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BIRATIONAL MOTIVES AND THE NORM RESIDUE ISOMORPHISM
THEOREM

BRUNO KAHN
(communicated by Bill Murray)

Abstract
We point out a relationship between the norm residue isomor-
phism theorem of Suslin-Voevodsky-Rost and the theory of birational
motives, as well as its generalisation to “higher jets”.
Let k be a perfect field, and let DM®T denote Voevodsky’s (unbounded) triangulated cat-
egory of effective Nisnevich motivic complexes over k. For D € DM and n > 0, we have
an adjunction morphism

Hom(Z(n),D)(n) — D (1)

where Hom is the internal Hom of DM and, as usual, we abbreviate the notation ®Z(n)
to (n). The following lemma is well-known:

Lemma 1. The morphism (1) is an isomorphism if and only if D is divisible by Z(n), i.e. if
D is of the form E(n).

Proof. By Voevodsky’s cancellation theorem [11], twisting by n is fully faithful on DM,
O

Recall that DM carries a “homotopy” t-structure. Let now DMzﬁf be the triangulated
category of A©tale motivic complexes. It also carries a homotopy ¢-structure for which the
“change of topology” functor

DM 255 pMef )
is t-exact; the functor o has a right adjoint Rav, [S, C.4]. The main result of this note is:

Theorem 1. Suppose that D = Ro..C with C € DMgf bounded and torsion (i.e. that C' ®
Q = 0). Then (1) is an isomorphism.

This provides a large quantity of objects of DM which are infinitely divisible by Z(1),
of a quite different nature from those of [2, Rem. 1.10].

Corollary 1. Suppose that D = Ra.,.C with C' € DMZ‘tCF bounded. Then the cone of (1A is
uniquely divisible (multiplication by m is an isomorphism for all m # 0).

Proof. Consider the exact triangles C' % C' — C ® Z/m 2N O
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Remarks 1. a) Theorem 1 is false for D torsion in general, as the example D = Z /I shows.
Similarly, the torsion hypothesis on C' is necessary, as the example C' = a*Q shows.
b) For C' € Dsz, an adjunction game provides an isomorphism in DM

Ra, Homy, (a*Z(n), C') = Hom(Z(n), Ra,C)

where Homy, is the internal Hom of DMST. Let 7 > 0 be an integer invertible in k. The
change of coefficients functor

DM (k) — DM (k, Z/m)
has a right adjoint ¢,,, which induces a natural isomorphism
Hom,, (C',imC) =~ iy, HomZ; (C' ® Z/m, C)

forany (C’, C') € DMST (k) x DM (k, Z /m) where Hom?! is the internal Hom of DM (k, Z /m).
Take C" = o*Z(n); then C' ® Z/m = pu&™. Thus, if C' € DMS is bounded and m-torsion,
the isomorphism (1) of Theorem 1 for D = R, C takes the form

Ra, Hom! (@™, C)(n) = Ra.C.

=228
For C' = u®?, this gives as a special case an isomorphism
Ra, p®~"(n) = Ro.pul'. 3)

LetT,, = Gal(k(iy,)/k): this is a subgroup of (Z/m)*. Since u&™ ~ Z/m when n is divis-
ible by 7, = |T';|, this also gives the following corollary.

Corollary 2. For C' € DMST bounded and of exponent m, the function n — Hom(Z(n), Ra..C)
is periodic of period . O

The following reformulation of Theorem 1 will be useful. Recall that, in [6], we introduced
and studied a triangulated category of birational motivic complexes DM®; by loc. cit., Prop.
4.2.5., one has

DM° = DM°*T / DM (1).
Higher versions of DM® were introduced in [4, Def. 3.4] (they are also implicit in [2]):
DM =DM / DM (n)

so that DM ; = DM°.
By loc. cit., Prop. 3.5, the localisation functor v, : DM DM‘ffn has a right adjoint
Ln; moreover, the homotopy t-structure of DM induces a t-structure on DM‘iﬂ; via ¢, (loc.

cit., Prop. 3.6). By Lemma 1, Theorem 1 is then equivalent to saying that v, Ra.,.C = 0 for
any bounded torsion C € DMST,

Proof of Theorem 1. We start with a Grothendieckian dA©vissage, first reducing to the case
where C' = F[0] for a torsion sheaf F. Such F comes from the small A©tale site of Spec k
by the Suslin-Voevodsky rigidity theorem [8], i.e. is a Galois module. The functor v.,, com-
mutes with infinite direct sums as a left adjoint; since A©tale cohomology of sheaves has
the same property, this reduces us to the case where the stalk(s) of F are finite, killed by
some m > 0 that we may further assume to be a power of a prime number [ different from
the characteristic (since DMST is Z[1/p]-linear, where p is the exponential characteristic of
k [10, Prop. 3.3.3 2)]). A standard transfer/[-Sylow argument now allows us to assume that
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F becomes constant after a finite Galois extension of £ whose Galois group G has order a
power of [. Since the statement is stable under extensions of sheaves and the [-group G acts
unipotently on F, we may finally assume that 7 = Z/I. By a standard argument due to Tate
([k(1) : K] is prime to 1), we further reduce to the case where y; C k.

We now use Levine’s “inverting the motivic Bott element” theorem [7]. The following
corrects the presentation in [3, §3]. From the isomorphism

Z(1) ~ G, [-1] “)
we get an exact triangle
(0] = Z/U(1) = Gy /I[-1] 5 .
Adding the isomorphism Z(n) ® Z/1(1) = Z/I(n + 1), we get a map in DM°T:
Z(n) @ — Z/l(n+1). (6)

For clarity, write C' — C'{n} for tensoring an object C' € DM®? such that IC' = 0 with the
one-dimensional Z /I-vector space ;" Thus Z(n) ® p ~ Z/l(n){1}, hence we get from
(6) another map

o)

Z/i(n) — Z/l(n + 1){—1}

which becomes an isomorphism after sheafifying for the étale topology. Iterating, we get a
commutative diagram

Z/1(0) —— Z/I(1){~1} — = Z/1(2){-2} — ...

=

Ra,Z]l
which induces a morphism
hocolim, Z/1(r){—r} — Ra.Z/l (7)

where “the” homotopy colimit is the one of BA{kstedt-Neeman [1]; the main theorem of [7]
is that (7) is an isomorphism when [ > 2, or when | = 2 and either char K > 0 or —1 is a
square in k.

This concludes the proof except for I = 2 in the exceptional case; we complete this case
with the following proposition, which gives an “unstable” version of the previous divisibility
at a higher cost. O

Proposition 1. One has v, Rl Z/l = 0 for ¢ > n, and v, Ro,Z [l = 0. (See comment
before the proof of Theorem 1 for v,,.)

Proof. By the Beilinson-Lichtenbaum conjecture [9, 12], we have an exact triangle for any
q = 0:

Z/1(q){—q} = Ra,Z/l = T Ra,Z /1 5 (8)
Suppose that ¢ > n. Applying v, to (8), we get an isomorphism
VenRaZ)l =5 venTs R Z 1.

Comparing this with the same isomorphism for ¢ 4 1, we get the first statement. There-
fore, vy, 7> R Z /1 = 0 for any ¢ > n (for example for ¢ = n) and we conclude. O
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Remarks 2. a) Since R°«,Z /1 = Z /1 is a birational sheaf, we have an isomorphism Z /I =
venRI0,Z /1 for ¢ = 0. When n = 1, this allows us to compute l/<1R1a*Z/l thanks to the
isomorphisms

T<iv<a1RZ)l =5 v RaZ)l =0

where the first (resp. second) isomorphism follows from the first (resp. second) part of Propo-
sition 1: this gives

vaiR'a,Z)1 ~ Z/1]2].

It is less clear how to compute v, R, Z /I for 0 < ¢ < n whenn > 2.

b) In the spirit of [3], Proposition 1 for n = 1 conversely implies formally the Beilinson-
Lichtenbaum conjecture: we neglect twists by powers of p; for simplicity, and argue by
induction on ¢. Since ® is right ¢-exact in DM®® and in view of (4), there is a natural map

Teq-1R,Z/1 ® Z(1) — T<,Ra.Z/1 )

and we have to show that it is an isomorphism. The condition v.; R?«,Z/l = 0 means that
Ria,Z/1 is divisible by Z(1), which in turn implies that 7<,Ra..Z/1 is divisible by Z(1).
But the computation of the A©tale cohomology of X x G,, for smooth X shows that the
adjoint of (9)

T<g—1Ro.Z/l — Hom(Z(1), 7<,Ro. Z /1)

is an isomorphism, and we conclude with Lemma 1.

¢) If k has virtually finite A©tale cohomological dimension (e.g. is finitely generated), we can
relax the hypothesis “bounded” to “bounded below” in Theorem 1 and Corollary 1. Indeed,
we reduce by a transfer argument to the case where k has finite cohomological dimension. As
used before, v,, commutes with infinite direct sums, and so does Ra, by Lemma 2 below.
Since, for any C' € DM, the natural map

ét >

hocolim7¢,,C — C'

is an isomorphism, this reduces us to the bounded case.

Lemma 2. Suppose that k has finite AOtale cohomological dimension. Then Ra,, commutes
with infinite direct sums.

Proof. Let (C;);er be a family of objects of DM§€f . We want to show that the comparison
map in DM
@ Ra*C’Z — Rov, @ C’z

is an isomorphism. This can be tested against the generators M (X ), where X runs through
smooth separated k-schemes of finite type. This yields the maps

H (X, Ra.Ci) - HL(X. P Ci), neZ

so we are reduced to showing that H{j; (X, —) and H}, (X, —) commute with &,. Since
hypercohomology spectral sequences are convergent (by the hypothesis on k for HZ, (X, —)),
we are reduced to the case of direct sums of sheaves, and the result is true because the
Nisnevich and A®©tale sites are both coherent. O
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