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Abstract

We prove some finiteness theorems for the étale cohomology, Borel–Moore homology and

cohomology with proper supports with divisible coefficients of schemes of finite type over a

finite or p-adic field. This yields vanishing results for their l-adic cohomology, proving part of

a conjecture of Jannsen.

r 2002 Elsevier Science (USA). All rights reserved.

Introduction

Let p be a prime number and nAZ: We denote by ðQ=ZÞ0ðnÞ the étale sheaf

m#n
m over the big étale site of Spec ZðpÞ; where m runs through the integers prime

to p and m#n
m denotes the sheaf of mth roots of unity, twisted n times. We denote by

eAH1ðFp; #ZÞ

the generator sending Frobenius to 1.
We shall consider étale cohomology, Borel–Moore étale homology and

cohomology with proper supports. Recall that the first notion is absolute while
the two others are relative to a base. More precisely, if f : X-S is a compactifiable
morphism, with m invertible on S; then one defines

* Hi
cðX=S;Z=mðnÞÞ ¼ HiðS;Rf!m#n

m Þ;
* Hc

i ðX=S;Z=mðnÞÞ ¼ H�iðX ;Rf !m#�n
m Þ:

Here Rf! is higher direct image with proper supports and Rf ! is its right adjoint
[2,3]. When S is unambiguous, we shall usually drop it from the notation.
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For simplicity, we abbreviate the étale cohomology groups Hi
!et
ðX ; ðQ=ZÞ0ðnÞÞ into

HiðX ; nÞ for any X over Spec ZðpÞ; similarly for Borel–Moore homology and

cohomology with proper supports. We shall use without further mention that all the
groups with these coefficients we encounter here are of cofinite type, i.e. direct sums
of a finite group and finitely many copies of Ql=Zl ; for all lap: This follows from the
classical finiteness results for étale cohomology [6, Th. finitude].

In this paper, we prove finiteness results for the groups HiðX ; nÞ; Hi
cðX ; nÞ and

Hc
i ðX ; nÞ in certain ranges, where X is a variety over Fp orQp: A typical such result is

of the form: ‘‘HiðX ; nÞ is finite unless nA½a; b� and iA½a0; b0�’’, where a; b; a0; b0 are
specific integers depending on the situation. See Theorems 1–3 and 6 for precise
statements. Theorem 6 relies on Theorems 2 and 3.

The method of proof is not especially original: it can be described as a dévissage
from the case of smooth projective varieties over Fp [5], using purity results and de

Jong’s alteration theorems. With the above notation, while our results over Fp for

individual l-primary components of Hi
cðX ;Ql=ZlðnÞÞ readily follow from [7] for

ioa0; it is not clear to us that they do for i4b0; analogously for the finiteness results

on HiðX ;Ql=ZlðnÞÞ: Getting finiteness not only for individual l-primary components
but for the full group relies of course on Gabber’s theorem [9].

From Theorem 6 we deduce finiteness results for the groups HjðG;Hi�jð %X; nÞÞ;
where X is a smooth projective variety over Qp and G ¼ Galð %Qp=QpÞ: see Theorem
10. This proves part of a conjecture of Jannsen [13, Conjecture 3 and Remark 5] on

the range of vanishing of the groups HjðG;Hi�jð %X;QlðnÞÞÞ: In fact, the range in
which we find that these groups vanish overlaps with that predicted by Jannsen: see
picture in Section 4. On the other hand, Jannsen’s conjecture does not imply any

more vanishing for the groups HiðX ;QlðnÞÞ than what we get as a consequence of
Theorem 6, which is therefore optimal in this sense.

By an easy extension of [13, Corollary 5] using Hard Lefschetz, Poincaré duality and
local Tate duality, we get corresponding finiteness statements for

HjðG;Hi�jð %X;Qp=ZpðnÞÞÞ when j ¼ 0; 2 (this relies on Faltings’ Hodge–Tate decom-

position). Surprisingly, the range obtained is exactly the same as the one away from p:
The main motivation for writing this paper is the application of Theorem 1 to an

equivalence between three arithmetic conjectures on varieties over Fp: [16, Theorem

3.4]. The extension of the finiteness results from varieties over Fp to varieties over Qp

was motivated by the search for a similar set of conjectures for the latter varieties;
the one issue that prevents us to formulate them at the moment is the lack of a clear
understanding of the question raised in Section 6. Theorems 2 and 6 are also used in
the proof of [15, Corollary 2].

1. Varieties over a finite field

Theorem 1. Let X be a smooth variety of dimension d over Fp and let nAZ: Then the

group HiðX ; nÞ is finite in the following cases:
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(1) ie½n; 2n þ 1�;
(2) no0;
(3) n4d:

This group is 0 for i42d þ 1; and for i4d þ 1 if X is affine.
Moreover, cup-product by e

H0ðX ; 0Þ-H1ðX ; 0Þ

has finite kernel and cokernel.

Proof. We argue by induction on d; starting with case (1).

(a) By [1, Theorem 2], the statement is true for X projective: in this case, HiðX ; nÞ
is actually finite for all ia2n; 2n þ 1: In particular, Theorem 1(1) is true when
dim X ¼ 0:

(b) Suppose that X is an open subset of a smooth variety X 0: we claim that
Theorem 1(1) holds for X if and only if it holds for X 0: It is convenient to reason
modulo finite abelian groups, that is, within the category A quotient of the category
of abelian groups by the thick subcategory of finite abelian groups. Let Z ¼ X 0 � X ;
with reduced structure. Let Z1 be the singular locus of Z and X1 ¼ X 0 � Z1; so that
X1 � X ¼ Z � Z1 is smooth. We have a long exact sequence of cohomology groups
with supports:

?-Hi
Z�Z1

ðX1; nÞ-HiðX1; nÞ

-HiðX ; nÞ-Hiþ1
Z�Z1

ðX1; nÞ-? ð1:1Þ

By purity, Hi
Z�Z1

ðX1; nÞ decomposes according to the connected components Za of

the smooth variety Z � Z1 into a direct sum "a Hi�2caðZa; n � caÞ; where ca is the
codimension of Za in X1: By induction on dim X ; these groups are all finite as long as
i � 2cae½n � ca; 2n � 2ca þ 1� or ie½n þ ca; 2n þ 1�: In particular, the two extreme
groups in (1.1) are finite provided we assume that ie½n; 2n þ 1�: So the map

HiðX1; nÞ-HiðX ; nÞ

is an isomorphism in A: By induction on dim Z; this shows that HiðX 0; nÞ-HiðX ; nÞ
is an isomorphism in A; and so the two groups are finite together.

In particular, Theorem 1(1) is true if X is an open subset of a smooth, projective
variety.

(c) In general, de Jong’s theorem [14] allows us to find an alteration p : Y-X

which is generically étale, with Y open in a smooth projective variety. Let U be an
open subset of X such that pjp�1ðUÞ is finite étale. We shall show that Theorem 1 holds

for U ; hence, by (b), it will hold for X and the proof will be complete. Since

HiðU ;Ql=ZlðnÞÞ is known to be a co-finitely generated Zl-module for all lap (a sum
of a finite l-primary group and a finite number of copies of Ql=Zl), it will suffice to

show that HiðU ; nÞ is annihilated by some nonzero integer.
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By (b), Theorem 1(1) is true for p�1ðUÞ: The composition

HiðU ; nÞ-p
n

Hiðp�1ðUÞ; nÞ-
p
*

HiðU ; nÞ

is multiplication by the degree N of pjp�1ðUÞ: Hence HiðU ; nÞ is annihilated by NM;

where M is the order of the finite group Hiðp�1ðUÞ; nÞ: This completes the proof of
Theorem 1 in case (1).

Case (2) is a special case of case (1).
The two vanishing statements are clear from the known cohomological dimension

of varieties and affine varieties over a field.
To prove the statement on cup-product by e; we may assume that X is connected.

It suffices to prove that the map

Hiðk; 0Þ-HiðX ; 0Þ

is an isomorphism in A for all i; where k is the field of constants of X : The proof goes
along the same lines: the isomorphism is clear in case X is projective, and then in

general by using the finiteness of HiðY ; nÞ for Y smooth and no0: (In fact, one easily

checks that cup-product by e is injective on H0:)
It remains to prove Theorem 1 in case (3). Assume n4d: As noted above, for X

smooth projective, HiðX ; nÞ is finite for all ia2n; 2n þ 1: But for i ¼ 2n or 2n þ 1
it is 0 as seen above (cohomological dimension), hence also finite. The fact that
this remains true for all smooth X can then be proven along the same steps as for
case (1). &

Note that the proof of [1, Theorem 2] rests on Gabber’s theorem that, for X

smooth projective over %Fp and iX0; the group Hi
!et
ð %X;ZlÞ is torsion-free for almost all

l [9]. The above proof avoids the issue whether Gabber’s theorem remains true for X

smooth, not necessarily projective.

Theorem 2. Let X be a variety of dimension d over Fp and let nAZ: Then the group

HiðX ; nÞ is finite in the following cases:

(1) ne½0; d�
(2) ie½n; n þ d þ 1�:

This group is 0 for i42d þ 1; and for i4d þ 1 if X is affine.

Proof. We again argue by induction on d:
We first reduce to X reduced, then to X integral by closed Mayer–Vietoris, which

is valid for étale cohomology with torsion coefficients (a trivial application of the
proper base change theorem!) Then, de Jong [14, Theorem 7.3], there exists a finite
extension k=Fp and a connected smooth projective k-variety Y provided with the

action of a finite group G; an open G-invariant subscheme X̃DY ; a proper map
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f : X̃-Xk and a subset ZD! Xk such that f �1ðUÞ-U is a quasi-Galois covering of
group G; with U ¼ Xk � Z:

Let Z̃ ¼ f �1ðZÞ; so that we have the commutative diagram

By using proper base change, we obtain a long exact sequence

?-Hi�1ðZ̃;G; nÞ-HiðXk; nÞ

-HiðZ; nÞ"HiðX̃;G; nÞ-HiðZ̃;G; nÞ-y

where HiðX̃;G; nÞ is equivariant étale cohomology [11]. More precisely, let DGðXkÞ
be the derived category of G-equivariant étale sheaves on Xk; DðXkÞ the derived
category of ordinary étale sheaves, i : DðXkÞ-DGðXkÞ the ‘‘trivial G-action’’ functor
and RGG : DGðXkÞ-DðXkÞ its right adjoint (total derived functor of ‘‘fixed points

under G’’). Applying the exact triangle of functors j!j
n-Id-i

*
in-j!j

n½1� to the

morphism iðQ=ZÞ0ðnÞXk
-Rf

*
ðQ=ZÞ0ðnÞX̃; we get a commutative diagram of exact

triangles in DGðXkÞ

hence by adjunction a similar diagram in DðXkÞ

By definition of a quasi-Galois covering of group G; f �1ðUÞ-U can be

decomposed as f �1ðUÞ-g
V -

h
U ; where g is Galois of group G and h is radicial.

Since radicial maps induce isomorphisms in étale cohomology, a small argument
using proper base change shows that the left vertical map in the diagram is an
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isomorphism. Similarly,

i
*

inRf
*
ðQ=ZÞ0ðnÞX̃ -

B
i
*

Rf 0
*
ðQ=ZÞ0ðnÞZ̃;

where f 0 is the restriction of f to Z̃; and i
*

inðQ=ZÞ0ðnÞXk
¼ i

*
ðQ=ZÞ0ðnÞZ:

A hypercohomology spectral sequence now shows that the natural maps

HiðX̃;G; nÞ-HiðX̃; nÞG and HiðZ̃;G; nÞ-HiðZ̃; nÞG are isomorphisms modulo finite
groups.

By induction, the groups Hi�1ðZ̃; nÞ and HiðZ; nÞ are finite in the desired range.

This is also the case for HiðX̃; nÞ; thanks to Theorem 1. It follows that HiðXk; nÞ is
finite. A transfer argument now implies that HiðX ; nÞ has finite exponent, hence is
finite. The two vanishing statements are clear. &

Theorem 3. Let X be a variety of dimension d over Fp and let nAZ:

(a) The Borel–Moore étale homology group Hc
i ðX ; nÞ is finite in the following cases:

(1) ne½0; d�;
(2) ie½2n � 1; n þ d�:

This group is 0 for ie½�1; 2d�; and for ie½d � 1; 2d� if X is affine.

(b) The cohomology group with proper supports Hi
cðX ; nÞ is finite in the following

cases:

(1) ne½0; d�;
(2) ie½2n; n þ d þ 1�:

This group is 0 for ie½0; 2d þ 1�; and for ie½d; 2d þ 1� if X is affine.

Proof. (a) In case X is smooth, this follows from the isomorphism (geometric
Poincaré duality)

Hc
i ðX ; nÞCH2d�iðX ; d � nÞ

and Theorem 1. In general, X contains an smooth open subset U (choose U affine if
X is affine). Let Z be the reduced complement. Then the claims follow from the long
exact sequences

?-Hc
i ðZ; nÞ-Hc

i ðX ; nÞ-Hc
i ðU ; nÞ-Hc

i�1ðZ; nÞ-?

and induction on d:
(b) For any X ; there are perfect parings (arithmetic Poincaré duality)

Hc
i ðX ; m#n

m Þ 
 Hiþ1
c ðX ; m#n

m Þ-Z=m:

The claims follow from (a) and this duality. &
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2. Duality for regular schemes

Let X -
f

S be a flat compactifiable morphism of pure relative dimension d and n

an integer invertible on S: According to [3, (3.2.1.2)], there is a canonical natural
transformation

tf : f nðdÞ½2d�-Rf ! ð2:1Þ

between functors from DþðS;Z=nÞ to DþðX ;Z=nÞ; the derived categories of étale
sheaves of Z=n-modules over S and X : If f is smooth, tf is an isomorphism of

functors [25, Theorem 3.2.5]).
In the next theorem, we shall apply Thomason’s absolute cohomological purity

[25]. Recall the conditions of [25, 2.2]:

(a) Either X is of finite type over Z; or over a local or global field, or over a
separably closed field, or over a ring of integers in a local field

(b) or X is the inverse limit scheme of an inverse system of schemes Xa with affine
étale transition maps Xa-Xb; and each Xa satisfies (a).

Theorem 4. Suppose that X satisfies condition (a) or (b) and is regular. Let N be the

étale n-cohomological dimension of X, i.e. the supremum of the étale l-cohomological

dimensions of X for l prime dividing n. Then there exists an integer mðNÞ; depending

only on N, such that Ker tf and Coker tf are annihilated by mðNÞ:

Proof. Embed f into a smooth compactifiable morphism f̃ of pure dimension D:

(i is a closed immersion).
Let c ¼ D � d: By Thomason [25, Theorem 3.5], there exists an integer MðNÞ and

a map with kernels and cokernels killed by MðNÞ2:

MðNÞi
*

inZ=n-
%
H2c

X ðX̃;Z=nðcÞÞ;

moreover,
%
H

j
X ðX̃;Z=nðcÞÞ is killed by MðNÞ for ja2c: From this and the full

faithfulness of i
*
; one derives a natural transformation with kernel and cokernel

killed by MðNÞ2:

MðNÞin-Ri!ðcÞ½2c�:
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Composing with f̃ * ðdÞ½2d�; we get a new map

MðNÞf nðdÞ½2d�-Ri! f̃ * ðDÞ½2D�

with the same properties. The proof of [25, Theorem 3.5] makes it clear that the
diagram

commutes. This completes the proof. &

Remark 5. Gabber (unpublished) has proven absolute cohomological purity for
étale cohomology with finite coefficients. We could have appealed to his theorem to
get rid of the factor mðNÞ in Theorem 4, but this is pointless in this context since we
reason up to groups of finite exponent anyway.

3. Varieties over Qp

Theorem 6. Let X be a variety of dimension d over Qp:

(a) The group HiðX ; nÞ is finite in the following cases:

(1) ne½0; d þ 1�;
(2) ie½n; n þ d þ 1�:

This group is 0 for i42d þ 2; and for i4d þ 2 if X is affine.
(b) The Borel–Moore étale homology group Hc

i ðX ; nÞ is finite in the following cases:

(1) ne½�1; d�;
(2) ie½n � 1; n þ d�:

This group is 0 for ie½�2; 2d�; and for ie½d � 2; 2d� if X is affine.

(c) The cohomology group with proper supports Hi
cðX ; nÞ is finite in the following

cases:

(1) ne½0; d þ 1�;
(2) ie½n; n þ d þ 1�:

This group is 0 for ie½0; 2d þ 2�; and for ie½d; 2d þ 2� if X is affine.
(d) If X is smooth and U is an open subset of X, then, for all i, the kernel and cokernel

of the map

HiðX ; 0Þ-HiðU ; 0Þ

are finite.
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Proof. We argue as usual by induction on d:
(a) We first assume X smooth projective and strictly semi-stable over some finite

extension K of Qp: Let X be a strict semi-stable model over OK and Y the closed

fibre. Consider the long exact sequence of cohomology with supports:

?-Hi
Y ðX; nÞ-HiðX; nÞ-HiðXK ; nÞ-Hiþ1

Y ðX; nÞ-?

By proper base change, the map HiðX; nÞ-HiðY ; nÞ is an isomorphism, hence

HiðX; nÞ is finite for ne½0; d� or ie½n; n þ d þ 1� by Theorem 2. On the other hand,
Theorem 4 implies that the natural map

Hiþ1
Y ðX; nÞ-Hc

2d�i�1ðY=Zp; d � nÞ

is an isomorphism up to groups of finite exponent. Moreover, Hc
2d�i�1ðY=Zp; d �

nÞCHc
2d�iþ1ðY=Fp; d � n þ 1Þ since Ri!ðQ=ZÞ0ðd � nÞ ¼ ðQ=ZÞ0ðd � n � 1Þ½�2�;

where i ¼ Spec Fp-Spec Zp is the closed immersion. From Theorem 3(a), we

deduce that Hiþ1
Y ðX; nÞ is finite for ne½1; d þ 1� or ie½n; 2n � 1�: It follows that

HiðXK ; nÞ is finite, hence that HiðX ; nÞ is finite by a transfer argument. (We have not
used that Y is a divisor with normal crossings.)

Next, the usual purity argument shows by induction on d that, given a smooth
variety V of dimension d over Qp and an open subset U ; Theorem 6(a) holds for V if

and only if it holds for U : In particular, Theorem 6(a) is true for open subsets of
semi-stable smooth projective varieties.

Now assume X smooth, and let X be a flat model of X over Zp: By de Jong [14],

there exists an alteration X1-X with X1 an open subset of a strict semi-stable
variety over a suitable finite extension O of Zp: In particular, X1-X is an alteration,

where X1 is the generic fibre of X1; and X1 is open in a strictly semi-stable smooth
projective variety over the field of fractions of O: Then the first two steps show that
Theorem 6(a) holds for X :

The case X arbitrary is dealt with exactly as in the proof of Theorem 2, except that
things are now simpler as one may use resolution of singularities instead of de Jong’s
theorem.

(b) is proven exactly as Theorem 3(a), and (c) follows from (b) by the
corresponding duality:

Hc
i ðX ; m#n

m Þ 
 Hiþ2
c ðX ; m#nþ1

m Þ-Z=m:

Finally, (d) follows from (a) and purity. &

Remark 7. As Illusie pointed out, in the first part of the proof of (a) the recourse to
Theorem 4 is in fact not necessary; instead, we could have appealed to the purity
result of Rapoport–Zink [19, Theorem 2.21], using the fact that Y is a divisor with
normal crossings.
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Remark 8. For X of finite type over Fp or Qp; the group HiðX ;QlðnÞÞ for lap

vanishes exactly when HiðX ;Ql=ZlðnÞÞ is finite. This is obvious from the exact
sequence

HiðX ;ZlðnÞÞ-HiðX ;QlðnÞÞ-HiðX ;Ql=ZlðnÞÞ-Hiþ1ðX ;ZlðnÞÞ

and the fact that the groups HnðX ;ZlðnÞÞ are finitely generated Zl-modules.
Similarly for Borel–Moore homology and cohomology with proper supports.

(For continous étale cohomology in general, see [12]; here, finiteness theorems for
étale cohomology with finite coefficients cause that the naı̈ve definition with inverse
limits works fine—similarly for Borel–Moore homology and cohomology with
proper supports.)

Lemma 9. Let X be a smooth projective variety of dimension d over an algebraically

closed field k of characteristic 0. Let L be the class in H2ð %X; #Zð1ÞÞ of an ample line

bundle on X. Then for any ipd; the kernel and cokernel of the map

Hið %X;Q=ZðnÞÞ -L
d�i

H2d�ið %X;Q=Zðn þ d � iÞÞ

are finite.

Proof. (I am indebted to the referee for pointing out this simple argument.) We may
assume that k is the algebraic closure of a field finitely generated over Q; hence
admits an embedding s : k-C: Let Xs ¼ X 
k;s C: Then there are isomorphism

Hn
!etðX ;Q=ZðnÞÞ-B Hn

!etðXs;Q=ZðnÞÞCHn

BðXs;Q=ZðnÞÞ;

where Hn
B is Betti (singular) cohomology. These isomorphisms commute with cup-

product by L; if L is interpreted in Betti cohomology as the class of the given

hyperplane section in H2
BðXs;Zð1ÞÞ (where Zð1Þ ¼ ð2p

ffiffiffiffiffiffiffi
�1

p
ÞZ). The result now easily

follows from the classical Hard Lefschetz theorem and the finite generation of the
cohomology of X with integer coefficients. &

Theorem 10. Let X be smooth projective of dimension d over Qp: Let G ¼ Galð %Qp=QpÞ
and %X ¼ X 
Qp

%Qp: For j ¼ 0; 1; 2; the group HjðG;Hi�jð %X; nÞÞ is finite in the

following cases:
j ¼ 0: (1) ne½0; d�:
(2) ie½n; n þ d�:
j ¼ 1: (1) ne½0; d þ 1�:
(2) ie½n; n þ d þ 1�:
j ¼ 2: (1) ne½1; d þ 1�:
(2) ie½n þ 1; n þ d þ 1�:
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This extends to the group HjðG;Hi�jð %X;Qp=ZpðnÞÞÞ for j ¼ 0 and j ¼ 2: On the

other hand, for j ¼ 1 and ðn; iÞ in the above range, the corank of this group is equal to

dimQp
Hi�1ð %X;QpÞ:

Proof. Everywhere, we shall use without mention that the cohomology groups of G

with finite coefficients are finite.

We first deal with coefficients ðQ=ZÞ0ðnÞ: By Lemma 9, the Hochschild–Serre
spectral sequence

HaðG;Hbð %X; nÞÞ ) HaþbðX ; nÞÞ

degenerates in the category A already used in the proof of Theorem 1 [8]. Applying

Theorem 6(a), we get the estimate HjðG;Hi�jð %X; nÞÞ finite at least in the cases

(1) ne½0; d þ 1�;
(2) ie½n; n þ d þ 1�:

Let L be the class in H2ð %X; #Z0ð1ÞÞ of an ample line bundle on X ; where #Z0ð1Þ ¼Q
lap Zlð1Þ: Then the corresponding maps in Lemma 9 are G-equivariant and may be

reformulated as isomorphisms in A

Hi�jð %X; nÞÞCH2d�iþjð %X; n þ d � i þ jÞ:

(For i � jpd; the isomorphism is given by cup-product by Ld�iþj; for i � jXd; it is

given by cup-product by Li�j�d :) We therefore get that HjðG;Hi�jð %X; nÞÞ is finite also
in the cases

(1) n þ d � i þ je½0; d þ 1�;
(2) 2d � i þ 2je½n þ d � i þ j; n þ 2d � i þ j þ 1�

or

(1) ie½n þ j � 1; n þ d þ j�;
(2) ne½j � 1; d þ j�:

We now consider the case of coefficients Qp=ZpðnÞ: By an analogue of Remark 8

(compare [13, Lemma 1]), the finiteness of HjðG;Hi�jð %X;Qp=ZpðnÞÞÞ is equivalent to
the vanishing of HjðG;Hi�jð %X;QpðnÞÞÞ: By Jannsen [13, Corollary 5], the case j ¼ 0

holds for no0 or ion as an application of Faltings’ Hodge–Tate decomposition (see
also [24, Proof of Theorem 2 in 2.1.3]). We get the remaining cases n4d or i4n þ d

by the same application of Hard Lefschetz as above. From the case j ¼ 0; we then get
the case j ¼ 2 by local Tate duality and Poincaré duality for X :

Finally, we get the remaining case j ¼ 1 by an Euler–Poincaré characteristic
argument: for any finite-dimensional Qp-vector space V with continuous action of G;

we have

dim H0ðG;VÞ � dim H1ðG;VÞ þ dim H2ðG;VÞ ¼ �dim V :
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This may be reduced to Tate’s corresponding theorem for finite G-modules [21, p.
109, Theorem 5] in the same way as [24, proof of Proposition 2] or [13, proof of
Lemma 2] (compare [24, p. 127]). We leave it to the reader to check the rather tedious
bookkeeping in order to see that the range for ði; nÞ is correct.

This completes the proof of Theorem 10. &

Corollary 11 (compare Soulé [24, 2.1.3, Theorem 2]). Let X be smooth projective over

Qp: Then, for ði; nÞ as in Theorem 6(a), we have

corank HiðX ;Qp=ZpðnÞÞ ¼ bi�1ðXÞ;

where bi�1ðX Þ is the ði � 1Þ-st Betti number of %X:

Remark 12. As the referee pointed out, one can easily extend Theorems 2 and 6(a) to
cohomology groups with supports: this is left to the interested reader.

Remark 13. A plausible extension of Corollary 11 to arbitrary Qp-varieties X could

be the formula

corank Hi
cðX ;Qp=ZpðnÞÞ ¼ bi�1ðX Þ

for ði; nÞ as in Theorem 6(c), where bi�1ðXÞ is the ði � 1Þ-st virtual Betti number of %X

(cf. [10, 3.3.1]). If this is true, I do not see how to prove it by the methods of this
paper. At least the formula

X

i

ð�1Þi corank Hi
cðX ;Qp=ZpðnÞÞ ¼

X

i

ð�1Þibi�1ðXÞ

holds, by reduction to Corollary 11.

4. Jannsen’s conjecture

In [13], Jannsen proposes the following conjecture:

Conjecture 14 (Jannsen [13, Conjecture 3, Remark 5]). With assumptions and

notation as in Theorem 10, the group H0ðG;Hið %X;QlðnÞÞÞ is 0 for no0 or io2n and

any prime number l.

As pointed out by Jannsen, this conjecture would follow for lap from the
monodromy conjecture [13, pp. 342–343]. In particular, it holds in this case for
abelian varieties and also for dim Xp2 [19, Satz 2.13, 14]), hence for ip2 by a
Bertini–Lefschetz argument (I am indebted to the referee for pointing this out). In
view of [13, Lemma 1], Theorem 10 proves part of it unconditionally, with in fact a
stronger result.
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What does it imply for the vanishing of HnðX ;QlðnÞÞ when lap? By Theorem

6(a), we may assume nA½0; d þ 1�: First, since dim H0ðG;Hið %X;QlðnÞÞÞ ¼
dim H2ðG;Hið %X;Qlði þ 1� nÞÞÞ [13, Lemma 11(a)], we get the estimate

H2ðG;Hi�2ð %X;QlðnÞÞÞ ¼ 0 for i42n: Next, since the Euler–Poincaré characteristic
of G is 0 for Ql ½½G��-modules when lap; we have

dim H1ðG;Hi�1ð %X;QlðnÞÞÞ

¼ dim H0ðG;Hi�1ð %X;QlðnÞÞÞ þ dim H2ðG;Hi�1ð %X;QlðnÞÞÞ

for any ðn; iÞ: However, even taking the estimates of Theorem 10 into account, one
sees that Conjecture 14 does not add any refinement to the bounds in Theorem 6(a).

For the benefit of the reader, we include a picture of the region for Jannsen’s
conjecture and the region where we get vanishing. For clarity we have in fact filled with
slanted lines the regions complementary to Jannsen’s vanishing (positive slope) and our

vanishing (negative slope). The region where H0ðG;Hið %X;QlðnÞÞÞ may be nonzero
according to our results plus Jannsen’s conjecture is the triangle at the intersection of
the two hatched regions (with summits ð0; 0Þ; ð0; dÞ and ðd; 2dÞ), and the region in
which Jannsen’s conjecture remains open is the hatched triangle under the line i ¼ 2n

(with summits ð0; 0Þ; ðd; dÞ and ðd; 2dÞ). It is mysterious that outside this small region,
Jannsen’s conjecture may be obtained for lap essentially by dévissage from Deligne’s
Weil I and for l ¼ p from Faltings’ Hodge–Tate decomposition!

5. Varieties over a number field

In [13, Conjecture 1], Jannsen also proposes a global conjecture:

Conjecture 15. Let X be a smooth projective variety over Q and p a prime number.1 Let

S be a finite set of places of Q; including p and the prime at infinity, and such that X has

1We do not assume X geometrically connected: the case of a variety over an arbitrary number field can

be easily recovered from this statement by restriction of scalars.
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good reduction outside S. Let GS be the Galois group of the maximal S-ramified

extension of Q: Then the group H2ðGS;H
ið %X;Qp=ZpðnÞÞÞ is finite if ie½n � 1; 2n � 1�:

Theorem 10 gives the following result in the direction of this conjecture:

Theorem 16. Let X ; p;S;GS be as in Conjecture 15, and suppose X irreducible of

dimension d. Then the group H2ðGS;Hið %X;Qp=ZpðnÞÞÞ is, up to a finite group, dual to

the group

KerðH1ðQ;NÞ-H1ðQp;NÞÞ

with N ¼ H2d�ið %X;Zpðd � n þ 1ÞÞ=tors; except perhaps if 0pnpd þ 1 and

n � 1pipn þ d:

Remark 17. By Hard Lefschetz, the group N is also isomorphic to Hið %X;Zlði þ 1�
nÞÞ=tors:

Proof. Of course this proof uses well-known methods and we do not claim any
originality for it. Suppose that ðn; iÞ is not as in the exceptional cases. For all vAS; let

Gv be the decomposition group at v: By Theorem 10, H2ðGS;Hið %X;Qp=ZpðnÞÞÞ
contains

KerðH2ðGS;Hið %X;Qp=ZpðnÞÞÞ-
Y

vAS

H2ðQv;Hið %X;Qp=ZpðnÞÞÞÞ

as a subgroup of finite index. By Poitou–Tate duality [18, Theorem 4.10, p. 70] and a
limit argument using the fact that S is finite, this kernel is dual to

KerðH1ðGS;Mnð1ÞÞ-
Y

vAS

H1ðQv;Mnð1ÞÞÞ

with

Mn ¼ Hið %X;Z=pnðnÞÞnCH2d�ið %X;Zpðd � nÞÞ;

where we have now used Poincaré duality.

Let N ¼ Mnð1Þ=tors: since Ntors is finite, the map H1ðGS;Mnð1ÞÞ-H1ðGS;NÞ has
finite kernel and cokernel. By Jannsen [13, Lemma 4], the inflation map

H1ðGS;NÞ-H1ðQ;NÞ is an isomorphism provided 2d � ia2ðd � n þ 1Þ; i.e.
ia2ðn � 1Þ: But we cannot have i ¼ 2ðn � 1Þ: if n ¼ 0 this is clear and if 1pnpd þ
1 this would imply n � 1pipn þ d; contradicting the hypothesis. So the inflation
map is always an isomorphism. On the other hand, applying Theorem 10 a second

time, we see that H1ðQv;NÞÞ is finite for all vap: Since it is obviously finite also for
v ¼ N; Theorem 16 follows. &

B. Kahn / Journal of Number Theory 99 (2003) 57–7370



For d ¼ 0; Theorem 6 boils down the well-known fact that for a number field K ;

H2ðGS;Qp=ZpðnÞÞ is dual to KerðH1ðK ;Zpð1� nÞÞ-
Q

vjp H1ðKv;Zpð1� nÞÞÞ up to

a finite group for na0; 1; compare [20, Section 5, Corollary 4]. For n41 the first
group is 0 by Soulé [22, Theorem 5] and for no0 the second one is isomorphic to the
kernel of the ‘‘p-adic regulator map’’

K2m�1ðKÞ#Zp-
Y

vjp
K2m�1ðKv;ZpÞ

with m ¼ 1� n: For K totally real, its finiteness is equivalent to the nonvanishing of
a certain p-adic L-function at s ¼ m; at least when K is abelian, cf. Soulé [23,
Section 3].

6. An open question in weight 0

For X smooth connected over Fp and lap; the cohomology groups HiðX ;QlÞ are
very simple: they are 0 for i41; isomorphic to Ql for i ¼ 0; 1; and moreover, cup-

product by eAH1ðFp;QlÞ gives an isomorphism H0ðX ;QlÞ-
B

H1ðX ;QlÞ (Theorem 1

and Remark 8).
This is not true anymore when X is not smooth. It would be highly desirable to

understand the groups HnðX ;QlÞ better, in terms of the singularities of X ; and for
applications to smooth varieties over Qp: We shall simply make an elementary step

in this direction.

Let Sm be the category of smooth Fp-schemes of finite type, Sm0 the full

subcategory of smooth schemes of dimension 0 and Sm; Sm0
 the corresponding

categories of simplicial schemes. The inclusion functor Sm0-Sm has a left adjoint
which is also a retraction

p0 : Sm-Sm0;

X/
a

iAI

Spec ki;

where I is the set of connected components Xi of X and, for all i; ki is the field of
constants of Xi: There corresponds to it a functor

p0 : Sm-Sm0
;

which is a left adjoint and a retraction of the natural inclusion. We may view Sm0
 as

the category of simplicial G-sets finite in each degree, where G ¼ Galð %Fp=FpÞ:
Let Y-X be a smooth simplicial resolution of X [4]. There is a spectral sequence

E
p;q
1 ¼ Hqð %Yp;QlÞ ) Hpþqð %X;QlÞ;
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where % denotes the geometric fibre. Tracing the Frobenius action, one sees that the

weight 0 part of E
p;q
1 is precisely Hqðp0ð %YpÞ;QlÞ; which is of course 0 for q40: Since

taking weight 0 is an exact functor, the spectral sequence yields an isomorphism

Hnðp0ð %YÞ;QlÞCHnð %X;QlÞð0Þ;

where the index ð0Þ denotes the weight 0 part (note that the spectral sequence

computing the cohomology of the simplicial set p0ð %YÞ degenerates at E2; with the
same E2-terms as the weight 0 part of the above spectral sequence). In particular, the

rational homology type of the simplicial G-set p0ðYÞ only depends on X :
One might hope that the G-homotopy type of p0ðYÞ only depends on X ; at least

when we restrict to special types of simplicial resolutions Y: Hélène Esnault and
Ofer Gabber have independently pointed out that, at any rate, alterations are not
sufficient for this. For instance, we might take X ¼ Spec Fp and for Y the

hypercovering associated to some finite Galois extension with group D: then the G-

homotopy type of p0ð %YÞ is obviously BD (with the trivial action of G). It seems that
something like envelopes [10] is needed, forcing some recourse to resolution of
singularities.

Besides understanding HnðX ;ZlÞ for smooth varieties X over Qp; this question is

also closely related to a conjecture of Kato [17, Conjecture 0.3]. We hope to come
back to it in a future paper.
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