
ON THE BÉNABOU-ROUBAUD THEOREM

BRUNO KAHN

Abstract. We give a detailed proof of the Bénabou-Roubaud the-
orem. As a byproduct it yields a weakening of its hypotheses: the
base category does not need fibre products and the Beck-Chevalley
condition, in the form of a natural transformation, can be weak-
ened by only requiring the latter to be epi.

Introduction. The Bénabou-Roubaud theorem [2] establishes, under
certain conditions, an equivalence of categories between a category of
descent data and a category of algebras over a monad. This result is
widely cited, but [2] is a note “without proofs” and the ones I know
in the literature are a bit terse ([5, pp. 50/51], [6, proof of Lemma
4.1], [7, Th. 8.5]); moreover, [6] and [7] are formulated in more general
contexts.

The aim of this note is to provide a detailed proof of this theorem in
its original context. This exegesis has the advantage of showing that
the original hypotheses can be weakened: it is not necessary to suppose
that the base category admits fibred products, and the Chevalley prop-
erty of [2], formulated as an exchange condition, can also be weakened
by requiring that the base change morphisms be only epi. I hope this
will be useful to some readers. I also provided a proof of the equivalence
between Chevalley’s property and the exchange condition (attributed
to Beck, but see remark 1.1): this result is part of the folklore but, here
again, I had difficulty finding a published proof. In Corollary 5.2, I give
a condition (probably too strong) for the Eilenberg-Moore comparison
functor to be essentially surjective. Finally, I give in Proposition 6.1
cases where the exchange isomorphism holds; this is certainly classical,
but it recovers conceptually Mackey’s formula for the induced repre-
sentations of a group (example 6.3).

Notation. I keep that of [2]: thus P : M → A is a bifibrant functor in
the sense of [4, §10]. If A ∈ A, we denote M(A) the fibre of P above
A. For an arrow a : A1 → A0 of A, we write a∗ : M(A0) → M(A1)
and a∗ : M(A1) → M(A0) for the associated inverse and direct image
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functors (a∗ is left adjoint to a∗) and ηa, εa for the associated unit and
counit. We also write T a = a∗a∗ for the associated monad, equipped
with its unit ηa and its multiplication µa = a∗εaa∗. We do not assume
the existence of fibre products in A.

1. Adjoint chases. To elucidate certain statements and proofs, I start
by doing two things: 1) “deploy” the notion of monad above, which will
allow us to remove the quotation marks from “natural” at the bottom
of [2, p. 96], 2) not assume the Beck-Chevalley condition to begin
with, which will allow us to clarify the functoriality in the first lemma
of the note and to weaken hypotheses.

Let ai : Ai → A0 (i = 1, 2, 3) be three morphisms in A. For i < j,
consider a commutative square

(1.1)
Aij

aijj−−−→ Aj

aiji

y aj

y
Ai

ai−−−→ A0.

The natural isomorphism

(1.2) u : (aiji )
∗a∗i

∼⇒ (aijj )
∗a∗j

yields a base change morphism

(1.3) χ : (aijj )∗(a
ij
i )

∗ ⇒ a∗j(ai)∗

equal to the composition εa
ij
j a∗j(ai)∗◦(a

ij
j )∗u(ai)∗◦(a

ij
j )∗(a

ij
i )

∗ηai . Hence
a map

(1.4) ξij : M(Aj)(a
∗
j(ai)∗Mi,Mj)

χ∗
Mi−−→ M(Aj)(a

ij
j )∗(a

ij
i )

∗Mi,Mj)

adj
∼−→ M(Aij)((a

ij
i )

∗Mi, (a
ij
j )

∗Mj)

for (Mi,Mj) ∈ M(Ai) × M(Aj). It goes in the opposite direction to
the map Ka of [2] (which we will find back in (4.1)).

Remark 1.1. The morphism (1.3) is sometimes called “Beck transfor-
mation”. However, it already appears in SGA4 (1963/64) to formulate
the proper base change and smooth base change theorems [1, §4]. I
have adopted the terminology “base change morphism” in reference to
this seminar.

Lemma 1.2 (key lemma). For any φ ∈ M(Aj)(a
∗
j(ai)∗Mi,Mj), one

has
ξij(φ) = u(aj)∗Mj

◦ (aiji )∗(φ ◦ ηaiMi
)
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where u is the natural isomorphism of (1.2).

Proof. For ψ ∈ M(Aj)(a
ij
j )∗(a

ij
i )

∗Mi,Mj) one has adj(ψ) = (aijj )
∗ψ ◦

η
aijj

(aiji )∗Mi
, hence

ξij(φ) = adj(φ ◦ χMi
) = (aijj )

∗(φ ◦ χMi
) ◦ ηa

ij
j

(aiji )∗Mi

= (aijj )
∗(φ ◦ (εa

ij
j a∗j(ai)∗ ◦ (a

ij
j )∗u(ai)∗ ◦ (a

ij
j )∗(a

ij
i )

∗ηai)Mi
) ◦ ηa

ij
j

(aiji )∗Mi

= (aijj )
∗φ◦(aijj )∗ε

aijj
a∗j (ai)∗Mi

◦(aijj )∗(a
ij
j )∗u(ai)∗Mi

◦(aijj )∗(a
ij
j )∗(a

ij
i )

∗ηaiMi
◦ηa

ij
j

(aiji )∗Mi

= (aijj )
∗φ ◦ (aijj )∗ε

aijj
a∗j (ai)∗Mi

◦ (aijj )∗(a
ij
j )∗(u(ai)∗Mi

◦ (aiji )∗η
ai
Mi
) ◦ ηa

ij
j

(aiji )∗Mi

= (aijj )
∗φ ◦ (aijj )∗ε

aijj
a∗j (ai)∗Mi

◦ ηa
ij
j

(aiji )∗a∗j (ai)∗Mi
◦ u(ai)∗Mi

◦ (aiji )∗η
ai
Mi

= (aijj )
∗φ ◦ u(ai)∗Mi

◦ (aiji )∗η
ai
Mi

= u(aj)∗Mj
◦ (aiji )∗(φ ◦ ηaiMi

)

where we successively used the naturality of ηa
ij
j , an adjunction identity

and the naturality of u. □

Let A ∈ A be equipped with “projections” cij : A→ Aij; we assume
that bi = aiji ◦ cij : A→ Ai only depends on i.

Canonical example 1.3. Aij = Ai ×A0 Aj, A = A1 ×A0 A2 ×A0 A3, all
morphisms given by the natural projections.

We then have maps

M(Aij)((a
ij
i )

∗Mi, (a
ij
j )

∗Mj) → M(A)(b∗iMi, b
∗
jMj)

induced by c∗ij, hence composite maps

(1.5) θij : M(Aj)(a
∗
j(ai)∗Mi,Mj) → M(A)(b∗iMi, b

∗
jMj) (i < j).

In addition, we have a natural transformation
(1.6) λ = a∗3ε

a2(a1)∗ : a
∗
3(a2)∗a

∗
2(a1)∗ ⇒ a∗3(a1)∗.

The commutative square (A,A12, A23, A2)
1 yields another base change

morphism (c23)∗c
∗
12 ⇒ (a232 )∗(a122 )∗, hence a composition

(1.7) (b3)∗b
∗
1 = (a233 )∗(c23)∗c

∗
12(a

12
1 )∗ ⇒ (a233 )∗(a

23
2 )∗(a122 )∗(a

12
1 )∗

⇒ a∗3(a2)∗a
∗
2(a1)∗

which induces a map
(1.8) ρ : M(A3)(a

∗
3(a2)∗a

∗
2(a1)∗M1,M3) → M(A)(b∗1M1, b

∗
3M3).

1Note that it is Cartesian in the canonical example.
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An adjoint chase gives:

Lemma 1.4. One has θ13 = ρ ◦ λ∗ (see (1.5), (1.6) and (1.8)). □

Let φij ∈ M(Aj)(a
∗
j(ai)∗Mi,Mj) now be three morphisms. We have

a not necessarily commutative square:

(1.9)

a∗3(a2)∗a
∗
2(a1)∗M1

a∗3(a2)∗φ12−−−−−−→ a∗3(a2)∗M2

λM1

y φ23

y
a∗3(a1)∗M1

φ13−−−→ M3.

Write φ̂ij = θij(φij) : b
∗
iMi → b∗jMj.

Lemma 1.5. Let ψ (resp. ψ′) be the composition of (1.9) passing
through a∗3(a2)∗M2 (resp. through a∗3(a1)∗M1 ). Then ρ(ψ) = φ̂23 ◦ φ̂12

and ρ(ψ′) = φ̂13.

Proof. The first point follows from a standard adjunction calculation,
and the second follows from lemma 1.4. □

Proposition 1.6. If (1.9) commutes, we have φ̂13 = φ̂23 ◦ φ̂12; the
converse is true if ρ is injective in (1.8).

Proof. This is obvious in view of Lemma 1.5. □

In (1.4), assume Mj is of the form a∗jM0 and write aij : Aij → A0 for
the projection. We have a composition

(1.10) M(A1)(M1, (ai)
∗M0)

∼−→ M(A0)((ai)∗Mi,M0)

a∗j−→ M(Aj)(a
∗
j(ai)∗Mi, a

∗
jM0)

ξij−→ M(Aij)((a
ij
i )

∗Mi, (a
ij)∗M0)

where the first arrow is the adjunction isomorphism. A new adjoint
chase gives:

Lemma 1.7. The composition (1.10) is induced by (aiji )
∗. □

2. Exchange condition and weak exchange condition. Now we
introduce the

Definition 2.1. A commutative square (1.1) is said to satisfy the ex-
change condition if the base change morphism (1.3) is invertible; we
say that (1.1) satisfies the weak exchange condition if (1.3) is epi.

Lemma 2.2 (cf. [9, Prop. 11]). The exchange condition of Definition
2.1 is equivalent to the Chevalley condition (C) of [2].
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Proof. Recall this condition: given a commutative square

(2.1)

M ′
1

k1−−−→ M1

χ′

y χ

y
M ′

0
k0−−−→ M0,

above (1.1) (where we take (i, j) = (1, 2) to fix ideas), if χ and χ′ are
Cartesian and k0 is co-Cartesian, then k1 is co-Cartesian.

I will show that the exchange condition is equivalent to the following
two conditions: (C) and
(C’): if k0 and k1 are co-Cartesian and χ′ is Cartesian, then χ is Carte-

sian.
Let us translate the commutativity of (2.1) in terms of the square

(2.2)

M(A12)
(a122 )∗−−−→ M(A2)

(a121 )∗
x a∗2

x
M(A1)

(a1)∗−−−→ M(A0).

The morphisms of (2.1) correspond to morphisms k̃0 : (a1)∗M
′
0 →

M0, k̃1 : (a121 )∗M
′
1 toM1, χ̃ : M1 → a∗2M0 and χ̃′ : M ′

1 → (a122 )∗M ′
0,

which fit in a commutative diagram of M(A1):

(a122 )∗(a
12
1 )∗M ′

0
c // a∗2(a1)∗M

′
0

a∗2 k̃0
��

(a122 )∗M
′
1

(a122 )∗χ̃′

OO

k̃1 // M1
χ̃ // a∗2M0

where c is the base change morphism of (1.3). The cartesianity con-
ditions on χ and χ′ (resp. co-cartesianity conditions on k0 and k1)
amount to requesting the corresponding morphisms decorated with a˜
to be isomorphisms.

Suppose c is an isomorphism. If χ̃′ and k̃0 are isomorphisms, χ̃ is an
isomorphism if and only if k̃1 is. Thus, the exchange condition implies
conditions (C) and (C’). Conversely, M ′

0 being given, let k̃0, χ̃ and χ̃′

be identities, which successively defines M0, M1 and M ′
1. The arrow c

then defines an arrow k̃0, which is an isomorphism if and only if so is
c. This shows that the exchange condition implies (C), and we argue
in the same way for (C’) by taking k̃1 to be the identity. □

Remarks 2.3. a) This proof did not use the hypothesis that (1.1) be
Cartesian.
b) Under conservativity assumptions for (a122 )∗ or a∗2, we obtain con-
verses to (C) and (C’).
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3. Pre-descent data. We now assume A1 = A2 = A3, M1 = M2 =
M3 =:M and that the three squares (1.1) are identical. We note a for
ai (i = 1, 2, 3).

Definition 3.1. A pre-descent datum on M is a morphism v ∈
M(A12)((a

12
1 )∗M, (a122 )∗M) which verifies the condition of Proposition

1.6. We write Dpre for the category whose objects are pairs (M, v),
where v is a pre-descent datum on M , and whose morphisms are those
of M(A1) which commute with pre-descent data.

Let us introduce the

Hypothesis 3.2. The weak exchange condition is verified by the squares
(A12, A1, A2, A0), (A23, A2, A3, A0) and (A,A12, A23, A2).

(Of course, the first two squares coincide and A12 = A23 in the third,
but I keep these notations for clarity.)

Proposition 3.3 (cf. [2, lemme]). In (1.9), assume φ12 = φ23 =
φ13 =: φ. If φ satisfies the associativity condition of a T a-algebra, then
ξ12(φ) in (1.4) is a weak descent datum; the converse is true under
Hypothesis 3.2.

Proof. In view of Proposition 1.6, it suffices to show that Hypothesis
3.2 implies the injectivity of ρ, which is induced by the composition of
the two natural transformations of (1.7). The second is epi, therefore
induces an injection on Hom’s, and so does the first by adjunction. □

Corollary 3.4. Let Ma
ass denote the category of associative T a-algebras

which are not necessarily unital. Then Proposition 3.3 defines a faith-
ful functor ξ : Ma

ass → Dpre commuting with the forgetful functors to
M(A1); under Hypothesis 3.2, it is an isomorphism of categories.

Proof. Commutation of ξ with the forgetful functors is obvious. This
already shows that it is faithful; under Hypothesis 3.2, it is essentially
surjective by Proposition 3.3 and we see immediately that it is also
full. □

4. The unit condition. We now introduce an additional ingredient:
a “diagonal” morphism ∆ : A1 → A12 such that a121 ∆ = a122 ∆ = 1A1 .

Definition 4.1. A descent datum on M is a pre-descent datum v such
that ∆∗v = 1M modulo the isomorphisms ∆∗(a12i )∗

∼−→ IdM(A1) for
i = 1.2. We denote by D the full subcategory of Dpre given by the
descent data.
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Remark 4.2. In the canonical example 1.3, a pre-descent datum v satis-
fies the condition of Definition 4.1 if and only if v is invertible (therefore
is a descent datum in the classical sense): this follows from [3, A.1.d
pp. 303–304].

Let Ma ⊂ Ma
ass be the category of T a-algebras.

Theorem 4.3 (cf. [2, théorème]). For all φ ∈ M(A1)(a
∗a∗M,M), we

have
∆∗ξ12(φ) = φ ◦ ηaM

modulo the isomorphisms ∆∗(a12i )∗
∼−→ IdM(A1). In particular, ξ(Ma) ⊂

D and ξ : Ma → D is an isomorphism of categories under Hypothesis
3.2.

Proof. This follows from Lemma 1.2 and Corollary 3.4. □

As in [8, VI.3, Th. 1], we have the Eilenberg-Moore comparison
functor

Ka : M(A0) → Ma(4.1)
M0 7→ (a∗M0, a

∗εaM0
).

On the other hand, we have the natural isomorphism of (1.2)

uM0 : (a
12
1 )∗a∗M0

∼−→ (a122 )∗a∗M0

and Lemma 1.7 yields:

Proposition 4.4. We have uM0 = ξ12(a
∗εaM0

). In other words, in the
diagram

M(A0)
Ψa

//

Ka
$$

D
Ua
//M(A1)

Ma

ξ

OO

UTa

::

the left triangle commutes. □

5. A complement.

Proposition 5.1. Let a∗ be fully faithful and M(A0) Karoubian. Let
φ : a∗a∗M → M , verify the identity φ ◦ ηaM = 1M . Then there exists
M0 ∈ M(A0) and an isomorphism ν : M1

∼−→ a∗M0 such that φ =
ν−1a∗εaM0

a∗a∗ν.

Proof. Let e denote the idempotent ηaMφ ∈ EndM(A1)(a
∗a∗M). By hy-

pothesis, e = a∗ẽ where ẽ is an idempotent of EndM(A0)(a∗M), of image
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M0. Then a∗M0 is isomorphic to the image M of e via a morphism ν
as in the statement, such that

ν ◦ φ = a∗π, a∗ι ◦ ν = ηaM

where ιπ is the epi-mono factorization of ẽ.
To finish, it is enough to see that a∗π = a∗εaM0

a∗a∗ν. But we also
have

ηaa∗M0
◦ ν = a∗a∗ν ◦ ηaM = a∗a∗ν ◦ a∗ι ◦ ν

hence ηaa∗M0
= a∗a∗ν ◦ a∗ι. This concludes, since ηaa∗M0

a∗εaM0
is the

epi-mono factorisation of the idempotent of End(a∗a∗a∗M0) of image
a∗M0. □

We thus obtain the following complement:

Corollary 5.2. Assume Hypothesis 3.2, and also that a∗ is fully faithful
and M(A0) Karoubian. Then
a) every unital T a-algebra is associative;
b) Ka is essentially surjective. □

Can one weaken the full faithfulness assumption in this corollary?
The following lemma does not seem sufficient:

Lemma 5.3. Let M,N ∈ M(A1). Then the map

a∗ : M(A0)(a∗M,a∗N) → M(A1)(a
∗a∗M,a∗a∗N)

has a retraction r given by r(f) = εaa∗N ◦ a∗f ◦ a∗ηaM . More generally,
we have an identity of the form r(a∗g ◦ f) = g ◦ r(f).

Proof. For f : a∗a∗M → a∗a∗N et g : a∗N → a∗P , we have

r(a∗g ◦ f) = εaa∗P ◦a∗a∗g ◦a∗f ◦a∗ηaM = g ◦ εaa∗N ◦a∗f ◦a∗ηaM = g ◦ r(f).

Taking f = 1a∗a∗M , we obtain that r is a retraction. □

6. Appendix: a case where the exchange condition is verified.
Let A be a category. Take for A the category of presheaves of sets on A.
Write

∫
A for the category associated to A ∈ A by the Grothendieck

construction [4, §8]. Let C be another category. We take for M the
fibred category of representations of A in C: for A ∈ A, an object
of M(A) is a functor from

∫
A to C. For all a ∈ A(A1, A0) we have

an obvious pull-back functor a∗ : M(A0) → M(A1), which has a left
adjoint a∗ (direct image) given by the usual colimit if C is cocomplete.
We can then ask whether the exchange condition is true for Cartesian
squares of A.
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Proposition 6.1. This is the case if C is the category of sets Set, and
more generally if C admits a forgetful functor Ω : C → Set with a left
adjoint L such that (L,Ω) satisfies the conditions of Beck’s theorem [8,
VI.7, Th. 1].

Proof. First suppose C = Set; to verify that (1.3) is a natural iso-
morphism, it is enough to test it on representable functors. Consider
Diagram (2.2) again. For (c, γ) ∈

∫
A1 and (d, δ) ∈

∫
A2 (with c, d ∈ A

and γ ∈ A1(c) , δ ∈ A2(d)), we have

a∗2(a1)∗y(c, γ)(d, δ) = a∗2y(c, a1(γ))(d, δ) = y(c, a1(γ))(d, a2(δ))

= {φ ∈ A(d, c) | φ∗a1(γ) = a2(δ)}
and

(a122 )∗(a
12
1 )∗y(c, γ)(d, δ) = lim−→

(e,η)∈(d,δ)↓a122

(a121 )∗y(c, γ)(e, η)

= lim−→
(e,η)∈(d,δ)↓a122

y(c, γ)(e, a121 (η)) = lim−→
(e,η)∈(d,δ)↓a122

{ψ ∈ A(e, c) | ψ∗γ = a121 (η)}.

We have

(d, δ) ↓ a122 = {(e, η1, η2, θ) ∈ A×A1(e)×A0(e)A2(e)×A(d, e) | θ∗η2 = δ}.
This category has the initial set {(d, η1, δ, 1d) | a1(η1) = a2(δ)}, so

(a122 )∗(a
12
1 )∗y(c, γ)(d, δ) =

∐
{(η1∈A1(d)|a1(η1)=a2(δ)}

{φ ∈ A(d, c) | φ∗γ = η1}

= {φ ∈ A(d, c) | a1(φ∗γ) = a2(δ)}

and the map (a122 )∗(a
12
1 )∗y(c, γ)(d, δ) → (a122 )∗(a

12
1 )∗y(c, γ)(d, δ) is clearly

equal to the identity.
General case: let us write more precisely MC(A) = CAT(

∫
A, C).

The functors L and Ω induce pairs of adjoint functors (same notation)

L : MSet(A) ⇆ MC(A) : Ω.

These two functors commute with pull-backs; as L is a left adjoint,
it also commutes with direct images. Therefore, in the above situation,
the base change morphism χM : (a122 )∗(a

12
1 )∗M → a∗2(a1)∗M is an iso-

morphism when M ∈ MC(A1) is of the form LX for X ∈ MSet(A1).
For any M , we have its canonical presentation [8, (5) p. 153]

(6.1) (LΩ)2M ⇒ LΩM →M

whose image by Ω is a split coequaliser (loc. cit.). Given the hypothesis
that Ω creates such coequalisers, (6.1) is a coequaliser. Since pull-backs
are cocontinuous, as well as direct images (again, as left adjoints),
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(6.1) remains a coequaliser after applying the functors (a122 )∗(a
12
1 )∗ and

a∗2(a1)∗. Finally, a coequaliser of isomorphisms is an isomorphism. □

Examples 6.2 (for C). Varieties (category of groups, abelian groups,
rings. . . ): [8, VI.8, Th. 1].

Example 6.3 (for A). The category with one object G associated with
a group G: then A is the category of G-sets. Let us take for C the
category of R-modules where R is a commutative ring. If A ∈ A is
G-transitive,

∫
A is a connected groupoid, which is equivalent to H

for the stabilizer H of any element of A; thus, M(A) is equivalent to
RepR(H). If a : A1 → A0 is the morphism of A defined by an inclusion
K ⊂ H ⊂ G (A1 = G/K, A0 = G/H), then a∗ is restriction from H
to K and a∗ is induction V 7→ RH ⊗RK V . From Proposition 6.1, we
thus recover conceptually the Mackey formula of [10, 7.3, Prop. 22],
proven “by hand” in loc. cit.
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