On the classifying space of a linear algebraic group
Bruno Kahn
Workshop on Motivic Homotopy Theory
Münster, July 30, 2009

1. $B G$ in algebraic topology

G topological group, X space
$H^{1}(X, G):=\{$ isomorphism classes of G-torsors
(= principal homogeneous spaces) with base $X\}$

Theorem 1.1. $X \mapsto H^{1}(X, G)$ is representable in homotopy category \mathcal{H}_{0}.

Representing object denoted by $B G$.
1.1. Construction of $B G$.
(1) General: take "nice" contractible space $E G$ where G acts freely and properly: $B G=E G / G$.
(2) Specific: $\left(E_{n} G=G^{n+1}\right)$ simplicial space (faces $=$ projections, degeneracies $=$ diagonals $),\left(B_{n} G=E_{n} G / G \simeq G^{n}\right)$ other simplicial space: $E G=|E \bullet G|, B G=|B \bullet G|$.
(3) Special: if G compact, take faithful unitary representation $G \hookrightarrow U(N)$ $(N \gg 0): E G=\underline{l_{\longrightarrow}} U(N+r) / U(r)$.

2. $B G$ In algebraic geometry

2.1. Classical. (cf. Hodge II) G group scheme $/ S, B_{n} G=G^{n}$, usual faces and degeneracies defines simplicial scheme $B \bullet G$.
2.2. If G linear over a field. (Serre-Rost, 90 'es, for the Serre-Rost invariant) $\rho: G \hookrightarrow G L_{N}, B \rho G=\underline{\lim _{\longrightarrow}} G L_{N+r} /\left(G \times G L_{r}\right)$.

Related to 2.2:
Morel-Voevodsky: in homotopy category of schemes
Totaro: Chow ring of $B G$.
2.3. Morel-Voevodsky. S Noetherian of finite Krull dimension $\mathcal{H}_{S}(S) \quad$ "simplicial" hom. cat. of schemes (for Nisnevich topology)
$\mathcal{H}(S) \quad \mathbf{A}^{1}-$ homotopy category of schemes
$G S$-group scheme: $B \bullet G$ defines object $B G \in \mathcal{H}_{S}(S)$.
Theorem 2.1. X smooth S-scheme of finite type: natural bijection

$$
H_{\mathrm{Nis}}^{1}(X, G) \simeq \operatorname{Hom}_{\mathcal{H}_{s}(S)}(X, B G)
$$

$\alpha:(S m / S)_{\text {ét }} \rightarrow(S m /)_{\text {Nis }}: B G \rightarrow B_{\text {ét }} G:=R \alpha_{*} \alpha^{*} B G$.

Theorem 2.2. X smooth S-scheme of finite type: natural bijection

$$
H_{\text {ét }}^{1}(X, G) \simeq \operatorname{Hom}_{\mathcal{H}_{s}(S)}\left(X, B_{\text {ét }} G\right)
$$

Theorem 2.3. If G / S linear, i.e. $\rho: G \hookrightarrow G L_{N} / S, N \gg 0$, then $B_{\text {ét }} G \simeq B_{\rho} G$ in $\mathcal{H}(S)$.
2.4. Parallel (independent): Totaro. k field, G linear algebraic group.

Theorem 2.4 (Totaro). $\forall c \geq 1 \exists \rho: G \hookrightarrow G L(E)$, E vector space and $j: U \subset E G$-stable open subset such that
(i) G acts freely on U, geometric quotient U / G exists, is quasiprojective, and $U \rightarrow U / G G$-torsor.
(ii) $\delta(j):=\operatorname{codim}_{E}(E-U) \geq c$.

Definition 2.5 (Totaro). $C H^{n}(B G):=C H^{n}(U / G)$ for $c \gg 0(c>n$ is enough).

Does not depend on choice of ρ.
Generalised by Edidin-Graham (Borel constructions) \mapsto Brosnan's construction of Steenrod operations on $C H^{*} / p$.
2.5. This project. Totaro defines $C H^{*}(B G)$, but what is "his" $B G$?

Answer: different and more elementary than Morel-Voevodsky.
Applications:

- new invariants associated to G (dimensions, sets of torsors)
- functoriality in Totaro's construction
- "good" spectral sequences for motivic and étale motivic cohomology of $B G$
- lots of open questions!
3.1. Review of no name lemma. Why does $C H^{n}(U / G)$ not depend on choice of U ?

Answer: the double fibration construction (aka no name lemma: BogomolovKatsylo et al)
$G \hookrightarrow G L(E), G \hookrightarrow G L\left(E^{\prime}\right)$ two "good" representations, $E \supset U, E^{\prime} \supset U^{\prime}$

$$
\begin{array}{ccc}
\left(U \times E^{\prime}\right) / G & \stackrel{j}{\supset}\left(U \times U^{\prime}\right) / G & \stackrel{j^{\prime}}{\subset} \\
p \downarrow & \left(E \times U^{\prime}\right) / G \\
U / G & & \\
p^{\prime} \downarrow \\
& & U^{\prime} / G
\end{array}
$$

j, j^{\prime} "small" open immersions, p, p^{\prime} vector bundles (by faithfully flat descent).

3.2. Conceptualisation.

$$
\mathrm{Sm}_{\mathrm{dom}}:=\{\text { smooth quasi-projective } k \text {-schemes } \mid
$$

$$
\text { morphisms }=\text { dominant morphisms }\}
$$

Definition 3.1. $c \geq 1, F: \mathrm{Sm}_{\text {dom }} \rightarrow \mathcal{C}$ functor: F is homotopic of coniveau $\geq c$ if
(i) F inverts $p: V \rightarrow X$, vector bundle projections
(ii) F inverts open immersions j with $\delta(j) \geq c$.
G linear algebraic group, $c \geq 1$.

Definition 3.2. $U, U^{\prime} \in \mathrm{Sm}_{\text {dom }}$ with G-action: $\left(U, U^{\prime}\right)$ is an admissible pair of coniveau $\geq c$ if
(i) U is the total space of a G-torsor
(ii) U^{\prime} : nonempty G-stable open subset $j: U^{\prime} \hookrightarrow E^{\prime}, E^{\prime}$ linear representation of G, with $\delta\left(j^{\prime}\right) \geq c$, geometric quotient U^{\prime} / G exists and is quasi-projective.

Construction 3.3 (with Nguyen T. K. Ngan). F homotopic of coniveau \geq c: canonical morphisms

$$
\left(U, U^{\prime}\right) \text { adm. of coniveau } \geq c \mapsto \varphi_{U, U^{\prime}}: F(U / G) \rightarrow F\left(U^{\prime} / G\right)
$$

with
Reflexivity: (U, U) admissible $\Rightarrow \varphi_{U, U}=1$.
Symmetry: $\left(U, U^{\prime}\right)$ and $\left(U^{\prime}, U\right)$ admissible $\Rightarrow \varphi_{U, U^{\prime}} \circ \varphi_{U^{\prime}, U}=1$ $\left(\Rightarrow \varphi_{U, U^{\prime}}\right.$ iso).
Transitivity: $\left(U, U^{\prime}\right),\left(U^{\prime}, U^{\prime \prime}\right)$ and $\left(U, U^{\prime \prime}\right)$ admissible $\Rightarrow \varphi_{U, U^{\prime \prime}}=$ $\varphi_{U^{\prime}, U^{\prime \prime}} \circ \varphi_{U, U^{\prime}}$.

Sketch. $U^{\prime} \subset E^{\prime}$

$$
\begin{array}{cc}
\left(U \times E^{\prime}\right) / G & \stackrel{j}{\supset}\left(U \times U^{\prime}\right) / G \\
p \downarrow & p^{\prime} \downarrow \\
U / G & U^{\prime} / G \\
\varphi_{U, U^{\prime}}=F\left(p^{\prime}\right) F(j)^{-1} F(p)^{-1} . &
\end{array}
$$

Definition 3.4.

$$
F(B G)={\underset{\varphi_{U, U^{\prime}},(U, U),\left(U^{\prime}, U^{\prime}\right) \mathrm{adm}}{\lim _{\vec{~}}} F(U / G)}
$$

(lim of isos over trivial groupoid!)

Proposition 3.5. $G \mapsto F(B G)$ functorial for group scheme homomorphisms.
3.3. Universal case(s).

$$
\begin{gathered}
\operatorname{Sm}_{\mathrm{dom}} \supset S_{c}^{O}=\{j \mid \text { open imm., } \delta(j) \geq c\} \\
S_{h}=\{p \mid \text { vector bundle projections }\} \\
S_{c}=S_{c}^{O} \cup S_{h}
\end{gathered}
$$

$$
\begin{aligned}
& F_{c+1} \quad \mathrm{Sm}_{\text {dom }}-F_{c-1} \\
& \cdots \longrightarrow S_{c+1}^{-1} \operatorname{Sm}_{\mathrm{dom}} \longrightarrow S_{c}^{-1} \mathrm{Sm}_{\mathrm{dom}} \longrightarrow S_{c-1}^{-1} \mathrm{Sm}_{\mathrm{dom}} \longrightarrow \cdots \\
& F_{c+1}(B G) \stackrel{\sim}{\mapsto} \quad F_{c}(B G) \stackrel{\sim}{\mapsto} \quad F_{c-1}(B G) \stackrel{\sim}{\mapsto}
\end{aligned}
$$

We write $F_{C}(B G)=: B_{C} G$.

Similarly, Borel constructions: $\mathrm{Sm}_{\mathrm{dom}}^{G}=\left\{G-\right.$ objects of $\left.\mathrm{Sm}_{\text {dom }}\right\}$

$$
\begin{gathered}
\operatorname{Bor}_{c}^{G}: S_{c}^{-1}\left(\mathrm{Sm}_{\mathrm{dom}}^{G}\right) \rightarrow S_{c}^{-1} \mathrm{Sm}_{\mathrm{dom}} \\
X \mapsto E_{c} G \times^{G} X
\end{gathered}
$$

E.g.: $c=1$:

$$
\begin{array}{ccc}
\left(S_{1}^{O}\right)^{-1} \mathrm{Sm}_{\mathrm{dom}} & \simeq & \text { field }^{o p} \\
\downarrow & & \downarrow \\
S_{1}^{-1} \mathrm{Sm}_{\mathrm{dom}} & \simeq & S_{r}^{-1} \text { field } o p \\
B_{1} G & \leftrightarrow & k(B G)
\end{array}
$$

field $=$ category of function field extensions of k (with smooth model), $S_{r}=$ $\left\{K\left(t_{1}, \ldots, t_{n}\right) / K\right\}$.
(Challenge: compute Homs in S_{r}^{-1} field!)
Can push $\mathrm{Sm}_{\text {dom }}$ to Sm (all morphisms): get other (weaker) $B G \mathrm{~s}$.

3.4. Representability.

$$
\begin{array}{rlll}
\mathrm{Sm}_{\mathrm{dom}} & \xrightarrow{y} & \widehat{\mathrm{Sm}_{\mathrm{dom}}} & \ni
\end{array} H^{1}(-, G)
$$

(Recall:

$$
\left.H^{1}(X, G)_{c}={\underset{Y \in X}{\lim _{X}} F_{c}} H^{1}(Y, G) .\right)
$$

Theorem 3.6. $H^{1}(-, G)_{c}$ is representable by $B_{C} G$.
3.5. Comparison with Morel-Voevodsky.

$$
B_{B_{c} G \in S_{c}^{-1} \text { Sm }_{\text {dom }} \rightarrow S_{c}^{-1} \mathcal{H}} \rightarrow B_{\text {ét }} G
$$

same image.

4.1. Direct products.

Warning 4.1. $\mathrm{Sm}_{\text {dom }}$ has no (or very few) products! (when is $\Delta_{X}: X \rightarrow$ $X \times X$ dominant?)

Yet $(X, Y) \mapsto X \times Y$ defines a bifunctor $*: \mathrm{Sm}_{\text {dom }} \times \mathrm{Sm}_{\text {dom }} \rightarrow \mathrm{Sm}_{\text {dom }}$ (becoming product in Sm).

Proposition 4.2. a) $*$ induces bifunctor $*: S_{c}^{-1} \mathrm{Sm}_{\mathrm{dom}} \times S_{c}^{-1} \mathrm{Sm}_{\mathrm{dom}}$ $\rightarrow S_{c}^{-1} \mathrm{Sm}_{\text {dom }} ; \times$ induces product on $S_{c}^{-1} \mathrm{Sm}$.
b) $B_{C}(G \times H) \simeq B_{C} G * B_{C} H$ in $S_{c}^{-1} \mathrm{Sm}_{\text {dom }}$ (hence $\simeq B_{C} G \times B_{C} H$ in $\left.S_{c}^{-1} \mathrm{Sm}\right)$.
4.2. Semi-direct products.

Proposition 4.3. $B_{C}(G \ltimes H) \simeq \operatorname{Bor}_{C}^{G}\left(B_{C} H\right)$
(To be taken with a pinch of salt...)

4.3. Unipotent subgroups.

$$
\operatorname{Sm}_{\text {dom }} \supset S_{J}:=\{p \mid \text { projection from torsor under vector group }\}
$$

(J is for Jouanolou)

$$
\bar{S}_{c}:=S_{c} \cup S_{J}
$$

Theorem 4.4. k perfect; G linear, N normal connected unipotent subgroup. Suppose the extension

$$
1 \rightarrow N \rightarrow G \rightarrow G / N \rightarrow 1
$$

is split and N has a composition series by characteristic subgroups with vector groups as successive quotients. Then, $B_{C} G \xrightarrow{\sim} B_{C}(G / N)$ in $\bar{S}_{c}^{-1} \mathrm{Sm}_{\mathrm{dom}}$.

Splitting hypothesis true if

- $N=G$
- G connected, G / N reductive and
- char $k=0$ or
$-G=$ parabolic subgroup of a reductive group.
(Then composition series also true.)

Remark 4.5. Can also show $B \mathbf{Z} / p \sim *$ in char. p. But does not seem to extend to Borel constructions (may \exists nontrivial Artin-Schreier extensions of $k \ldots$)
4.4. Selected examples.

$$
\begin{aligned}
B_{c} \mathbf{G}_{m} & =\mathbf{P}^{c-1} \\
B_{c} \mu_{m} & =\mathcal{O}_{\mathbf{P}^{c-1}}(-m)-0 \\
B_{c} G L_{n} & =\operatorname{Grass} n\left(\mathbf{A}^{c+n-1}\right)
\end{aligned}
$$

Application: "Fischer's theorem" over any field: G of split multiplicative type, E faithful representation $\Rightarrow k(E)^{G} / k$ stably rational.

5. EXAMPLES OF PURE HOMOTOPIC FUNCTORS

5.1.

Definition 5.1. $F: \mathrm{Sm}_{\mathrm{dom}} \rightarrow \mathcal{C}$:

$$
\nu(F)=\inf \{c \mid F \text { is pure of coniveau }>c\} .
$$

This is the coniveau of F.

Examples 5.2.

- $H_{\text {ét }}^{i}\left(-, \mu_{m}^{\otimes n}\right): \nu=[i / 2]$.
- $H^{i}(-, \mathbf{Z}(n)): \nu=n$.
- $H_{\text {ét }}^{i}(-, \mathbf{Z}(n)): \nu=\sup (n,[i / 2])$.
- Rost's Chow groups with coefficients $A^{i}\left(-, M_{j}\right)$:

$$
\nu \leq \inf (j-\delta(M), i+1)
$$

where $\delta(M)=\inf \left\{j \mid M_{j} \neq 0\right\}$ (the connectivity of M).

Non-example: K_{0} (need to replace by $K_{0} / F^{p} K_{0}$: cf. Atiyah-Segal, also in Totaro).

Theorem 5.3. k separably closed, G finite group: canonical isomorphisms

$$
H_{\text {ét }}^{i}(B G, \mathbf{Z}(n)) \simeq H_{\text {ét }}^{i}(k, \mathbf{Z}(n)) \oplus H^{i}(G, \mathbf{Z})\left\{p^{\prime}\right\}(n) \quad(i \in \mathbf{Z})
$$

p exponential characteristic, $A\left\{p^{\prime}\right\}=p^{\prime}$-primary component of torsion of abelian group A.

Other examples in $D M_{-}^{\text {eff: }}$

- $X \mapsto \nu_{\leq n} M(X)$ (slice filtration): $\nu=n$.
- $\Rightarrow X \mapsto c_{n}(M(X)) \in D M_{-}^{O}: \nu=n$.
(Recall:

$$
\begin{gathered}
\nu_{\leq n} M:=\operatorname{cone}(\underline{\operatorname{Hom}}(\mathbf{Z}(n), M)(n) \rightarrow M) \\
\left.c_{n}(M):=\operatorname{cone}\left(\nu_{\leq n+1} M \rightarrow \nu \leq n M\right)(-n)[-2 n] .\right)
\end{gathered}
$$

5.2. Spectral sequences. X smooth variety:

$I_{r}^{p, q}$ coniveau, $I I_{r}^{p, q}$ slice.
How about $B G$?
Consider $F: \mathrm{Sm}_{\text {dom }} \rightarrow\{$ spectral sequences $\}:$ if lucky, F homotopic and pure of some coniveau.

OK in Nisnevich case $\nu=n$, but not in étale case.
For ét $I I$, can write it as $\xrightarrow[\longrightarrow]{\lim }$ of sequences for $\nu_{\leq n} M(X)$, hence OK.
For ét I, still works but more messy (need to talk of "chunks of spectral sequences"...)

6. Dimensions

6.1. Review of essential dimension.

Definition 6.1 (Buhler-Reichstein). G algebraic group over k.
a) K / k extension, $\alpha \in H^{1}(K, G) G$-torsor:

$$
\operatorname{ed}(\alpha)=\inf \{\operatorname{trdeg}(L / k) \mid k \subset L \subset K, \alpha \text { is defined over } L\} .
$$

b) $\operatorname{ed}(G)=\sup _{K, \alpha} \operatorname{ed}(\alpha)$.

Merkurjev: generalised to any functor : field \rightarrow Sets.

6.2. Generalisation of Merkurjev's generalisation. \mathcal{C} category,

 $\operatorname{dim}=\operatorname{Ob}(\mathcal{C}) \rightarrow \mathbf{N}$ dimension function (respecting isomorphisms), $y: \mathcal{C} \rightarrow$ $\widehat{\mathcal{C}}$ Yoneda embedding.Definition 6.2. $F \in \hat{\mathcal{C}}$.
a) $X \in \mathcal{C}, \alpha \in F(X)$:

$$
\operatorname{ed}(\alpha)=\inf \left\{\operatorname{dim} Y \mid Y \in \mathcal{C}, \exists f: X \rightarrow Y, \beta \in F(Y): \alpha=f^{*} \beta\right\}
$$

b) $\operatorname{ed}(F)=\sup _{X, \alpha} \operatorname{ed}(\alpha)$.

Question 6.3. $X \in \mathcal{C}$: compare $\operatorname{dim} X$ and ed $y(X)$.

Answer:

Proposition 6.4.

$$
\operatorname{ed}(y(X))=\operatorname{ed}\left(1_{X}\right)=\inf \{\operatorname{dim} Y \mid X \text { is a retract of } Y .\}
$$

For "usual" categories, $\operatorname{dim} X=\operatorname{ed} y(X)$ but not necessarily in general.

Leads to normalise dimensions:

Definition 6.5. \mathcal{C}, dim as above, $X \in \mathcal{C}$:

$$
\operatorname{dim}^{\nu}(X):=\operatorname{ed} y(X)
$$

Remark 6.6.

- $\operatorname{dim}^{\nu}(X)=\operatorname{ed}^{\nu}(y(X))$
- $\left(\operatorname{dim}^{\nu}\right)^{\nu}=\operatorname{dim}^{\nu}$.
6.3. Dimensions and localisations. E set, $\operatorname{dim}: E \rightarrow \mathbf{N}$ dimension function, \sim equivalence relation on E :

$$
\begin{gathered}
\operatorname{dim} \sim: E / \sim \rightarrow \mathbf{N} \\
\bar{x} \mapsto \inf \{\operatorname{dim} x \mid x \in \bar{x}\} .
\end{gathered}
$$

Examples 6.7. \mathcal{C} essentially small category, $E=\langle\mathcal{C}\rangle$ set of iso classes of objects, S class of arrows of $\mathcal{C}:\langle\mathcal{C}\rangle \rightarrow\left\langle S^{-1} \mathcal{C}\right\rangle$, so any dimension function dim on \mathcal{C} (respecting isomorphisms) induces one, dim_{S}, on $S^{-1} \mathcal{C}$.

Is it the right one? Not necessarily because of Proposition 6.4 (if dim normalised, maybe dim_{S} is not normalised). Thus replace dim_{S} by $\operatorname{dim}_{S}^{\nu}$.
6.4. Dimensions and coniveaux.

Definition 6.8. a) $X \in S_{c}^{-1} \mathrm{Sm}_{\operatorname{dom}}: \operatorname{dim}_{C}(X):=\operatorname{dim}_{S_{c}}^{\nu}(X)$.
b) G linear algebraic group: $d_{c}(G):=\operatorname{dim}_{C}\left(B_{C} G\right)$.
$X \in \operatorname{Sm}_{\text {dom }}:$

$$
\operatorname{dim} X \geq \ldots \geq \operatorname{dim}_{c} X \geq \operatorname{dim}_{c-1} X \geq \ldots
$$

G linear:

$$
\ldots \geq d_{c}(G) \geq d_{c-1}(G) \geq \ldots
$$

Variants with $\bar{S}_{c}, \mathrm{Sm} \ldots$

Proposition 6.9. X smooth projective of dimension $n: \operatorname{dim}_{n+1}(X)=$ n.

Sketch. Use $Y \mapsto H_{\text {ét }}^{2 n}(\bar{Y}, \mathbf{Z} / l)$.

Corollary 6.10. $d_{c}\left(\mathbf{G}_{m}\right)=c-1 \rightarrow \infty$.
(Should be true for any non unipotent linear algebraic group.)

Question 6.11. Relationship between $\left(d_{c}(G)\right)_{c \geq 1}$ and $\operatorname{ed}(G)$?

I don't know!
\mathcal{T} he end.

