/AL̂

(f̃ â−1
g ĝâg ĝ

−1).

Then f̂ restricts to 1 in A ⊗ O∆n−1
0 ,vn−1

for all j, giving a trivialization of d · [D] in
CH1(F, n). Since d is prime to p, it follows that [D] = 0 in CH1(F, n; A). �

Remark 6.8.3. We shall give in Corollary 8.1.5 below a second proof of Theorem 6.8.2,
relying on the Merkurjev–Suslin theorem, by proving that Hp(k; ZA(1)) = 0 for p �= 1, if
A has square-free index e over a perfect field k, (e, char k) = 1. Via the isomorphism of
Theorem 6.5.3

CH1(k, n; A) ∼= H2−n(k, ZA(1))

this shows a second time that CH1(k, n; A) = 0 for n �= 1 in the square-free index case.
We do not know if this holds for A of arbitrary index.

6.9. A map from SKi(A) to étale cohomology

In this section, we use the étale version of the spectral sequence in the previous section
to construct homomorphisms from SKi(A) to quotients of Hi+2

ét (k, Q/Z(i+1)) for i = 1, 2.
In what follows, we invert the exponential characteristic of k throughout, but we do not
write this explicitly, to simplify the notation. We refer to Appendix C, especially § C.4,
for details on the category of étale motives and the change of topology functor.

The motivic Postnikov tower for KA

· · · → fn+1K
A → fnKA → · · · → f0K

A = KA

induces by the étale sheafification functor α∗ the étale version

· · · → [fn+1K
A]ét → [fnKA]ét → · · · → [f0K

A]ét = [KA]ét
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with layers the étale sheafifications sét
n KA of the layers snKA of the original tower. Since

snKA = EMA1(ZA(n)[2n]) (Theorem 6.5.5), and ZA(n)ét = Z(n)ét, we have

sét
n KA = EMA1(Z(n)ét[2n]).

Evaluating at Spec k and taking the spectral sequence of this tower gives the étale motivic
Atiyah–Hirzebruch spectral sequence for A, with Bloch–Lichtenbaum numbering:

Ep,q
2 = Hp−q

ét (k, Z(−q)) ⇒ K ét
−p−q(A).

Here is part of the corresponding E2-plane:

−2 −1 0 1 2 3

0 0 H0
ét(k, Z) 0 H2

ét(k, Z)
0 0 H1

ét(k, Z(1)) 0 H3
ét(k, Z(1))

H0
ét(k, Z(2)) H1

ét(k, Z(2)) H2
ét(k, Z(2)) 0 H4

ét(k, Z(2))
H1

ét(k, Z(3)) H2
ét(k, Z(3)) H3

ét(k, Z(3)) 0 H5
ét(k, Z(3))

H2
ét(k, Z(4)) H3

ét(k, Z(4)) H4
ét(k, Z(4)) 0 H6

ét(k, Z(4)) H7
ét(k, Z(4))

For i = 1, 2, the composition

Ki(A) → K ét
i (A) ε→ Hi

ét(k, Z(i)) = Ki(k)

coincides with the reduced norm, where ε is the edge homomorphism of the spectral
sequence and the isomorphism follows from the Beilinson–Lichtenbaum conjecture in
weight i (that is, Kummer theory for i = 1 and the Merkurjev–Suslin theorem for i = 2).
Hence we get an induced map

SK1(A) → coker(KM
2 (k) 	 H2

ét(k, Z(2))
dA
2−−→ H5

ét(k, Z(3))).

Note that the map H4
ét(k, Q/Z(3)) → H5

ét(k, Z(3)) is an isomorphism, independent of
the Beilinson–Lichtenbaum conjecture. The spectral sequence shows that there is a map
from the kernel of this homomorphism to a quotient of H7

ét(k, Z(4)) 	 H6
ét(k, Q/Z(4)).

For SK2(A), we get a priori a map to the quotient of

coker(KM
3 (k) 	 H3

ét(k, Z(3))
dA
2−−→ H6

ét(k, Z(4)))

by the image of a d3 differential starting from H1
ét(k, Z(2)) 	 K3(k)ind. If k contains a

separably closed field, this group is divisible, hence its image by the torsion differential
d3 is 0. Note that we also have an isomorphism

H5
ét(k, Q/Z(4)) ∼−→ H6

ét(k, Z(4)).

Here, the isomorphism KM
3 (k) 	 H3

ét(k, Z(3)) follows from the Beilinson–Lichtenbaum
conjecture in weight 3; if one does not want to assume it, one gets a slightly more obscure
quotient.
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To compute dA
2 , we use the fact that this spectral sequence is a module on the cor-

responding spectral sequence for K étF [47]. The latter is multiplicative [47] and d2 is
obviously 0 on K0(F ) and K1(F ), hence on all KM

i (F ). For dA
2 , we then have

dA
2 (x) = x · dA

2 (1), x ∈ E0,−2
2 , E0,−3

2 ,

where dA
2 (1) is the image of 1 ∈ K0(F ) in Br(F ).

When we pass to the function field K of the Severi–Brauer variety of A, A gets split
so dA

2 (1)K = 0. By Amitsur’s theorem, dA
2 (1) is a multiple δ[A] of [A].

In fact, we have δ = 1. The computation is very similar to our computation of a related
boundary map for the motive of a Severi–Brauer variety (see Proposition 8.2.1) so we
will be a little sketchy in our discussion here.

Proposition 6.9.1. dA
2 (1) = [A].

Proof. We begin by noting that by naturality, it suffices to restrict the presheaf Y �→
K(Y ; A) to the small étale site over k. Fix a Galois splitting field L over k of A with
group G. As the field extensions of L are cofinal in két, it suffices to consider the functor

F �→ K(F ; A)

on finite extensions F of k containing L; denote this subcategory of két by két(L).
For such an F , AF is isomorphic to a matrix algebra, say AF

∼= Mn(F ), so by Morita
equivalence, K(F ; A) is weakly equivalent to K(F ). Similarly, ZA = Z on két(L). Since

Hp(F, Z(n)) = 0

for p > n, and since Z(1) ∼= Gm[−1], it follows from our identification of the slices
(Theorem 6.5.5)

snKA ∼= EMA1(ZA(n)[2n]),

that the cofibre f0/2K
A of f2K

A → f0K
A is the same as the presheaf of cofibres of KA

by its 1-connected cover

τ�1K
A := cofib[τ�2K

A → KA].

Thus, to compute dA
2 (1), we just need to apply the usual machinery of G-cohomology to

the fibre sequence
Σ EM(KA

1 ) → τ�1K
A → EM(KA

0 )

(see the proof of Proposition 8.2.1 below for more details).
Let us choose a cocycle σ �→ ḡσ ∈ PGLn(L) representing the class of A in

H1(G, PGLn(L)). Thus, if gσ ∈ GLn(L) is a lifting of ḡσ, we have the action of G

on Mn(L)
ϕσ(m) := gσ · σm · g−1

σ ,

where σm is the usual action of G by conjugation of the matrix coefficients. A is isomor-
phic to the G-invariant k-subalgebra of Mn(L). Also, the coboundary in H2

ét(k, Gm) of
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the class of A in H1(k,PGLn) is represented by the 2-cocycle {cτ,σ} ∈ Z2(G, L×) defined
by

cτ,σ · idLn = gτ · τgσ · g−1
τσ .

The ring homomorphism ϕσ : Mn(L) → Mn(L) induces an exact functor

ϕσ∗ : ModMn(L) → ModMn(L)

sending projectives to projectives, hence a natural map ϕσ∗ : K(L; A) → K(L; A) and
thereby a map ϕσ∗ : τ�1K(L; A) → τ�1K(L; A). To compute dA

2 (1), we apply the follow-
ing procedure: lift 1 ∈ K0(L; A) to a representing Mn(L)-module F . For each σ ∈ G,
choose an isomorphism ψσ : ϕσ∗(F ) → F , which gives us a path γσ in the 0-space of
K(L; A). The path

γ(τ, σ) := γτ · ϕτ∗ [γσ] · γ−1
τσ

is a loop in K(L; A), giving an element c′
σ,τ ∈ K1(L; A) = L×. This gives us a cocycle

{c′
τ,σ} ∈ Z2(G; L×), which represents dA

2 (1) ∈ H3
ét(k, Z(1)) = H2

ét(k, Gm).
To make the computation concrete, let F be a left Mn(L)-module. Then the isomor-

phism of abelian groups F → Mn(L) ⊗Mn(L) F sending v to 1⊗ v identifies ϕσ∗(F ) with
the Mn(L)-module with underlying abelian group F , and with multiplication

m ·σ v := σ−1
[g−1

σ mgσ] · v.

Under this identification, ϕσ∗ acts by the identity on morphisms.
Take F = Ln with the standard Mn(L)-module structure. One sees immediately that

sending v to gσ · σv gives an Mn(L)-module isomorphism ψσ : ϕσ∗(F ) → F . The loop
γ(τ, σ) is thus represented by the automorphism ψτ ◦ ϕτ∗(ψσ) ◦ ψ−1

τσ :

ψτ ◦ ϕτ∗(ψσ) ◦ ψ−1
τσ (v) = ψτ ◦ ϕσ∗(ψσ)((τσ)−1

[g−1
τσ v])

= ψτ (gσ · τ−1
[g−1

τσ · v])

= (gτ · τgσ · g−1
τσ )(v).

Since the Morita equivalence ModMn(L) → ModL sends multiplication by c ∈ L on F

to multiplication by c on L, we have the explicit representation of dA
2 (1) by the cocycle

{cτ,σ}, completing the computation. �

7. The motivic Postnikov tower for a Severi–Brauer variety

Results of Huber and Kahn [22] give a computation of the sheaf H0 of the delooped
slices of M(X) for X any smooth projective variety and show that Hn vanishes for
n > 0. For the motive of a Severi–Brauer variety X = SB(A), we are able to show (in
case A has prime degree � over k) that the negative cohomology vanishes as well. We do
this by comparing with the slices of the K-theory of X and using Adams operations to
split the appropriate spectral sequence, proving our second main result Theorem 2 (see
Theorem 7.4.2).
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7.1. The motivic Postnikov tower for a smooth variety

Take X ∈ Sm/k, n � 0 an integer. We recall that the sheaf zequi(X, n) ∈ Shtr
Nis(k) has

sections zequi(X, n)(Y ) over Y ∈ Sm/k the free abelian group on integral subschemes
W ⊂ Y ×k X such that W → Y is dominant and equidimensional of relative dimension
n over a component of Y .

Lemma 7.1.1. Let X be a smooth projective variety, M(X) ∈ DM eff(k) the motive
of X.

(1) fmot
n M(X) = 0 for n > dimk X.

(2) For 0 � n � dimk X, Ωn
T fmot

n X is represented by CSus
∗ (zequi(X, n)).

Proof. (1) Since the collection of objects {M(Z)[p] | Z ∈ Sm/k, p ∈ Z} are dense in
DM eff(k), it suffices to show that

HomDMeff (k)(M(Z)(n)[p], M(X)) = 0

for all Z, p and all n > dimk X. Since RCSus
∗ ◦ Kb(Ztr) : DM eff

gm(k) → DM eff(k) is fully
faithful (see Remark C.6.3), it suffices to show the same vanishing for the morphisms in
DM eff

gm(k); since DM eff
gm(k) → DMgm(k) is fully faithful, it suffices to show the vanishing

for the morphisms in DMgm(k).
As X is smooth and projective, we have

HomDMgm(k)(M(Z)(n)[p], M(X)) = HomDMgm(k)(M(Z × X), Z(d − n)[2d − p]),

where d = dimk X. But

HomDMgm(k)(M(Z × X), Z(d − n)[2d − p]) = H2d−p(Z × X, Z(d − n)),

which is zero for d − n < 0.

For (2), it follows from (2.4) that

Ωn
T fmot

n M(X) = fmot
0 Ωn

T M(X) = Ωn
T M(X).

By [58, Theorem 4.2.2], the inclusion

Ztr(X)(Y × Pn) = zequi(X, 0)(Y × Pn) ⊂ zequi(X × Pn, n)(Y )

induces a natural isomorphism

HomDMeff
− (k)(M(Y × Pn), M(X)[m]) ∼= Hm(CSus

∗ (zequi(X × Pn, n))(Y )).

One checks that the projection

HomDMeff
− (k)(M(Y × Pn), M(X)[m]) → HomDMeff

− (k)(M(Y )(n)[2n], M(X)[m])
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corresponding to the summand M(Y )(n)[2n] ⊂ M(Y × Pn) corresponds to the map

zequi(X × Pn, n) → zequi(X, n)

induced by the projection X × Pn → X. This gives us the isomorphism

Ωn
T M(X) = R Hom(Z(n)[2n], M(X)) ∼= CSus

∗ (zequi(X, n)).

�

For later use, we make the following explicit computation.

Lemma 7.1.2. Let Y be in Sm/k. Let X be smooth, irreducible and projective of
dimension d over k. The canonical map fmot

d M(X) → fmot
d−1M(X) induces the map (in

D(Ab))
[Ωd−1

T fmot
d M(X)](Y ) α−→ [Ωd−1

T fmot
d−1M(X)](Y ).

Then α is isomorphic to the map on Bloch’s cycle complexes

p∗
2 : z1(Y, ∗) → z1(X × Y, ∗)

induced by the projection p2 : X × Y → Y .

Proof. By (2.4), we have

Ωd−1
T fmot

d M(X) = fmot
1 Ωd−1

T M(X) = fmot
1 (Ωd−1

T fmot
d−1M(X)).

By Lemma 7.1.1 (2), we have

Ωd−1
T fmot

d−1M(X) = CSus
∗ (zequi(X, d − 1)),

hence
Ωd−1

T fmot
d M(X) ∼= fmot

1 CSus
∗ (zequi(X, d − 1))

and the map Ωd−1
T fmot

d M(X) → Ωd−1
T fmot

d−1M(X) is just the canonical map

fmot
1 CSus

∗ (zequi(X, d − 1)) → CSus
∗ (zequi(X, d − 1)).

Applying Proposition 2.2.3, we have isomorphisms in D(Ab)

fmot
1 CSus

∗ (zequi(X, d − 1))(Y ) ∼= f1
mot(Y, ∗; CSus

∗ (zequi(X, d − 1))),

and the canonical map

fmot
1 CSus

∗ (zequi(X, d − 1))(Y ) → CSus
∗ (zequi(X, d − 1))(Y )

is isomorphic to

f1
mot(Y, ∗; CSus

∗ (zequi(X, d − 1))) �� f0
mot(Y, ∗; CSus

∗ (zequi(X, d − 1)))

CSus
∗ (zequi(X, d − 1))(Y × ∆∗)
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Next, for any T ∈ Sm/k, the inclusion

CSus
∗ (zequi(X, d − 1))(T ) ⊂ z1(T × X, ∗)

is a quasi-isomorphism [60]. Thus, if W ⊂ T is a closed subset, we have the quasi-iso-
morphism

CSus
∗ (zequi(X, d − 1))W (T ) → cone(z1(T × X, ∗) → z1(T × X \ W × X, ∗))[−1].

Now suppose that W has pure codimension 1. By Bloch’s localization theorem, we have
the quasi-isomorphism

z0(W, ∗) → cone(z1(T × X, ∗) → z1(T × X \ W × X, ∗))[−1];

z0(W ) = z0(W, 0) → z0(W, ∗) is also a quasi-isomorphism. If codimX W > 1, a simi-
lar computation shows that CSus

∗ (zequi(X, d − 1))W (T ) is acyclic. Applying this to the
computation of f1

mot(Y, ∗; CSus
∗ (zequi(X, d − 1))), we have the isomorphism in D(Ab)

ϕ : z1(Y, ∗) → f1
mot(Y, ∗; CSus

∗ (zequi(X, d − 1))).

Furthermore, the composition

z1(Y, ∗)
ϕ−→ f1

mot(Y, ∗; CSus
∗ (zequi(X, d − 1))) → f1

mot(Y, ∗; z1(X × −, ∗))

is the map
W ⊂ Y × ∆n �→ X × W × ∆0 ⊂ X × Y × ∆n × ∆0.

It is then easy to see that the composition

z1(Y, ∗)
ϕ−→ f1

mot(Y, ∗; CSus
∗ (zequi(X, d − 1))) → f0

mot(Y, ∗; CSus
∗ (zequi(X, d − 1)))

combined with the isomorphism in D(Ab)

f0
mot(Y, ∗; CSus

∗ (zequi(X, d − 1))) ∼= CSus
∗ (zequi(X, d − 1))(Y ) ∼= z1(X × Y, ∗)

is just the pullback
p∗
2 : z1(Y, ∗) → z1(X × Y, ∗).

�

Let X be in Sm/k. For a presheaf of spectra E on Sm/k, we have the associated
presheaf Hom(X, E), defined by

Hom(X, E)(Y ) := E(X × Y ).

Applying Hom(X, −) to a fibrant model defines the functor

R Hom(X, −) : SHS1(k) → SHS1(k).
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We use the notation Hommot and R Hommot for the analogous operations on C(PST(k))
and on DM eff(k). We note that

R Hom(X, −) ∼= HomSHS1 (k)(Σ∞
s hX ,−)

and, similarly,

R Hommot(X, −) ∼= HomDMeff (k)(M(X),−).

The operation R Hom(X, −) does not in general commute with the truncation functors
fn. However, we do have the following lemma.

Lemma 7.1.3. Take m > dimk X. Then for all E ∈ SHS1(k),

s0R Hom(X, fmE) ∼= 0.

Proof. Let F be a presheaf of spectra on Sm/k which is A1-homotopy invariant and
satisfies Nisnevich excision. By Remark 2.2.6, we have a natural isomorphism in SH

(s0F )(X) ∼= F (∆̂∗
k(Y )).

Similarly, for E homotopy invariant and satisfying Nisnevich excision, the spectrum
Hom(X, fmE)(Y ) := fmE(X × Y ) is weakly equivalent to the simplicial spectrum q �→
fmE(X × Y )(q) with

fmE(X × Y )(q) = lim−→
W∈S(m)

X×Y (q)

EW (X × Y × ∆q).

The moving lemma [32, Theorem 2.6.2] gives us the natural weak equivalence

fmE(X × ∆̂p
k(Y ))(q) ∼= lim−→

W∈S(m)
X×∆̂p

k(Y )
(q)C(p)

EW (X × ∆̂p
k(Y ) × ∆q),

where C(p) is the set X × F , with F a face of ∆̂p
k(Y ).

Thus s0 Hom(X, fmE)(Y ) is weakly equivalent to the total spectrum of the bi-simpli-
cial spectrum

(p, q) �→ s0 Hom(X, fmE)(Y )(p, q) = lim−→
W∈S(m)

X×∆̂p
k(Y )

(q)C(p)

EW (X × ∆̂p
k(Y ) × ∆q).

We denote the total spectrum by s0 Hom(X, fmE)(Y )(−,−).
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Let s0 Hom(X, fmE)(Y )(−, q) be the total spectrum of the simplicial spectrum

p �→ s0 Hom(X, fmE)(Y )(p, q).

By [33, Claim, Lemma 5.2.1], the face maps

δq∗
i : s0 Hom(X, fmE)(Y )(−, q) → s0 Hom(X, fmE)(Y )(−, q − 1)

are weak equivalences for all i = 0, . . . , q, q � 1, and therefore the canonical map

s0 Hom(X, fmE)(Y )(−, 0) → s0 Hom(X, fmE)(Y )(−,−)

is a weak equivalence.
Take

W ∈ S(m)
X×∆̂p

k(Y )
(0)C(p),

so W is a closed subset of X × ∆̂p
k(Y ) of codimension greater than or equal to m >

dimk X, and W ∩ X × F has codimension greater than or equal to m on X × F for all
faces F of ∆̂p

k(Y ). In particular, for each vertex v of ∆̂p
k(Y ),

codimX×v W ∩ X × v > dimk X.

Thus W ∩X ×v = ∅. Since X is proper, the projection of W , p2(W ) ⊂ ∆̂p
k(Y ), is a closed

subset disjoint from all vertices v. Since ∆̂p
k(Y ) is semi-local with closed points the set of

vertices, this implies that p2(W ) = ∅. Thus, W = ∅, that is,

S(m)
X×∆̂p

k(Y )
(0)C(p) = {∅},

and therefore s0 Hom(X, fmE)(Y )(−, 0) ∼ 0. The description we have given of
s0 Hom(X, fmE)(Y ) as a simplicial spectrum thus yields

s0 Hom(X, fmE)(Y ) ∼ 0

for all Y ∈ Sm/k, completing the proof. �

Thus, for X ∈ Sm/k, smooth and projective of dimension d over k, and for E ∈
SHS1(k), we have the tower in SHS1(k)

0 = s0R Hom(X, fd+1E) → s0R Hom(X, fdE) → · · ·
→ s0R Hom(X, f0E) = s0R Hom(X, E) (7.1)

gotten by applying s0R Hom(X, −) to the T -Postnikov tower of E. Since the func-
tors s0 and R Hom(X, −) are exact, the mth layer in the tower (7.1) is isomorphic
to s0R Hom(X, smE), m = 0, . . . ,dimk X. Evaluating at some Y ∈ Sm/k, we have the
strongly convergent spectral sequence

E1
a,b = πa+b(s0R Hom(X, s−aE)(Y )) =⇒ πa+b(s0R Hom(X, E)(Y )). (7.2)
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7.2. The case of K-theory

We take E = K, where K(Y ) is the Quillen K-theory spectrum of the smooth k-scheme
Y . By [33, Theorem 6.4.2] we have the natural isomorphism

(smK)(Y ) ∼= EM(zm(Y, ∗)) ∼= EMA1(Z(m)[2m])(Y ).

In addition, we have natural Adams operations ψk, k = 2, 3, . . . acting on K and on the
T -Postnikov tower of K, with ψk acting on π∗(smK)(Y ) by multiplication by km for all
Y ∈ Sm/k (see [34, § 12, Theorem 12.1]).

Thus we have the following lemma.

Lemma 7.2.1. Suppose X has dimension p − 1 over k for some prime p. Then the
spectral sequence (7.2) degenerates at E1 after localizing at p.

Proof. We have to show that all differentials are killed by some integer prime to p. The
Adams operations act on the spectral sequence and ψk acts by multiplication by ka on
Er

−a,b. Thus the differential dr
−a,b : Er

−a,b → Er
−a−r,b+r−1 is killed by ka(kr −1). We have

E1
−a,b = 0 if a > p or a < 0, so dr

−a,b = 0 unless 0 � a � p − 2 and 1 � r � p − a − 1.
Thus, if a � 1, then we need only consider r with 1 � r � p − 2, and we need to find
an integer k � 2 such that k and kr − 1 are prime to p. This is possible since (Z/p)× is
cyclic of order p − 1. If a = 0, we can take k = p. �

7.3. The Chow sheaf

For a smooth projective variety X, we have the Nisnevich sheaf with transfers CHn(X)
on Sm/k, this being the sheaf associated to the presheaf

Y �→ CHn(X × Y ).

It is shown in [22, Remark 2.3] that CHn(X) is a birational motivic sheaf. We can also
label with the relative dimension, defining

CHn(X) := CHdimk X−n(X).

For our next computation, we need the following lemma.

Lemma 7.3.1. Take

F ∈ C(Shtr
Nis(k)),

which is homotopy invariant and satisfies Nisnevich excision. Suppose in addition that
F is connected. Then the sheaf HNis

0 (smot
0 R Hom(X, smot

n F)) is the Nisnevich sheaf asso-
ciated to the presheaf H0(smot

0 R Hom(X, smot
n F)) with value at Y ∈ Sm/k given by the
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exactness of

lim−→
W ′∈S(n+1)

X×Y (1)

W∈S(n)
X×Y (1)

H0(FW\W ′
(X × Y × ∆1 \ W ′))

i∗
1−i∗

0−−−→ lim−→
W ′∈S(n+1)

X×Y (0)

W∈S(n)
X×Y (0)

H0(FW\W ′
(X × Y \ W ′))

→ H0(smot
0 R Hom(X, smot

n F))(Y )

→ 0.

Proof. From Proposition 2.2.3, R Hom(X, smot
n F)(Y ) = (smot

n F)(X × Y ) is isomorphic
in D(Ab) to sn

mot(X × Y,−; F), the total complex of the simplicial complex

m �→ sn
mot(X × Y, m; F) := lim−→

W∈S(n)
X×Y (m)

W ′∈S(n+1)
X×Y (m)

FW\W ′
(X × Y × ∆m \ W ′).

By Lemma 3.1.3, the spectra sn
mot(X × Y, m; F) are all −1-connected. Thus we have the

exact sequence

H0(sn(X × Y, 1; F))
i∗
0−i∗

1−−−→ H0(sn
mot(X × Y, 0; F)) → H0(sn

mot(X × Y,−; F)).

In any case R Hom(X, smot
n F) is in DM eff(k), hence the homology presheaf

Y �→ H0(R Hom(X, smot
n F)(Y )) = H0(smot

n (X × Y,−; F))

is a homotopy invariant presheaf with transfers. Thus, by [17, III, Corollary 4.18], if Y

is local, the restriction map

H0(smot
n (X × Y,−; F)) → H0(smot

n (Xk(Y ),−; F)) (7.3)

is injective. In addition, R Hom(X, smot
n F) is connected. Indeed, smot

n F is connected
by Proposition 3.1.4, and this implies that R Hom(X, smot

n F) is connected. Thus the
restriction map (7.3) is also surjective, hence an isomorphism.

By Theorem 4.2.1, smot
0 R Hom(X, smot

n F) is also birational, and is connected by Propo-
sition 3.1.4, hence the same argument shows that

H0(smot
0 R Hom(X, smot

n F)(Y )) → H0(smot
0 R Hom(X, smot

n F)(k(Y )))

is an isomorphism.
We now return to the situation Y ∈ Sm/k. As in the proof of Lemma 7.1.3,

smot
0 R Hom(X, smot

n F)(Y ) is given by evaluating R Hom(X, smot
n F) on ∆̂∗

k(Y ). Since
R Hom(X, smot

n F) is connected by Proposition 3.1.4, it follows that we have the exact
sequence

H0(R Hom(X, smot
n F))(∆̂1

k(Y ))
i∗
0−i1∗−−−−→ H0(R Hom(X, smot

n F))(∆̂0
k(Y ))

→ H0(smot
0 R Hom(X, smot

n F)(Y )) → 0.



Motives of Azumaya algebras 561

But since R Hom(X, smot
n F) is connected, the restriction map

H0(R Hom(X, smot
n F)(∆1

k(Y ))) → H0(R Hom(X, smot
n F)(∆̂1

k(Y )))

is surjective, which shows that

H0(R Hom(X, smot
n F)(k(Y ))) ∼= H0(smot

0 R Hom(X, smot
n F)(Y )).

Since the restriction map (7.3) is an isomorphism for Y local, it follows that the canonical
map

H0(R Hom(X, smot
n F)(Y )) → H0(smot

0 R Hom(X, smot
n F)(Y ))

is an isomorphism for Y local.
Putting this together with our description above of H0(R Hom(X, smot

n F)(Y )) proves
the result. �

Lemma 7.3.2. Let X be a smooth projective variety of dimension d. There is a natural
isomorphism

HNis
0 (smot

0 R Hom(X, Z(n)[2n])) ∼= CHn(X).

Proof. Since Z is a birational motive, we have (Remark 4.2.3)

Z(n)[2n] ∼= smot
n (Z(n)[2n]).

We can now use Lemma 7.3.1 to compute HNis
0 (smot

0 R Hom(X, smot
n (Z(n)[2n]))).

By Lemma 4.4.4, for W ⊂ Y a closed subvariety of codimension n, Y ∈ Sm/k, there
is a natural isomorphism

H0((Z(n)[2n])W (T )) = H2n
W (Y, Z(n))

ρY,W,n−−−−→ zn
W (Y ).

From this, it follows from Lemma 7.3.1 that HNis
0 (smot

0 R Hom(X, smot
n (Z(n)[2n]))) is just

the sheafification of
Y �→ CHn(X × Y ),

i.e.
HNis

0 (smot
0 R Hom(X, smot

n (Z(n)[2n]))) ∼= CHn(X).

�

7.4. The slices of M(X)

To prove our main theorem on the slices of the motive of a Severi–Brauer variety, we
use duality to shift the computation of the nth slice to a 0th slice of a related motive.
0th slices are easier to handle, because their cohomology sheaves are birational sheaves.

Lemma 7.4.1. Let X be smooth and projective of dimension d over k. Then for 0 �
n � d there is a natural isomorphism

smot
n M(X) ∼= smot

0 (R Hom(X, Z(d − n)))(n)[2d].
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Proof. By [22],

fmot
n M(X) = HomDMeff (k)(Z(n), M(X))(n)

= HomDMeff (k)(Z(d)[2d], M(X)(d − n)[2d])(n)

= HomDMeff (k)(M(X), Z(d − n))(n)[2d].

In addition, using the isomorphism (2.4), we have

fmot
n−1 ◦ HomDMeff (Z(1),−) = HomDMeff (Z(1),−) ◦ fmot

n . (7.4)

This plus Voevodsky’s cancellation theorem [62] implies

fmot
n (F (1)) ∼= fmot

n−1(F )(1).

Indeed

fmot
n (F (1)) ∼= HomDMeff (k)(Z(n), F (1))(n)

∼= HomDMeff (k)(Z(n − 1), F )(n)
∼= fmot

n−1(F )(1).

Thus

smot
n M(X) = smot

n (fmot
n (M(X)))

= smot
n (HomDMeff (k)(M(X), Z(d − n))(n)[2d])

= smot
0 (HomDMeff (k)(M(X), Z(d − n)))(n)[2d]

= smot
0 (R Hom(X, Z(d − n)))(n)[2d].

�

Theorem 7.4.2. Let X be a Severi–Brauer variety of dimension p − 1, p a prime,
associated to a central simple algebra A of degree p over k. Then

(1)
smot

n M(X) ∼= CHn(X)(n)[2n]

for n = 0, . . . , p − 1, smot
n M(X) = 0 for n � p.

(2) There is a canonical isomorphism

p−1⊕
n=0

CHn(X) ∼=
p−1⊕
n=0

ZA⊗n .

(3) For n = 0, . . . , p − 1, we have

CHn(X) ∼= ZA⊗n
∼=

{
ZA for n = 1, . . . , p − 1,

Z for n = 0.
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Proof. We first note that the spectral sequence (7.2) has

p · da,b
r = 0

for all a, b, r. Indeed, if X = Pp−1, then the projective bundle formula gives the weak
equivalence

R Hom(Pp−1, fmK) ∼=
p−1⊕
i=0

fm−iK

from which the degeneration of the spectral sequence at E1 for all Y ∈ Sm/k easily
follows. In general, there is a splitting field L for A of degree p over k, so XL

∼= P
p−1
L ,

and thus the differentials are all killed by ×p. But now by Lemma 7.2.1, it follows that
the spectral sequence (7.2) actually degenerates at E1.

We recall that snK ∼= EMA1(Z(n)[2n]) [33, Theorem 6.4.2]. By Quillen’s computation
[48] of the K-theory of Severi–Brauer varieties,

R Hom(X, K) ∼=
p−1⊕
n=0

K(−; A⊗n).

Finally, the fact that K(−; A⊗n) is well-connected (Lemma 6.4.3) implies

s0(K(−; A⊗n)) = EMA1(ZA⊗n).

Since our spectral sequence degenerates at E1, we therefore have the isomorphism

p−1⊕
n=0

πNis
∗ s0(R Hom(X, EMA1(Z(n)[2n]))) ∼=

p−1⊕
n=0

πNis
∗ EMA1(ZA⊗n).

Also, by Proposition 1.4.4, we have s0 ◦ EMA1 = EMA1 ◦ smot
0 . In addition,

R Hom(X, EMA1(F)) = EMA1(R Hom(X, F)),

πNis
m (EMA1(F)) = H−m

Nis (F)

for F ∈ DM eff(k). Thus we see that

Hm
Nis(s

mot
0 (R Hom(X, Z(n)[2n]))) = 0

for m �= 0 and
p−1⊕
n=0

H0
Nis(s

mot
0 (R Hom(X, Z(n)[2n]))) ∼=

p−1⊕
n=0

ZA⊗n . (7.5)

In particular, smot
0 (R Hom(X, Z(n)[2n])) is concentrated in degree 0. Thus, it follows

from Lemma 7.3.2 that

smot
0 (R Hom(X, Z(n)[2n])) ∼= CHn(X)

for n = 0, . . . , p − 1, which together with (7.5) proves (2).
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Together with Lemma 7.4.1, this gives

smot
n M(X) ∼= smot

0 (R Hommot(X, Z(p − 1 − n)))(n)[2p − 2]
∼= CHn(X)(n)[2n],

proving (1).
For (3), take a finite Galois splitting field L/k for A with Galois group G. We have

the natural map
π∗ : CHn(X) → CHn(XL)G ∼= Z

with kernel and cokernel killed by p. By (2), CHn(X) is torsion-free. Similarly, we have
the inclusion

π∗ : ZA⊗n → (ZA⊗n
L

)G ∼= Z.

We thus have compatible inclusions

p−1⊕
n=0

CHn(X) ∼=

� �

��

p−1⊕
n=0

ZA⊗n

� �

��
p−1⊕
n=0

CHn(XL)G ∼=
p−1⊕
n=0

(ZA⊗n
L

)G

Clearly, CH0(X) ∼= Z. For y ∈ Y ∈ Sm/k the quotient( p−1⊕
n=0

(ZA⊗n
L

)G

)
y

/( p−1⊕
n=0

ZA⊗n

)
y

has order pp−1 if Ay is not split, and order 1 otherwise. Thus, for n = 1, . . . , p − 1,
CHn(X)y ⊂ CHn(XL)G

y = Z has index p if Ay is not split and index 1 if Ay is split. Thus
we can write

CHn(X) ∼= ZA⊗n

for n = 0, . . . , p − 1, completing the proof. �

8. Applications

In this section, we let X be the Severi–Brauer variety SB(A) associated to a central
simple algebra A of prime degree � over k. We use our computations of the layers for
M(X), together with a duality argument and the Beilinson–Lichtenbaum conjecture, to
study the reduced norm map

Nrd : Hp(k, ZA(q)) → Hp(k, Z(q))

and prove the first of our main applications: Corollary 1 (see Theorem 8.1.4). Combining
these results with our identification of the low-degree K-theory of A with the twisted
Milnor K-theory of k gives us our main result on the vanishing of SK2(A) for A of
square-free index (Corollary 2; see also Theorem 8.2.2).
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8.1. A spectral sequence for motivic homology

Throughout this section, we invert the exponential characteristic of k. We omit writing
this explicitly, to simplify the notation.

We have the motivic Postnikov tower for M(X)

0 = fmot
� M(X) → fmot

�−1 M(X) → · · · → fmot
1 M(X) → fmot

0 M(X) = M(X) (8.1)

with slices
smot

b M(X) ∼= ZA⊗b+1(b)[2b], b = 0, . . . , � − 1.

Let α∗ : DM eff(k) → DM eff(k)ét be the change of topologies functor, with right adjoint
α∗ : DM eff(k)ét → DM eff(k) (see § C.4). The functors α∗ and α∗ are exact, and applying
α∗ to the morphism ZA(n) → Z(n) gives an isomorphism α∗ZA(n) ∼−→ α∗Z(n). Thus, we
have the tower

0 = α∗α
∗fmot

� M(X) → α∗α
∗fmot

p−1M(X) → · · ·
→ α∗α

∗fmot
1 M(X) → α∗α

∗fmot
0 M(X) = α∗α

∗M(X) (8.2)

with slices
α∗α

∗smot
b M(X) ∼= α∗α

∗Z(b)[2b], b = 0, . . . , � − 1.

Since α∗ is right adjoint to α∗, the unit η of the adjunction gives the natural trans-
formation of towers η : (8.1) → (8.2). Defining M̄(X), M̄(X)(n) and Z̄A⊗b+1(a) by the
distinguished triangles

M(X) → α∗α
∗M(X) → M̄(X) → M(X)[1],

fmot
n M(X) → α∗α

∗fmot
n M(X) → M̄(X)(n) → fmot

n M(X)[1],

ZA⊗b+1(a) → α∗α
∗Z(a) → Z̄A⊗b+1(a) → ZA⊗b+1(a)[1],

we have the tower

0 = M̄(X)(p) → M̄(X)(p−1) → · · · → M̄(X)(1) → M̄(X)(0) = M̄(X) (8.3)

with slices
M̄(X)[p] ∼= Z̄A⊗b+1(b)[2b], b = 0, . . . , p − 1.

Note that there are many non-canonical choices leading to these isomorphisms, but
they are not important for the sequel.

This last tower thus gives rise to the strongly convergent spectral sequence

Ep,q
2 =⇒ HomDMeff (k)(Z(a)[b], M̄(X)(a′)[p + q]) (8.4)

with

Ep,q
2 =

{
HomDMeff (k)(Z(a)[b], Z̄A⊗−q+1(a′ − q)[p − q]) for 0 � −q � � − 1,

0 otherwise.
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Lemma 8.1.1. For U ∈ Sm/k, HomDMeff (k)(M(U)(r′), ZA(r)[q]) = 0 for

(1) r′ > r and all q,

(2) r′ = r and q �= 0,

(3) 1 � r − r′ < q if U = Spec k.

In addition, HomDMeff (k)ét(M(U)ét(r′), Zét(r)[q]) = 0 for

(1)ét r′ > r and q � 2(r − r′),

(2)ét r′ = r and q < 0.

Proof. By cancellation (see Theorem C.7.1 and Corollary C.7.2), it suffices to prove (1),
(1)ét, (2) and (2)ét with r = 0, and (3) with r′ = 0.

We first prove (1) and (2). For this, ZA is a homotopy invariant Nisnevich sheaf with
transfers, so

HomDMeff (k)(M(U)(r′), ZA[q − 2r′]) = ker[Hq
Zar(U × Pr′

, ZA) → Hq
Zar(U × Pr′−1, ZA)].

We may assume U irreducible. Since ZA is a constant sheaf in the Zariski topology and
is homotopy invariant,

Hq
Zar(U × Pr′

, ZA) =

{
0 for q �= 0,

ZA(k(U)) for q = 0.

The proof of (1)ét and (2)ét is similar: (2)ét follows from the vanishing of Hq
ét(U, Zét)

for q < 0. For (1)ét, we use the argument for (1), noting that

Hq
ét(U × Pr′

, Zét) =

{
0 for q < 0,

Z for q = 0.

For (3), Theorem 6.5.3 gives us isomorphisms

HomDMeff (k)(M(X), ZA(r)[2r + n]) ∼= CHr(X, n; A)

for all n. Taking X = Spec k, (3) follows from the fact that zr(Spec k; A, n) = 0 for n < r

by reason of dimension. �

For the rest of the paper we use the convention that, for F ,G ∈ DM eff(k), a, b ∈ Z,

HomDMeff (k)(F(a),G(b)[m]) := HomDMeff (k)(F(a + N),G(b + N)[m]),

where N is chosen so that a + N � 0 and b + N � 0; we use a similar convention in
DM eff(k)ét. We define motivic cohomology with twisted coefficients F(−q), q > 0, by

Hp(X, F(−q)) := HomDMeff (k)(M(X)(q),F [p])

and similarly for the étale version. By the cancellation theorems (Theorem C.7.1 and
Corollary C.7.2), the convention is well-defined.
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Remark 8.1.2. Define as before Z̄(n) by the distinguished triangle

Z(n) → α∗α
∗Z(n) → Z̄(n) → Z(n)[1].

The Bloch–Kato conjecture in weight n may be formulated as the statement that the
cohomology sheaves of Z̄(n) are zero in degree d � n + 1. We note that the case n = 0,
although not often considered, is in fact true: this comes down to the statement that
H1

ét(Z
ét) = 0. This in turn follows from the exact sheaf sequence

0 → H0
ét(Z) → H0

ét(Q) → H0
ét(Q/Z) → H1

ét(Z) → 0

and the surjectivity of H0
ét(Q) → H0

ét(Q/Z).

Lemma 8.1.3. For n + 1 � 0, the Beilinson–Lichtenbaum conjecture for weight n + 1
implies that

HomDMeff (k)(Z(d)[2d], M̄(X)(n + 1)[m]) = 0 for m � n + 2

and the sequence

0 → Hn+3(X, Z(n + 1)) → Hn+3
ét (X, Zét(n + 1)) → Hn+3

ét (k(X), Zét(n + 1))

is exact.

Proof. The Beilinson–Lichtenbaum conjecture for weight n+1 � 0 says that the cohom-
ology sheaves of Z̄(n + 1) are 0 in degree d � n + 2, hence the natural map

Hm(X, Z(n + 1)) → Hm
ét (X, Zét(n + 1))

is an isomorphism for m � n + 2 and there is an exact sequence

0 → Hn+3(X, Z(n + 1)) → Hn+3
ét (X, Zét(n + 1)) → H0

Zar(X, Hn+3
ét (Z(n + 1)))

since the cohomology sheaves of Z(n + 1) vanish in degree d � n + 1. By the Gersten
conjecture for Hn+3

ét (Z(n + 1)), the map

Hn+3
ét (Z(n + 1)) → Hn+3

ét (k(X), Z(n + 1))

is injective, which gives the exact sequence in the statement of the lemma.
In terms of morphisms in DM eff(k) and DM eff(k)ét, this says that the change of

topologies map

HomDMeff (k)(M(X), Z(n + 1)[m]) → HomDMeff (k)ét(α
∗M(X), α∗Z(n + 1)[m])

is an isomorphism for m � n + 2 and an injection for m = n + 3.
By Corollary C.7.3, we have natural isomorphisms

HomDMeff (k)(M(X), Z(n + 1)[m]) ∼= HomDMeff (k)(Z(d)[2d], M(X)(n + 1)[m])
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and

HomDMeff (k)ét(α
∗M(X), α∗Z(n + 1)[m])

∼= HomDMeff (k)ét(α
∗Z(d)[2d], α∗M(X)(n + 1)[m])

∼= HomDMeff (k)(Z(d)[2d], α∗α
∗M(X)(n + 1)[m]).

Thus, the natural map M(X) → α∗α
∗M(X) induces an isomorphism

HomDMeff (k)(Z(d)[2d], M(X)(n+1)[m]) → HomDMeff (k)(Z(d)[2d], α∗α
∗M(X)(n+1)[m])

for m � n + 2 and an injection for m = n + 3, hence the lemma. �

Theorem 8.1.4. Let A be a central simple algebra over k of prime degree �, with
(�, char k) = 1. Let n � −1 be an integer, and assume that the Beilinson–Lichtenbaum
conjecture holds in weights w � n + 1, and for the prime �.

(1) For m < n, the reduced norm

Nrd : Hm(k, ZA(n)) → Hm(k, Z(n))

is an isomorphism.

(2) There is an exact sequence

0 → Hn(k, ZA(n)) Nrd−−→ Hn(k, Z(n)) ∂n−→

Hn+3
ét (k, Z(n + 1))

γ−→ Hn+3
ét (k(X), Z(n + 1)),

where X is the Severi–Brauer variety of A, γ is given by extension of scalars, and
∂n is induced by the spectral sequence (8.4).

Proof. For n = −1, Hm(k, ZA(n)) = Hm(k, Z(n)) = 0 for all m by Lemma 8.1.1,
and so the assertion is just that H2

ét(k, Z) → H2
ét(k(X), Z) is injective, As H2

ét(−, Z) ∼=
H1

ét(−, Q/Z), this is the assertion that the base-change map

H1
ét(k, Q/Z) → H1

ét(k(X), Q/Z)

is injective. As H1
ét(−, Q/Z) classifies cyclic étale covers and k is algebraically closed in

k(X), the injectivity is clear.
For n � 0, we proceed by induction on n: assume the result for all n′ < n, n′ � −1.

By the Beilinson–Lichtenbaum conjecture in weight n′,

HomDMeff (k)(Z, Z̄(n′)[m]) = 0 for m � n′ + 1, n′ � 0.

Similarly, applying (1) and (2) to the distinguished triangle defining Z̄A, our induction
assumption gives

HomDMeff (Z, Z̄A(n′)[m]) = 0 for m < n′, n′ � −1. (8.5)



Motives of Azumaya algebras 569

Finally, by Lemma 8.1.3, the Beilinson–Lichtenbaum conjecture for weight n + 1 gives

HomDMeff (k)(Z(d)[2d], M̄(X)(n + 1)[m]) = 0 for m � n + 2. (8.6)

Now consider our spectral sequence (8.4) with a = d, b = 2d − n − 2 and a′ = n + 1,
where d = dimk X = � − 1. We have

Hom(Z(d)[2d − n − 2], M̄(X)(n + 1)[p + q])

= Hom(Z(d)[2d], M̄(X)(n + 1)[n + 2 + p + q]),

so by (8.6) the spectral sequence converges to 0 for p + q � 0.
The Ep,q

2 term is

Ep,q
2 = Hom(Z(d)[2d], Z̄A⊗−q+1(n + 1 − q)[n + 2 + p − q])

for 0 � −q � d and 0 otherwise. For 0 � −q < d − 1 and p + q � 0, we have

n′ := n + 1 − d − q < n,

n + 2 − 2d + p − q < n′.

For −q = d, A⊗−q+1 is a matrix algebra, hence Z̄A⊗−q+1(N) = Z̄(N). Thus

Ep,−d
2 = Hom(Z, Z̄(n + 1)[n + 2 − d + p]).

We claim that

Ep,q
2 = 0 for 0 � −q � d, − q �= d − 1, p + q � 0. (8.7)

Indeed, if p + q � 0, then p � d, so n + 2 − d + p � n + 2. Thus Ep,−d
2 = 0 by Hilbert’s

theorem 90 in weight n + 1. Next, suppose that n + 1 − d − q < 0. We have

n + 2 − 2d + p − q � 2(n + 1 − q − d),

so Ep,q
2 = 0 by Lemma 8.1.1 (1)ét. Finally, in case n+1−d− q � 0, we use our induction

hypothesis for n′ = n + 1 − d − q to conclude that Ep,q
2 = 0 for 0 � −q < d − 1, finishing

the proof of (8.7).
Thus, in the range 0 � −q � d, p + q � 0, there is for each p exactly one E2 term that

is possibly non-zero, namely

Ep,1−d
2 = Hom(Z, Z̄A⊗d(n)[n + 1 − d + p]);

the d2 differential is
Ep,1−d

2
d2−→ Ep+2,−d

2 .

Suppose p + q < 0. Since p + 2 − d � 0, Ep+2,−d
2 = 0. Since E∗,q

2 = 0 for q < −d, there
are no higher differentials coming out of Ep,1−d

2 . Similarly, there are no dr differentials
going to Ep,1−d

r . Thus Ep,1−d
2 = Ep,1−d

∞ = 0.
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Now take p + q = 0. The abutment of the spectral sequence is still 0 and there is still
only one possibly non-zero E2 term,

Ed−1,1−d
2 = Hom(Z, Z̄A(n)[n]).

The d2 differential maps to

Ed+1,−d
2 = Hom(Z, Z̄(n + 1)[n + 3]).

Since Ep,q
2 = 0 for −q > d, dd−1,1−d

r = 0 for r > 2, hence

dd−1,1−d
2 : Ed−1,1−d

2 → Ed+1,−d
2

is an injection. Moreover, for r > 2, all dr differentials mapping to Ed+1,−d
r have a source

equal to 0, hence Ed+1,−d
3 = Ed+1,−d

∞ .
Let us collect the information obtained so far.

• Ep,q
2 = 0 for p + q � 0, except possibly (p, q) = (d − 1, 1 − d).

• The differential dd−1,1−d
2 induces an exact sequence

0 → Ed−1,1−d
2 → Ed+1,−d

2 → Hom(Z(d)[2d], M̄(X)(n + 1)[n + 3]). (8.8)

Since Ep,1−d
2 = 0 for p < d − 1, we find that the map

Hom(Z, ZA⊗d(n)[n + 1 − d + p]) → Hom(Z, α∗α
∗ZA⊗d(n)[n + 1 − d + p])

is an isomorphism for p < d − 1 and an injection for p = d − 1. Since ZA
∼= ZA⊗�−1 , we

have

Hom(Z, ZA⊗d(n)[n + 1 − d + p]) ∼= Hn+1+p−d(k, ZA(n)),

Hom(Z, α∗α
∗ZA⊗d(n)[n + 1 − d + p]) ∼= Hn+1+p−d

ét (k, Z(n)),

hence the canonical map

αA : Hm(k, ZA(n)) → Hm
ét (k, Z(n))

is an isomorphism for m < n and an injection for m = n. Since αA factors as

Hm(k, ZA(n))
αA ��

Nrd
��

Hm
ét (k, Z(n))

Hm(k, Z(n))

α

��������������

and α : Hm(k, Z(n)) → Hm
ét (k, Z(n)ét) is an isomorphism for m � n by the Beilinson–

Lichtenbaum conjecture in weight n, it follows that Nrd is an isomorphism for m < n

and an injection for m = n, proving (1) and the injectivity of Nrd in (2).
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From the distinguished triangles defining Z̄A(n) and Z̄(n), we have exact sequences

· · · → Hn−1(k, ZA(n)) → Hn−1
ét (k, Z(n)) → Ed−2,1−d

2

→ Hn(k, ZA(n)) → Hn
ét(k, Z(n)) → Ed−1,1−d

2 → Hn+1(k, ZA(n)) → · · ·

and

· · · → Hn+3(k, Z(n + 1)) → Hn+3
ét (k, Z(n + 1)) → Ed+1,−d

2 → Hn+4(k, Z(n + 1)) → · · · .

But we have already shown Ed−2,1−d
2 = 0. Also, using Theorem 6.5.3, we have

Hn+1(k, ZA(n)) = CHn(k, n − 1; A). Thus

Hn+1(k, ZA(n)) = Hn+3(k, Z(n + 1)) = Hn+4(k, Z(n + 1)) = 0

for dimensional reasons; additionally, Hn(k, Z(n)) = Hn
ét(k, Z(n)) by Bloch–Kato in

weight n. Thus we get an exact sequence

0 → Hn(k, ZA(n)) Nrd→ Hn(k, Z(n)) → Ed−1,1−d
2 → 0

and an isomorphism
Hn+3

ét (k, Z(n + 1)) ∼−→ Ed+1,−d
2 .

Putting this together with (8.8), we get the exact sequence

0 → Hn(k, ZA(n)) Nrd−−→ Hn(k, Z(n)) ∂n−→ Hn+3
ét (k, Z(n + 1))

→ Hom(Z(d)[2d], M̄(X)(n + 1)[n + 3]),

where ∂n is the map induced by dd−1,1−d
2 . By comparing the spectral sequence for

Hom(Z(d)[2d], M(X)(n + 1)[∗]), Hom(Z(d)[2d], α∗α
∗M(X)(n + 1)[∗])

and
Hom(Z(d)[2d], M̄(X)(n + 1)[∗]),

we see that Hn+3
ét (k, Z(n + 1)) → Hom(Z(d)[2d], M̄(X)(n + 1)[n + 3]) factors through

the image of

Hom(Z(d)[2d], α∗α
∗M(X)(n + 1)[n + 3]) → Hom(Z(d)[2d], M̄(X)(n + 1)[n + 3]).

By the exact sequence of Lemma 8.1.3 and the duality result Corollary C.7.3, we thus
have the exact sequence

0 → Hn(k, ZA(n)) Nrd−−→ Hn(k, Z(n)) ∂n−→ Hn+3
ét (k, Z(n + 1)) → Hn+3

ét (k(X), Z(n + 1)).

The resulting map

Hn+3
ét (k, Z(n + 1)) → Hn+3

ét (k(X), Z(n + 1))

is induced by an edge homomorphism of our spectral sequence, hence equals the extension
of scalars map. This completes the proof. �
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Corollary 8.1.5. Let A be a central simple algebra of square-free index e over k, with
(e, char k) = 1. For n �= 1, Hn(k, ZA(1)) = 0.

Of course, we have already proved this by a direct argument (Theorem 6.8.2). This
second argument uses our main result on the reduced norm, Theorem 8.1.4, which, in the
weight one case, relies on the Merkurjev–Suslin theorem to prove Beilinson–Lichtenbaum
in weight two (using in turn [18] or [56]).

Proof. We first reduce to the case of A of prime degree �. Write

deg(A) =
∏

�i = d,

where the �i are distinct primes. Write A = Mn(D) for some division algebra D of
degree d over k, and let F ⊂ D be a maximal subfield. Then F has degree d over k and
splits D. Let � = �i for some i, let k(�) ⊃ k be the maximal prime to � extension of k and
let F (�) := Fk(�). Then clearly F (�) has degree � over k(�) and splits Ak(�); since k(�)
has no prime to � extensions, F (�) is Galois over k(�). Passing from k to the Gal(k(�)/k)
invariants alters only the prime to � torsion. Thus we may replace k with k(�) and assume
that A is split by a degree � Galois extension of k. But then A is Morita equivalent to
an algebra of degree �, which achieves the reduction.

It follows from [6, Theorem 6.1] that

0 = CH1(k, 2 − n) ∼= Hn(k, Z(1))

for n �= 1. By Theorem 8.1.4 (1), this implies that Hn(k, ZA(1)) = 0 for n < 1. Addition-
ally, we have

Hn(k, ZA(1)) ∼= CH1(k, 2 − n; A)

by Theorem 6.5.3. Since CH1(k, m; A) = 0 for m < 0 and CH1(k, 0; A) = 0 for dimen-
sional reasons, the proof is complete. �

Corollary 8.1.6. Let A be a central simple algebra of square-free index e over k, with
(e, char k) = 1. Then the edge homomorphism

p2,k;A : CH2(k, 2; A) → K2(A)

is an isomorphism.

Proof. From Corollary 8.1.5, CH1(k, n; A) = 0 for n �= 1. From Theorem 6.7.1 (2), we
have the exact sequence

0 → CH1(k, 3; A)
d−2,−1
2−−−−→ CH2(k, 2; A)

p2,k;A−−−−→ K2(A) → CH1(k, 2; A) → 0,

hence the edge-homomorphism p2,k;A : CH2(k, 2; A) → K2(A) is an isomorphism. �
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Finally, here is a global version of Theorem 8.1.4.

Corollary 8.1.7. Let Z̃A denote the cokernel of the reduced norm map Nrd : ZA → Z.
Suppose that A has square-free index e, with (e, char k) = 1, and assume the Beilinson–
Lichtenbaum conjecture. Then,

(1) for all n � 0, the complex Z̃A(n) = Z̃A ⊗ Z(n) ∈ DM eff(k) is concentrated in
degree n;

(2) let Fn = Hn(Z̃A(n)). Then the stalk of Fn at a function field K is isomorphic to

ker(Hn+3
ét (K, Z(n + 1)) → Hn+3

ét (K(X), Z(n + 1))),

where X is the Severi–Brauer variety of A;

• for any smooth scheme U we have a Gersten resolution

0 → Fn →
⊕

x∈U(0)

(ix)∗(Fn)

→
⊕

x∈U(1)

(ix)∗(Fn−1) → · · · →
⊕

x∈U(p)

(ix)∗(Fn−p) → · · · .

Proof. As in the proof of Corollary 8.1.5, it suffices to handle the case of A of prime
degree over k.

Clearly, ZA(n) has no cohomology in degrees greater than n; by Voevodsky’s form of
Gersten’s conjecture [57, Corollary 4.19, Theorem 4.27], the vanishing of Hi(Z̃A(n)) for
i < n reduces to Theorem 8.1.4. The computation of the stalks of Hn(Z̃A(n)) also follows
from Theorem 8.1.4.

For (3), we first show (with the notation of [57, § 3.1]) that the Zariski sheaf associated
to the presheaf (Fn)−1 is Fn−1. This follows immediately from Voevodsky’s cancellation
theorem [62]: by definition,

(Fn)−1(U) = coker(Fn(U × A1) → Fn(U × (A1 − {0})))

= coker(Hn(U × A1, Z̃A(n)) → Hn(U × (A1 − {0}), Z̃A(n))).

By purity, the localization sequence for U × (A1 − {0}) ⊂ U × A1, and part (1) of the
corollary, the latter cokernel is isomorphic to

ker(Hn−1(U, Z̃A(n − 1)) → Hn+1(U, Z̃A(n))) 	 H1
Zar(U,Fn),

hence the Zariski sheaf associated to (Fn)−1 is the sheaf associated to

U �→ Hn−1(U, Z̃A(n − 1)) 	 Fn−1(U).

The statement on the Gersten complex follows from this and [57, Theorem 4.37]. �
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8.2. Computing the boundary map

To finish our study of Hn(k, ZA(n)), we need to compute the boundary map ∂n in
Theorem 8.1.4. As above, we fix a central simple algebra A over k of prime degree �, let
d = �− 1 and let X be the Severi–Brauer variety SB(A). We let [A] ∈ H2

ét(k, Gm) denote
the class of A in the (cohomological) Brauer group of k. As in the previous section, we
invert the exponential characteristic of k.

Concentrating on fmot
d−1M(X) gives us the distinguished triangle

smot
d M(X) → fmot

d−1M(X) → smot
d−1M(X) → smot

d M(X)[1],

which by Theorem 7.4.2 is

Z(d)[2d] → fmot
d−1M(X) → ZA(d − 1)[2d − 2] → Z(d)[2d + 1].

Applying Ωd−1
T gives

Z(1)[2] → Ωd−1
T fmot

d−1M(X) → ZA → Z(1)[3].

Applying the étale sheafification α∗ and noting that Zét
A

∼= Zét gives the distinguished
triangle

Z(1)ét[2] → α∗Ωd−1
T fmot

d−1M(X) → Zét ∂−→ Z(1)ét[3]. (8.9)

Thus ∂ : Zét → Z(1)ét[3] gives us the element

βA ∈ H3
ét(k, Z(1)ét) = H2

ét(k, Gm).

Proposition 8.2.1. βA = [A].

Proof. To calculate βA, it suffices to restrict (8.9) to the small étale site on k. By
Lemma 7.1.2, (8.9) on két is isomorphic (in D(Shét(k))) to the sheafification of the
sequence of presheaves

L �→ (z1(L, ∗)
p∗

−→ z1(XL, ∗) → cone(p∗) → z1(L, ∗)[1]). (8.10)

Here, and in the remainder of this proof, we consider the cycle complexes as cohomological
complexes:

z1(Y, ∗)n := z1(Y,−n).

We recall that z1(XL, ∗) has non-zero cohomology only in degrees 0 and −1, and that

H−1(z1(XL, ∗)) = Γ (XL,O×
XL

),

H0(z1(XL, ∗)) = CH1(XL).

Similarly, H−1(z1(L, ∗)) = L× and all other cohomology of z1(L, ∗) vanishes. Since X is
geometrically irreducible and projective,

p∗ : L× → Γ (XL,O×
XL

)
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is an isomorphism, and thus the cone of z1(L, ∗)
p∗

−→ z1(XL, ∗) has only cohomology in
degree 0, namely

H0(cone(p∗)) = CH1(XL).

Thus the sequence (8.10) is naturally isomorphic (in D(Spc•ét
(k))) to the canonical

sequence

L �→ (H−1(z1(XL, ∗))[1] → τ�−1z
1(XL, ∗) → H0(z1(XL, ∗)) → H−1(z1(XL, ∗))[2]).

(8.11)
We can explicitly calculate a cocycle representing βA as follows. Take L/k to be a Galois

extension with group G such that AL is a matrix algebra over L. Then (8.11) gives a
distinguished triangle in the derived category of G-modules, so we have in particular the
connecting homomorphism

∂L : H0(G, H0(z1(XL, ∗))) → H2(G; H−1(z1(XL, ∗))) = H2(G; L×).

Also XL
∼= Pd

L. As H0(z1(XL, ∗)) = CH1(XL), H0(z1(XL, ∗)) has a canonical G-invariant
generator 1, namely the element corresponding to c1(O(1)). We can apply ∂L to 1, giving
the element ∂L(1) ∈ H2(G; L×) which maps to βA under the canonical map

H2(G, L×) → H2
ét(k, Gm).

Since AL is a matrix algebra over L, A is given by a 1-cocycle

{ḡσ | σ ∈ G} ∈ Z1(G, PGL�(L))

and X is the form of Pd defined by {ḡσ}. This mean that there is an L isomorphism
ψ : XL → Pd

L such that, for each σ ∈ G, we have

ḡσ := ψ ◦ σψ−1,

under the usual identification AutL(Pd
L) = PGLd+1(L).

Lifting ḡσ to gσ ∈ GL�(L) and defining cτ,σ ∈ L× by

cτ,σ id := gτ
τgσg−1

τσ ,

we have the cocycle {cτ,σ} ∈ Z2(G, L×) representing [A].
For a G-module M , let (C∗(G; M), d̂) denote the standard co-chain complex computing

H∗(G; M), i.e. Cn(G; M) is a group of n co-chains of G with values in M . We will show
that ∂L(1) = {cτ,σ} in H2(G, L×) by applying C∗(G; −) to the sequence (8.11) and
making an explicit computation of the boundary map.

Fix a hyperplane H ⊂ Pd
k. Then D := ψ∗(HL) ∈ z1(XL, ∗)0 represents the positive

generator 1 ∈ CH1(XL) ∼= Z. As the class of D in CH1(XL) is G-invariant, there is for
each σ ∈ G a rational function fσ on XL such that

Div(fσ) = σD − D.
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Given τ, σ ∈ G, we thus have

Div(fτ
σ f−1

τσ fτ ) = τσD − τD − (τσD − D) + τD − D = 0,

so there is a c′
τ,σ ∈ Γ (XL,O×

XL
) = L× with

c′
τ,σ = fτ

σ f−1
τσ fτ .

Using the fact that
σD = ψ∗(ḡσ(HL)),

one can easily calculate that
c′
τ,σ = cτ,σ.

Indeed, take a k-linear form L0 so that H is the hyperplane defined by L0 = 0. Let

Fσ :=
L0 ◦ g−1

σ

L0
,

so Div(Fσ) = ḡσ(H) − H. Letting fσ := ψ∗Fσ, we have

Div(fσ) = ψ∗(Div(Fσ)) = ψ∗(ḡσ(H) − H) = σD − D,

and
τfσ = ψ∗

(
L0 ◦ τg−1

σ ◦ g−1
τ

L0 ◦ g−1
τ

)
.

Thus

c′
τ,σ = ψ∗

(
L0 ◦ τg−1

σ ◦ g−1
τ

L0 ◦ g−1
τ

)
· ψ∗

(
L0 ◦ g−1

τσ

L0

)−1

· ψ∗
(

L0 ◦ g−1
τ

L0

)
= ψ∗

(
L0 ◦ τg−1

σ g−1
τ

L0 ◦ g−1
τσ

)
= cτ,σ.

On the other hand, we can calculate the boundary ∂L(1) by lifting the generator
1 = [D] ∈ CH1(XL)G to the element D ∈ z1(XL, ∗)0 and taking Čech co-boundaries.
Explicitly, let Γσ ⊂ XL × ∆1 be the closure of graph of fσ, after identifying (∆1, 0, 1)
with (P1\{1}, 0,∞). Define Γcσ,τ ∈ z1(L, ∗)−1 similarly as the point of ∆1

L corresponding
to cτ,σ ∈ A1(k) ⊂ P1(k), and let δ denote the boundary in the complex z1(XL, ∗). For
σ ∈ G, we have

δ−1(Γσ) = σD − D = d̂0(D)σ.

Since H−1(z1(XL, ∗)) = Γ (XL,O×
XL

) = L×, there is for each σ, τ ∈ G, an element Bσ,τ ∈
z1(XL, 2) with

p∗Γcσ,τ = τΓσ − Γτσ + Γτ + δ−2(Bσ,τ )

= d̂1(σ �→ Γσ)τ,σ ∈ τ�−1z
1(XL, ∗)−1.

Thus
∂L([D]) = {cσ,τ} ∈ H2(G, H−1(z1(L, ∗))) = H2(G, L×).

This completes the computation of ∂L(1) and the proof of the proposition. �
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Theorem 8.2.2. Let A be a central simple algebra over k of square-free index e with
(e, char k) = 1. Let n � 0, and assume that the Beilinson–Lichtenbaum conjecture holds
in weights w � n + 1 at all primes dividing e.

(1) For m < n, the reduced norm

Nrd : Hm(k, ZA(n)) → Hm(k, Z(n))

is an isomorphism.

(2) We have an exact sequence

0 → Hn(k, ZA(n)) Nrd−−→ Hn(k, Z(n)) 	 KM
n (k)

∪[A]−−−→ Hn+2
ét (k, Z/e(n + 1)) → Hn+2

ét (k(X), Z/e(n + 1)).

(3) (n = 1) SK1(A) = 0. More precisely, we have an exact sequence

0 → K1(A) Nrd−−→ K1(k)
∪[A]−−−→ H3

ét(k, Z/e(2)) → H3
ét(k(X), Z/e(2)).

(4) (n = 2) SK2(A) = 0. More precisely, we have an exact sequence

0 → K2(A) Nrd−−→ K2(k)
∪[A]−−−→ H4

ét(k, Z/e(3)) → H4
ét(k(X), Z/e(3)).

To explain the map ∪[A] in (2), (3) and (4), we have isomorphisms

K1(k) = k× ∼= H1(k, Z(1)),

K2(k) ∼= H2(k, Z(2)),

Hn
ét(k, Gm) ∼= Hn+1

ét (k, Z(1)ét).

Thus we have [A] ∈ H3
ét(k, Z(1)ét) and cup product maps

Hn(k, Z(n)) → Hn
ét(k, Z(n)ét)

∪[A]−−−→ Hn+3
ét (k, Z(n + 1)ét),

which obviously land in eH
n+3
ét (k, Z(n + 1)ét). On the other hand, the exact triangle

Z(n + 1)ét e−→ Z(n + 1)ét → Z/e(n + 1) +1−−→

and the Beilinson–Lichtenbaum conjecture in weight n + 1 give an isomorphism

Hn+2
ét (k, Z/e(n + 1)) ∼−→ eH

n+3
ét (k, Z(n + 1)ét).

Proof. As in the proof of Corollary 8.1.5, it suffices to handle the case of A of prime
degree over k. Thus, (1) follows from Theorem 8.1.4 (1).

For (2), applying α∗ to the distinguished triangle

Z(1)[2] → Ωd−1
T fmot

d−1M(X) → ZA → Z(1)[2]
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we have
Z(1)ét[2] → α∗Ωd−1

T fmot
d−1M(X) → Zét ∂−→ Z(1)ét[3].

It follows from Proposition 8.2.1 that the ∂ is given by cup product with [A] ∈
H3

ét(k, Z(1)ét). Since the map ∂n in Theorem 8.1.4 is just the map induced by ∂ after
tensoring with Z(n)ét[n], (2) is proven in the form of an exact sequence

0 → Hn(k, ZA(n)) Nrd−−→ Hn(k, Z(n))
∪[A]−−−→ Hn+3

ét (k, Z(n + 1)ét) → Hn+3
ét (k(X), Z(n + 1)ét).

But the Beilinson–Lichtenbaum conjecture in weight n+1, applied both to k and k(X),
shows that in the commutative diagram

Hn+2
ét (k, Z/e(n + 1)) ��

∂

��

Hn+2
ét (k(X), Z/e(n + 1))

∂

��
Hn+3

ét (k, Z(n + 1)ét) �� Hn+3
ét (k(X), Z(n + 1)ét)

both horizontal maps have isomorphic kernels, hence the form of (2) appearing in Theo-
rem 8.2.2.

For (3) and (4), we have the isomorphism (Theorem 6.5.3)

ψp,q;A : Hp(k, ZA(q)) → CHq(k, 2q − p; A)

compatible with the respective reduced norm maps. From Corollary 8.1.6, the edge-
homomorphism p2,k;A : CH2(k, 2; A) → K2(A) is an isomorphism. It follows from Theo-
rem 6.7.1 (1) that the edge homomorphism p1,k;A : CH1(k, 1; A) → K1(A) is an isomor-
phism as well. Together with Proposition 6.6.5, this gives us the commutative diagram
for n = 1, 2:

Hn(k, ZA(n))
ψn,n;A ��

Nrd
��

CHn(k, n; A)
pn,k;A ��

Nrd
��

Kn(A)

Nrd
��

Hn(k, Z(n))
ψn,n;k

�� CHn(k, n)
pn,k;k

�� Kn(k)

with all horizontal maps isomorphisms. Thus, in the sequence (1), we may replace
Hn(k, ZA(n)) with Kn(A) and Hn(k, Z(n)) with Kn(k) for n = 1, 2, proving (3)
and (4). �

Remark 8.2.3. Taking n = 0 in Theorem 8.2.2, we have the exact sequence

0 → Z
×e−−→ Z

∪[A]−−−→ H2
ét(k, µe) → H2

ét(k(X), µe),

i.e. the kernel of H2
ét(k, Gm) → H2

ét(k(X), Gm) is generated by [A]. This relies only on
the Bloch–Kato conjecture in weight 1, i.e. the classical Hilbert theorem 90, and recovers
Amitsur’s result in this special case [1].
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Part III. Appendices

Appendix A. Modules over Azumaya algebras

We collect some basic results for use throughout the paper.
Let R be a commutative ring and A an Azumaya R-algebra.

Lemma A.1. If R is Noetherian, A is left and right Noetherian.

Proof. Indeed, A is a Noetherian R-module, hence a Noetherian A-module (on the left
and on the right). �

Lemma A.2. For an A–A-bimodule M , let

MA = {m ∈ M | am = ma}.

Then the functor M �→ MA is exact and sends injective A–A-bimodules to injective
R-modules.

Proof. Let Ae = A ⊗R Aop be the enveloping algebra of A. We may view M as a left
Ae-module. A special A–A-bimodule is A itself, and we clearly have

MA = HomAe(A, M).

Since A is an Azumaya algebra, the map Ae → EndR(A) is an isomorphism of
R-algebras; via this isomorphism, HomAe(A, M) may be canonically identified with
A∗ ⊗EndR(A) M , where A∗ = HomR(A, R). Hence MA is the transform of M under the
Morita functor from EndR(A)-modules to R-modules; since this functor is an equivalence
of categories, it is exact and preserves injectives. �

Proposition A.3. For any two left A-modules M , N and any q � 0, we have

Extq
A(M, N) 	 Extq

R(M, N)A.

(Note that Extq
R(M, N) is naturally an A–A-bimodule, which gives a meaning to the

statement.)

Proof. The bifunctor (M, N) �→ HomA(M, N) is clearly the composition of the two
functors

(M, N) �→ HomR(M, N)

(from left A-modules to A–A-bimodules) and

Q �→ QA

(from A–A-bimodules to R-modules). Note also that, if P is A-projective and I is
A-injective, then HomR(P, I) is an injective A–A-bimodule. The conclusion therefore
follows from Lemma A.1. �
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Corollary A.4. Let M be a left A-module. Then M is A-projective if and only if it is
R-projective.

Proof. If M is A-projective, it is R-projective since A is a projective R-module. The
converse follows from Proposition A.3. �

Corollary A.5. Suppose R regular of dimension d. Then any finitely generated left
A-module M has a left resolution of length at most d by finitely generated projective
A-modules. In particular, A is regular.

Proof. Since R is regular, it is Noetherian and so is A by Lemma A.1. Proposition A.3
also shows that Extd+1

A (M, N) = 0 for any N . The conclusion is now classical [9, VI,
Proposition 2.1; V, Proposition 1.3]. �

Appendix B. Regularity

We prove the main result on the regularity properties of the functor K(−; A) that we
need to compute the layers in the homotopy coniveau tower for G(X; A) in § 6.

Fix a noetherian commutative ring R. We let R -alg denote the category of commu-
tative R-algebras which are localizations of finitely generated commutative R-algebras.

Following Bass [4, XII, § 7, pp. 657–658], for an additive functor F : R -alg → Ab, we
let NF : R -alg → Ab be the functor

NF (A) := ker(F (A[t]) → F (A[t]/(t))),

where A[t] is the polynomial algebra over A. We set NqF := N(Nq−1F ).
For a ∈ A the morphism A[X] → A[X], X �→ a · X induces a group endomorphism

NF (A) → NF (A). So NF (A) becomes a Z[T ]-module. We denote by NF (A)[a] the
Z[T, T−1]-module Z[T, T−1] ⊗Z[T ] NF (A). With this notation Vorst proves the following
theorem in [63].

Theorem B.1. Let A ∈ R -alg and let a1, . . . , an be elements of A which generate the
unit ideal. Suppose further that the map

NF (R[T ]ai0 ,...,âij
,...,aip

)[aij
] → NF (A[T ]ai0 ,...,aip

)

is an isomorphism, for each set of indexes 1 � i0 < · · · < ip � n. Then the canonical
morphism

ε : NF (A) →
n⊕

j=1

NF (Aaj
)

is injective.

Proof. Compare [63, Theorem 1.2] or [30, Lemma 1.1]. �

This is extended by van der Kallen, in the case of the functor A �→ Kn(A), to prove
an étale descent result: namely, the following theorem.
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Theorem B.2. Let A be a noetherian commutative ring such that each zero divisor of
A is contained in a minimal prime ideal of A. Let A → B be an étale and faithfully flat
extension of A. Then the Amitsur complex

0 → NqKn(A) → NqKn(B) → NqKn(B ⊗A B) → · · ·

is exact for each q and n.

In fact, one can abstract van der Kallen’s argument to give conditions on a functor
F : R -alg → Ab as above so that the conclusion of Theorem B.2 holds for the Amitsur
complex for NF . For this, we recall the big Witt vectors W (A) of a commutative ring
A, with the canonical surjection W (A) → A and the multiplicative Teichmüller lifting
A → W (A) sending a ∈ A to [a] ∈ W (A). We have as well the Witt vectors of length
n, with surjection W (A) → Wn(A); we let FnW (A) ⊂ W (A) be the kernel. If M is a
W (A)-module, we say M is a continuous W (A) module if M is a union of the submodules
Mn killed by FnW (A). Then one has the following theorem.

Theorem B.3. Let F : R -alg → Ab be a functor. Suppose that F satisfies the following
conditions.

(1) Given a ∈ A ∈ R -alg, the natural map F (Aa) → F (A)[a] is an isomorphism.

(2) Sending a ∈ A to the endomorphism [a] : NF (A) → NF (A) extends to a continu-
ous W (A)-module structure on NF (A), natural in A, with the Teichmüller lifting
[a] ∈ W (A) acting by [a] : NF (A) → NF (A).

(3) F commutes with filtered direct limits.

Let A ∈ R -alg be such that each zero-divisor of A is contained in a minimal prime
ideal of A. Let A → B be an étale and faithfully flat extension of A. Then the Amitsur
complex

0 → NF (A) → NF (B) → NF (B ⊗A B) → NF (B ⊗A B ⊗A B) → · · ·

is exact.

The main example of interest for us is the following. Let A be a noetherian central R-
algebra, and let Kn(A) be the nth K-group of the category of finitely generated projective
(left) A-modules.

Corollary B.4. Let F : R -alg → Ab be the functor

F (A) := NqKn(A ⊗R A).

Then F satisfies the conditions of Theorem B.3, hence (assuming A satisfies the hypoth-
esis on zero-divisors) if A → B is an étale and faithfully flat extension of A, then the
Amitsur complex

0 → NqKn(A ⊗R A) → NqKn(A ⊗R B) → NqKn(A ⊗R B ⊗A B) → · · ·

is exact.
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Proof. Weibel [65] has shown that NqKn(A) admits a W (A)-module structure, satis-
fying the conditions (1) and (2) of Theorem B.3. Since K-theory commutes with filtered
direct limits, this proves that the given F satisfies the conditions of Theorem B.3, whence
the result. �

Now let X be an R-scheme and let A be a sheaf of Azumaya algebras over OX . We
have the category PX;A of left A-modules E which are locally free as OX -modules. We
let K(X; A) denote the K-theory spectrum of PX;A. We extend K(X; A) to a spectrum
which is (possibly) not (−1)-connected by taking the Bass delooping, and denote this
spectrum by KB(X; A). For f : Y → X an X-scheme, we write K(Y ; A) for K(Y ; f∗A),
and similarly for KB.

The spectra KB(X; A) have the following properties.

(1) There is a canonical map K(X; A) → KB(X; A), identifying K(X; A) with is the
−1-connected cover of KB(X; A).

(2) There is the natural exact sequence

0 → KBp(X; A) → KBp(X × A1; A) ⊕ KBp(X × A1; A)

→ KBp(X × Gm; A) → KBp−1(X; A) → 0

called the fundamental exact sequence.

(3) If X is regular, then K(X; A) → KB(X; A) is a weak equivalence.

From now on, we will drop the notation KB(X; A) and write K(X; A) for the (possibly)
non-connected version.

Proposition B.5. Let X be a noetherian affine R-scheme such that OX has no nilpotent
elements, and let p : Y → X be an étale cover. Let Ã be a sheaf of Azumaya algebras
over OX . For each point y ∈ Y , let Yy := SpecOY,y and let py : Yy → X be the map
induced by p. Fix an integer q � 1. Suppose there is an M such that, for each smooth
affine k-scheme T , NqKn(T ×k Yy, (py ◦ p2)∗A) = 0 for each y ∈ Y and each n � M .
Then NqKn(T ×k X; A) = 0 for each smooth affine T and each n � M .

Proof. Write X = Spec A. Then
∏

p∗
y : A → B :=

∏
y OY,y is faithfully flat and étale.

Since X is affine, Ã is the sheaf associated to a central A-algebra A and since Ã is a
sheaf of Azumaya algebras, each finitely generated projective left A module is finitely
generated and projective as an A-module. Thus NqKn(X, Ã) = NqKn(A). Similarly,
NqKn(Yy, p∗

yÃ) = NqKn(p∗
yA). By Corollary B.4, NqKn(A) = 0 for n � 0. The same

argument, with T × X replacing X and T × Yy replacing Yy, proves the result for M �
n � 0 and all T . To handle the cases n < 0, use the Bass fundamental sequence and
descending induction starting with n = 0. �



Motives of Azumaya algebras 583

Appendix C. Categories of motives

Categories of motives have been defined by Ivorra [23] over a Noetherian separated base
and by Cisinski and Déglise [11] over a regular base. In this appendix, we recall the
construction of the category DM eff(S), and various adjoint pairs of functors involving
this category. For the construction of adjoint pairs, it is useful to invoke the general
theory of model categories, applied to the various model structures on complexes over a
Grothendieck abelian category discussed in [11]. This theory also gives a tensor struc-
ture and internal Hom functors for DM eff(S). We will need as well the étale version
DM eff(S)ét; for lack of a suitable reference in the literature, we apply the methods
of [11] in the étale setting and use the model structure to give a tensor structure with
internal Hom functors, as well as an adjoint pair for change of topology. We conclude
with the special case S = Spec k, k a field, where one can apply Voevodsky’s cancellation
theorem to give a twisted duality result.

C.1. Categories of correspondences

We begin by recalling the construction; for details, we refer the reader to [5,11] and [23,
Chapter 4].

We work at first in a fairly general setting. Let S be a regular scheme. The starting
point is the category SmCor(S), with objects the smooth quasi-projective S-schemes
Sm/S, and morphisms given by the finite correspondences CorS(X, Y ), this latter being
the group of cycles on X ×S Y generated by the integral closed subschemes W ⊂ X ×S Y

such that W → X is finite and surjective over some component of X. Composition is by
the usual formula for composition of correspondences:

W ′ ◦ W := pXZ∗(p∗
XY (W ) · p∗

Y Z(W ′)).

Sending f : X → Y to the graph Γf ⊂ X×S Y defines a functor m : Sm/S → SmCor(S).
Next, one has the category PST(S) of presheaves with transfer, this being simply the

category of additive presheaves of abelian groups on SmCor(S). Restriction to Sm/S

gives the functor to the category of presheaves on Sm/S

i∗ : PST(S) → PS(Sm/S);

we let Shtr
Nis(S) ⊂ PST(S) be the full subcategory with objects P such that i∗(P ) is a

Nisnevich sheaf on Sm/S. Such a P is a Nisnevich sheaf with transfers on Sm/S. We
have as well the subcategory Shtr

ét(S) ⊂ Shtr
Nis(S) of étale sheaves with transfer, that is,

presheaves P such that i∗P is an étale sheaf on Sm/S.
We record the following facts about the categories Shtr

Nis(S) and Shtr
ét(S). For Shtr

Nis(S),
these are proven in [13, §§ 4.2.4, 4.2.5]; the analogous facts for Shtr

ét(S) follow by exactly
the same arguments.

The inclusion Shtr
Nis(S) → PST(S) has as left adjoint: the sheafification functor.

PST(S) is a Grothendieck abelian category with kernel and cokernel defined pointwise
and generators the representable presheaves; as usual, Shtr

Nis(S) is a Grothendieck abelian
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category with kernel the presheaf kernel, cokernel the sheafification of the presheaf coker-
nel and generators the representable sheaves. The corresponding statements for Shtr

ét(S)
hold as well.

We write Ztr
S (X) for the presheaf with transfers represented by X ∈ Sm/S; this is in

fact an étale sheaf with transfers. PST(S), Shtr
Nis(S) and Shtr

ét(S) are all Grothendieck
abelian categories, with generators Ztr

S (X), X ∈ Sm/S. For F ∈ Shtr
Nis(S) and n ∈ Z, we

have a natural isomorphism

HomD(Shtr
Nis(S))(Z

tr
S (X),F [n]) ∼= Hn(XNis,F|XNis).

Similarly, for F ∈ Shtr
ét(S) and n ∈ Z, we have a natural isomorphism

HomD(Shtr
ét(S))(Z

tr
S (X),F [n]) ∼= Hn(Xét,F|Xét).

The category PST(S) is a tensor category, with tensor operation ⊗tr
S satisfying

Ztr
S (X) ⊗tr

S Ztr(Y ) = Ztr(X ×S Y )

for X, Y ∈ Sm/S. Taking as usual the sheaf associated to the presheaf tensor product
gives Shtr

Nis(S) and Shtr
ét(S) the structure of tensor categories. As the functor

− ⊗tr
S M : PST(S) → PST(S)

preserves colimits, there is a right adjoint

HomPST(M, −) : PST(S) → PST(S);

for N a sheaf, HomPST(M, N) is automatically a sheaf, so we have internal Hom functors
HomShtr

Nis
(−,−) and HomShtr

ét
(−,−) in Shtr

Nis(S) and Shtr
ét(S) as well. In other words, the

categories PST(S), Shtr
Nis(S) and Shtr

ét(S) are closed symmetric monoidal categories.

C.2. Model structures

We can now apply the machinery of [11] to define the motivic model structure on the
categories of unbounded complexes C(PST(S)), C(Shtr

Nis(S)) and C(Shtr
ét(S)). We first

recall the general set-up. Let A be a Grothendieck abelian category. A descent structure
for A is a pair (G,H) of subsets of C(A) such that, for C ∈ C(A),

HomK(A)(H, C[n]) = 0 for all H ∈ H, n ∈ Z

=⇒ HomK(A)(G, C[n]) ∼= HomD(A)(G, C[n]) for all G ∈ G, n ∈ Z.

If (G,H) is a descent structure for A, then by [11, Theorem 1.7], the following defines a
proper cellular model category C(A)G with underlying category C(A).

(1) Cofibrations. For E ∈ G, let D(E) be the complex E
id−→ E, concentrated in

degrees 0 and 1, and let
ιE : E[−1] → D(E)

be the map given by the identity in degree 1. The cofibrations are generated (by push-
out, transfinite compositions and retracts) by the morphisms ιE [n], E ∈ G, n ∈ Z.
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(2) Weak equivalences. The weak equivalences are the quasi-isomorphisms.

(3) Fibrations. The fibrations are the maps having the having the right lifting property
with respect to acyclic cofibrations.

In particular, the homotopy category HC(A)G is the derived category D(A).
If A is a presheaf category PSAb(C), for C an essentially small category, then A is a

Grothendieck abelian category with set of generators the representable presheaves Z(X),
X ∈ C (more correctly, X running through a set of representatives of isomorphism classes
of C). One can take G = {Z(X) | X ∈ C} and H = {0}:

HomK(A)(Z(X), C[n]) ∼= Hn(C(X)),

hence HomK(A)(Z(X), C[n]) ∼= HomD(A)(Z(X), C[n]) for all n, C. We denote the result-
ing model category by C(PSAb(C))proj.

In particular, we have the proper cellular model category C(PST(S))proj with homo-
topy category D(PST(S)). For the sheaf categories Shtr

Nis(S) and Shtr
ét(S), we also let G

be the set of representable (pre)sheaves. Let HNis be the set of complexes of the form
Ztr

S (X ) → Ztr
S (X), with X → X a Nisnevich hypercover of X ∈ Sm/S. By [11, Exam-

ple 1.5], (G,HNis) defines a descent structure on Shtr
Nis(S), giving us the proper cellular

model category C(Shtr
Nis(S))proj with homotopy category D(Shtr

Nis(S)). Replacing Nis-
nevich hypercovers with étale hypercovers defines the set Hét; the same argument as
in [11, Example 1.5], (G,HNis) shows that (G,Hét) defines a descent structure on Shtr

ét(S).
Thus, we have the proper cellular model category C(Shtr

ét(S))proj with homotopy category
D(Shtr

ét(S)).
Returning to the general situation, the fact that C(A)G is a proper cellular model cat-

egory allows one to apply the localization machinery of Hirschhorn [19, Theorem 4.1.1].
Specifically, let T be a set of objects of C(A), and suppose we have a descent structure
(G,H) for A. By [11, Proposition 3.5], the left Bousfield localization C(A)T of C(A)G
exists, C(A)T is again proper and cellular, and the homotopy category is the localization
of D(A) with respect to the localizing subcategory T (A) generated by T . In addition,
the general theory of Bousfield localization tells us that the quotient functor

QT : D(A) → D(A)T := D(A)/T (A)

admits a right adjoint rT , which in turn defines an equivalence of D(A)T with the full
subcategory D(A)T -loc of D(A) of T -local objects, that is, objects C of D(A) such that

HomD(A)(T, C[n]) = 0

for all T ∈ T and all n ∈ Z. In particular, D(A)T -loc is a triangulated subcategory of D(A)
and is equal to the essential image of rT . In addition, letting iT : D(A)T -loc → D(A) be
the inclusion, we have the functor

LT := rT ◦ QT : D(A) → D(A)T -loc,

which is left adjoint to iT .
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Example C.2.1. Let TNis be the set of complexes of the form

Ztr(V ) → Ztr(U) ⊕ Ztr(Y ) → Ztr(X)

for each elementary Nisnevich square

V ��

��

Y

��
U �� X

in Sm/S. By an argument analogous to that of [41, Proposition 3.1.16], a complex
C ∈ C(PST(S)) is T -local if and only if

HomK(PST(S))(H, C[n]) = 0

for all H ∈ HNis. From this, it follows that D(PST(S))TNis is equivalent to D(Shtr
Nis(S)).

We can now define the motivic model structures. Let TA1 be the set of complexes of
the form Ztr(X × A1) → Ztr(X) for X ∈ Sm/S; when we need to explicitly indicate the
ambient category, we write T Nis

A1 or T ét
A1 . We set

C(PST(S))mot := C(PST(S))TNis∪T
A1 ,

C(Shtr
Nis(S))mot := C(Shtr

Nis(S))TNis
A1

,

C(Shtr
ét(S))mot := C(Shtr

ét(S))T ét
A1

.

Definition C.2.2. Define the triangulated category of effective motives over S,
DM eff(S), by

DM eff(S) := D(Shtr
Nis(S))A

1-loc.

The category of effective étale motives over S, DM eff(S)ét, is

DM eff(S)ét := D(Shtr
ét(S))A

1-loc.

Since D(PST(S))TNis is equivalent to D(Shtr
Nis(S)), it follows that the localization

D(PST(S))TNis∪T
A1−loc is equivalent to DM eff(S).

The general theory, as explained above, gives us the left adjoints

LA1 : D(Shtr
Nis(S)) → DM eff(S),

Lét
A1 : D(Shtr

ét(S)) → DM eff(S)ét

to the respective inclusions i : DM eff(S) → D(Shtr
Nis(S)), iét : DM eff(S)ét → D(Shtr

ét(S)).
We let

MS : Sm/S → DM eff(S),

M ét
S : Sm/S → DM eff(S)ét

denote the functors MS(X) := LA1(Ztr
S (X)), M ét

S (X) := Lét
A1(Ztr

S (X)).
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C.3. Tensor and internal Hom

We have seen that the categories Shtr
Nis(S) and Shtr

ét(S) are tensor categories with
internal Homs. The descent structures (G,HNis) and (G,Hét) are weakly flat [11, § 2.1],
that is, for each X, Y ∈ Sm/S and each Nisnevich (respectively étale) hypercover X →
X, the complex

Ztr
S (Y ) ⊗tr (Ztr

S (X ) → Ztr(X))

is in HNis (respectively Hét). Indeed, Y ×SX → Y ×SX is clearly a Nisnevich (respectively
étale) hypercover of Y ×S X and the tensor product is just Ztr

S (Y ×S X ) → Ztr(Y ×S X).
In addition TA1 is G-flat, that is

Ztr
S (Y ) ⊗tr (Ztr

S (X × A1) → Ztr
S (X))

is in TA1 for each X, Y ∈ Sm/S. Thus, by [11, Corollary 3.14], we have the following
proposition.

Proposition C.3.1. The tensor product on C(Shtr
Nis(S)), respectively C(Shtr

ét(S)), makes
C(Shtr

Nis(S))proj and C(Shtr
Nis(S))A1 , respectively C(Shtr

ét(S))proj and C(Shtr
ét(S))A1 , sym-

metric monoidal model categories.

The general theory of symmetric monoidal model categories (see [20, Theorem 4.3.2])
yields the following theorem.

Theorem C.3.2.

(1) The categories D(Shtr
Nis(S)), D(Shtr

ét(S)), DM eff(S) and DM eff(S)ét are triangu-
lated tensor categories with internal Hom functors.

(2) The localization functors D(Shtr
Nis(S)) → DM eff(S) and D(Shtr

ét(S)) → DM eff(S)ét

are tensor functors.

(3) The adjunction HomDMeff (LA1X, Y ) ∼= HomD(Shtr
Nis)(X, iY ) induces the isomor-

phism
iHomDMeff (LA1X, Y ) ∼= HomD(Shtr

Nis)(X, iY ).

Similarly, we have the natural isomorphism

iét HomDMeffét(Lét
A1X, Y ) ∼= HomD(Shtr

ét)(X, iY ).

Remark C.3.3. Take X ∈ Sm/S. Then Ztr
S (X) is cofibrant, hence the internal

Hom HomC(Shtr
Nis)(Z

tr
S (X), C) represents HomD(Shtr

Nis)(Z
tr
S (X), C) for all fibrant C ∈

C(Shtr
Nis(S))proj. But HomC(Shtr

Nis)(Z
tr
S (X), C) is the sheafification of the presheaf

Y �→ C(X ×S Y ),

so we have an explicit description of HomD(Shtr
Nis)(Z

tr
S (X), C). Similarly, the internal Hom

HomD(Shtr
ét)(Z

tr
S (X), C) is the étale sheafification of the same presheaf as above.

Using the adjunction of Theorem C.3.2, we have a similar description of the internal
Homs HomDMeff (MS(X),−) and HomDMeffét(M ét

S (X),−).
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C.4. Change of topology

Let α∗ : Shtr
Nis(S) → Shtr

ét(S) be the sheafification functor, with right adjoint α∗ :
Shtr

ét(S) → Shtr
Nis(S) the inclusion. As α∗ is exact, we have the canonical extension to the

derived categories
α∗ : D(Shtr

Nis(S)) → D(Shtr
ét(S));

as α∗(T Nis
A1 ) = T ét

A1 , α∗ descends to an exact functor

α∗
mot : D(Shtr

Nis(S))T Nis
A1

→ D(Shtr
ét(S))T ét

A1
.

Via the equivalences

DM eff(S) ∼ D(Shtr
Nis(S))T Nis

A1
, DM eff(S)ét ∼ D(Shtr

ét(S))T ét
A1

,

a∗
mot induces the exact functor

α∗
mot : DM eff(S) → DM eff(S)ét.

On the other hand, the sheaf-level functor α∗ clearly sends GNis to Gét and as a left-
adjoint, α∗ preserves colimits. Thus, the extension C(α∗) : C(Shtr

Nis(S)) → C(Shtr
ét(S))

maps cofibrations in C(Shtr
Nis(S))proj to cofibrations in C(Shtr

ét(S))proj. Noting that

cof-C(Shtr
Nis(S))A1 = cof-C(Shtr

Nis(S))proj

and similarly for C(Shtr
ét(S)), the fact that α∗ is exact, respectively that α∗ descends to

α∗
mot, says C(α∗) preserves acyclic cofibrations, for both the projective as well as the

motivic model structures. Thus, we have Quillen adjoint functors

C(α∗) : C(Shtr
Nis(S))proj � C(Shtr

ét(S))proj : C(α∗),

C(α∗) : C(Shtr
Nis(S))A1 � C(Shtr

ét(S))A1 : C(α∗).

The general theory of model categories thus gives us right adjoints

Rα∗ : D(Shtr
ét(S)) → D(Shtr

Nis(S)),

Rαmot∗ : DM eff(S)ét → DM eff(S)

to α∗, α∗
mot. As a∗

mot ◦ QNis = Qét ◦ α∗, we have

α∗
mot ◦ LA1 ∼= Lét

A1 ◦ a∗,

Rα∗ ◦ iét ∼= iNis ◦ Rαmot∗,

where iNis : DM eff(S) → D(Shtr
Nis(S)), iét : DM eff(S)ét → D(Shtr

ét(S)) are the respective
inclusions. We sometimes write α∗, αmot

∗ for Rα∗, Rαmot
∗ when the context makes the

meaning clear.
The sheaf-level functor α∗ is a tensor functor, and thus C(α∗) is a functor of symmetric

monoidal model categories, for both model structures proj and A1 . Thus, the derived
functors α∗ and α∗

mot are tensor functors, and we have the projection formulae

Rα∗ HomD(Shtr
ét

(α∗B, C) ∼= HomD(Shtr
Nis)(B, Rα∗C),

Rαmot∗ HomDMeff (S)ét(α
∗B, C) ∼= HomDMeff (S))(B, Rαmot∗C).
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Remark C.4.1. As for SHS1(k), we have the evaluation functor for Y ∈ Sm/S,

RΓ (Y,−) : DM eff(S) → D(Ab), RΓ (Y,F) := Ffib(Y ).

We use the notation F(Y ) for RΓ (Y,F) in case F → Ffib is a pointwise quasi-
isomorphism.

C.5. The case of a field

We now specialize to S = Spec k, k a perfect field; we drop the subscript Spec k from
the notation for e.g. Ztr

S (X). We let PST(k)[1/p] ⊂ PST(k) denote the subcategory of
presheaves of Z[1/p]-modules, and use a similar notation for Shtr

Nis(k), Shtr
ét(k), etc. We

recall the following fundamental result of Voevodsky.

Theorem C.5.1 (Voevodsky [58, Theorem 3.1.12]).

(1) Let F ∈ PST(k) be an A1-homotopy invariant presheaf. Then for every n � 0, the
cohomology presheaf X �→ Hn

Nis(X, FNis) has a natural structure of a presheaf with
transfers, and is homotopy invariant.

(2) Let F ∈ PST(k)[1/p] be an A1-homotopy invariant presheaf, where p is the
exponential characteristic of k. Then for every n � 0 the cohomology presheaf
X �→ Hn

ét(X, Fét) has a natural structure of a presheaf with transfers, and is homo-
topy invariant.

(For the homotopy invariance in (2), see [3, Lemma D.1.3]; the existence of transfers
follows by using the same argument as for the Nisnevich topology, as given in the proof
of [57, Theorem 5.3].)

Corollary C.5.2.

(1) DM eff(k) ⊂ D(Shtr
Nis(k)) is the full subcategory of complexes X such that the

cohomology sheaves (for the Nisnevich topology) Hn
Nis(X) are A1-homotopy invari-

ant for all n.

(2) DM eff(k)ét[1/p] ⊂ D(Shtr
ét(k))[1/p] is the full subcategory of complexes X such that

the cohomology sheaves (for the étale topology) Hn
ét(X) are A1-homotopy invariant

for all n.

(3) For F ∈ DM eff(k)Nis[1/p] we have

α∗(F) ∈ DM eff(k)ét[1/p]

and
α∗

mot(F) = α∗(F) ∈ DM eff(k)ét[1/p].

Proof. We first prove (2); the proof of (1) is similar, but a bit easier. If C is in
DM eff(k)ét[1/p] ⊂ D(Shtr

ét(k)), then as HomDMeff (k)ét[1/p](Ztr(X), C) = Hn
ét(X, C), the

pullback map
Hn

ét(X, C) → Hn
ét(X × A1, C)
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is an isomorphism for all X ∈ Sm/k, in other words, the presheaf X �→ Hn
ét(X, C) is

homotopy invariant. By Theorem C.5.1, the associated étale sheaf Hn
ét(C) is homotopy

invariant.
Now suppose that Hn

ét(C) is homotopy invariant for each n. Take X ∈ Sm/k, and let
p : X × A1 → X be the projection. Then

Hn
ét(X × A1, C) ∼= Hn

ét(X, Rp∗(C|X×A1
ét

)).

Extending the canonical map p∗ : C|Xét → Rp∗(C|X×A1
ét

) to a distinguished triangle

C|Xét → Rp∗(C|X×A1
ét

) → C̄ → C|Xét [1],

we need to show that Hn
ét(X, C̄) = 0 for all n. For this, it suffices to show that C̄ ∼= 0 in

D(Shét(X)), that is, it suffices to show that Hn
ét(C̄) = 0 for all n.

Take x ∈ X, let Osh
X,x be the strict Henselization of OX,x and let X ét

x = Spec Osh
X,x.

Letting px : X ét
x × A1 → X ét

x be the projection, we have the long exact sequence

· · · → Hn
ét(C)x

p∗
x−→ Rnp∗(C)x → Hn

ét(C̄) → · · ·

so it suffices to show that p∗
x : Hn

ét(C)x → Rnp∗(C)x is an isomorphism for all n. But
this is just the map

p∗
x : Hn

ét(X
ét
x , C) → Hn(X ét

x × A1, C).

As X ét
x is strictly Hensel local, X ét

x × A1 has finite étale cohomological dimension, so we
have the strongly convergent spectral sequence

Ep,q
1 = Hp

ét(X
ét
x × A1,Hq

ét(C)) =⇒ H
p+q
ét (X ét

x × A1, C).

Since the sheaf Hq
ét(C) is homotopy invariant, the cohomology presheaves

Y �→ Hp
ét(Y,Hq

ét(C))

are homotopy invariant (Theorem C.5.1 (2) again). Since X ét
x is strictly Hensel local, we

have Ep,q
1 = 0 except for p = 0, and E0,q

1 = Hq
ét(C)x. Thus Hn

ét(X
ét
x , C) ∼= Hn(X ét

x ×
A1, C), completing the proof.

For (3), take F ∈ DM eff(k)[1/p]. As the presheaf with transfers

X �→ Hn
Nis(F)(X)

is homotopy invariant, Theorem C.5.1 (2) tells us that Hn
ét(α

∗F) = a∗(Hn
Nis(F)) is homo-

topy invariant. By (2), α∗F is in DM eff(k)ét[1/p]. Thus, the natural maps α∗F →
iétLét

A1α∗F and F → LNis
A1 F are isomorphisms; as Lét

A1α∗ ∼= α∗
motL

Nis
A1 and iét is an embed-

ding, we have α∗F ∼= α∗
motF . �

Remark C.5.3. We have presented here the approach of Cisinski–Déglise to the con-
struction of DM eff(S); Ivorra has defined a category of effective motives over S in the
setting of triangulated categories, without using a model structure on the category of
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complexes (see [23, Definition 4.1.2]). Ivorra defines the triangulated category DM eff(S)
for a general base-scheme S as a localization

QS : D(Shtr
Nis(S)) → DM eff(S)

of the derived category D(Shtr
Nis(S)). By [23, Corollary 4.1.16], the localization functor

QS admits a right adjoint; this gives an identification of DM eff(S) with the full trian-
gulated subcategory of A1-local objects in D(Shtr

Nis(S)) (in the sense of [23]). By [23,
Proposition 4.1.12], an object F ∈ D(Shtr

Nis(S)) is A1-local if and only if the presheaf,
X �→ Hn

Nis(X, F), is A1-homotopy invariant, that is, the natural map

Hn
Nis(X, F) → Hn

Nis(X × A1,F)

is an isomorphism for all X ∈ Sm/S; by [11, Example 3.15], this agrees with the notion
of A1-local object defined in § C.2. Thus the definition given of DM eff(S) given here is
equivalent to that given in [23].

Beilinson and Vologodsky [5] define the triangulated tensor category DM eff(k), as the
homotopy category of a DG tensor category (see [5, § 2.3]), and give a description of
DM eff(k) as both a localization of D(Shtr

Nis(k)) and as a triangulated subcategory of
D(Shtr

Nis(k)), equivalent to the descriptions found in [11] and [23].

Recall [58, § 3.1] that the category DM eff
− (k) is the full subcategory of the bounded

above derived category D−(Shtr
Nis(k)) with objects the complexes C∗ for which the cohom-

ology sheaves Hn
Nis(C

∗) are A1 homotopy invariant for all n. For bounded above com-
plexes, this condition is equivalent to A1-homotopy invariance, as defined above.

Noting that the bounded above category D−(Shtr
Nis(k)) is a full triangulated subcate-

gory of D(Shtr
Nis(k)), we therefore have a commutative diagram of full embeddings

DM eff
− (k) ��

��

D−(Shtr
Nis(k))

��
DM eff(k) �� D(Shtr

Nis(k))

Voevodsky has also shown [58, Proposition 3.2.3] that the inclusion

i− : DM eff
− (k) → D−(Shtr

Nis(k))

admits a left adjoint L−
A1 : D−(Shtr

Nis(k)) → DM eff
− (k); the uniqueness of adjoints shows

that L−
A1 is the restriction of LNis

A1 .

C.6. Geometric motives

We recall the category of effective geometric motives DM eff
gm(k), defined in [58, Defi-

nition 2.1.1] as a localization of Kb(SmCor(k)).
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Remarks C.6.1 (the Suslin complex [58, §3.2]).

(1) We have the cosimplicial scheme n �→ ∆n, with

∆n := Spec k[t0, . . . , n]
/ ∑

i

ti − 1

and with coface and codegeneracy maps defined as in the topological setting.

For F ∈ PST(k), let CSus
n (F) be the presheaf CSus

n (F)(X) := F(X × ∆n), giv-
ing us the simplicial object n �→ CSus

n (F) of PST(k) and the associated complex
CSus

∗ (F) ∈ C−(PST(k)). It is easy to show that

p∗ : CSus
∗ (F)(X) → CSus

∗ (F)(X × A1)

is a homotopy equivalence for every X ∈ Sm/k; by Voevodsky’s theorem [58,
Theorem 3.1.12], this implies that CSus

∗ (F) is in fact in DM eff
− (k). We extend CSus

∗
to

CSus
∗ : C−(PST(k)) → DM eff

− (k)

by taking the total complex of the evident double complex.

(2) Sending X ∈ Sm/k to Ztr(X) extends to a functor

Ztr : SmCor(k) → C−(PST(k));

we extend Ztr to Cb(SmCor(k)) by taking the evident total complex. This gives us
the exact functor

Kb(Ztr) : Kb(SmCor(k)) → D−(Shtr
Nis(k)).

Similarly, composing Cb(Ztr) with CSus
∗ defines the exact functor

CSus
∗ : Kb(SmCor(k)) → DM eff(k).

We recall Voevodsky’s embedding theorem.

Theorem C.6.2 (Voevodsky [58, Theorem 3.2.6]).

(1) The Suslin complex functor

CSus
∗ ◦ Kb(Ztr) : Kb(SmCor(k)) → DM eff

− (k)

descends to a full embedding ieffgm : DM eff
gm(k) → DM eff

− (k).

(2) There is a natural isomorphism of functors Kb(SmCor(k)) → DM eff
− (k)

CSus
∗ ◦ Kb(Ztr) ∼= L−

A1 ◦ Kb(Ztr).

Remark C.6.3. As the inclusion functor D−(Shtr
Nis(k)) → D(Shtr

Nis(k)) is a full embed-
ding, the embedding theorem together with the results of [11, Example 3.15] yields the
full embedding

CSus
∗ ◦ Kb(Ztr) : DM eff

gm(k) → DM eff(k).



Motives of Azumaya algebras 593

C.7. Cancellation theorems

We have as well the category of geometric motives DMgm(k), formed by inverting the
functor − ⊗ Z(1) on DM eff

gm(k). We recall Voevodsky’s cancellation theorem.

Theorem C.7.1 (see [58, Theorem 4.3.1] and [62]). For M, N ∈ DM eff
gm(k), the

canonical map
HomDMeff

gm(k)(M, N) → HomDMeff
gm(k)(M(1), N(1))

is an isomorphism. In consequence, the canonical functor DM eff
gm(k) → DMgm(k) is a full

embedding.

Huber and Kahn [22, Appendix A] have extended this result to DM eff
− (k) and in

case k has finite étale cohomological dimension, they extend the result to a bounded
above version DM eff

− (k)ét of DM eff(k)ét[1/p]; the same proof extends the cancellation
theorem to DM eff(k) and DM eff(k)ét[1/p]. A direct proof for DM eff(k) can be found
in [5, proposition in 6.1].

Corollary C.7.2.

(1) For M, N ∈ DM eff(k), the canonical map

HomDMeff (k)(M, N) → HomDMeff (k)(M(1), N(1))

is an isomorphism.

(2) For M, N ∈ DM eff(k)ét[1/p], the canonical map

HomDMeff (k)ét(M, N) → HomDMeff (k)ét(M(1), N(1))

is an isomorphism.

Proof. (1) We have the adjunction

HomDMeff (k)(M(1), N(1)) ∼= HomDMeff (k)(M, Hom(Z(1), N(1))),

so to prove (1), it suffices to show that the canonical map

ϕN : N → Hom(Z(1), N(1))

is an isomorphism for all N . As Z(1) ∼= Gm[−1] is compact, the category B of N such that
ϕN is an isomorphism is a localizing subcategory of DM eff(k). As DM eff

gm(k) → DM eff(k)
is a full embedding, the cancellation theorem for DM eff

gm(k) (Theorem C.7.1 or [5,
Theorem 3.3]) shows that B contains DM eff

gm(k); by [58, Theorem 3.2.6], DM eff
gm(k) is

dense in DM eff
− (k), hence B contains DM eff

− (k). But DM eff
− (k) is the essential image of

D−(Shtr
Nis(k)) under LNis

A1 ; as D−(Shtr
Nis(k)) is dense in D(Shtr

Nis(k)) and the left adjoint
LNis

A1 preserves colimits, B = DM eff(k), proving (1).
For (2), we need to show as above that

ϕN : N → Homét(Z(1)ét, N(1))
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is an isomorphism in DM eff(k)ét[1/p] for all N ∈ DM eff(k)ét[1/p]. Suppose we know that
ϕN is an isomorphism in DM eff(k)ét[1/p] for each homotopy invariant N ∈ Shtr

ét(k)[1/p].
Take N to be an arbitrary object of DM eff(k)ét[1/p] and take x ∈ X ∈ Sm/k. To show
that ϕN is an isomorphism, it suffices to show that the map on the stalk

ϕN,x : Nx → Homét(Z(1)ét, N(1))x

is an isomorphism in D(Ab). But Homét(Z(1)ét, N(1))x fits into the split exact sequence

0 → Homét(Z(1)ét, N(1))x → N(1)(P1 × X ét
x )[2] → N(1)(X ét

x )[2] → 0.

As P1 ×X ét
x has finite cohomological dimension, we have the strongly convergent spectral

sequence
Ep,q

1 = Hp
ét(P

1 × X ét
x ,Hq

ét(N)(1)) =⇒ H
p+q
ét (P1 × X ét

x , N(1)).

The assumption that each ϕHq
ét(N) is an isomorphism implies that E2,q

1
∼= Hq

ét(N), E0,q
1

∼=
Hq

ét(N)(1) and all other terms are zero; as the above sequence is split, the d2 differential
is also zero, and thus ϕN,x is an isomorphism.

Suppose then that N is a sheaf. Suppose first that N is a sheaf of Q-vector spaces.
By [17, Chapter III, Proposition 5.24, 5.27], the canonical map N → a∗Ra∗N is a quasi-
isomorphism. As we thus have the isomorphism N(1) → a∗((Ra∗N)(1)), (1) implies (2)
for N a complex of sheaves of Q-vector spaces.

Next, suppose that N is a torsion sheaf. By [17, Chapter III, Theorem 5.25], N is a
locally constant sheaf. Since we need only check ϕN on stalks, we may replace k with
ksep, reducing us to the case N = Z/m for some m prime to the characteristic. Thus, ϕN

is
ϕZ/m : Z/m → Homét(Z(1)ét, Z/m(1)ét).

As above, Homét(Z(1)ét, Z/m(1)ét) can be computed from the étale cohomology of P1 ×
Xx with Z/m(1)-coefficients; as Z/m(1)ét ∼= µm, and we have the proper base-change
isomorphism

Hn
ét(P

1 × Xx, µm) ∼= Hn
ét(P

1
x, µm),

the result follows from the known étale cohomology of P1.
In general, we use the exact sequence

0 → Ntor → N → N ⊗ Q → Ncotor → 0

to reduce to the case of torsion sheaves and sheaves of Q-vector spaces. �

Via the cancellation theorem, we have a twisted version of duality in the categories
DM eff(k) and DM eff(k)ét[1/p].

Corollary C.7.3. Let X ∈ Sm/k be smooth and projective of dimension d over k. Then
there are natural isomorphisms

HomDMeff (k)(A ⊗ M(X), B) ∼= HomDMeff (k)(A(d)[2d], B ⊗ M(X)),

HomDMeff (k)ét[1/p](A ⊗ M ét(X), B) ∼= HomDMeff (k)ét[1/p](A(d)[2d], B ⊗ M ét(X)),

where in the first isomorphism, A and B are arbitrary objects of DM eff(k) and in the
second, A and B are arbitrary objects of DM eff(k)ét[1/p].



Motives of Azumaya algebras 595

Proof. In the category DMgm(k), the object M(X) has dual M(−d)[−2d] (see [58]),
thus there are morphisms

δX : Z → Mgm(X) ⊗ Mgm(X)(−d)[−2d],

εX : Mgm(X)(−d)[−2d] ⊗ Mgm(X) → Z

with
(idMgm(X) ⊗εX) ◦ (δX ⊗ idMgm(X)) = idMgm(X) .

Twisting by Z(d)[2d] and applying the embedding ieffgm : DM eff
gm(k) → DM eff(k) gives the

maps

δeff
X : Z(d)[2d] → M(X) ⊗ M(X),

εeffX : M(X) ⊗ M(X) → Z(d)[2d]

in DM eff(k) with

(idM(X) ⊗εeffX ) ◦ (δeff
X ⊗ idM(X)) = idM(X)(d)[2d] . (C.1)

Now take A, B ∈ DM eff(k). We have the natural transformation

HomDMeff (k)(A ⊗ M(X), B)
ϕA,B−−−→ HomDMeff (k)(A(d)[2d], B ⊗ M(X))

sending f : M(X) ⊗ A → B to the composition

A(d)[2d] = A ⊗ Z(d)[2d]
idA ⊗δeff

X−−−−−−→ A ⊗ M(X) ⊗ M(X)
f⊗idM(X)−−−−−−→ B ⊗ M(X).

We have as well the natural transformation

HomDMeff (k)(A(d)[2d], B ⊗ M(X))
ψA,B−−−→ HomDMeff (k)(A ⊗ M(X)(d)[2d], B(d)[2d])

sending g : A(d)[2d] → B ⊗ M(X) to the composition

A ⊗ M(X)(d)[2d] ∼= A(d)[2d] ⊗ M(X)
g⊗idM(X)−−−−−−→ B ⊗ M(X) ⊗ M(X)

idB ⊗εeffX−−−−−−→ B ⊗ Z(d)[2d] = B(d)[2d].

It follows from (C.1) that ψA,B ◦ ϕA,B and ψA(d)[2d],B(d)[2d] ◦ ψA,B are the respective
twists by Z(d)[2d]:

HomDMeff (k)(A ⊗ M(X), B) → HomDMeff (k)(A ⊗ M(X)(d)[2d], B(d)[2d]),

HomDMeff (k)(A(d)[2d], B ⊗ M(X)) → HomDMeff (k)(A(2d)[4d], B ⊗ M(X)(d)[2d]),

which are isomorphisms by the cancellation theorem Corollary C.7.2 (1). In particular,
ϕA,B gives us the desired natural isomorphism.
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The proof for DM eff(k)ét[1/p] is the same, noting α∗ is a tensor functor, that applying
α∗ to the identity (C.1) yields the identity

(idM ét(X) ⊗α∗εeffX ) ◦ (α∗δeff
X ⊗ idM ét(X)) = idM ét(X)(d)[2d],

and using Corollary C.7.2 (2) instead of Corollary C.7.2 (1). �
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