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An l-adic norm residue epimorphism theorem

Bruno Kahn

We show that the continuous étale cohomology groups H n
cont(X, Zl(n)) of smooth

varieties X over a finite field k are spanned as Zl-modules by the n-th Milnor
K -sheaf locally for the Zariski topology for all n ≥ 0. Here l is a prime invertible
in k. This is the first general unconditional result towards the conjectures of
Kahn (1998) which put together the Tate and the Beilinson conjectures relative to
algebraic cycles on smooth projective k-varieties.

1. Introduction

Two fundamental conjectures on smooth projective varieties X over a finite field k
are

• the Tate conjecture: for any n ≥ 0, the order of the pole of the zeta function
ζ(X, s) at s=n equals the rank of the group of algebraic cycles of codimension
n over X , modulo numerical equivalence;

• the Beilinson conjecture: for any n ≥ 0, an algebraic cycle of codimension n
on X with Q-coefficients which is numerically equivalent to 0 is rationally
equivalent to 0.

In the unpublished preprint [Kahn 1998] — inspired by work of Geisser [1998] —
I put these two conjectures together and reformulated them into a sheaf-theoretic
statement involving all smooth (not necessarily projective) k-varieties.

Actually, there are two reformulations in [Kahn 1998]: one with rational coeffi-
cients (Conjecture 8.12) and one with integral coefficients (Conjecture 9.6). The
first one is elementary, involving cohomology of Milnor K -sheaves; the second one
involves motivic cohomology and also appears in the published paper [Kahn 2002]
(Conjecture 3.2 and Theorem 3.4).

Here we shall be interested in the first reformulation. Let me recall it. Let S
denote the big étale site of Spec k restricted to smooth k-varieties; as in [Kahn
1998, Definition 2.1], write Zl(n)c (resp. Ql(n)c) for the object R lim

←−−
(µ⊗n

lν ) (resp.
Zl(n)c

⊗Q) of D+(Ab(S))=: D+(S). Thus,

H i
ét(X, Zl(n)c)= H i

cont(X, Zl(n)),
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where the right-hand side is the continuous étale cohomology of Jannsen [1988]
(by [Kahn 1998, Lemma 1.1(a)]), and similarly with Ql coefficients.

As a first step, we have

H i
cont(X, Ql(n)c)= 0 for i < n (1-1)

for any X ∈ S by [Kahn 1998, Corollary 6.10(b)]. It follows that the presheaf X 7→
H n

cont(X, Ql(n)) is an étale sheaf. Then, by [Kahn 1998, Proposition 8.10 and its
proof], a version of a theorem of Tate [1976, Theorem 3.1] yields a homomorphism

K M
n (X)⊗Zl→ H n

cont(X, Zl(n)) (1-2)

for any smooth X , where K M
n (X) := K M

n (0(X,OX )), hence a homomorphism of
associated Zariski sheaves

KM
n ⊗Zl→Hn(Zl(n)c) (1-3)

and a fortiori a homomorphism of associated étale sheaves

α∗KM
n ⊗Zl→ α∗Hn(Zl(n)c),

where α is the projection of S on the big smooth Zariski site. By (1-1), we then get
a morphism in D+(S):

α∗KM
n [−n]⊗Ql→Ql(n)c.

For n = 0, this morphism is not an isomorphism because the right-hand side
has two nonzero cohomology sheaves, coming from H 0(k, Ql) and H 1(k, Ql);
compare [Kahn 1998, Theorem 4.6(b)]. To get the correct comparison morphism,
we tensor with it to get

α∗KM
n [−n]⊗L Ql(0)c

→Ql(n)c. (1-4)

Conjecture 8.12 of [Kahn 1998] states that (1-4) is an isomorphism. Note that
Ql(0)c

≃Ql⊕Ql[−1] by [Kahn 1998, Corollary 4.5 and Theorem 4.6]. In concrete
terms, (1-4) therefore induces homomorphisms

H i−n−1(X,KM
n )⊗Ql ⊕ H i−n(X,KM

n )⊗Ql→ H i
cont(X, Ql(n))

for any smooth X , and Conjecture 8.12 predicts that they are isomorphisms. (Here
we use the fact that Zariski and étale sections of KM

n ⊗Q agree; compare [Kahn 1998,
Corollary 8.6].) This can be viewed as an extension of the cohomological version
of Tate’s conjecture saying that, in some sense, all continuous étale cohomology
groups are generated by “algebraic cycles” (cohomology of Milnor K -sheaves: note
that H n(X,KM

n ) ≃ C H n(X)) plus one transcendental element: the generator of
H 1

cont(k, Ql)= Homcont(Gk, Ql) which sends Frobenius to 1.
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As a special case, this conjecture proposes a description of the first nonzero
continuous étale cohomology group H n

cont(X, Ql(n)), which ought to be isomorphic
to H 0(X,KM

n )⊗Ql via (1-3). I realised recently that a refinement of the proof
of (1-1) might give enough information on this group to make some progress on
this latter conjecture. This was successful, and we even get an integral statement
which is the main result of this article.

Theorem 1.1. The morphism (1-3) is an epimorphism of Zariski sheaves and even
of presheaves if n ≤ 2.

This is the first general unconditional result in the direction of [Kahn 1998,
Conjecture 8.12]. It can be viewed as an l-adic norm residue epimorphism theorem.
As a complement, let us notice that the Zariski and étale sections of both sides
coincide by [Mazza et al. 2006, Theorems 14.24 and 22.2] and that, after tensoring
with Q, those of the right-hand side on some smooth X are H n

cont(X, Ql(n)) by (1-1).
So, for n ≤ 2, Theorem 1.1 yields a surjection

H 0(X,Kn)⊗Ql ↠ H n
cont(X, Ql(n))

for all smooth X .
To avoid any misunderstanding, let me point out that Theorem 1.1 is deduced

from its rational version, Theorem 6.2, by using the norm residue isomorphism
theorem of [Voevodsky 2011], while the proof of Theorem 6.2 itself has nothing to
do with the latter theorem.

One may ask about isomorphy in Theorem 6.2. But this seems much harder:
after tensorisation with Q, the global sections of the right-hand side of (1-3) are 0
on X if X is projective (provided n > 0), so this would imply the vanishing of
H 0(X,KM

n )⊗Q for such X . Conversely, this vanishing for all smooth projec-
tive varieties would imply that (1-3)⊗Q is an isomorphism; see the beginning of
Section 7. It can actually be proven for certain smooth projective X (Theorem 7.1),
but there aren’t enough of them to deduce the isomorphy of (1-3)⊗Q in general.
See nevertheless Corollary 7.2 and Example 7.3.

The proof of Theorem 6.2 is not difficult, but involves a number of ideas. Here is a
description. By de Jong’s theorem on alterations, we reduce to the case where X has
a smooth compactification whose closed complement is the support of a divisor with
strict normal crossings. A suitable spectral sequence, plus cohomological purity,
then allows us to get a concrete description of H n

cont(X, Ql(n)), as in Corollary 2.2(b).
This description already shows that these cohomology classes are, in some sense,
of an algebraic nature, and the next step is to make the link with (1-3). Here we
pass to Voevodsky’s theory of homotopy-invariant Nisnevich sheaves with transfers
[Mazza et al. 2006] and its extension to homotopic modules by Déglise [2011]. It
turns out that the collection of the H n

cont(X, Ql(n)), for n ∈Z, defines a special kind
of homotopic module that we call reduced (Definition 3.9; see Proposition 5.1).
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The Milnor K -sheaves, for their part, form a homotopic module which maps to
the latter via (1-3), but this homotopic module is not known to be reduced (this is
precisely the vanishing issue mentioned in the previous paragraph). However, any
((−1)-connected) homotopic module admits a universal map to a reduced one, and
fortunately this map is epi (Theorem 3.11); the proof involves a generalisation of
the theory of triangulated birational motives of [Kahn and Sujatha 2017] to Verdier
quotients of Voevodsky’s category DMeff(k) by higher powers of the Tate object, in
the spirit of [Huber and Kahn 2006]. The reduced homotopic module associated to
KM
∗
⊗Ql therefore maps to the homotopic module of continuous étale sheaves, and a

comparison using an analogue of Corollary 2.2(b) shows that this is an isomorphism.

2. The l-adic computation

Let X be a smooth projective geometrically irreducible variety over a field k,
Z =

⋃
i∈I Zi ⊂ X a normal crossing divisor and X = X − Z . For J ⊆ I , write

Z J =
⋂

i∈J Zi ; in particular, (by convention) Z∅ = X .
Next we let (i, n)∈Z×Z. If H i (V, n) denotes the continuous étale cohomology

H i
cont(V, Ql(n)) of [Jannsen 1988], and similarly for cohomology groups with

supports, the exact sequences for cohomology with supports and the reasoning of
[Esnault et al. 1998, §3.3] yield a spectral sequence

E p,q
1 =

⊕
|J |=d−p

Hq
Z J

(X , n)⇒ H p+q−d(X, n), (2-1)

where d = dim X and where the d1 differentials are given by Gysin maps. By purity
[Jannsen 1988], we have

Hq
Z J

(X , n)≃ Hq−2(d−p)(Z J , n+ p− d). (2-2)

This yields the following.

Proposition 2.1. Suppose that k is finite. Then E p,q
1 = 0 unless q ∈ {2n, 2n+ 1},

d − n ≤ p ≤ d and n ≤ d.

Proof. The first condition follows from the Weil conjecture and the Hochschild–Serre
spectral sequence; compare [Colliot-Thélène et al. 1983, §2.1]. In the second con-
dition, the upper bound is clear, while the lower bound follows from the inequality
q−2(d− p)≥ 0 and the first condition. For the third condition, the étale cohomolog-
ical dimension of Z J is 2(d−|J |)+1=2p+1; hence E p,q

1 =0 unless q−2(d−p)≤

2p+ 1, i.e., q ≤ 2d + 1, which in turn implies n ≤ d by the first condition. □

Corollary 2.2. We have

(a) long exact sequences

· · · → Er−2n,2n
2 → H r−d(X, n)→ Er−2n−1,2n+1

2 → Er−2n+1,2n
2 → · · ·
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(b) H i (X, n)= 0, unless n ≤ d and i ≥ n, and an exact sequence

0→ H n(X, n)→
⊕
|J |=n

H 0(Z J , 0)
in
−→

⊕
|J |=n−1

H 2(Z J , 1),

where in is given by the Gysin maps in continuous étale cohomology.

Proof. (a) is obvious from the first condition on q in Proposition 2.1, and (b) then
follows from the other conditions. Indeed, all terms in (a) are 0 if r − 2n < d − n,
i.e., if r − d < n. If now r − d = n, then the middle term is isomorphic to
Ker(Ed−n,2n

1
d1
−→ Ed−n+1,2n

1 ), hence the conclusion. □

Remark 2.3. If |I |≤d and n > |I |, we get a sharper vanishing bound: H i (X, n)=0
for i < 2n− |I |, and an exact sequence

0→ H 2n−|I |(X, n)→ H 0(Z I , 0)→
⊕

|J |=|I |−1

H 2(Z J , 1).

3. Reduced homotopic modules

We go back temporarily to a general perfect field k and write HI for the category
of homotopy-invariant Nisnevich sheaves with transfers over k [Mazza et al. 2006,
Lecture 13]. Let HIo be the full subcategory of HI consisting of birational sheaves
[Kahn and Sujatha 2017, Definition 2.3.1].1 By [Kahn and Sujatha 2017, §7.1 and
Theorem 7.3.1], the inclusion functor HIo ↪→HI has a right-adjoint

F 7→ Fnr = R0
nrF .

Definition 3.1. A sheaf F ∈HI is reduced if Fnr = 0.

Lemma 3.2. Let F ∈HI. Then the presheaf with transfers

Frd = Coker(Fnr→ F)

is a reduced (Nisnevich) sheaf , and the functor F 7→ Frd is left adjoint to the
inclusion of reduced sheaves into HI.

Proof. By [Kahn and Sujatha 2017, Lemma 2.3.2], we have H 1(X,Fnr) = 0 for
any smooth X , hence a short exact sequence

0→ Fnr(X)→ F(X)→ aFrd(X)→ 0,

where aFrd is the Nisnevich sheaf associated to Frd; therefore Frd→ aFrd is an
isomorphism of presheaves. Applying now the functor Rnr of [Kahn and Sujatha
2017, §3.1] to the exact sequence 0→ Fnr → F → Frd → 0, we get an exact
triangle in DMo:

Rnr(Fnr[0])→ Rnr(F[0])→ Rnr(Frd[0])
+1
−→ .

1Recall that a presheaf is birational if it inverts open immersions; it is then automatically a
Nisnevich sheaf.
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But Rnr(Fnr[0])= Fnr[0] because R0
nrF[0] ∈ DMo by [Kahn and Sujatha 2017,

Theorem 4.4.1] (the part on t-structures). Taking the long cohomology exact
sequence for the homotopy t-structure of DMo, it follows that R0

nr(Frd) = 0, i.e.,
that Frd is reduced. That it defines the said left adjoint is now obvious. □

Here is a generalisation. Recall that F ∈ HIo
⇔ F−1 = 0, where (−)−1 is

Voevodsky’s contraction [Kahn and Sujatha 2017, Proposition 2.5.2].

Definition 3.3. (a) A sheaf F ∈HI is of coniveau < n if F−n = 0.2 Write HI<n

for the full subcategory of HI consisting of sheaves of coniveau < n (so that
HI<1 =HIo).

(b) A sheaf F ∈HI is n-reduced if its only subsheaf of coniveau < n is 0.

Definition 3.4. We write DMeff
<n = DMeff/ DMeff(n) (so that DMeff

<1 = DMo).

The same yoga as in [Kahn and Sujatha 2017] (Brown representability) gives:

Proposition 3.5. The localisation functor ν<n : DMeff
→ DMeff

<n admits a (fully
faithful) right-adjoint ιn , which itself admits a right-adjoint R<n : C 7→ C<n . More-
over, there are functorial exact triangles

ν≥n M→ M εM
−−→ ιnν<n M +1

−→,

where εM is the unit of the adjunction (ν<n, ιn) and, as in [Huber and Kahn 2006,
(1.1)], ν≥n M = Hom(Z(n), M)(n). □

The key point is the following.

Proposition 3.6. The homotopy t-structure on DMeff induces a t-structure on
DMeff

<n via ιn , with heart HI<n .

Proof. For C ∈ DMeff, write C−n = Hom(Z(n)[n], C). Then C ∈ ιn DMeff
<n if and

only if C−n = 0. But this functor is t-exact as the n-fold composition of the t-exact
functor (−)−1 [Déglise 2011, Theorem 5.2]. □

Proposition 3.7. (a) The inclusion HI<n ↪→ HI has a right-adjoint F 7→ F<n .
Moreover, we have (F−1)<n−1 = (F<n)−1 as subsheaves of F−1.

(b) The inclusion of n-reduced sheaves in HI has a left-adjoint F 7→ Fn-rd, and
the unit morphism F→ Fn-rd is an epimorphism of sheaves.

Proof. Since (−)−n is exact and commutes with infinite direct sums, HI<n is stable
under arbitrary colimits; defining F<n= lim

−−→
G, where G runs through the subsheaves

of F which belong to HI<n , proves the first part of (a). For the second part,
the exactness of (−)−1 gives an inclusion (F<n)−1 ⊆ (F−1)<n−1; conversely, the
inclusion (F−1)<n−1⊆F−1 yields by adjunction a morphism (F−1)<n−1⊗Gm→F ,

2This terminology will be justified by Lemma 4.4(a).
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which factors through F<n by the cancellation theorem [Voevodsky 2010]; hence
(F−1)<n−1 ⊆ (F<n)−1 by adjunction again.

For (b), define Fn-rd = Coker(F<n → F). Using Proposition 3.6, the same
reasoning as in the proof of Lemma 3.2 shows that Fn-rd is n-reduced, hence defines
the desired left adjoint. □

Remark 3.8. Contrary to Lemma 3.2, the map F→ Fn-rd may not be an epimor-
phism of presheaves if n > 1.

Recall from [Déglise 2011] that a homotopic module is an �-Gm-spectrum
in HI, i.e., a sequence (Fn)n∈Z of objects of HI provided with isomorphisms
Fn −→

∼ (Fn+1)−1. We shall say that a homotopic module (Fn) is (−1)-connected
if Fn = 0 for n < 0. Write HI∗ for the category of homotopic modules and HIc

∗
for

its full subcategory of (−1)-connected homotopic modules.

Definition 3.9. A (−1)-connected homotopic module (Fn)n≥0 is reduced if Fn is
reduced for all n > 0. Write HIrd

∗
for the full subcategory of HIc

∗
formed of reduced

homotopic modules.

Lemma 3.10. If (Gn) ∈HIc
∗

is reduced, then Gn is n-reduced for all n ≥ 0.

Proof. We proceed by induction on n. The case n = 0 is trivial. Suppose that the
statement is true for n−1≥ 0, and let H⊆ Gn with H ∈HI<n . Then H−1 ⊆ (Gn)−1

is 0 since H−1 ∈HI<n−1. As Gn is reduced, we have H= 0. □

Theorem 3.11. The inclusion HIrd
∗

↪→HIc
∗

has a left-adjoint (F∗) 7→ (F∗)rd. The
unit of this adjunction is an epimorphism of graded sheaves.

Proof. For (F∗) ∈HIc
∗

and n ≥ 0, define

F rd
n = (Fn)n-rd.

By Proposition 3.7(a), the isomorphisms Fn−1 −→
∼ (Fn)−1 induce isomorphisms

(Fn−1)<n−1 −→
∼ ((Fn)<n)−1, hence they induce isomorphisms F rd

n−1 −→
∼ (F rd

n )−1

by Proposition 3.7(b). Thus (F∗)rd
:= (F rd

∗
) ∈HIc

∗
, and this homotopic module is

reduced. Its universal property now follows from Lemma 3.10. □

4. Cohomology

Lemma 4.1. Let F ∈HI. If F is a smooth closed subset of pure codimension c in
a smooth k-scheme X , there are isomorphisms H i

F (X,F)≃ H i−c(F,F−c), hence
a long exact sequence for U = X − F :

· · · → H i−c(F,F−c)→ H i (X,F)→ H i (U,F) ∂
−→ H i+1−c(F,F−c)→ · · · .
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In particular, we have F(X)−→∼ F(U ) if c > 1 and an exact sequence

0→ F(X)→ F(U )→ F−1(F)

if c = 1.

Proof. Let MF (X) = cone(M(U ) → M(X)). We have a Gysin isomorphism
MF (X) ≃ M(F)(c)[2c] ≃ M(F)⊗G⊗c

m [c] [Mazza et al. 2006, Theorem 15.15];
hence

H i
F (X,F)≃ DMeff(MF (X),F[i])≃ DMeff(M(F)⊗G⊗c

m [c],F[i])

≃ DMeff(M(F),F−c[i − c])≃ H i−c(F,F−c). □

Proposition 4.2. Let p : Y → X be an alteration of smooth k-schemes. Then, for
any F ∈ HI, there exists a map p∗ : F(Y )→ F(X), natural in F , such that the
composition F(X)

p∗
−→ F(Y )

p∗
−→ F(X) is multiplication by the generic degree δ.

Proof. If p is finite, this follows from the transfer structure on F . In general, let
Y q
−→ Z r

−→ X be the Stein factorisation of p. Considering the normalisation of Z ,
we see that Z is normal. Therefore, by the valuative criterion of properness there
exists a closed subset F ⊂ Z of codimension ≥ 2 such that q is an isomorphism
above Z − F . Then F ′ = r(F) is of codimension ≥ 2 in X , and F ′′ = r−1(F ′) is
still of codimension ≥ 2 in Z . Let G = q−1(F ′′); then q|Y−G : Y −G→ Z − F ′′ is
an isomorphism; hence p′ := p|Y−G : Y −G→ X − F ′ is finite. We define p∗ as
the composition

F(Y )→ F(Y −G)
p′∗
−→ F(X − F ′)−→∼ F(X),

where the last map is the inverse of the isomorphism of Lemma 4.1. Using the
commutative diagram

F(Y ) F(Y −G)

F(X) F(X − F ′)

p∗

∼

p′∗ (4-1)

we see that p∗ p∗ is multiplication by δ. □

Remark 4.3. If p is birational, p′∗ is an isomorphism in (4-1). Since its top map
is injective (Lemma 4.1), p∗ is an isomorphism.

The following lemma will not be used in the sequel but seems worth noting. It
generalises [Kahn and Sujatha 2017, Lemma 2.3.2], which is its special case n = 1.

Lemma 4.4. Let F ∈HI<n . Then:

(a) If Z ⊂ X is a closed pair of smooth varieties, with Z of codimension ≥ n, then
H∗(X,F)−→∼ H∗(X − Z ,F).

(b) H i (X,F)= 0 for i ≥ n and any smooth X.
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Proof. (a) follows from Lemma 4.1 and the definition of HI<n . For (b), by induction
on n, the first and last group in the exact sequence of this lemma are 0 for i−c≥n−c,
hence for i ≥ n. By a standard argument of successive singular loci, this implies
that H i (X,F)−→∼ H i (U,F) when i ≥ n for any open immersion U ↪→ X ; but the
functor X 7→ H i (X,F) is effaceable for i > 0 in the sense that every cohomology
class vanishes locally for the Zariski topology, hence the conclusion. □

Remark 4.5. The above results can be deduced more elementarily from the Gersten
resolution of Voevodsky [2000a, Theorem 4.37].

Theorem 4.6. Let n > 0. For any smooth projective variety X , the counit map of
the adjunction of Proposition 3.6

ιnν<n M(X)→ M(X)

becomes an isomorphism after applying the truncation functor τ≤−n (cohomological
notation).

Proof. It suffices to show that τ>−nν
≥n M(X)= 0. Writing

ν≥n M(X)= Hom(Z(n)[n], M(X))(n)[n]

= Hom(Z(n)[n], M(X))⊗G⊗n
m

and noting that tensor product is right t-exact in DMeff, it suffices to show that
τ>−n Hom(Z(n)[n], M(X))= 0. This result was proven in [Kahn and Sujatha 2018,
Proposition 2.3]. □

Corollary 4.7. Let X be a smooth projective variety. Then, for any F ∈ HI, the
counit map

H i (X, ιn R<nF)→ H i (X,F)

is an isomorphism for i < n. If F ∈HIn-rd, both sides are 0 for i = 0.

Proof. The first point follows directly from Theorem 4.6. The second follows from
the first, since R0

<nF = F<n for any F . □

Let F be any abelian sheaf on the big Zariski site on smooth k-varieties. For
(X , Z , X) as in the beginning of Section 2, we have a spectral sequence similar
to (2-1):

E p,q
1 =

⊕
|J |=d−p

Hq
Z J

(X ,F)⇒ H p+q−d(X,F). (4-2)

If F = Fn is part of a homotopic module, Lemma 4.1 yields this time

Hq
Z J

(X ,Fn)≃ H p+q−d(Z J ,Fn+p−d). (4-3)
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Proposition 4.8. Suppose (Fn) ∈HIrd
∗

(see Definition 3.9). Then, for p+ q = d ,
we have E p,q

1 = 0 except for p = d − n, hence an exact sequence

0→ Fn(X)→
⊕
|J |=n

F0(Z J )
in
−→

⊕
|J |=n−1

H 1(Z J ,F1),

where in is induced by the boundary maps ∂ of Lemma 4.1.

Proof. The first claim follows from Lemma 3.10 and Corollary 4.7, and the second
follows from the first. □

5. Back to Section 2

We now make the link with the situation in that section, so assume again k finite.
For any smooth k-scheme X , write

Hn(X)= H n
cont(X, Zl(n)).

Proposition 5.1. The presheaf Hn has a transfer structure and is A1-invariant;
after tensoring with Q, it becomes an étale sheaf , and the collection (Hn ⊗Q)n∈Z

is an object of HIrd
∗

.

Proof. That finite correspondences act on étale cohomology with coefficients in
twisted roots of unity follows from [Mazza et al. 2006, Theorem 10.3]. Since
this action commutes with change of coefficients, it induces one on Hn .3 Its A1-
invariance is classical, and moreover (Hn)−1 ≃Hn−1 by the projective line formula
in étale cohomology. With the notation of the introduction, H n(Ql(n)c) is the étale
sheaf associated to Hn ⊗Q, which is therefore already an étale sheaf by (1-1).
Moreover, the Weil conjectures imply that Ql(n)c

= 0 for n < 0 [Kahn 1998,
Corollary 6.10(b)]; hence (Hn ⊗Q) ∈HIc

∗
. Finally, Hn ⊗Q is reduced for n > 0

once again by the Weil conjectures plus the theorem of de Jong [1996, Theorem 4.1]
since F<1(X)=F(X) for any F ∈HI if X has a smooth compactification X [Kahn
and Sujatha 2017, Corollary 7.3.2]. □

Since (KM
n ) ∈HIc

∗
, (1-3) for all n ≥ 0 factors through a morphism in HIrd

∗

(KM
n )⊗Ql ↠ (KM

n )rd
⊗Ql→ (Hn ⊗Q) (5-1)

by Theorem 3.11 and Proposition 5.1. Here we forget that Hn⊗Q is an étale sheaf
and only remember its Nisnevich sheaf structure.

Theorem 5.2. Let (X , Z , X) be as in the beginning of Section 2. Then the second
map of (5-1) is an isomorphism when evaluated at X.

3Since k is finite, one can use the isomorphisms Hn
cont(X, Zl (n)) ∼−→ lim

←−
Hn

cont(X, µ⊗n
lν ) to

simplify one’s life.
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Proof. By functoriality, Propositions 2.1 and 4.8 yield via (5-1) a commutative
diagram of short exact sequences

0 Fn(X)
⊕
|J |=n

F0(Z J )
⊕

|J |=n−1
H 1(Z J ,F1)

0 Hn(X)⊗Q
⊕
|J |=n

H0(Z J )⊗Q
⊕

|J |=n−1
H 1(Z J ,H1⊗Q)

0 Hn(X)⊗Q
⊕
|J |=n

H 0(Z J , 0)
⊕

|J |=n−1
H 2(Z J , 1)

a b c

d

in

where Fn= (KM
n )rd
⊗Ql . Here the map between the last two rows follows from com-

paring the spectral sequences (2-1) and (4-2) via (1-3). But KM
0 = Z; hence b is an

isomorphism, and KM
1 =Gm ; in particular, KM

1 ⊗Ql is reduced because E∗ is finite
for any finite extension E/k. It follows from the construction in [Grothendieck and
Deligne 1977, §2.1] that d ◦c is the cycle class map for divisors; therefore it is injec-
tive since we are over a finite field. A diagram chase now shows that a is bijective. □

6. Proof of Theorem 1.1

The field k is still finite.

Theorem 6.1. The second map of (5-1) is an isomorphism for any n ∈ Z. If n ≤ 2,
the composition is an epimorphism of presheaves.

Proof. Let X be smooth irreducible. By [de Jong 1996, Theorem 4.1], applied with
Z = ∅, there is an alteration p : X1→ X and a dense open immersion X1 ⊆ X1

such that X1 is smooth projective and X1− X1 is the support of a divisor with strict
normal crossings. By Theorem 5.2, the statement is true at X1; hence it is true at X
thanks to Proposition 4.2. For n ≤ 2, the claim follows from Lemma 3.2. □

Theorem 6.2. The morphism (1-3) is an epimorphism after tensorisation with Q.

Proof. By Theorem 6.1 and the epimorphy in Theorem 3.11, (1-3) is an epimor-
phism of Nisnevich sheaves, hence also of Zariski sheaves by [Mazza et al. 2006,
Theorem 22.2]. □

Proposition 6.3. The cokernel of H n(X, Z(n))⊗Zl→ H n
cont(X, Zl(n)) is torsion-

free, and its kernel is divisible. Here the left-hand side denotes motivic cohomology.

Proof. By [Kahn 2012, Corollary 3.5], the map H i
ét(X, Z(n))⊗Zl→H i

cont(X, Zl(n))

has the said properties for any i . On the other hand, the norm residue isomorphism
theorem implies that the map H n(X, Z(n))⊗Zl→ H n

ét(X, Z(n))⊗Zl is an isomor-
phism (Beilinson–Lichtenbaum conjecture, [Voevodsky 2011]). □
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Proof of Theorem 1.1. By Theorem 6.2, the cokernel of (1-3) is torsion. On the
other hand, that of Proposition 6.3 remains torsion-free after Zariski-sheafification
(an exact functor). But (1-3) factors as a composition

KM
n ⊗Zl→Hn(Z(n))⊗Zl→Hn

cont(Zl(n)), (6-1)

where the first morphism is epi by [Mazza et al. 2006, Theorem 5.1] and [Elbaz-
Vincent and Müller-Stach 2002, Proposition 4.3]. Thus the cokernel of (1-3) is 0. □

Remark 6.4. In (6-1), the kernel of the second morphism is divisible (same rea-
soning as before), while the kernel of the first morphism is killed by (n− 1)! (see,
e.g., parts (6) and (11) of [Kerz 2010, Proposition 10]), where its failure to be 0
comes from too-small residue fields (part (5) of [loc. cit.]). To correct this and
obtain divisibility of the kernel of (1-3), one may replace the sheaves of Milnor
K -groups by sheaves of improved Milnor K -groups as in [loc. cit.].

7. The global sections of Milnor K -sheaves

Recall that k is finite. To say that the sheaf KM
n ⊗Q is reduced is exactly to say

that
H 0(X,KM

n )⊗Q= 0 (7-1)

for any connected smooth projective k-variety X . This is true for n= 1 because this
group is E∗⊗Q, where E is the field of constants of X and E is finite (this fact
was used in the proof of Theorem 5.2). For n > 1, it is open but still true for certain
smooth projective X : recall that X is of abelian type if its Chow motive is a direct
summand of that of an abelian variety (possibly after a finite extension of k). Then:

Theorem 7.1. Let n ≥ 2. Suppose that X is of abelian type and that the Tate
conjecture holds for X in codimension n. Then (7-1) holds.

Proof. It is analogous to that of [Kahn 2003, Lemma 1.6] or [Kahn 2023, Theo-
rem 5.4], so we only sketch it. We have

H 0(X,KM
n ⊗Q)≃ DMeff(M(X),KM

n [0]⊗Q), (7-2)

where KM
n ⊗Q≃Hn(Q(n)) (see Remark 6.4) is viewed as a homotopy-invariant

Nisnevich sheaf with transfers. Write Meff
rat (resp. Meff

num) for the category of effective
pure motives over k with rational coefficients modulo rational (resp. numerical)
equivalence [Scholl 1994]. Let

⊕
i∈I Si be a decomposition of hnum(X) ∈Meff

num
into a direct sum of simple motives. By the nilpotence theorem of Kimura [2005,
Proposition 7.5 and Example 9.1], lift this decomposition to an isomorphism
hrat(X)≃

⊕
i∈I S̃i in Meff

rat. If 8 :Meff
rat→DMeff is the composition of the functor

Meff
rat→ DMeff

gm of [Voevodsky 2000b, Proposition 2.1.4] with the full embedding
DMeff

gm ↪→ DMeff of [loc. cit., Theorem 3.2.6], we thus have

M(X)≃
⊕
i∈I

8(S̃i ).
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On the direct summand DMeff(8(S̃i ),KM
n [0]) of the right-hand side of (7-2),

the action of the absolute Frobenius on the left and right term of the Hom induces
the same action on the Hom, by naturality. Its action on KM

n [0] is multiplication
by qn (where q = |k|), while its action on 8(S̃i ) is killed by a suitable power of
the minimal polynomial 5i of the Frobenius endomorphism of Si . Therefore, if
5i (qn) ̸= 0, then this direct summand is torsion; compare [Kahn 2003, Lemma 1.6].

The remaining case is the one which involves the Tate conjecture. Namely,
suppose that 5i = T −qn . Then, inside H 2n(X k̄, Ql), the geometric Frobenius acts
on the summand H 2n((S̃i )k̄, Ql) by multiplication by qn . By the Tate conjecture this
corresponds to an element of C H n(X)⊗Ql , hence to a nonzero morphism S̃i→ Ln;
by Schur’s lemma it is an isomorphism modulo numerical equivalence, hence also
modulo rational equivalence again by Kimura nilpotence. But 8(Ln) = G⊗n

m [n];
hence DMeff(8(S̃i ),KM

n [0])= 0 again. □

Since the Tate conjecture obviously holds if n ≥ dim X , we get the following.

Corollary 7.2. Let X be a smooth k-surface which is birational to a smooth projec-
tive surface of abelian type. Then the map

H 0(X,KM
n )⊗Ql→ H n

cont(X, Ql(n))

induced by (1-3) is bijective for any n ≥ 0.

Proof. By Abhyankar resolution (and embedded resolution of curves), we are in the
situation at the beginning of Section 2; moreover, since smooth projective curves are
of abelian type, to be of abelian type is a birational invariant of smooth projective
surfaces, so that X and the Zi are of abelian type in loc. cit. By Theorem 7.1, we
may therefore run the proof of Theorem 5.2 by taking Fn = KM

n ⊗Ql instead of
(KM

n )rd
⊗Ql . □

Example 7.3. A smooth projective surface such that b2 = ρ is of abelian type if
and only if it verifies Bloch’s conjecture (e.g., if it is not of general type). Fermat
surfaces are of abelian type, etc.
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