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BIRATIONAL MOTIVES AND THE NORM RESIDUE ISOMORPHISM
THEOREM

BRUNO KAHN

(communicated by Bill Murray)

Abstract
We point out a relationship between the norm residue isomor-

phism theorem of Suslin-Voevodsky-Rost and the theory of birational
motives, as well as its generalisation to “higher jets”.

Let k be a perfect field, and let DMeff denote Voevodsky’s (unbounded) triangulated cat-
egory of effective Nisnevich motivic complexes over k. For D ∈ DMeff and n ⩾ 0, we have
an adjunction morphism

Hom(Z(n), D)(n) → D (1)

where Hom is the internal Hom of DMeff and, as usual, we abbreviate the notation ⊗Z(n)
to (n). The following lemma is well-known:

Lemma 1. The morphism (1) is an isomorphism if and only if D is divisible by Z(n), i.e. if
D is of the form E(n).

Proof. By Voevodsky’s cancellation theorem [11], twisting by n is fully faithful on DMeff .

Recall that DMeff carries a “homotopy” t-structure. Let now DMeff
ét be the triangulated

category of Ã©tale motivic complexes. It also carries a homotopy t-structure for which the
“change of topology” functor

DMeff α∗

−−→ DMeff
ét (2)

is t-exact; the functor α∗ has a right adjoint Rα∗ [5, C.4]. The main result of this note is:

Theorem 1. Suppose that D = Rα∗C with C ∈ DMeff
ét bounded and torsion (i.e. that C ⊗

Q = 0). Then (1) is an isomorphism.

This provides a large quantity of objects of DMeff which are infinitely divisible by Z(1),
of a quite different nature from those of [2, Rem. 1.10].

Corollary 1. Suppose that D = Rα∗C with C ∈ DMeff
ét bounded. Then the cone of (1)Â is

uniquely divisible (multiplication by m is an isomorphism for all m ̸= 0).

Proof. Consider the exact triangles C m−→ C → C ⊗ Z/m
+1−−→.
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Remarks 1. a) Theorem 1 is false for D torsion in general, as the example D = Z/l shows.
Similarly, the torsion hypothesis on C is necessary, as the example C = α∗Q shows.
b) For C ∈ DMeff

ét , an adjunction game provides an isomorphism in DMeff

Rα∗ Homét(α
∗Z(n), C)

∼−→ Hom(Z(n), Rα∗C)

where Homét is the internal Hom of DMeff
ét . Let m > 0 be an integer invertible in k. The

change of coefficients functor

DMeff
ét (k) → DMeff

ét (k,Z/m)

has a right adjoint im which induces a natural isomorphism

Homét(C
′, imC) ≃ im Homm

ét(C
′ ⊗ Z/m,C)

for any (C ′, C) ∈ DMeff
ét (k)×DMeff

ét (k,Z/m) where Homm
ét is the internal Hom of DMeff

ét (k,Z/m).
Take C ′ = α∗Z(n); then C ′ ⊗ Z/m = µ⊗n

m . Thus, if C ∈ DMeff
ét is bounded and m-torsion,

the isomorphism (1) of Theorem 1 for D = Rα∗C takes the form

Rα∗ Homm
ét(µ

⊗n
m , C)(n)

∼−→ Rα∗C.

For C = µ⊗i
m , this gives as a special case an isomorphism

Rα∗µ
⊗i−n
m (n)

∼−→ Rα∗µ
⊗i
m . (3)

Let Γm = Gal(k(µm)/k): this is a subgroup of (Z/m)∗. Since µ⊗n
m ≃ Z/m when n is divis-

ible by γm = |Γm|, this also gives the following corollary.

Corollary 2. For C ∈ DMeff
ét bounded and of exponent m, the function n 7→ Hom(Z(n), Rα∗C)

is periodic of period γm.

The following reformulation of Theorem 1 will be useful. Recall that, in [6], we introduced
and studied a triangulated category of birational motivic complexes DMo; by loc. cit., Prop.
4.2.5., one has

DMo = DMeff /DMeff(1).

Higher versions of DMo were introduced in [4, Def. 3.4] (they are also implicit in [2]):

DMeff
<n = DMeff /DMeff(n)

so that DM<1 = DMo.
By loc. cit., Prop. 3.5, the localisation functor ν<n : DMeff → DMeff

<n has a right adjoint
ιn; moreover, the homotopy t-structure of DMeff induces a t-structure on DMeff

<n via ιn (loc.
cit., Prop. 3.6). By Lemma 1, Theorem 1 is then equivalent to saying that ν<nRα∗C = 0 for
any bounded torsion C ∈ DMeff

ét .

Proof of Theorem 1. We start with a Grothendieckian dÃ©vissage, first reducing to the case
where C = F [0] for a torsion sheaf F . Such F comes from the small Ã©tale site of Spec k
by the Suslin-Voevodsky rigidity theorem [8], i.e. is a Galois module. The functor ν<n com-
mutes with infinite direct sums as a left adjoint; since Ã©tale cohomology of sheaves has
the same property, this reduces us to the case where the stalk(s) of F are finite, killed by
some m > 0 that we may further assume to be a power of a prime number l different from
the characteristic (since DMeff

ét is Z[1/p]-linear, where p is the exponential characteristic of
k [10, Prop. 3.3.3 2)]). A standard transfer/l-Sylow argument now allows us to assume that
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F becomes constant after a finite Galois extension of k whose Galois group G has order a
power of l. Since the statement is stable under extensions of sheaves and the l-group G acts
unipotently on F , we may finally assume that F = Z/l. By a standard argument due to Tate
([k(µl) : k] is prime to l), we further reduce to the case where µl ⊂ k.

We now use Levine’s “inverting the motivic Bott element” theorem [7]. The following
corrects the presentation in [3, §3]. From the isomorphism

Z(1) ≃ Gm[−1] (4)

we get an exact triangle

µl[0] → Z/l(1) → Gm/l[−1]
+1−−→ . (5)

Adding the isomorphism Z(n)⊗ Z/l(1)
∼−→ Z/l(n+ 1), we get a map in DMeff :

Z(n)⊗ µl → Z/l(n+ 1). (6)

For clarity, write C 7→ C{n} for tensoring an object C ∈ DMeff such that lC = 0 with the
one-dimensional Z/l-vector space µ⊗n

l . Thus Z(n)⊗ µl ≃ Z/l(n){1}, hence we get from
(6) another map

Z/l(n) → Z/l(n+ 1){−1}

which becomes an isomorphism after sheafifying for the étale topology. Iterating, we get a
commutative diagram

Z/l(0) //

++

Z/l(1){−1} //

''

Z/l(2){−2} //

��

. . .

yy
Rα∗Z/l

which induces a morphism

hocolimr Z/l(r){−r} → Rα∗Z/l (7)

where “the” homotopy colimit is the one of BÃ¶kstedt-Neeman [1]; the main theorem of [7]
is that (7) is an isomorphism when l > 2, or when l = 2 and either char k > 0 or −1 is a
square in k.

This concludes the proof except for l = 2 in the exceptional case; we complete this case
with the following proposition, which gives an “unstable” version of the previous divisibility
at a higher cost.

Proposition 1. One has ν<nR
qα∗Z/l = 0 for q > n, and ν<nRα∗Z/l = 0. (See comment

before the proof of Theorem 1 for ν<n.)

Proof. By the Beilinson-Lichtenbaum conjecture [9, 12], we have an exact triangle for any
q ⩾ 0:

Z/l(q){−q} → Rα∗Z/l → τ>qRα∗Z/l
+1−−→ (8)

Suppose that q ⩾ n. Applying ν<n to (8), we get an isomorphism

ν<nRα∗Z/l
∼−→ ν<nτ>qRα∗Z/l.

Comparing this with the same isomorphism for q + 1, we get the first statement. There-
fore, ν<nτ>qRα∗Z/l = 0 for any q ⩾ n (for example for q = n) and we conclude.
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Remarks 2. a) Since R0α∗Z/l = Z/l is a birational sheaf, we have an isomorphism Z/l
∼−→

ν<nR
qα∗Z/l for q = 0. When n = 1, this allows us to compute ν<1R

1α∗Z/l thanks to the
isomorphisms

τ⩽1ν<1Rα∗Z/l
∼−→ ν<1Rα∗Z/l = 0

where the first (resp. second) isomorphism follows from the first (resp. second) part of Propo-
sition 1: this gives

ν<1R
1α∗Z/l ≃ Z/l[2].

It is less clear how to compute ν<nR
qα∗Z/l for 0 < q ⩽ n when n ⩾ 2.

b) In the spirit of [3], Proposition 1 for n = 1 conversely implies formally the Beilinson-
Lichtenbaum conjecture: we neglect twists by powers of µl for simplicity, and argue by
induction on q. Since ⊗ is right t-exact in DMeff and in view of (4), there is a natural map

τ⩽q−1Rα∗Z/l ⊗ Z(1) → τ⩽qRα∗Z/l (9)

and we have to show that it is an isomorphism. The condition ν<1R
qα∗Z/l = 0 means that

Rqα∗Z/l is divisible by Z(1), which in turn implies that τ⩽qRα∗Z/l is divisible by Z(1).
But the computation of the Ã©tale cohomology of X ×Gm for smooth X shows that the
adjoint of (9)

τ⩽q−1Rα∗Z/l → Hom(Z(1), τ⩽qRα∗Z/l)

is an isomorphism, and we conclude with Lemma 1.
c) If k has virtually finite Ã©tale cohomological dimension (e.g. is finitely generated), we can
relax the hypothesis “bounded” to “bounded below” in Theorem 1 and Corollary 1. Indeed,
we reduce by a transfer argument to the case where k has finite cohomological dimension. As
used before, ν<n commutes with infinite direct sums, and so does Rα∗ by Lemma 2 below.
Since, for any C ∈ DMeff

ét , the natural map

hocolim τ⩽nC → C

is an isomorphism, this reduces us to the bounded case.

Lemma 2. Suppose that k has finite Ã©tale cohomological dimension. Then Rα∗ commutes
with infinite direct sums.

Proof. Let (Ci)i∈I be a family of objects of DMeff
ét . We want to show that the comparison

map in DMeff ⊕
i

Rα∗Ci → Rα∗
⊕
i

Ci

is an isomorphism. This can be tested against the generators M(X), where X runs through
smooth separated k-schemes of finite type. This yields the maps

Hn
Nis(X,

⊕
i

Rα∗Ci) → Hn
ét(X,

⊕
i

Ci), n ∈ Z

so we are reduced to showing that Hn
Nis(X,−) and Hn

ét(X,−) commute with
⊕

i. Since
hypercohomology spectral sequences are convergent (by the hypothesis on k for Hn

ét(X,−)),
we are reduced to the case of direct sums of sheaves, and the result is true because the
Nisnevich and Ã©tale sites are both coherent.
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