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1. INTRODUCTION 

Let K be a number field, R its ring of integers and 1 a rational prime number. A classical 
result of Harris and Segal [ 121 asserts that, for a well-chosen prime p 5 R, with residue field 
E, the natural map 

Kzi-1(R)OZZ~I,~Kzi-1(E)O,Z,,, (1) 

is split surjective for any i Z 1, at least when I> 2 or K is not “exceptional”. Here, as in the 
sequel, Z(, denotes the ring of rational l-adic integers, that is, the localization of Z at 1. For 
this choice of p, K2i_ ,(E) az Zcl, is isomorphic to H”(K, QJZ,(i)), the Galois fixed points of 
the l-primary roots of unity Tate-twisted i - 1 times (this depends on Quillen’s computation 
of the algebraic K-theory of finite fields [27]). So, in particular, K2i_ 1(R) contains a cyclic 
direct summand isomorphic to H”(K, QJZ,(i)). 

Harris and Segal’s proof is not constructive. Let 1” be a power of 1. Let A be a ring in 
which I is invertible and containing a primitive Z”th root of unity. If ,U denotes the group of 
l”th roots of unity of A, there are natural maps 

TcS(B~+) + Kj(A), j > 0. (2) 

When A is a finite field and contains exactly 1” l-primary roots of unity, Harris and Segal 
show that these maps are split on the I-primary components. Applying this to A = R and to 
A = E as above, the composite 

K,i-,(E)O,Z,,,~x,i-,(B~+)~ZZ~l)~Kzi-I(R)OzZ~r, 

is a splitting of (l), where the first map is a Harris-Segal section and the second one is 
induced by (2). But there are a priori lots of Harris-Segal sections, which induce a priori lots 
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of splittings of (1). It is not clear at all, at that stage, how many different cyclic summands of 
Kzi _ 1(R) the Harris-Segal theorem provides. 

It turns out, however, that all these cyclic summands are the same. This is a consequence 
of a result of Dwyer, Friedlander and Mitchell [7] implying that the map (@& factors 
through Kzi- r(E) OzZCI,. It follows that the Harris-Segal cyclic summands all coincide 
with Im($&; in particular, they do not even depend on the choice of p.’ 

In this paper, we do two things. First, we show how one can get a homotopy-theoretic 
canonical, conceptual formulation of the results described above. Second, we use these 
results and this formulation to solve most of [15, Conjecture 1) in the affirmative. This is 
a key step in the construction of higher ‘anti-Chern classes’ /?i:Hj(R, Z/l”(i)) + 
K,i_j(R, Z/I’) for R a semi-local ring [16]. 

To be more precise, assume 1 odd for simplicity. To any Z [ l/l]-scheme X we associate in 
Section 7 a “cyclotomic” ring spectrum jr(X), such that 

H’(X,,, QJZ,(i)) if n = 2i - 1 > 0 

74j,(X)) = 

i 

rro(X) ZCf, if n=O 

0 otherwise. 

j,(X) generalises the connective cover of the “Im J” spectrum, that one gets for 
X = Spec Z [ l/E]; it is equivalent to the algebraic K-theory of a suitable finite field, localised 
at 1. If f: Y +X is a morphism of schemes (resp. a finite flat morphism), there is an 
“extension of scalars” morphism f* : jr(X) + j,(Y) (resp. a “transfer” morphism 
f, : jl( Y) + j,(X)), satisfying standard properties. In Section 9, we define a homotopy class 
of map 

Pjl(X) 5 R”LKX. 

Here KX denotes the algebraic K-theory spectrum of X and, for any space or spectrum 
S, LS denotes its Bousfield localisation at 1 [S]. We show that /?,x commutes with extension 
of scalars, transfer in the semi-local case and with product if X is essentially of finite type 
over Z. It induces homomorphisms to K-theory with finite coefficients 

H’(Xit, Z/l’(i))8”. Kzi(Xy Z/1’), (3) 

which inherit the corresponding compatibility properties, and split natural homomor- 
phisms going the other way. 

If we specialise to X = Spec R, where R is the ring of integers of a number field, we get 
the following picture: 

Rmjl(R)JR+ W’LKR -+ WLK(R/p). 

For p an appropriate prime, the composition of these two maps in a homotopy 
equivalence. 

Harris and Segal start from p and want to split the map R”LKR + R”LK(R/p). To do 
this they introduce a “monomial” space mapping both to R”LKR and !CPLK(R/p), and 

+ Let me take this opportunity to point out a gap in a proof of [12]. It is claimed there that, if K is an exceptional 

number field and I = 2, then KZi- ,(R) contains a cyclic direct summand of order wir 2w, or ~42, where 

wi = IH’(K, Q/Z(i))l. The proof is a reduction to the non-exceptional case, by using transfer from the K-theory of 

R(a) to that of R. One point in the argument is to study the Galois action on the cyclic direct summand of 

K2,_ ,(R(G)) (compare [12, p. 30, Section 21). But this presupposes that the direct summand is stable under 

Galois action (compare lot. cit., lines-9/-6, where the argument is incorrect). This gap is now filled, thanks to the 

Dwyer-Friedlander-Mitchell theorem. 
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show that the map to !PLK(R/p) is split. Our Wjl(R) is precisely an appropriate 

localisation of this space. So we have swung the focus the other side: the canonical map is 
now flR, which is retracted by the choice of a suitable p. 

The following analogy may inspire the reader. If X is a curve over a field k, for any 
closed point p& X we have a reduction map (I~)* : KX + Kk(p), where k(p) is the residue 

field at p. When p is rational, (I~)* has a section rc* given by the structural morphism 
X 5 Spec k, which evidently does not depend on the choice of p. 

The formalism described above is reminiscent of this situation: suitable p’s correspond 
to rational points, and the map bR corresponds to that coming from the structural 
morphism in the example above. But in the present case there is no base and the 
construction of flR is far from trivial. To complete the analogy, one might think of an 
imaginary base, perhaps consisting of roots of unity. This fits nicely with Iwasawa’s 
philosophy according to which cyclotomic extensions in the number field case play the role 
of base field extensions in the function field case. 

We now describe the contents of this paper. In Section 3 we introduce auxiliary spectra, 
corresponding to the Harris-Segal “monomial” spaces. The main piece of work is the 

construction of j,(X) in the case of rings of cyclotomic integers: this is done in Section 4, 
except in certain cases for 1 = 2. In Section 5 we construct &, still for cyclotomic integers, 
using the results indicated above, and in Section 6 we prove its functorial properties. 
Sections 7-9 are devoted to the (essentially trivial) extension to general schemes and the 
proof of (most of) [15, Conjecture l] (Corollary 9.5 and Theorem 9.8). The latter rests 
partially on the Suslin-Gillet-Thomason-Gabber rigidity theorem for the K-theory of 

strict Hensel local rings. 
There are five appendices. Appendix A is a rather careful review of facts on symmetric 

(bi)monoidal categories. Appendix B is a detailed construction of the localisation b la 
Dwyer-Friedlander-Snaith-Thomason [S] of a ring spectrum (or modules over it) relative 
to a mod m homotopy class. Special attention has been devoted to the cases m = 3 and 4; we 
hope this section will be useful to some readers (it certainly was to the author!) In 
Appendix C we start developing the theory in the remaining 1 = 2 cases. 

A conjecture of [7] implies that px is an infinite loop map. It is shown in Appendix D 
(Theorem D.2) that this conjecture follows from the validity of Lichtenbaum-Quillen 
conjecture for rings of l-cyclotomic integers (this was observed before by Mitchell). We also 
show in Appendix E (Theorem E.l) that fix has retractions when X is of finite type over Z; 
this is a higher-dimensional generalisation of the Harris-Segal theorem. 

2. NOTATION 

2.1. We fix a prime number 1. ZI denotes the 1-adic integers and ZcI, = ZlnQ the rational 
I-adic integers. If M is a Zl-module on which Zf acts by a homomorphism p : Z: -+ Aut(M) 
and i E Z, we denote by M(i) the “ith Tate twist” of M, i.e. the same module on which Z: acts 
by the new action p’(u) = u’~(u). In particular, we have the Z1[Z:]-modules Z/l’(i) and 
QJZ,(i), twisted from the trivial modules Z/l” and Ql/Z,. 

2.2. We note 
1*= 1 

i 

if1>2 

4 ifl=2. 

2.3. We shall often use the notational shortcut 

1 2121 i 1 + 1Zl if 1>2 + = 

1 + 4Z2 if 1 = 2. 
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2.4. Let A be a closed subgroup of Zf. We write A1 = An(l + 1ZJ and A = A/Al. Then 
A is a finite group of order dividing I - 1 if I > 2 and dividing 2 if 1 = 2, hence prime to I if 
1 > 2. 

2.5. If F is a field, we denote by GF its absolute Galois group: so GF = Gal(F,IF) for 
some separable closure F, of F. If 1 is invertible in F, we denote by IC,: GF + Z: the 
cyclotomic character at 1: this is the continuous homomorphism given by the action of GF on 
the l-primary roots of unity of F,. This way any Zf-module becomes a Galois module; 

Z/l”(l) and QJZ,(l) become isomorphic to the modules ,u? and /+ of l”th and l-primary 
roots of unity. More generally, we can do the same for any connected scheme X over Z [ l/l], 
using its algebraic fundamental group rci(X, rf) relative to some geometric point rf. The 
image 

Ax = ~kri(X, V)) E Z: 

does not depend on the choice of f. 

2.6. For any ring A, we denote by P(A) the category of finitely generated projective 

A-modules. 

2.7. For any unpointed space X, we denote by X, the union of X and a disjoint base 
point. If X is a pointed space and N is a perfect normal subgroup of x1(X), we denote by X+ 
Quillen’s+ construction on X with respect to N [lS]. Usually, N will be clear from 
the context. If X = BGL(R) for some ring R, we have N = E(R) and 
K,,(R) x BGL(R)+ w WKR, where KR is the K-theory spectrum of R. 

2.8. S is the sphere spectrum. For an abelian group D, H(D) denotes its Eilen- 
berg-MacLane spectrum and M(D) its Moore spectrum. In particular, for an integer m 2 1 
we simply write M(m) for M(Z/m), so that there is a fibration !55 2 s + M(m) and a corres- 
ponding fibration S 1: S + S A M(m) for any spectrum S. We denote by M(P) the spectrum 

M(Q,/Z,) = hocolim M(P). For any space X, Y’X is the suspension spectrum of X and, for 
any spectrum S, R”S (resp. sZ,“S) is the zero space of S (resp. its connected component at 0). 
For a spectrum S and an integer n, we denote by Sa, the truncation of S above n (denoted by 
S > n - 1 < in [41]). If a group G acts on S, we write S ” for the spectrum of homotopy 
fixed points (ShG = holim, E G (S 3 S)). Finally, for a spectrum S, we denote by La the functor 

“localisation at s” of [S]. In fact, we shall only use this localisation in simple “arithmetic” 
cases. If S = M(Zo,), we write L for L MCz,,,J (when 1 is unambiguous): this is iocalisation at 
the prime I, so that rr*(LS) N n,(S) 0 ZCI). Similarly, S[l/fl (resp. So) denotes localisation 
away from 1 (resp. at Q): n,(S[l/fl) = rc,(S) Q Z[l/l], rc*(So) = rc,(S) @ Q. If S = M(Z/l), 
we write XI for L,X: this is the “completion at 1” of X ( x holim, X A M(1’)). 

3. THE SPECTRA Z(f, A) 

3.1. Recall [31, 20, 40, 131 that to a (small) symmetric monoidal category Y one can 
associate a spectrum Spt(Y). The assignment Yt+Spt(Y) defines a functor from the 
category of symmetric monoidal categories (with morphisms functors commuting to the 
monoidal structure) to the category of spectra (and strict morphisms). A symmetric 
bimonoidal category yields a ring spectrum, and a multiplicative functor yields a morphism 
of ring spectra. 
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3.2. Examples. (1) Let Y = 9(R) be the category of projective modules over the ring R. 
Then Spt(Y) = K(R) is the K-theory spectrum of R. Its O-space W’K(R) is homotopy 

equivalent to K,(R) x BGL(R)+, where + is Quillen’s+ construction. 
(2) Let 9’ = Y(A), where A is a group (see A.2). Then Spt(9’) = X”(BA+), the spectrum 

of suspensions of BA union a disjoint base point. By the Barratt-Priddy-Quillen-Segal 
theorem [31, Proposition 3.61, its O-space Q(BA+) is homotopy equivalent to 

Z x B(%JA)+, where 6, is the infinite symmetric group and 2 is wreath product. 

3.3. The construction Spt composed with a pseudo-functor from a category 97 to the 
2-category of symmetric monoidal categories (compare A.l) does not yield a functor from 
V to spectra, but of course a pseudo-functor, if one considers spectra as forming a 2- 
category by using homotopies. A rectification of this pseudo-functor, however, yields 
a genuine functor from 9 to spectra; compare, e.g. Cl33 for details. We shall keep quiet on 
this question and assume here that pseudo-functors have been rectified, following the 
practice of [41] (see bottom of p. 440). 

3.4. Dejnition. (a) For A E 1 + 212: we set C(I, A) = LSpt(YA), where YA is the 
symmetrical bimonoidal category defined in A.8. 

(b) Suppose 1 > 2. For A E Z:, we set X(1, A) = X(1, A)hn (see 1.4). 

3.5. Remarks. (1) By Example 3.2(2), C(1, A) = LCmR(&)+ if A c 1 + 21Z1. 
(2) We shall define YA and C(2, A) for A q? 1 + 4Z2 in Appendix C. 

3.6. LEMMA. Let A be a closed subgroup of Zf’. Then the map 

hocolim X(E, U) + C(I, A) 
UZA 

is an equivalence, where U runs through the open subgroups of Z: containing A. 

Proof: If A g 1 + 21Z[, this is immediate from the description of X(1, A) 

(Example 3.2(2)). In general, observe that the groups 0 are finite, hence the inverse system 
(D) stabilises, and homotopy fixed points under the action of a finite group commute with 
filtering colimits. cl 

Let 1: KRA -+ KRA1 be the map coming from extension of scalars 9(RA) + .Y(RA1). For 
any gE& g 0 1 = 1, hence 1 induces a map 

KRAA (KRA’)h”. 

3.7. PROPOSITION. Ifl > 2, LKRAz(LKRA1)h’. 

Proof: It suffices to show that for all i, Ki(R’) -G Xi(LKRA’)“. Since 1 is odd, A has order 
prime to 1 and the target group is just Ki(RA1)A. Let z: KRA’ -+ KRA be the K-theoretic 
transfer coming from the restriction of scalars 7 : B(RTA1) + Y(RA). By the projection 
formula, we have 

7, o 1, = multiplication by [RA1] 

and the class [RA’] EK,,(R”) 0 Zcl, is invertible, since its rank is prime to 1 and 
Ker(KO(RA) 2 Z) is nilpotent. On the other hand, 

1*“7* = c 5 
se& 

hence r* 0 7* restricted to K,(RA1)’ induces multiplication by [A[. 0 
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3.8. For any closed subgroup A of 1 + 2lZ:, we still denote by 

cDA : X(1, A) + LKRA 

the morphism of localized spectra induced by the functor cDA of equation (A6) via the Spt- 
construction (without abusing notation, one should write this morphism L Spt(QA).) Sim- 
ilarly, we simply denote by 1 N/A, z~,~, lpiRA and z~D,,~A the morphisms we should denote by 
L Spt(rK& etc. The morphisms @‘q IE,A and Z~K/RA are multiplicative, unlike rd.1~ (resp. rau,Rb) 

which satisfy the projection formula. 

3.9. Dejinition. Suppose I > 2. For A an arbitrary closed subgroup of Z:, we define 

(DA : C(l, A) -+ LKR” 

as the composite of (@A1)ha (see 3.8) with the inverse of the equivalence of Proposition 3.7. 

3.10. PROPOSITION. The map cDA is multiplicative. With notation as in 3.8, the following 

diagrams are commutative: 

C(l, K) 2 LKRA’ C(1, A’) -V+ LKRA’ 

Ib.,d 
t lRd.Rb t 56./A I TXb..Rh 1 

x(1, A) 2 LKRA C(1, A) 2 LKRA. 

Proof Multiplicativity in the case AE 1 + 2lZr follows from Eqs (A4); in general (for 
1 > 2) it follows from this and the fact that the equivalence of Proposition 3.7 is multiplica- 
tive. For A, A’ E 1 + 2lZ,, the commutativity of the two diagrams in Proposition 3.10 
follows from Propositions A.11 and A.13. If 1 = 2 the proof is finished, since aA is only 
defined for such subgroups. If 1 > 2, consider the intermediate group A” = A’A,. We have 

This allows us to reduce the proof to the following two special cases: 

(i) E = A; 
(ii) A; = A1 

Case (i) reduces to the case E = A = 1 by taking holims relatively to 3. Case (ii) is 
obvious in view of the definition of QA and CD”‘. 0 

4. THE SPECTRA j(l, A) AND J(1, A) 

4.1. Bott elements. Let F1 = C(I, 1 + 212:). We define an element /I in rc2(F1, Z/l*) as 
follows. Pick a generator [ of QJZ,(l)’ + 21z1 2: ZJl*. Then p is the image of [ by the 
composite 

Z/l* =,.rrl(BZ/l*) = rca(BZ/l*, Z/l*)= na(Fi, Z/l*). 

Suppose I> 2. Then A = Z:/(l + 1ZJ N (Z/Z)* acts on /I by scalar multiplication. Hence 

B’_’ is invariant under this action. By Proposition 3.7, it defines an element of 
rcztl _ I,(E(l, Z:), Z/l), which we still denote by /I. 
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E = 

i 

WZ?) if 1>2 

C(2, 1 + 4Z2) if 1 = 2. 

For PE xn,(F, Z/1*) as in 4.1, we can define a localised spectrum p- ‘X with an F-linear 
map X 4 fi- ‘X for any F-module X, as in B.22. This assignment is strictly natural for 
F-linear maps. Moreover, if one wishes, one can get a canonical b-’ functor depending only 
on the “I-adic isogeny class” of /3; see B.26. By Proposition B.23 and Theorem B.24, it has the 
following properties: 

(1) x,-l/I-ix,; 
(2) X H p- 'X commutes with arbitrary homotopy colimits; 
(3) Universal property: (i) p acts as an equivalence on /I-‘X A M(1*). (ii) Let Y be an 

F-module and f: X + Y an F-linear morphism such that /I acts as an equivalence on 

Y A M(1*). Then there is a unique (up to homotopy) factorisation 

f 
x- Y 

B- -’ x. 

(4) /--‘(X A M(I*)) can be computed by (equation (Bl)) mapping telescope. 

4.3. In particular, LKZ[l/Q if I > 2 and LKZ[ l/2, i] if I = 2 are F-modules by the map 
dDA of 3.8. Therefore, for any scheme % (over Z[i] if 1 = 2), LK9? is an F-module, and the 
localised spectrum B- ‘LK%” makes sense. By 4.2(2) and [28, Proposition 7.2.21, 

z- HB - ‘LK%” commutes with arbitrary filtered inverse limits of schemes with affine 
transition maps. 

4.4. By the main result of [41], /I- ‘LK% A M(1’) satisfies &tale cohomological descent 
for reasonable %‘. 

The following lemma is quite classical; we include it for the convenience of the reader. 

4.5. LEMMA. Let A be an open subgroup of Z:. If 1 = 2, suppose that A is procyclic, i.e. 
- 1 $ A. Then there exists a jinite field E of characteristic # 1 such that AE = A (cf: 2.5). 

Proof Notice that the hypothesis in the lemma is necessary, since GE N Z is procyclic 
for any finite field E. Let u be a generator of A and let A1 = 1 + Z”Zr. By Dirichlet’s 
arithmetic progression theorem, there exists a prime number p such that p z u (mod 1”+ ‘). 
Let E = F, and &E GE be the Frobenius automorphism. Then rcI(&) = p E Z:. By assump- 
tion, u and p coincide modulo A:. It follows that p also generates A. (This proof shows that 
there are infinitely many such E’S, which can be chosen as prime fields.) 0 

4.6. PROPOSITION. Let A be an open subgroup of Zf (contained in 1 + 4Z2 if1 = 2) and 
E be a JiniteJield such that q(GE) = A. Denote by @‘E the composite 

C(Z, A)z+LKRA -+ LKE 
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where the latter map is induced by the natural ring homomorphism RA + E. Then the map 

/?-‘(C(i, A)A~(~*)) -+ P-‘(KE AM@*)) 

induced by QE is an equivalence. 

Proof: Suppose first that 1 = 2 or A c 1 + IZ1 (i.e. pL1 c E). In this case, Snaith proves 

this in [32, II.l.lO] by a calculation. The general case follows from this one by an analogue 
of Proposition 3.7. 

4.7. COROLLARY. p-lfDE:~-lC(& A) + P-‘LKE is an equiualence. 

This follows from Proposition 4.6 and the universal property of p- ‘, noting that 
C(1, A)oLKEo M HQ by Quillen’s computation of K,E [27]. 

4.8. LEMMA. For anyjnitefield E (containing J-1 if1 = 2), LKE + (fl_lLKE),, is an 
equivalence. 

Proof: It is enough to see this equivalence at Q and after smashing by M(Z*). The 

first one is trivial, and the second follows from f3, Theorem 2.61, at least for 
I> 2. For I = 2, Browder only computes K,(E, Z/2), but a similar computation shows that 
z,(E, Z/4) = A(x) 0 Z/4[Yj, where /? is the image of the Bott element p~Z(2,1 + 4Z2) 
above. 0 

Corollary 4.7 and Lemma 4.8 motivate 

4.9. Dejnition. Let A be an closed subgroup of Z? (of 1 + 4Z2 if 1 = 2). We define 
spectra j(Z, A) and J(1, A) by 

J(I, A) = /3-‘X(1, A), j(l, A) = JU, Ab. 

They imply 

4.10. PROPOSITION. With notation as in Proposition 4.6, the map (DE induces equivalences 
of ring spectra 

Pa:j(l,A)GLKE 

BE: Jfl, A)z p-‘LKE. 

As an immediate consequence we have the following, no doubt well-known to experts 
(compare [l, Ch. IX, Theorem 3.21): 

4.11. COROLLARY. For a~nite~eld E of characteristic # 1, the ring spect~m LKE only 
depends on BE, at least if! > 2 or I = 2 and AIE G 1 + 4Z2. 

4.12. Remark. See Propositions C.13, Corollary C.14 and Proposition Cl5 for an 
extension of these results to the case 1 = 2, A$1 + 4Z2. 

4.13. By construction, j(1, A) and Jfi, A) are homotopy commutative and associative 
ring spectra. If d’ c A is another closed subgroup of Z:, there are “restriction” maps 
1: j (1, A) -+ j(l, A’), z : J (I, A) -+ J(I, A’); if A’ has finite index in A, there are transfer maps 
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r : j(l, A’) + j(l, A), z : J (1, A’) + J (1, A); all are included by the corresponding maps on Z(I, A). 
By Propositions 3.10 and 4.10, they correspond to extension of scalars and transfer for the 

K-theory of finite fields. 

4.14. LEMMA. Let A be a closed subgroup of Z: (A = 1 if1 = 2). Then 

j(1, A) = hocolim j(l, U) 

J (I, A) = hoc:lim J (1, U) 

where U runs through the open subgroups containing A and the homotopy colimits are taken 
relatively to the restriction maps of 4.13. 

Proof For J(1, A), this follows from 4.2(2) and the same property for C(1, A) 

(Lemma 3.6); then it follows for j(1, A) by truncation. El 

The following theorem gives some insight into the spectra j(1, A) and J(1, A): 

4.15. THEOREM. (a) The homotopy groups ofj(1, A) and J(l, A) are the following: 

rt,i(j(l, A)) = Q(J(I, A)) = 0 for all iEZ, except no(j(l, A)) = ~o(J (LA)) = Zcrj 

Xzi_1(J(l, A)) = HO(A, Qt/Z,(i))for all iEZ 

nzi- Aj(l, A)) = 
H’(A\, QJZ,(i) if i > 0 
o if i d 0. 

(b) For 1 odd, j(l, Z:) is homotopy equivalent to the convective cover of the “Im J” 
spectrum. 

(c) The natural morphism j(1, A) + HI (A, j(1, l))ao is an equivalence. 

In (c), I-U (A, j(1, 1)) is the hypercohomology spectrum of the profinite group A with values 
in the sheaf of spectra associated to the presheaf U H j (1, U) on the site associated to the 
category of open subgroups of A, as in [41,1.33]. It should be thought of as homotopy fixed 
points of A on j(1, l), taking the topology of A into account. 

Proof For j(1, A), (a) follows from Proposition 4.10 and 1271; for J(1, A), it follows 
similarly from Proposition 4.10 and [23, (2.4)] (applied with X = Spec E, with E as in 
Proposition 4.10). (b) also follows from Proposition 4.10. q 

Finally, to prove (c), we use the spectral sequence [41, 1.361 

J%’ = HP(A, xq(j(l, 1))) * nq-,(W(A, j(l, I))). 

Since A 2 T or Zt x T, where T is a finite group of order prime to 1 and n,(j(l, 1)) is 
l-primary torsion for q > 0, we have E 2p” = 0 for p > 1 and q > 0 because the profinite 
group Zt has cohomological dimension 1. By Tate’s lemma [39, Lemma], one also has 
E:.q = 0 for all q > 0. Finally, E;*’ = Z(t) (we also have Eigo = H’(A, Z,,,) = 0 and 
E :*” = H’(A, Z(t)) = @(A, Qt/Z,), but do not actually need this). The claim is now clear by 
comparing homotopy groups. 

4.16. COROLLARY. There is a canonical equivalence 

j(1, lr z bu’ 
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and homotopy jibre sequences 

j(l, l)-+Lbu+(bu&r 

j(l, 1) + bu^+ (bu6)a 1 

where bu is the connective cover of KU. 

Proof. Consider the natural homomorphism of spectra 

C(1, 1) 5 Lbu 

induced by the inclusion pI- L, U(l)- V(co). Observing that SW ‘Lbu = LKU we get 

a morphism 

J (I, 1) + LKU 

hence, by truncating, a morphism factoring 0 

j(l, 1) -% Lbu. 

The composite j(l, 1) _ -% L bu + (bu& 1 is obviously null-homotopic, hence j(l, 1) maps 
to the homotopy fibre of Lbu + (buo)> 1; Theorem 4.15(a) implies that this map is 

a homotopy equivalence, hence Corollary 4.16 follows. 0 

4.17. Dejkition. For A E Z: ( E 1 + 4Z2 for 1= 2), we denote by 4” the morphism of 

spectra making the diagram 

Z(1, A) e’ - JV, 4 

commutative. 

This collection of morphisms commutes with product, restriction and transfer in both 
theories. Moreover, for E as in Proposition 4.6, the diagram 

Z(1, A) s LKE 

is commutative. 

4.18. Localising QA, we get a morphism of ring spectra 

J(1, A+ B- ‘LKRA 
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such that the diagram 

C{l, A) A , LKRA 

is commutative. The collection of PA commutes with product (by Proposition B.25(b)), 
scalar extension and transfer. 

4.19. Remark. By a theorem of Snaith (and Zaldivar for I = 2), p-‘LKX % A-‘LKX 

for any X, where A is the Adams map, hence p-‘LKX % LIKX by Example B.27. So one 
may wonder why deal with Bott localisation at all. However, A- ‘x(1, A) is bigger than 
p- ’ C(E, A), so applying the functor L1 to the map aA will not give the construction I want 
(for all these remarks, compare [23]). 

The main expectation is the maps /I” of 4.18 are Bott localisations of morphisms of ring 
spectra 

j(l, A)z LKRA. 

In the next section, we shall construct homotopy classes of such morphisms at the 

zero-space level. 

5. THE HARRIS-SEGAL THEOREM AND THE DWYER-FRIEDLANDER-MITCHELL THEOREM 

5.1. THEOREM. Let tY” be the morphism of Definition 4.17. If A is open, R”e” has homotopy 
sections. 

Proof By Proposition 4.10, e” is equivalent to the natural map x(1, A) + LKE for any 
finite field E of characteristic # 1 such that AE = A. On the connected components of 0 in 
F’c(l, A) and fi”j(l, A), the theorem follows from the Harris-Segal theorem [12; 7, 

Section 41). On the factors ZcI), we simply take the identity. n 

5.2. THEOREM. Suppose A open and E 1 + 21Z,, and let s: F’j(1, A) + Qmx(I, A) be 
a section of !P’/“. Then the maps R”QA and R”QAo s 0 Q”OeA are homotopic: 

a-C(1, A) 5 QL”(LKRA) 

Cl- j(1, A). 

Proof: Choose a finite field E of characteristic # 1 such that AE = A (Lemma 4.5). If E is 
a prime field, it is quotient of RA. As above, we reduce to the diagram 
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The claim follows this time from the Dwyer-Friedlander-Mitchell theorem [7, 
Theorem 4.11. 0 

The following theorem is the main result of this section. 

5.3. THEOREM. Let A be as in Theorem 5.2 and s be a section of CY’tA. Then the homotopy 

class of 
WWA 0 s: R” j(l, A) + R” (LKRA) 

does not depend on s. 

Proof: Let s’ be another section. Then 

5.4. 

5.5. 

P-DA 0 s’ E f2’vA 0 s 0 nmtA 0 s’ tz nmaA OS. Cl 

Definition. We denote the (homotopy class of) map R”OAos by PA. 

PROPOSITION. Let A E ZF be an open subgroup and Ai, A be as in 2.4. Then FA1 is 
A-equivariant (up to homotopy). 

Proof: Write p = fi’VAo s for some s. Let rr E A, considered as acting on C(I, Al), KRA1 
and j (1, Ai). Then CY commutes with cDA’ and eA1. In particular, g- ’ 0 s 0 r~ is another section 
of QcogA1. Therefore, 

5.6. DeJinition. Suppose 1 > 2 or A c 1 + 4Z2. We define p” E [CY’j(I, A), Rm(LKRA)] as 
the composite of 

CY’j(E, A) 3 CY’j(I, Ai)h’iyk CY’(LKRA1)h’ 

and the inverse of the homotopy equivalence LKRA + (LKRA’)h6. of Proposition 3.7. 

Note that PA is (contrary to /I” in 4.18) merely a homotopy class of maps. When writing 
diagrams involving it, we shall mean some representative of this class. 

5.7. PROPOSITION. In all cases, the diagram 

is homotopy commutative. 

ProoJ: In the case A G 1 + 21Z1, this follows from Theorem 5.2 and the definition of flA. 
In general, we observe that, by the definition of p in Definition 5.6, we have to 
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lfpjp o jJA Z p1 1~~1~; on the other hand, we have seen in Section 3 that Q and / also 
commute with zA,,A. Therefore, 

Since E Rdt,Rd is a retraction, this yields the result. 0 

5.8. COROLLARY. For 1> 2, Theorem 5.2 holds for any A open in Z:; we have 

for any section s of !ZPIA. 

Proof Let s be such a section. For the first claim, 

fi”q# o s o Q”D~A z p o Q”{A o s o Q”D~A z B” o Q”{” w fiqA. 

The second claim follows trivially from Proposition 5.7. 

5.9. PROPOSITION. For all open A, the diagram 

Wj(l, A) 5 RrnLKRA 

I I 
n’=J(I, A) n-8b Qmp-‘LKRA 

is homotopy commutative. 

Proof: In the diagram 

W’Z(1, A) 

the big pentagon is commutative, since /3” = p-l@‘. We deduce Proposition 5.9 from this 
fact by using a section of RmeA and Theorem 5.2, as before. 0 

5.10. Let A be a closed subgroup of Z: of infinite index; if 1 = 2 we restrict to A = 1. Let 
U run through the open subgroups of Z: containing A (U c 1 + 4Z2 if I = 2). Taking the 
homotopy colimit of the homotopy classes 

CYj(I, U)-+ ’ RmLKRu 

and taking Lemma 4.14 and [28, Proposition 7.2.21 into account, we get a homotopy class 

CY’j(l, A)a: CY’LKRA. 
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5.11. PROPOSITION (compare [7, Theorem 4.133). For any U as in 5.10, the diagram 

aT(Z, U) - F’C(l, A) = QrnLKRA 

is homotopy commutative. 

Proof: This follows from the definition of p” and Proposition 5.7. cl 

5.12 Remark. We do not know if the diagram in Proposition 5.11 commutes if one 
removes the term QYZ(l, U), and similarly we do not know if Proposition 5.9 holds for 
arbitrary A (cf. [7, end of proof of Theorem 4.131). The problem is that, in the Milnor exact 
sequences 

0 + l@l [!YZ(l, U), R co + ‘j(1, A)] + [Q”X(l, A), &Yj(1, A)] 

+ li&n[R”C(I, U), Qmj(I, A)] + 0 

and 

0 + li@l [nYZ(l, U), fi m+lp-lLKRA]l + [n”X(l, A), Q”B-‘LKRA] 

-+ l@[sZ”C(l, U), R”P-‘LKRA] + 0 

the l$n’ term may be nonzero. 

6. MAIN PROPERTIES OF 8” 

In [7], it is conjectured that a map 1, equivalent to p is an infinite loop map (we shall 
come back to this conjecture in Appendix D) and proved as a token that it commutes with 
the Dyer-Lashof operations (op. cit., Proposition 4.9). In the same spirit, we show that PA 
has a number of very nice properties. 

6.1. THEOREM. If A is open, PA commutes with products. 

Proof: Here, as in further proofs of this section, we sometimes drop the symbols fim and 
L for simplicity. Moreover, we write = rather than z , working in the homotopy category. 
For any A, denote by nA the product on j(l, A) and, for any ring A, denote by nnA the product 
on the algebraic K-theory of A. We have to prove that the diagram 

commutes up to homotopy. 
Let s be a section of !ZeA. Observing that QA commutes with product, we get 

7+(a” A flA) = nR@,4 A aAS) = ~CR*(@~ A CD”) (S A S) 

= aA7CA(S A S) = /?tA7CA(S A S) = flA7CA(fA A 1”) (S A S) 

= flA7’CA(eAS A t”S) = fiA7CA. 

(We used Corollary 5.8.) 0 
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6.2. THEOREM. Let A’ c A be two closed subgroups of Z: (contained in 1 + 4Z2 if1 = 2). 

Then the diagram 

Wj(1, A’) L R”LKR”’ 

k,A t ‘r@ r&!* 
CY’j(l, A) 8” 

t 
SZ”LKRA 

commutes up to homotopy. If A’ is open in A the same holds for the diagram 

W’j(1, A’) L S1”LKRA 

7d.U I 7R”!R” I 
fJ”j(l, A) 

a” , RmLKRA. 

Proof. First assume that both A and A’ are open in Z:. In the case of restriction, let s be 
a section of CY’,*. Then 

lRb.&P = lRd.,R"~*S = V’lS = p’e”‘ls = p'l*,A&As = #iJA’lAjA. 

In the case of the transfer, let s’ be a section of R”e”‘. Then 

For the first diagram, the case where A is open and A’ has infinite index follows from 
the definition of /?* given at the end of the last section. When both A and A’ have infinite 
index, we note that either they are equal and the theorem is trivial for both diagrams, 
or 1 > 2 and they are both finite, contained in p[_ i E Z:. Since this group has order prime 
to 1, an easy argument shows that they are the homotopy fixed points of fl’l under A and A’, 
via the analogue of Proposition 3.7. The commutativity of both diagrams then follows 
trivially. cl 

The next proposition is a trivial consequence of the formula R”LQA = BARme*. 

6.3. PROPOSITION. Let BA: prU + K2(RA, Z/l”) be the composite 

p,v ==,vq(Bp) = Q(B~, Z/l’) + nz(Qo(Bp+), Z/l”)- Kz(RA, Z/l’). 

Then, one has B* = nz@*, Z/I’), with the identi$cation xz(j(l, A), Z/I’) = H’(A, Z/l”(l))from 
Theorem 4.15(a). 

7. THE SPECTRA Z(I, X), j,(X) AND J,(X) 

Throughout this section, X denotes a scheme over Spec Z [ l/l] (over Spec Z [l/l, i] if 
1 = 2). 

7.1. Let X be connected and Ax be as in 2.5. There is a tautological morphism 

X + Spec RAX, 

hence a morphism of ring spectra C(1, Ax) -% LKX, obtained by composing cDAx with the 

natural morphism LKRAx + LKX. 
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7.2. &@&ion. (a) Letf: Y -+ X be a morphism of connected schemes over Spec Z [l/r]. 
f is l-cyclotomic if the diagram 

Y -Spec RAY 

/ 

X -Spec RAx 

is Cartesian. 

(b) A morphism of (arbitrary) schemes over Spec Z [l/a is I-cyclotomic if all its compo- 
nents are. 

7.3. DeJinition. Let X be an arbitrary scheme over Spec Z [ l/1], and (Xi)i EI its connec- 
ted components. We define three ring spectra C(l, X), jr(X) and Jr(X) as follows: 

C(E, X) = v Vi, Ax;) 
is1 

jr(X) = vj(l, Ax.) 
ic1 

J,(X) = v JR 4d 
iEI 

We define a morphism of ring spectra @‘x: 

V, X)- @, LKX 

by taking the wedge over I of the morphisms of 7.1. 

By Theorem 4.15, the homotopy groups of j,(X) and J[(X) are as follows: 

rzi(jr(X)) = nzi(Jl(X)) = 0 for all FEZ, except ~(Jl(1, A)) = Z(,, 

Kzi_ ,(J,(X)) = H”(Xkt, QJZ,(i)) for all in Z (4) 

n2i- l(il(X)) = 
H”(Xtt, Ql/Z,(i)) if i > 0 
o if i < 0. 

7.4. DeJinition. Let Y A X be a morphism. 
(a) We define a morphism of ring spectra C(I, X)-f; z(I, Y) as follows: 

(i) If X and Y are connected andfis l-cyclotomic,f* : C(l, Ax) + C(l, Ay) is given 
by the morphism ~A,/A, of 3.8. 

(ii) If X and Y are connected and Ax = Ay, f* is the identity. 
(iii) If X and Y are connected, there is a unique 2 such that f factors as 

Y A ZA X, with g as in (i) and h as in (ii). We define f * = h* 0 g*. 

(iv) In general, f * is given on every connected component of X by (iii). 
(b) Suppose f is finite and flat. We define a morphism of spectra x(1, Y)A C(Z, X) as 

follows: 
(i) If X and Y are connected andfis I-cyclotomic, f, : IZ(Z, A,) + C(1, Ax) is given 

by the morphism rAl/Ax of 3.8. 
(ii) If X and Y are connected and Ax = Ar, f, is multiplication by degf: 

(iii) If X and Y are connected, there is a unique Z such that f factors as 
Y --% ZA X, with g as in (i) and h as in (ii). We define f, = g* 0 h,. 

(iv) In general, f, is given on every connected component of Y by (iii). 

There are analogous definitions for jl and JI. 
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7.5. PROPOSITION. Let Y 4 X be a morphism. 

(a) The diagram 

X(1, Y) 2 LKY 

.f* t 4 
X(1,X) 3 LKX 

is commutative. 

(b) Assume f isJinite and flat. Then the diagram 

X(1, Y) AL LKY 

f* I 
LKX 

commutes in the following cases: X is semi-local orf is I-cyclotomic. 

Proof: The claim forf* in general andf, in the cyclotomic case follow from Proposition 
3.10. In the semi-local case, we reduce to X, Y connected and Ax = Ay. Let n = degt It is 
enough to see that the diagram 

KRAx - KY 

f* I 
KRAx - KX 

is commutative. But this follows from the projection formula in algebraic K-theory for 
proper morphisms with finite Tor dimension [28, Proposition 7.2.101: 

f,f* = smash product by the class off,Uy 

since, X being semi-local,f,O, is a free Lox-module of rank n. 

7.6. Definition. Let (Xi)i E I be the connected component of the scheme X, and Ai = Ax, 
for all i. We define a morphism px: J,(X) + p- ‘LKX as the composite 

Jo = VJ1(l,Ai)~~~V~-‘LKRA’~VP-‘LKXi = p-‘LKX. 

7.7. PROPOSITION. The collection of fix commutes with products, pull-backs and with 

transfer in the same conditions as in Proposition 7.5(b). Moreover the diagram 

C(1, X) 21, LKX 

I I 
JM 2% fi-‘LKX 

is commutative. 

Proof: This follows from 4.18 and (for transfer) the argument in the proof of Proposi- 
tion 7.5. 

8. RIGIDITY 

Let R a strict Hensel local ring and E a prime number invertible in 1. The aim of this 
section is to describe well-determined equivalences 

AC 
KR - bu^ (5) 
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following the theorems of Quillen, Suslin and Gabber. 

(1) The case R = C. By Suslin’s theorem [37], the natural morphism KC + bu in an 
equivalence after l-completion. This is (5). 

(2) The case where R is an algebraically closed jeld of characteristic 0. By Suslin’s 

theorem [36], the two maps 

KR 

/ 

Kl 

\ 
KC 

are equivalences after l-completion. The equivalence (5) is obtained from these two equiva- 

lences and (1). 
(3) The case R = FP (p # 1). Let 4 run through the powers of p. By Quillen’s theorem 

[27], Brauer lifting induces equivalences of spectra 

KF, + FY4 [l/p] 

where FV[l/p] is the homotopy fibre of Yg - 1: bu[l/p] + bu[l/p], (Yq being the 
qth Adams operation). Passing to the limit, these equivalences induce the desired equi- 
valence (5). 

(4) The case where R is a separably closedjeld of characteristic p. As in (2), using (3) and 
applying [36] to the inclusion FP -+ R. 

(5) The general case. Let F be the residue field of R. By Gabber’s theorem [lo], the map 
KR + KF is an equivalence after l-completion. (5) is obtained from this and (2) or (4), 
according to the characteristic of F. 

Let X be a scheme over Z[l/l] and x a geometric point of X. To x is associated 
a morphism 

KX=+ bu* 

by composing KX^+ (K&&)-with (5) applied to R = 0$,x. 

8.1. PROPOSITION. If X is connected and essentially ofjnite type over ajield or a Dedekind 
domain, the morphism e, does not depend on the choice of x up to homotopy. 

Proof: Since X is noetherian and catenary [ 19, Corollary 2 to Theorem 3 1.71, it suffices 
to show that, if y is a specialisation of x of codimension 1, we have e, = e,. Without loss of 
generality, we may assume that X is strictly local at y, or in other words, X = Spec R with 
R a strict Hensel local ring with maximal ideal y. We may even assume that R is a domain 
with x = (0), and (up to passing to its integral closure in its quotient field) that it is integrally 
closed. Then R is a henselian discrete valuation ring. Let E be its field of fractions and F its 
residue field. We want to show that the diagram 
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KEA 

bu” 

KF” 

is homotopy commutative. First suppose that R has equal characteristic, hence contains 
a separably closed field k. Then, by definition of the equivalences, the diagram 

KE” 

/\ 

KkA - KR” bu” 

KF” 

is homotopy commutative, and so is the former one since Kk*+ KRA is an equivalence. 
Suppose now that R has unequal characteristic. Let p = char(F). Then the strict henselisa- 
tion R. of Z at p is contained in R. We have a diagram 

k%” - KRA bu” 

in which all maps are equivalences, and the part excluding bu^ commutes; this reduces us to 
the case R = R,,. But then the commutativity follows from the definition of the equivalence 
kFz + bu* given above. cl 

9. EXTENSIONS OF.8 TO GENERAL SCHEMES 

9.1. Let X be a scheme over Z[l/Q ( over Z [& i] if 1 = 2). We define a homotopy class of 

map 
Pj,(X+ ZZ”LKX 
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as the composite 

Qmj,(X) = Vfirnjl(l, Ai)~~~ VR”LKRAr --t R”LKX 

where the Xi are the connected components of X, as in the former section. We have the 

following generalisation of Proposition 5.9: 

9.2. PROPOSITION. Zf X is essentially offinite type over Z, the diagram 

Wj,(X) J-+ R”LKX 

I ! 
RmJl(X) n”8x R”P-‘LKX 

is homotopy commutative. 

Proof The hypothesis on X implies that Ax, is open in Z: for all connected components 
Xi of X, and the result follows immediately from Proposition 5.9. cl 

The following theorem is the main result of this paper. 

9.3. THEOREM. For 1, X as in 9.1, the map Fx has the following properties: 

(0) Bx commutes with base change; 
(i) if X is essentially offinite type over Z, /?x commutes with products; 
(ii) r~,,(fl~) maps 1 to the class of cOx; rrI(Bx) is the classical Bott element construction. 
(iv) letf: Y + X be aJiniteJlat morphism. Then Bx and BY commute with f* in both theories 

in the following two cases: f is l-cyclotomic or X is semi-local. 
(v) Zf X is strictly local, there is a map of spectra /Ix: j*(X) -+ LKX such that the diagram 

it(X) 3 LKX 

I 1 
J,(X) 2% fi-‘LKX 

commutes, and W/Ix A lwtrVj coincides with px A lwCr.) for all v. These maps are 
equivalences. In particular, px is the inverse of (5) after l-completion. 

Proof: Properties (0), (i) and (iv) follow from Theorems 6.1 and 6.2. Property (ii) for 
rcO(flx) follows from the definition of FAX<, and for rrr@x) it follows from Proposition 6.3. 

It remains to prove (v). To define px: ii(X) + LKX, we simply truncate 
Jl(X)8”, B-‘LKX by observing that LKXz(B-‘LKX)BO by Suslin’s and Gabber’s 
theorems [37, 101. The same references show that fix is an equivalence after completion. 
Finally, for the fact that am/Ix = fix-,, we need the following lemma: 

9.4. LEMMA. Let (S,) be afiltering direct system of spaces and T a spectrum. Assume that 
xi(T) is finite for all i. Then the natural map [hocolim S,, T] + l@r [S,, T] is bijective. 

Proof: (a) By Sullivan’s theory ([35], see also [24]), the sets [S,, RT] have a natural 
profinite structure and the transition maps are continuous. It follows that 
l&n1 [S,, QT] = 0. The lemma then follows from the Milnor exact sequence 

0 + @‘[S,, QT] + [hocolimS,, T] + I@[&, T] + 0. El 
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Let X = Spec A; write A as a union UA, of its finitely generated subrings. By 

Lemma 9.4, the map 

[nail(A) A M(1”), WJLKA A M(p)] + I@[Q”j,(A,) A M(I’), WLKA A M(E”)] 

is bijective. The equality now follows from Proposition 9.2. 0 

9.5. COROLLARY. (Compare [15, Conjecture 11.) Let 1, X be as in 9.1. There exist 
homomorphisms 

& 1 H”(Xit, Z/P(i)) + Kzi(X, Z/l”), i, V > 0, 

with the following properties: 
(0) /3j, commutes with base change; 
(i) ,!& commutes with products; 

(ii) For i = 0, pi maps 1 to the class of Ox; for i = 1, & is the classical Bott element 
construction; 

(iii) pi commutes with change of coejicients; 
(iv) Let f: Y + X be a finite morphism. Then & and /& commute with direct image in 

cohomology and transfer in K-theory in the following to cases: f is 1-cyclotomic or X is 
semi-local; 

(v) 0; is a section of the natural map chi,o: K2i(X, Z/l”) -+ H”(Xtt, ~~i(Z/l”)) = 
H”(Xkt, Z/l”(i)) (denoted by t& in [15, Section 11) given by (5). 

Proof: Define & as 71i(Bx, Z/1”), taking (4) into account. Everything follows immediately 
from Theorem 9.3, except that we get (i) a priori only for X essentially of finite type over Z. 
In the general case, it is enough to prove (i) when X = Spec RA for A a closed subgroup of 
Z:. But then, the commutation follows from the open subgroup case by taking direct limits. 

9.6. COROLLARY. With the hypothesis of Theorem 9.5, H”(Xbt, Z/l”(i)) is a natural direct 
summand of Kzi(X, Z/l’), and H”(Xkt, QJZ,(i)) 1s a natural direct summand of K2i_ 1(X) {l}. 

Proof. The first claim follows from Theorem 9.5(o) and (v); the second one follows from 
the first and [15, Lemma 1.11. 0 

We shall see in Appendix E that H’(X, Qt/Z,(i)) . IS even a direct summand of Kzi_ 1(X), 
provided X is of finite type over Z. 

9.7. PROPOSITION. (Compare [15, Proposition 1.31.) Assume that X has positive charac- 
teristic p and is connected. Let E be the algebraic closure of F, in X (the absolute field of 
constants of X). Then fix can be identijed to the composite R”LKE + R”LKX. 

Proof: Follows from Proposition 4.10. 0 

Proposition 9.7 allows us to refine Theorem 9.3 and Corollary 9.5 in nonzero character- 
istic, removing in particular the hypothesis that - 1 is a square when 1 = 2. 

9.8. THEOREM. Let X be a scheme over F,, where p is a prime number # 1. Then the map 
px of 9.1 extends to a morphism of spectra Bx, which always commutes with products. 
Moreover, if1 = 2, we can extend the definition of px to the case when - 1 is not necessarily 
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a square on X, using Dejinition C.3 for j,(X) on the model above. Theorem 9.3 and Corollary 
9.5 extend to this case. 

Proof: Use Propositions 4.10 and C.l3(a). 0 

APPENDIX A. SYMMETRIC MONOIDAL CATEGORIES 

In this section, we recall some well-known constructions on symmetric monoidal and 

bimonoidal categories. A symmetric monoidal category is a category 9 equipped with 
a functor @ : Y x Y + Y (sum) which is coherently associative and commutative. A sym- 
metric bimonoidal category is a symmetric monoidal category equipped with a further 
functor @ : Y x Y -+ Y (product) which is coherently associative and distributive with 
respect to 0. Symmetric monoidal categories form a (2-)category, in which morphisms are 
functors respecting the sum, and symmetric bimonoidal categories form a (Z)-category in 
which morphisms are functors respecting the sum and the product. We shall have to 
consider functors between symmetric bimonoidal categories which respect the sum but not 
necessarily the product; in case they do respect the product, we shall sometimes stress it by 
calling them multiplicative. 

We say that a diagram of functors is naturally commutative if it is commutative up to 
natural equivalences. 

A.l. Recall that a pseudo-functor T from a category %’ to a 2-category 9 is an 
assignment c H T(c) from objects of %? to objects of 2 together with an assignmentf- T(f) 
from morphisms of V to functors between objects of 9 and a set of natural isomorphisms 

T(gf)=T(g)T(f) f or all composable morphisms in V, satisfying some coherence condi- 
tions. Two typical examples of pseudo-functors are A HP(A) from rings to symmetric 
monoidal categories and A H Y(A) from abelian groups to symmetric bimonoidal catego- 
ries (see A.2 and AS). Pseudo-functors can be “rectified” into true functors. These questions 
have been carefully considered, for example, by Jardine [13; 14, Ch. 53. 

A.2. Let A be a group. An A-set is a set provided with an action of A. An A-set X is 
finitely generated if X/A is finite, free if the action of A is free. 

Let P’(A) be the category of finitely generated free A-sets with morphisms the 
equivariant maps. Disjoint union makes Y(A) a symmetric monoidal category. Suppose 
A is abelian. If X, YE Y(A), define X xA Y as X x Y/- where (x, y) - (x’, y’) if there exists 
a E A such that x’ = ax, y’ = a-‘~. Then X xA YE Y(A) and xA gives Y(A) a structure of 
a symmetric bimonoidal category with unit lA = A with the translation action. We denote 
by (x, Y)~ the image of (x, y) E X x Y in X xA Y. 

A.3. For A an abelian group, define a function 

#:Y(A)+N 

by 

#X = IX/AI. 

This is an “Euler characteristic” in the following sense: 

(1)X-Y*#X=#Y; 

(2) #(XUY)= #x+ #Y; 
(3) #(Xx,Y) = #X#Y. 

Moreover: 
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A.4. LEMMA. Let a: X + Y be a morphism in Y(A). Then any two of the following 
conditions imply the third: 

(i) a is a monomorphism. 
(ii) a is an epimorphism. 

(iii) #X = # Y. 

Zf these conditions are verified, then a is an isomorphism. 

A.5. Let f: A + B be a homomorphism of abelian groups. Define a functor 

f* : Y(A) -+ Y(B) 

as follows: For any A-set X, we let B act on B xA X by b(b’, x)~ = (bb’, x)~. This is 
a well-defined action, and the B-set B xA X is finitely generated (resp. free) if X is. Clearly,f* 
is a multiplicative functor of symmetric bimonoidal categories. For any X E 9(A), we have 

# (f*x) = #X. (Al) 

Moreover, there is a natural isomorphism of functors 

hIof)* = S*“f* 642) 

iff and g are composable. The assignment f~f* defines a covariant pseudofunctor from 
‘3 to the category of symmetric bimonoidal categories. 

A.6 PROPOSITION. With the same setting as in A.5, suppose that f is injective and f (A) 
is ofJinite index in B. Then f * has a right adjoint f, given by 

We have 
f*X = x. 

# (f,X) = (A:f (B))#X 

for any X E Y(B). Moreover, for any (X, Y) E 9’(A) x 9(B), there is a canonical isomorphism 
(projection formula) 

Xx,f,Y -f,(f *x xB y). 

In particular, 

f,f *x = x xz4f*(1B), 

Proof: The action is A-free because f is injective; if X has r B-orbits, then f*X has 
r(A:f (B)) A-orbits. This shows that f*XE 9(A) and also that the claim on # holds. The 
adjointness property off, is easily checked. Finally, let (X, Y) be as in the proposition. The 
counit map 

f*f*Y-+Y 
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yields a map 

f*x xsi*f,r -f*x xs Y. 

Composing with the isomorphismf*(X x,f,Y)Gf*X x&*f*Y, this gives a map 

f*(X xJ*Y) + f*X XB Y 

hence by adjunction map 

x xz4f* y -f,(f*x xB y). 

To check that this map is an isomorphism, it is enough to check that the map of A-orbits 
is bijective (this is because the action of A is free), which is obvious. 0 

Note that (A2) yields by adjunction an isomorphism of functors 

(9”f)* -f* o 9* (A3) 

iff, g are composable and both satisfy the hypotheses of Proposition A.6 (hence a con- 
travariant pseudofunctor...). Note however that f, is not multiplicative unless f is an 
isomorphism. 

A.7. Let 1 be a prime number. Let [Zf] be the category whose objects are the closed 
subgroups of the l-adic units ZF and morphisms are inclusion maps, and let [Z:ll be the 
full subcategory of [Z:] consisting of torsion-free subgroups, i.e. the closed subgroups of 
1 + 212,. 

The profinite group Z: acts continuously by multiplication on Zl, Ql, hence on QJZl: 
this last Z:-module is denoted by QJZ,(l). We define a (contravariant) functor 

/J:[z:]l -+ da 

by 

p(A) = Q&Xl)* 

where &‘S? is the category of abelian groups. 

A.8. Let A E [Z:ll. We set 

9’ = Y(O)) 

where p is the functor of A.7. Given CI : AI-A, we have an induced functor 

This is a multiplicative functor. If (A’ : A) is finite, the conditions of Proposition A.6 are 
satisfied and rK/A has a right adjoint 

and the pair (lKia, z&/A ) satisfies the “projection formula” of lot. cit. 

A.9. Let R be a commutative ring, PP(R) the category of finitely generated projective 
R-modules and R* the group of invertible elements of R. We define a functor 

Y(R*+Y(R) 

by 

X++L(X)=(RX/ z) 
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where RX is the free R-module with basis X and x is the R-linear equivalence relation 

generated by [rx] z r[x] ((x, r)E X x R*). Note that RX/x is a finitely generated free 

R-module, so that indeed LEE. 

One has the following formulas: 

L(XUY) N L(X) 0 L(Y) 

L(Xx,* Y) 21 L(X)O,L(Y) (A4) 

dimRL(X) = #X 

where dim, M denotes the rank of a projective R-module M (supposed of constant rank). 
Only the second and third ones require some explanation. It is clear that the S- 

homomorphisms 

R(X xR* Y) + LX ORLY 

RXaRRY -+ L(Xx,*Y) 

defined by 

Ck Y)R*l H [xl 0 CYI 

[xl 0 CYI l-b Ck Y)R*l 

yield inverse isomorphisms between L(X xR* Y) and L(X) OR L(Y). To show (Al), we 

reduce by additivity to the special case X = l,_,; then L(X) = R. q 

A.lO. In general, let A be an abelian group and f: A --) R* be a homomorphism. 
composing L with f* we get a multiplicative functor Y(A) + B(R). 

Let R -+ R’ be a homomorphism of commutative rings. We have: 

BY 

A. 11. PROPOSITION. The diagram offunctors 

9(R’*) L+ 9+(R’) 

r* t t 
9’(R*) L ZiR) 

is naturally commutative, where lrlR is extension of scalars. 

Proof: For X E S(1, R*), map R’(R’* xR* X) to R’ OR (RX/x) by [(r’, x)~*] H r’ @ [x] 

and RX to (R’ @R(RX/x))CR, (hence R’OR(RX) to R’ OR(RX/ z)) by [x] c, [(l, x)~..] 
and check that this induces inverse natural isomorphism between L of* and rK/RO L. 0 

A.12. Let 1 be a prime number and R = Z[+] the subring of C generated by all the 
l-primary roots of unity. The profinite group Z: acts on plrn as on QJZ, (1) (cf. A.7); we 
choose an isomorphism of Z:-modules 

QJzdl)~~r-. (A3 

For any closed subgroup A c_ Z:, let RA be the fixed ring of the restriction of this action 

to A. For A E [Z:] 1, we define a functor 

QA: 9” + .9’(RA) (‘46) 

where YA was defined in A.8, by 

@=L0p* 
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where p : p;\b -S* is the inclusion and L is as in A.9 (compare A.lO). This is a multiplicative 
functor of symmetric bimonoidal categories. We have: 

A.13. PROPOSITION. Let A’ c A be two closed subgroups of 1 + 212,. Then 

(a) The diagram of finctors 

YA = 9(RK) 

id.Jb t I R”,P t 
y* -5 p(R*) 

is naturally commutative, where ~p,~ b is the extension of scalars M H S OR M. 

(b) Zf (A: A’) is jinite, the diagram of functors 

is naturally commutative, where tRw/R A is the restriction of scalars. 

Proof. (a) follows from Proposition A.11 and (A2). We now proceed to prove (b). We 
first define a natural transformation (base change) 

@* ’ rk,A + rRA’,RA ’ @* (A7) 

by abstract nonsense. Start from the counit 

Compose it with @‘: 

use (a) to transform this into 

lRb’,R” ’ @* ’ rE/A -+ @* 

and use adjunction again to get the desired natural transformation. Note that 
[RK: R”] = (A: A’) (by Gauss’ theorem), hence, by (Al), (A4) and Proposition A.6, 

# QA a r,,*(X) = # ZRA’/RA o @‘(X). 

Therefore, to prove that (A7) is an isomorphism, it suffices to show that, for any X, the 
homomorphism @* 0 r,,*(X) + rRciRA 0 @‘(X) is surjective. It suffices to do it when X = l,, 
where p = ,&. This is clear, since RK = Cr; E p R*[. 0 

APPENDIX B. LOCALISATION AND MAPPING TELESCOPES 

B.l. We begin by reviewing the localisation of modules over a ring spectrum by means 
of mapping telescopes [32, 8, 23; 41, Appendix]. Let E be a commutative, associative and 
unital ring spectrum and X an associative, unital E-module spectrum. This means that X is 
provided with an E-action px : E A X + X which is homotopy associative and strictly unital. 
Let d E Z and aEq,(E). Then a defines an endomorphism of X: 

ax: xdX- OhId’ E/,X--%X, 
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hence a “mapping telescope” 

z-*0, 
a-‘X = hocolim(X- 

Z_% 
C_dX----A c-2dX + . . . ). 

989 

(Bl) 

By associativity and commutativity, the pairings 

deduced from pLx commute up to homotopy with the transition maps induced by uE and ax, 
hence yield at the limit a pairing 

a-‘Er\a-‘X-+a-‘X. 

In particular, a- ‘E is a (commutative, associative, unital) ring spectrum and a- ‘X is a(n 
associative, unital) a-‘E-module. This operation is called localisation with respect to (or 
away from) a. Clearly, if a, b E n,(E) verify a”’ = b” for some m, n, they yield the same 
localisations. In the stable homotopy category, the natural map XP”’ a-lx is universal for 
maps from X to associative unital E-modules Y such that uy is an equivalence. 

The following result says that x H a - ‘X is an “extension of scalars” from E-modules to 
a- 1 E-modules: 

B.2. PROPOSITION. For any associative, unital E-module X, denote by pi the composite 

a -‘E~XI~a-l~r\a-l~~l:,-l~. 

Then there is a homotopy cocartesian square 

&Al a-‘Er\Er\X - a-‘EAX 

lhP(h I ,I 4 
a-‘EAX r; a -lx. 

Proof: Let a:‘X be the homotopy pushout of the two maps ,& A 1 and 1 A c(;Y in the 

square. Since their domain and ranges are a - ‘E-modules, a-lx inherits the same structure. 

It remains to see that it enjoys the universal property of a-‘X, which follows from 
associativity and unitality. 0 

B.3. Let F be another commutative, associative and unital ring spectrum and F L E 
a morphism of ring spectra. Let U’E n,(F) and a =f*(a’). View X as an F-module via& Then 
a;l = ax, hence a’-’ X = a-‘X. If X = E, then the natural map a-‘F -+ a-‘E is a morphism 
of ring spectra. 

B.4. If E is a ring spectrum which is not necessarily unital, commutative and associative 
and a E n,(E), then the construction of B.l still makes sense; however, a- ‘E is not a ring 
spectrum in general. It is if a is central and associates with every pair of elements 
of n*(E) (a(xy) = (ax)y for every x, y~z.,.(E)). Then a-‘X inherits a structure of a_lE- 
module, provided the similar associativity condition holds for it. 

B.5. The assignment XHU- ‘X is strictly functorial for E-linear maps. The following 
remarks are occasionally useful. Let b be a power of a. Then b- ‘X and a- ‘X are equivalent 
naturally in X. This holds more generally if am = b” for suitable integers m, n. Following [23, 
p. 8261, call the set of those b’s the isogeny class of a. If one wishes, one can define 
a canonical localisation which does not depend on the choice of an element in this isogeny 
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class cl(a). To do this, one takes a hocolim over all suspensions of products of elements of 
cl(a), rather than just over suspensions of a (compare [41, p. 5451). 

B.6. Let 1 be a prime number and N = 1” a prime power. Suppose N # 2. We recall that, 
by Barratt [2], NId,,,, = 0 in this case. 

By [26, Theorem 21, M(N) has a structure of unital ring spectrum M(N) A M(N)2 
M(N), for the unit pN : S + M(N) coming from the defining the fibre sequence 

such that the mod N Bockstein is a derivation. 
If I > 2, there is (up to homotopy) a unique such structure, which is commutative; it is 

associative except for N = 3 (ibid. and [42, Theorem 63). If 1 = 2, there are two such 
structures; they are both associative, and are commutative except for N = 4 (ibid.). More 
precisely, for 1 = 3 one has 

and for I = 2, 

~~oT=~~+$N~~o~~Q(~~A~~) (B3) 

where c1 is a generator of (the 3-primary component of) rc:, r] the generator of rc; (the Hopf 
map), &: M(N) + CS the integral Bockstein and T: M(N) A M(N) + M(N) A M(N) is the 
map switching factors (ibid.). 

Finally, given N’I N and such a multiplication over M(N), there is one (unique up to 
homotopy) on M(N) which is compatible with the former via the reduction map 
M(N) -+ M(N’) [26, Lemma 5 and Remark, p. 2661. 

In what follows, if 1 = 2 we choose a good multiplication on M(4) once and for all, and 
take the compatible one on M(N) for all N > 4. 

B.7. Let E, X be as in B.l and 1, N as in B.6. Then E A M(N) inherits the structure of 
a ring spectrum by 

with regularity properties as in B.6. Similarly, X A M(N) becomes an E A M(N)-module. In 
particular, formulas (B2) and (B3) imply, for x, y, z E n*(E, Z/3), 

(XY)Z - X(Y4 = (pN)*(as,(x)s,(Y)s,(z)) (B4) 

and, for x, y E~*(E, Z/4) 

yx - (- l)deg(~Y)deg’~)Xy = (p,)*($S,(x)S,(y)). (B5) 

This shows that n,(E, Z/3) (resp. n,(E, Z/4)) is associative (resp. commutative) if 
(p,)*(a) = OE n3(E, Z/3) (resp. if (pN),(q2) = OE n,(E, Z/4)). Moreover, for any E, every 
element of n*(E, Z/3) coming from n,(E) associates with any other two elements, and every 
element of n*(E, Z/4) coming from n,(E) is central (in the graded sense). This applies in 
particular to Bocksteins. Moreover, for x, y E rc.+ (E, Z/3), x2y = x(xy) if x has even degree, 
since then c?(x)~ = 0. It follows from a well-known argument that, for x, y E n*(E, Z/3) with 
even degree, the subalgebra generated by x and y is associative (and commutative) (compare 
[23, Proposition 0.31). 
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B.8. LEMMA. Let UEQ(E, Z/N), N’(N and a the image of a in I~,(E, Z/N’). Zf 1 = 2, 

suppose N’ > 4. Let X be an associative, unitul E-module. Then, ifuXAM(N, is an equivalence, 

so is ax A MCN’,. 

Proof: Smashing the equivalence CdX A M(N)= X A M(N) by M(N), we get a new 
equivalence 

CdX A M(N) A M(N)= X A M(N) A M(N'). 

The unitality of Pi, shows that the composition M(N)A M(N')* 

M(N') A M(N)3 M(N’) is split by pN A 1, where p: M(N) + M(N’) is the projection. It 
follows that ,u~, 0 (p A 1) provides an equivalence 

CdX AM(N')+XAM(N') 

as a wedge summand of the former one. It now suffices to check that this new equivalence 
. . 

comcides with ax ~ MCN’, . cl 

B.9. Let N’, a, a be as in Lemma B.8. If EA M(N) is homotopy commutative and 
associative, we can apply B.l to the E A M(N)-module X A M(N) and get a localised 
spectrum a-‘(X A M(N)). Let N’l N be such that E A M(N') is still associative and com- 
mutative. There is a natural map from the telescope of X A M(N) to that of X A M(N'), 
hence from a- ‘(X A M(N)) to ~7~ ‘(X A M(N')). 

B.lO. Let E, 1, N be as above, and let N’l N. If 1 = 2, we assume that N’ and N/N’ are 
divisible by 4. Denote by pN: S + M(N), pN,: S -M(N’) the unit maps and by 

p: M(N) + M(N’), i: M(N’) + M(N) the maps, respectively, induced by the projection 
ZfN + Z/N’ and the inclusion ZfN’ + Z/N (sending, respectively, 1 to 1 and 1 to N/N’). 

Denote, respectively, by pN and p(N’ the multiplications on M(N) and M(N’). We could not 
find the following compatibility in the literature: 

B.ll. PROPOSITION. (a) The diagram 

M(N')AM(N') pw * M(N’) 

1W 
/ 

M(N’) AM(N) i 

\ ihl 7 
‘c 

M(N) A M(N) k MO’) 

is homotopy commutative if 1 > 2. Zf 1 = 2, the difirence between the two paths of the diagram 

equals 

where c E Z, 8N, 6N’ are the integral Bocksteins (6N, = 6N 0 i), and b E x2($& Z/N’) is an element 

such that 6,.(b) = q, the Hopf map generating I$. 
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(b) Let E be a ring spectrum. For (x, y) E z*(E, Z/N’) x n,(E, Z/N), we have the formula 

i,x.y = i,(x.p,y) 

if1>2.If1=2,wehave 

i,x.y = i,(x.p,y) + ci,b.&(x).b,(y) 

for c as in (a}. 

Remark. Presumably one has c = 1. 

ProojI Clearly, (a) =E- (b). Smashing the fibre sequence SN’ S* M(N)& 
CSA CS by M(N’), we get another fibre sequence, with somewhat fastidious notation: 

M(N’) A S 2 M(N’) A S- M(N’) A M(N)* M(N’) A L;Sz M(N’) A CS. 

As noted above, N = 0 on M(N’). If l is odd, [M(N’) A 25, M(N)] = 0 [26, Lemma 73. 
Hence, the map [M(N’) A I, RI(N)]= [MfN’) A S, M(N)] is bijective. Therefore, it 

suffices to check (a) after composing on the right by 1 A pN. 

Let n:~~h!f(N)+ii!f(N), z’:SAM(N’) A M(N’) be the tautological equivalences. 
On the one hand. 

PN’ ’ (i A p) ’ (1 A pN) = pN’ o (1 A pNe) = 7~’ 

and on the other hand 

~No(ih~)O(lApN)~~No(fApN)o(iA1)~~o(~~l) 

by unitality of &, and FN’. The claim now follows from the obvious identity 

i 0 7c’ = n 0 (i A 1). 

When I = 2, the above computation remains valid, but only proves that the difference 
between the two compositions factors through 1 A &. To go further, we need: 

B.12. LEMMA. With notation as in Proposition B.ll, compositions on the left with p of the 
two paths of the diagram coincide. 

Indeed, we have 

and 

p”i”pNSo(l AP) = N/N’pMo(l A/?) 

by the compatibility between 1(N and fiN’. 

To finish the proof of Proposition B.11 (a), consider the diagram 

cl 
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in which a is the difference between the two paths of the diagram in Proposition B.ll and 

cl is the map induced by the above reasoning. Since the vertical map is split, the composition 

p 0 ji is 0 by Lemma B. 12. Hence, 

cl~ Ker([M(N’) A C& M(N)] * [M(N) A %, M(N)]). 

Considering the commutative diagram with exact columns 

0 0 

I I 
rc,(M(N))/N * ~2WW))IN 

I I 
[M(W) AC& M(N)] * [M(N’) A XS, M(W)] 

I I 
711 of WN 4 

%WW’N 

and using e.g. [26, Lemma 73, we see that this kernel is generated by i 0 b 0 (& A 1). This 

concludes the proof. 

B.13. COROLLARY. Suppose N’21 N. With the above notation, 

(a) For 1 > 2, we have i,x. i,y = 0 for all x, y E ‘lt,(E, Z/N’). 

(b) For 1 = 2, we have 2&x. i,y = 0 and i,x . i,y . i,z . i,t = 0 for all x, y, z, t E xn,(E, Z/N’). 

(c) For 1 = 2, i,x.y2 = i,(x~p,y2).k any (x, Y)ET+&% Z/N’) x F&T Z/N). 

Proof: If 1 > 2, 

i,x.i,y = i,(x.p,i,y) = i,(N/N’x.y) = 0. 

Suppose 1 = 2. For simplicity, set &, = 6. This time, we have 

i,x.i,y = i,(x.p,i,y) + ci,b.6(x).d(y) = i,(N/N’x.y) + ci,bs6(x).6(y) = ci,b.d(x).b(y) 

since N/N’ is divisible by 4. Since b is killed by 2, this gives 2&x. i,y = 0. Next 

i,x.i,y.i,z = ci,x.i,b.6(y).d(z) = c2i,b.S(x)-S(b).S(y).6(z) = c2i,b.q.6(x).6(y).6(z). 

Finally, 

i,x.i,y.i,z.i,t = c2i,x.i,b.q.6(x).6(y).6(z) 

= c3i,b.6(x).6(b).q.s(y).6(z).d(t) = c3i,b.v2.d(x)-d(y).8(z).6(t) = 0 

because i,b.$ = OE n,(s, Z/N). (Indeed, since rcz = 0, the Bockstein n4($ Z/N) + ~“3 is 
injective. But 6(i,b.q2) = 6(b). q2 = q3 = 0.) 

Note that in this computation, we freely used commutativity because all elements but 
one come from n,(E) and all products are killed by 2. 

To prove (c), we compute 

i,x . y2 = i,(x.p,y2) + ci,b.6(x).6(y2) = i,(x.p,y2) + ci,b.d(x).d(y2) 

where 8 is the Bockstein modulo N. By (17) and the subsequent remarks, y commutes 
with its Bockstein, hence a(y2) = 2y-a(y). The claim now follows from the fact that 
2i,b = 0. Cl 
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B.14. Let E, X, 1, v, a be as above. Suppose I> 2. There are fibre sequences 

M(I) + M(1N) -+ M(N) 

Er\M(l)+Er\M(lN)+E/\M(N) 

hence a long exact sequence of homotopy groups 

..’ ~ Zi(Ey Z/I) j ni(E, Z/1N) ~ ni(E, Z/N) ’ xi_ ,(E, Z/1) ~ ... . 

We have 

a(~‘) = la’-‘d(a) = OEQ_~(E, Z/r). 

This is clear if 1 > 3. If 1 = 3, it follows from (B4) and the subsequent remarks plus the 

commutativity of n*(E, Z/3) that 

d(a3) = aQ(a) + (d(a)a + ad(a))a = a%3(a) + 2a(ad(a)) = 3aQ(a) = 0. 

Hence, in all cases, a’ is the reduction of an element a”~ Q(E, Z/IN). For another such lift 
a”‘, we have a”’ - a” = i,x with x~n,,~(E, Z/I). Using Corollary B.13, this gives 

a”” = Gf + i 

0 
l (i*x)Qp = a”’ 

k=l k 

even if 1 = 3 by the remarks following (B4). It follows that the mapping telescopes defined on 
X A M(N) by fi and a”’ are homotopy equivalent. 

B.15. In the case 1 = 2, we have to be a little more careful. This time we use the fibre 
sequences 

M(4) + M(4N) -+ M(N) 

E A M(4) + E A M(4N) + E A M(N). 

Let N be divisible by 4. Denote by a the Bockstein q.(E, Z/N) + rc* _ r (E, Z/4). Then, 
even if N = 4, we have for a E TC.+ (E, Z/N): 

d(a4) = 4a38(a) = 0 

by (B5) and the subsequent remarks. Hence, a comes from an element a” E rc* (E, Z/4N). For 
another lift a”‘, we have a”’ - a” = i,x with x E n,,(E, Z/4). Using Corollary B.13 again, we 
have 2(i,x)2 = (i,x)4 = 0, hence 

-r4 a = Z4 + 4i,xG3 + 6(i,x)2a”2 + 4(i,x)3a” + (i,x)4 = G4. 

B.16. Let a E rr,,(E, Z/I*). Iterating the above process, we get a sequence of elements 

a, E n,(E, Z/1*‘) 

such that a, = a and, for any v, the reduction of a, modulo l*“- ’ is a:_ 1. This gives rise to 
a well-defined homotopy inverse system 

(a; ‘(X A M(~*‘)))v> 1. 

By B.14 and B.15, another choice of (a,) gives an equivalent homotopy inverse system. 
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We have: 

B-1 7. PROPOSITION. The following conditions are equivalent: 

(a) (aJx h M(~9 is an equivalence for all V; 

(b) (a,)x ,, M(P) is an equivalence for some v. 

Proof: (a)*(b) is obvious. To see (b) a a , ( ) note that if p < v then the image of a, in 
x*(E, Z/l*“) is a power of up, so if(b) is true for v it is true for p by Lemma B.8. Conversely, 

let us show that if it is true for v - 1, then it is true for v. By the above, a defines an 
equivalence on X A M(1*). Consider the diagram 

7L n+k+ 1(X, z/I*‘- ‘) + %+/JX, z/l*) + x,+k(x, z/I*‘) + 7E,+&x, z/I*“- ‘) -+ $+k- 1(X, z/l*) 

.&I 1 
al” 

t .a, t 
.a:_ 1 

t 
a’*’ 

t 
n,+,(x,Z,il*“~‘) “+ n”(x,Z/l*) + n,(x,Z//*Y) + n,(X, z/r**-‘) + x,_L(x, z/I*) 

where k is an appropriate integer. The left and right squares commute because the mod 1* 
Bockstein a acts like a derivation and a(~:_ i) = 0 as seen above; the second square from the 

right also commutes because the reduction modulo l*“-’ is multiplicative. If E > 2, the 
second square from the left also commutes, thanks to Proposition B.11. This may not hold if 

1= 2. However, in this case, the diagram 

71”+2k+l(X, z/4”-? + n”+zk(X? Z/4) + %+x(X, Z/4’) -+ 7%+JX+ z/4y-i) -+ J%f2k- 1(X, Z/4) 

.a:- 1 
t 

.a 
*“f’ 

t 
.a,’ 

t 
.a,"_, 

t 
.a 
Z"+' 

t 

K,+1(x, Z/4’_‘) + n.(X,Z/4) --) x.(X, Z/4”) + n.(X, Z/4” - ‘) + E”_ ,W, Z/4) 

does commute by Corollary B.l3(c). In all cases, the claim now follows from the five lemma 

applied to either diagram. 0 

B.18. If I = 2, we redefine 

a&new) = a,(old) 

u2V+ 1 = image of a2V+2 in n*(E, Z/12”+l) 

for v > 1. This way, a, E Q(E, Z/2’) and hence a, ‘(E A M(2”)), a; ‘(X A M(2”)) are defined 
for all v > 2. 

B.19. PROPOSITION. Let N = I’, N’ = I”‘, N” = 1”” with v -C v’ < v”. If 1 = 2, suppose 
v > 1. Then there is a homotopy commutative diagram ofjbre sequences 

x:a; r (X A M(N)) -+ a;,’ (X A M(N”)) A M(N) + a; ‘(X A M(N)) 

N”/N’ 
! 

lAp,,_.,Al I II 

Za, ‘(X A M(N)) + a,J ’ (X A M(N’)) A M(N) + ai ‘(X A M(N)). 

where PN” _ N is the reduction map M(N”) + M(N’). 

Proof Using unitality and associativity of pN, the derivation property of dNJ and the 

compatibility between pN and PN,, we get by inspection a homotopy commutative diagram 
of spectra 

M(N’) A M(N’) A M(N) C1N.h 1 - M(N’) A M(N) 

( 
1 A hv n (P A 1)) 

1A6N.A1 11 (“YN:“,l “) I 

M(N’) A M(N) v M(N) A Z:M(N) 1 M(N) v CM(N) 
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1 = pN"(PA1) ( o 
6,. A 1 PN ’ (P A l) > 

and the two vertical morphisms are equivalences; similarly for N”. (The reader who wants 
to check out our computation carefully should notice, for N = 3, the relation 

& A 63 A 83 o p A p A 1 = (N/3)2&V A &’ A b3, which kills the defect of associativity (14) of 

p3.) Therefore, we get a homotopy commutative diagram 

CdX A M(N’) A M(N) 
a.. h 1 

- X A M(N’) A M(N) 

C 
1 A (ll.W o (P A 1)) rh~(N~(PAr) 

lA6,Al )1 ( lA6,Al )1 

xdX A M(N) v cd+ ‘X A M(N) I’ X A M(N) v XX A M(N) 

in which 

I’= cx h M(N) 0 

8N’b)X A ’ ii& ,, M(N) 

and the vertical morphisms are equivalences; similarly for N”. Here a,, IS the image of a,, in 
rc.+(E, Z/N). The two rows in the diagram of Proposition B.19 follow, noting that hocolim 
commutes with A M(N) [41, Lemma 5.201. Finally, the value of the left vertical map follows 
from the equality SN, 0 PN,,+N, = N”lN’6NTT. 0 

B.20. Define 
&‘X = hotima;‘(X A A4(l*‘)) 

where the transition morphisms are as in B.9. Up to homotopy, this is independent of the 
choice of the sequence (a,). The maps 

X A kf(l*“) -+ U; ‘(x A kf(/*“)) 

are compatible with each other, hence induce a canonical map 

X^+u x. A-1 

Moreover, the actions of a; ‘(E A M(E*‘)) onto u;‘(X A M(l*“)) fit together when 
v varies; hence, a*- ‘E inherits the structure of a (homotopy commutative, associative, unital) 
ring spectrum and a^- ‘X that of an a*- ‘E-module spectrum. As a consequence of Proposi- 
tion B.19, we have: 

B.21. COROLLARY. There is a natural homotopy equivalence 

a^-‘X A kf(1’) x a;‘(X A M(p)) 

foraElv>1(v~2ifl=2). 

Proof: From Proposition B.19, we get a homotopy equivalence 

holim(a; ‘(X A M(I”‘)) A M(I’))L a;‘(X A M(P)). 
Y’ > Y 

Now, by S-duality, there is a natural equivalence for any spectrum F 

F A M(P) x Map,(M(l”), F), 

and the natural map 
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Map,(M(V), holim a; ‘(X A M(1”‘))) --f holim Map,(M(Z’), a; ‘(X A M(Z”))) 

is an equivalence [33, Lemma 5.111. cl 

B.22. With notation as above, define a-‘X as the homotopy pull-back of the diagram 

l?-‘x 

X[l/Q -+ a-‘x[1/1]. 

In particular, (a- ‘X) + a _ = ^-‘X. There is a natural (homotopy class of) map 
e. 

x-a-LX 

given by the definition of a -‘X As above, a- ‘E is a ring spectrum and a- ‘X an . 

a- ‘E-module. 

B.23. PROPOSITION. (a) We have 

X[l/l]*u-‘X[1/1]. 

(b) For all v > 1 (v 2 2 fj-I = 2), 

(u-ix) A M(l”)La;‘(X A M(1’)). 

Proofi (a) is obvious; to see (b), we need only show it for a*-‘X instead of a-‘X. This is 
Corollary B.21. 

B.24. THEOREM. (a) (Universal property ofu- ‘X). Let Y be an E-module and f: X + Y an 

E-linear morphism such that a y ,, MCI , * is a homotopy equivalence. Then there is a unique (up to 

homotopy) fuctorisution 

f 
X-Y 

1-1 la f 

a-lx. 

(b) The functor a-’ commutes with arbitrary homotopy colimits. 

Proof: (a) Recall the homotopy Cartesian diagram (cf. [S, Proposition 1.93) 

Y -+ Y- 

y Cl/l1 + YA [l/1]. 

In view of this diagram, we have to construct two compatible maps a-‘X + Y [l/1], 
a-‘X + Y-. The first one is obtained from the equivalence X[1/1] -% a-‘X[l/i]. To get the 
second, we observe that, by the property of Y and Proposition B.17, a, acts invertibly on 
Y A M(I”) for all v 2 1 ( > 2 if 1 = 2). Therefore f A lMC,., factors into a (unique) map 

i:u;l (X A kf(l’)) -+ Y A kf(l’) 
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by the universal property of localisation away from a, E n*(E A Z/P’). Thei are compatible 
with each other (to show compatibility between f: and K+l, consider Y A M(1’) as an 
E A M(Z”+ ‘)-module via the map E A M(l’+l) + E A M(P), observe that a,, 1 acts invertibly 
on it and apply the universal property to u;,‘~(X A M(P’+ ‘)). Hence, they induce a map 

which gives the required map by composition with a - ‘X + a^- ‘X. The compatibility with 

X[1/1] + Y [ l/1] is obvious. Uniqueness is proven similarly, using the same homotopy 

Cartesian diagram. 
(b) Let (X,) be a (homotopy) direct system of E-modules. There is a natural map 

u-l hocolimX,L hocolim(a-‘X =). To see that cp is an equivalence it suffices to see that 

cp [l/Q and q A M(l*) are. The first is obvious in view of the equivalence 
Y [1/1]La- ‘Y [l/1] for all Y. But the (u_lXJ A M(l*) c a-‘(X, A M(I*)) (Proposition 
B.23) are defined by a homotopy colimit, so the second is obvious too. 0 

By the same method, we have: 

B.25. PROPOSITION. (a) (Compare Proposition B.2.): For any associative, unitul E-module 
X, denote by pi the composite 

1 A/. 
a-‘EAX-a 

-lEAa-‘X a-‘px,u-lX, 

Then there is a homotopy cocurtesiun square 

/&A 1 
U-‘J?AEAX - a-‘EAX 

IA/& I ,I 4 
u-‘EAX r; U -lx. 

(b) (Compare B.3.): If F is another ring spectrum and f: E + F is a morphism of ring 
spectra, then a- ‘F is a ring spectrum and a- ‘F is a morphism of ring spectra. 

B.26. As in B.5, XH a- ‘X is strictly natural for E-linear morphisms after choosing 
a collection of a, once and for all. If one wishes, one can avoid such a choice by defining 
a more canonical version, only depending on the l-adic isogeny class of a in the sense of [23, 
p. 8261 by applying the construction outlined in B.5 at all stages of the I-adic tower. 

B.27. Example. Let E = S and A E z*(E, Z/l*) be an Adams map. It follows from 
a theorem of Bousfield that A-‘LX z L,X for any spectrum X, where Ll is Bousfield 
localisation with respect to K(0) A K(1) (compare e.g. [23]). Theorem B.24(b) corresponds 
to [30, Corollary 8.21 and Proposition B.25(a) to [30, Theorem 8.13. 

B.28. Exercise. Show that the universal property of a- ‘X (Proposition B.23(b) + 
Theorem B.24(a)) formally implies Proposition B.23(a) and Theorem B.24(b). 

APPENDIX C. THE CASE I = 2 

C.l. Let A E Zt be such that A = Z/2. We consider the quadratic extension RA E RA1. 
We have RAL = Z[p], where p = &a. If Al = 1 + 2”Z2, then 1~1 = 2”. There are two cases: 

The nonexceptional case: A is procyclic; then A is topologically generated by 
- 1 + 2”- ‘. In this case, A acts on p by [ H [- ’ +‘“-I and RA = Z[2i sin(2?c/2”)]. 
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The exceptional case: A = A1 x { f l}. In this case, A acts on ,~4 by [ H c-l and 
RA = Z[2cos(27~/2”)]. This is a totally real cyclotomic ring. 

C.2. For A E Zz as in C.l, we define 

YA=Y(AEKp) 

C(2, A) = L Spt(Y*) 

where p = ,&. y* is a symmetric monoidal category. What is less obvious is that it has 
a bimonoidal structure. For X, YE yA, define 

X.Y=Xx,Y (cf.A.2) 

and define a iS IX p-action on it by letting p act as usual and A by 

g(x, Y), = (gx, SY), . 

This law makes y* a nonunital symmetric bimonoidal category, hence C(2, A) is 
a nonunital commutative and associative ring spectrum. If A’ G A, there is a multiplicative 
functor 

yA + yA’ 

defined as in Appendix A if A’ = A and by first forgetting the A-action if A.’ = 1. There is 
a corresponding morphism C(2, A) 3 C(2, A’). There is a natural action of A/A’ over 

C(2, A’) and it is clear that rN/A is equivariant for this action. (One could also define a transfer 

extending that of Section 3.) 
Note that Zt = Aut(QJZ,) acts continuously on j(2, 1). Motivated by Theorem 4.15(c), 

we give the following definition: 

C.3. Dejinition. Let A be an arbitrary closed subgroup of Zy. We define 

j(2, A) = W’(A, j(2, lHBO. 

We define a morphism of ring spectra 

eA: C(2, A) + j(2, A) 

by truncating the composite 

C(2, A) + W*(A, C(2, l))m W(A, j(2, 1)). 

C.4. Let A, p be as in C.l and X E Y*. The free R*‘-module R*‘X is endowed with an 
- - 

action of A given by s[x] = s[x] for (s, X)E R*’ x X, where - denotes the A-action on RA1 

and X. Define an R”‘-linear equivalence relation z on R*‘X, as in A.9, by c [x] z [ix] for 
({, X)EP x X. This relation commutes with the action of A; the invariants 

form a projective RA-module of rank IX/PI. Actually, (R”‘X/ z)’ is generated by the 
- - 

elements of the form r[x] + r[x] for r E RAL, x E X. If X = A [xp with left-translation 

action, the map r H r[l] + f[ - l] is an isomorphism of the R*-module R*’ onto 
(R*‘X/ x)‘. 

C.5. In the non-exceptional case, define a functor 

Y*z B(R*) 
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x H (RA’X/ z,p. 
This is clearly a symmetric monoidal functor. Moreover, 

C.6. PROPOSITION. @* is multiplicative. 

Proof: Define a natural transformation 

@,“(X)OR.4@(Y) + @(Xx, Y) 

via the multiplicativity of (DAL and the obvious map 

MA OR.+ N6 + (M ORdx N)A 

(Cl) 

for two A-equivariant R*‘-modules M, N. To check that (Cl) is bijective, we may assume by 
distributivity that X = Y = X0, where X0 = A KP provided with the left-translation 
action. Let A = { 1, - l}. Then @*‘(X0) has RA’-basis [l], [ - 11, hence @*(X0) has RA-basis 
[l], i[-l] and QA(Xo)OR~(DA(XO) has R*-basis Cl] @ [l], [l] @ i[-11, i[-l] @ [l], 

i[-l]@i[-1] (where i= a). On the other hand, QA1(XO xrXO) also has R”‘-basis 
[l]@[l], [l]@i[-11, i[-l]O[l], i[-l]@i[-11, hence @*(X0.X0) has the same 
RA-basis. 0 

C.7. For a commutative ring R, recall the L-theory spectrum 

LR = Spt(d(R)), 

where ii!(R) is the symmetric bimonoidal category of finitely generated projective R- 

modules provided with unimodular symmetric bilinear form. There is a forgetful functor 
Z?(R) + 9(R), which is equivariant relatively to the Z/Zaction on B(R) given by 

P t, Hom(P, R), fw’f: 

We have R”LR = L,,(R) x BO(R)+, where O(R) is the infinite orthogonal group of R. 

For the sake of smoothness of the exposition, let A!‘(R) denote temporarily the symmet- 
ric bimonoidal category of finitely generated projective R-modules provided with a non- 
necessarily unimodular symmetric bilinear form. 

C.8. In the exceptional case, define a functor 

X H ((R*‘X/ @, b) 

where the symmetric bilinear form b is given by 

b(rx + $21, sy + S[y7) = 
0 if x${Y,YI 
Tr,A,,Rd(rS) if x = y 

for x, y E X and r, s E R*‘. 

Note that this assignment really defines a (symmetrical monoidal) functor because of the 
relation %= c-‘, which ensures that elements of p define isometries of the symmetric 
bilinear form. This would not hold in the non-exceptional case. 
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C.9. LEMMA. The quadratic form b,, :(r, s) I-+ TrR~81R.+(r$ on the RA-module RAL has 

(1, t/-1) as an orthogonal basis, and bo(l, 1) = b,,(fi, A) = 2. 

C.10. PROPOSITION. aA is multipiicatioe. 

Proof: Use the natural transformation (18) and check that it respects the bilinear 

structures. 0 

C.11. Note that bO in Lemma C.9 is not unimodular, but becomes so when we invert 2 in 
RA. So DA in the exceptional case lands into 9(R”[$J) when composed with the functor 
3?‘(RA) -+ ?Y(RA[& If we took fTrRb,,RA(rS) instead of Tr,&,,&rS) in C.8, we would get 
a unimodular form, but would lose multiplicativity. 

C.12. The map (DA: C(2, A) + LKRA or LLRA[& defined by the functor QA above can 

be described on the O-spaces as follows. We have 

Q”Spt(YA) z z x B(A tX p)’ 

CI”OKRA z K,(RA) x BGL(RA)+ 

R”LRA z L,(RA) x EO(RA)+. 

In the non-exceptional case, R”QA maps the generator of Z = rcO(Spt(YA)) to 
CR”‘] E K,(RA). The map on the +-constructions is induced by the group homomorphism 

Alxp + GL(R&) 

given by the action of p (resp. A) on R ‘I by homotheties (resp. by Galois action). In the 

exceptional case, RmQA maps the generator of Z = no(Spt(YA)) to (2, 2) E LO(RA[+]) and 
the map on the +-constructions is induced by the same group homomorphism as above, 
which this time lands into O(Tr,A,,R+X)). 

We now want to recognise the spectra j(2, A) as more familiar objects. The method is to 

start from the equivalence 

j(2, { l})a LKE 

deduced from Propositions 4.10, Lemma 4.14 and a passage to the limit, where E’ = E(pzZ.=) 
for a finite field E of characteristic # 2, hence an equivalence 

j(2, A)+ W*(A, LKE’) 

and to recognise the latter hypercohomology spectrum. For our effort we also get a splitting 

result. First the non-exceptional case: 

C.13. PROPOSITION. Let A, as in C.l, be procyclic. 
(a) Let E be ajiniteheld of characteristic # 2 such that tc2(GE) = A (Lemma 4.5). Then 

there is a canonical equivalence 

j(2, Ai)& LKE. 

(b) RFeA has homotopy sections. 

ProoJ (a) Let E’ = E(,uU,-). We have Gal(E’/E) = A. Using the computation of K,E in 
[27] and a computation of rc,W’(A, LKE’), ,e similar to that in the proof of Theorem 4.15(c), 

we get that LKE + W’(A, LKE’), ,O is an equivalence (note for this computation that 
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A 2: Z2, hence exactly the same arguments apply). More specifically, on the E side, we get by 
a computation similar to [3] 

K,(E, Z/4) = A(x) 0 Z/4[b, Bl 

with deg x = 1, deg b = 2, deg B = 4, subject to the only relations 2x = 2b = 0, b2 = 2B, 

8b = x. If E” = E(n), the image of b (resp. B) in K.+(E”, Z/4) is 2p (resp. /?‘), where /? is 
a Bott element as in Section 3. 

(b) The claim will follow from the Harris-Segal theorem that 
B(Cm j(Arx,u)+) + BGL(E)+ has homotopy sections, as in the proof of Theorem 5.1, 
provided we show that the diagram 

z(2, A) 2 LKR* 

lJ” I I (C2) 

j(l, A) --% LKE 

is commutative. To see this, we simply note that the corresponding diagram replacing A by 
(1) and E by E’ commutes (by definition of the maps in this case!) and that (C2) maps to its 

homotopy fixed points, the map being an equivalence on the bottom rows. 0 

C.14. COROLLARY. For 1 = 2, Corollary 4.11 extends to the case where - 1 is not a square 
in E. 

Now the exceptional case. Let A = { ) l} x A,. If A1 # {l}, i.e. A1 = 1 + 2”Z2, we set 
A’1 = (- 1 + 2”)Z2; otherwise we set A’1 = {l}. Note that we can equally well write 

A = {+l} xa;. 

For simplicity, say that a field is ind-finite if it is a union of finite fields (i.e. is of positive 
characteristic and algebraic over its prime subfield). We want to outline a proof of: 

C.15. PROPOSITION. Let A be as above. 
(a) Let E be an ind-jinitejeld of characteristic # 2 such that IC(G~) = A1 or A’I. Then 

there is a canonical equivalence 

j (2, A)--% LLE. 

(b) If A is infinite, sZze* has homotopy sections. 
(c) Zf A = { f l>, there is a canonical equivalence 

j(2, { + 1) j z bo*. 

Recall: 

C.16. PROPOSITION. (a) (cf. Suslin [38]). The natural map 

KO + KUhZ” 

is an equivalence, where Z/2 acts on U by complex conjugation. 
(b) [9, Theorem III 3.1 d] Let F, be ajinitejield with q elements, where 1 is odd. Then the 

“Brauer lifting” 
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is an equivalence of spectra, where FY’4,[l/q] is the homotopy$xed point spectrum of Yq on 

bo Cl/d. 0 

Proposition C.l5(c) immediately follows from the Proposition C.l6(a), by comezlplet- 
ing, truncating and applying Corollary 4.16. To prove Proposition C.l5(a), let I denote 
either A1 or A;. We need only prove that the map 

LLE + W’(A, LKE&r, 

is an equivalence, where E’ = E&“) and the action of A on LKE’ is defined as follows: 
I acts by Galois action and { + l} acts by inverse-transpose matrices. We have 

W’(A, LICE’)>_, z W({ f l}, W*(A, LKE’)>,&co E i-U-({ f 11, LKE))30 = (LKE)h,(; ‘). 

It follows from Proposition C.l6(a) that the map 

Y;[l/q] -+ Y’4[l/q]hz’2 

is an equivalence. Proposition C.l5(a) follows from this fact and Proposition C.l6(b). 
Finally, Proposition C.l5(b) follows from (a) and an analogue of the Harris-Segal theorem 

(see [l 11) by the same argument as for Proposition C.13. 0 

C.17. Example. For A = Zz and E = F3, we get back a well-known description of Im J 

at 2. (This is not quite true: the usual ImJ at 2 has ~~(5) = Z, while 
rc,,(j(2, Zy)) E L,(F,) N Z 0 Z/2.) Taking E = F5 gives another, less usual one. 

C.18. From Propositions C.13 and C.15, we get retracts: 

nzj(2, A)A R~LKR* 

in the non-exceptional case 

nrj(2, A)L RrLKR* [i] 

in the exceptional case. Note that they were defined differently from those of Section 5: we 
do not have an immediately obvious Bott element to localise when - 1 is not a square. 
These maps will be investigated in [l 11. 

APPENDIX D. THE LICHTENBAUM-QUILLEN CONJECTURE AND A CONJECTURE 

OF MITCHELL 

Recall that the Lichtenbaum-Quillen conjecture predicts isomorphisms: 

chi.1: Kzi- I(RK) 0 ZI + H’(RK, G(i)) 

chi.2 : Kzi-z(RK) 0 ZI -+ fJ2(Rrc, Z&N 

for any number field K (containing J-1 if 1 = 2). Here the cohomology groups are l-adic 
etale cohomology. 

Soul& defined the homomorphisms chi,r and chi,z for i < 1 in [33], proved that chi,z is 
surjective [33] and that chi,l is surjective with finite kernel [34]. Dwyer and Friedlander 
introduced &ale K-theory, that they used to define Chi,l and chi,z and prove their surjectiv- 
ity for all i [6]. Finally, Thomason proved that &ale K-theory coincides with Bott-localised 
algebraic K-theory for a large class of schemes including rings of S-integers in number fields 



1004 Bruno Kahn 

[41]. Following these developments, the original Lichtenbaum-Quillen conjecture has been 
reformulated in terms of Bott-localised algebraic K-theory: 

D.l. CONJECTURE. For any numberJield K (containing J- 1 if1 = 2), any i > 0 and any 
v > 1, the natural map Ki(RK, Z/l”) + /?-‘KI(RK, Z/l”) is an isomorphism. 

On the other hand, it is conjectured in [7] that maps & equivalent to PA are infinite loop 
maps. The aim of this section is to point out that this conjecture follows from Conjecture 
D.l applied to the I-cyclotomic extensions of Q. This was observed before by Mitchell [22], 
and actually motivated [21] (personal communication). More precisely, we have: 

D.2. THEOREM. Assume that Conjecture D.l holds for RA, where A is open in Z: (in 

1 + 42, if 1 = 2). Then the map /?” of Definition 5.6 extends to a morphism of spectra (still 
denoted by) PA: j(1, A) + LKRA. 

ProoJ Truncate the map PA of Proposition 4.18 above 0 to get 

(fiA)aO: j(1, A) + (fi-lLKRA)bo. 

Theorem D.2 now follows from: 

D.3. LEMMA. Under the hypothesis of Theorem D.2, the natural map LKRA + 

(P 

it 

‘LKRA)aO is a homotopy equivalence. 

Proof: Since, by Quillen’s theorem [29], the K-groups of RA are finitely generated, 
suffices to see this after smashing by M(P). Conjecture D.l asserts that 

ni(LKR& A M(p)) + ni((fi-l(LKRa A M(1”))) ao 1s an isomorphism for i > 0. It remains to ) . 

look at i = 0. The left-hand side is Ko(RA, Z/l’) = KO(RA)/l” = Z/l” 0 Pic(RA)/l’. By the 
descent spectral sequence for Bott-localised algebraic K-theory [41], the right-hand side is 
/?- lKO(RA, Z/l’) = Z/l’ 0 H2(RA, Z/l”(l)). Th e map Ko(RA, Z/l’) + p-‘Ko(RA, Z/l’) indu- 
ces the natural injection Pic(RA)/l” c+ HZ (RA, Z/l’( 1)) coming from the isomorphism 
Pic(RA) = H’(RA, G,) and the Kummer exact sequence 1 + pl” + S,A 6, + 1. The 
next term in the corresponding long exact sequence is H2(RA, 6,) = Br(RA). But since there 
is only one place above 1 in RA, one has Br(RA) = 0 by the Albert-Hasse-Brauer-Noether 
theorem. Hence, Pic(R”)/l’ + H2(RA, Z/l”(l)) is an isomorphism, and so is 
KO(RA, Z/l”) -, P-‘K,,(RA, Z/l’). cl 

From Proposition 4.6, we can recover the formulation of [7] or [22]. 

APPENDIX E. A REFINEMENT 

Theorem 9.3(v) says that the maps & have retractions. We shall refine this result to the 
space level for certain types of schemes. We take notation as at the end of Section 9. 

E.l. THEOREM. Assume that X is a scheme offinite type over Z [l/l] (Z [j, J-1-J if1 = 2). 
Then there exist morphisms of spectra cr :LKX + jr(X) such that (Q”a)bx N Id. 
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Proof. Up to normalising X, we may assume that it is normal and irreducible. There are 

two cases to consider: 

(a) The genericfibre off: X + Spec Z [ l/1] is empty. Then X is defined over F, for some 
finite field F,. We may assume that F, is the field of constants of X. Then 
j,(X) = j,(F,) N LKF, (see Proposition 9.7). Any closed point xeX defines a composite 
6, : KX + KF,(x) + KF,, where the last map is the transfer. The composite 
KF, + KX* KF, is multiplication by deg(x). By [17, Corollary 31, there exists on 
X a rational zero-cycle of degree 1. Taking the corresponding linear combination of the O_ 
we get the desired map M. 

(b) The genericfibre offis nonempty. We may assume that X is affine and integral. Let 
R be the maximal ring of S-integers through which f factors. Choose a prime p of R such 
that ARjp = AR and the closed fibre of X at p is nonempty and geometrically connected over 
R/p (since X is of finite type, there are infinitely many of them, see [25, Satz XVII]). Taking 

this closed fibre, we are reduced to case (a). 

E.2. COROLLARY. Under the hypothesis of Theorem 9.5, H”(X, QJZ,(i)) is a direct 

summand of Kzi _ 1 (X). 

E.3. Note that in general the maps CI of Theorem 9.5 are not ring spectra homomor- 
phisms. However, by Proposition 8.1 and Theorem 9.3(v), the composition 
LKX* jJX) + j(l, 1) + bu^ is independent of a and is multiplicative. If X = Spec Gs 
where 1!0, is a ring of S-integers in a number field, any prime p as in (b) above defines 
a retraction c(~ which is a homomorphism of ring spectra. The dependence of clp on p is 
a subtle question to which I hope to come back to in a future paper. 
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