Motives with modulus

Bruno Kahn
Indo-French program for mathematics
IMSc, Chennai, 11-24 January 2016
With Shuji Saito and Takao Yamazaki

What are motives?

Grothendieck's idea: universal cohomology theory for algebraic varieties, made out of algebraic cycles.

Pure motives: for smooth projective varieties. Mixed motives: for all varieties.
More generally: why not replace base field by base scheme... (not covered in this talk).

1. Review: pure motives (Grothendieck)

Smooth projective varieties

Weil cohomology theory: cohomology theory on smooth projective k varieties (k a field) satisfying certain axioms: Künneth formula, Poincaré duality. . .
Classical examples: l-adic cohomology for $l \neq \operatorname{char} k$ (coefficients \mathbb{Q}_{l}), Betti cohomology (coefficients \mathbb{Q}), de Rham cohomology (coefficients k) in characteristic 0 , crystalline cohomology (coefficients quotient field of Witt vectors on k) in characteristic >0.

Grothendieck: wants universal Weil cohomology with values in suitable abelian category!

Algebraic cycles

X variety over field k (or more generally, any scheme): algebraic cycle over X $=$ linear combination of closed irreducible subsets Z_{α} of X (with coefficients in a ring R)
Cycle of dimension (codimension) i : all Z_{α} are of dimension (codimension) i. Notation: $Z_{i}(X, R), Z^{i}(X, R)$.
To intersect cycles, need in general to mod out by some "adequate" equivalence relation $\sim\left(\right.$ notation $\left.A_{i}^{\sim}(X, R), A_{\sim}^{i}(X, R)\right)$:

Rational equivalence: parametrize cycles by lines $\left(\mathbf{P}^{1}\right.$ or $\left.\mathbf{A}^{1}\right)$. Algebraic equivalence: parametrize cycles by smooth curves or smooth algebraic varieties.
Homological equivalence: take image of cycle map with value in some cohomology theory.
Numerical equivalence (on smooth proper varieties): mod out by kernel of intersection pairing.

Pure motives

\sim adequate equivalence relation on algebraic cycles, R commutative ring of coefficients:
$\operatorname{Corr} \sim(k, R)$ category of algebraic correspondences:
Objects: smooth projective varieties.
Morphisms: $\operatorname{Hom}(X, Y)=A_{\operatorname{dim} X}^{\sim}(X \times Y, R)$.
Composition of correspondences: $X, Y, Z \in \operatorname{Corr}_{\sim}(k, R), \alpha \in$ $\operatorname{Hom}(X, Y), \beta \in \operatorname{Hom}(Y, Z)$:

$$
\begin{aligned}
& \beta \circ \alpha=p_{13 *}\left(p_{12}^{*} \alpha \cdot p_{23}^{*} \beta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \quad \beta \circ \alpha \\
& \beta
\end{aligned}
$$

Graph functor: $\gamma: \operatorname{Sm}^{\text {proj }}(k) \rightarrow \operatorname{Corr}_{\sim}(k, R)$

$$
X \mapsto X, \quad(f: X \rightarrow Y) \mapsto \Gamma_{f} \in A_{\operatorname{dim} X}^{\sim}(X \times Y, R) \quad(\text { graph of } f)
$$

Get from correspondences to motives by string of functors

$$
\begin{array}{rlrl}
\mathbf{S m}^{\mathrm{proj}}(k) & \rightarrow \operatorname{Corr}_{\sim}(k, R) \xrightarrow{\natural} \mathcal{M}_{\sim}^{\mathrm{eff}}(k, R) & \xrightarrow{\mathbb{L}^{-1}} \mathcal{M}_{\sim}(k, R) \\
X & \mapsto X & \mapsto h(X) & \mapsto h(X) \\
f & \mapsto \Gamma_{f} & &
\end{array}
$$

h: adjoin kernels to idempotents (called Karoubian envelope or idempotent completion). \ddagger and \mathbb{L}^{-1} fully faithful.
To pass from $\mathcal{M}_{\sim}^{\text {eff }}(k, R)$ (effective motives) to $\mathcal{M} \sim(k, R)$ (all motives), invert the Lefschetz motive:
\otimes-structures \quad on $\quad \operatorname{Sm}{ }^{\mathrm{proj}}(k), \operatorname{Corr}_{\sim}(k, R), \mathcal{M}_{\sim}^{\mathrm{eff}}(k, R) \quad$ induced \quad by $(X, Y) \mapsto X \times Y$. Unit object in $\mathcal{M}_{\sim}^{\text {eff }}(k, R): \mathbf{1}=h(\operatorname{Spec} k)$. Then $h\left(\mathbf{P}^{1}\right)=\mathbf{1} \oplus \mathbb{L}, \mathbb{L}$ the Lefschetz motive: quasi-invertible $(M \mapsto M \otimes \mathbb{L}$ fully faithful).

$$
\mathcal{M}_{\sim}(k, R)=\mathcal{M}_{\sim}^{\mathrm{eff}}(k, R)\left[\mathbb{L}^{-1}\right] .
$$

Basic results on pure motives

Theorem 1 (easy). $\mathcal{M}_{\sim}(k, A)$ rigid \otimes-category: every object has a dual and every object is isomorphic to its double dual.

Dual of $h(X): h(X) \otimes \mathbb{L}^{-\operatorname{dim} X}$.
Theorem 2 (Jannsen, 1991). $\mathcal{M}_{\text {num }}(k, \mathbb{Q})$ is abelian semi-simple.
$\mathcal{M}_{\text {num }}(k, \mathbb{Q})$ Grothendieck's candidate for receptacle of a universal cohomology theory.

The problem

H Weil cohomology theory with coefficients in K :

$$
\begin{gathered}
\mathcal{M}_{H}(k, \mathbb{Q}) \xrightarrow{H^{*}} \operatorname{Vec}_{K}^{*} \\
\mathcal{M}_{\mathrm{num}}(k, \mathbb{Q})
\end{gathered}
$$

Vec_{K}^{*} finite-dimensional graded K-vector spaces; horizontal functor faithful, vertical functor full. If want H^{*} to factor through $\mathcal{M}_{\text {num }}(k, \mathbb{Q})$, need vertical functor to be an equivalence of categories:

Homological equivalence $=$ numerical equivalence
The main standard conjecture of Grothendieck: still open after almost 50 years!
(Then grander vision: motivic Galois group...)

2. Mixed motives?

Grothendieck: no construction but a vision: there should be an abelian rigid \otimes-category $\mathcal{M} \mathcal{M}(k, \mathbb{Q})$ of "mixed motives" such that (at least)

- The socle (semi-simple part) of $\mathcal{M} \mathcal{M}(k, \mathbb{Q})$ is $\mathcal{M}_{\text {num }}(k, \mathbb{Q})$; every object is of finite length.
- Any k-variety X has cohomology objects $h^{i}(X) \in \mathcal{M} \mathcal{M}(k, \mathbb{Q})$ and cohomology objects with compact supports $h_{c}^{i}(X) \in \mathcal{M} \mathcal{M}(k, \mathbb{Q})$, which are "universal" for suitable cohomology theories.

No construction of $\mathcal{M} \mathcal{M}(k, \mathbb{Q})$ yet (apart from 1-motives), but two ideas to get towards it:
(1) (Deligne, Jannsen, André, Nori; Bloch-Kriz): add a few homomorphisms which are not (known to be) algebraic.
(2) (suggested by Deligne and Beilinson; Hanamura, Levine, Voevodsky): might be easier to construct a triangulated category out of algebraic cycles, and to look for a "motivic t-structure" with heart $\mathcal{M M}(k, \mathbb{Q})$.

3. What is K_{2} ?

Steinberg: k field,

$$
K_{2}(k)=k^{*} \otimes_{\mathbb{Z}} k^{*} /\langle x \otimes(1-x) \mid x \neq 0,1\rangle
$$

Conceptual definition?

First answer: Tate (1970es) for K_{2} / n :

$$
K_{2} / n=\left(\mathbf{G}_{m} \otimes \mathbf{G}_{m}\right) / n+\text { transfers }+ \text { projection formula } .
$$

How about K_{2} itself?
Two answers: Suslin, Kato (1980es).

Suslin:

$K_{2}=\mathbf{G}_{m} \otimes \mathbf{G}_{m}+$ transfers + projection formula + homotopy invariance.
\longrightarrow Suslin-Voevodsky's motivic cohomology, Voevodsky's homotopy invariant motives.

Kato:

$K_{2}=\mathbf{G}_{m} \otimes \mathbf{G}_{m}+$ transfers + projection formula + Weil reciprocity. \longrightarrow reciprocity sheaves and motives with modulus.

4. REVIEW: VOEVODSKY'S TRIANGULATED CATEGORIES OF MOTIVES (OVER A FIELD)

k base field
Goal: two \otimes-triangulated categories $\mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}} \longleftrightarrow \mathbf{D M}^{\text {eff }}$
$X \in \mathbf{S m}(k) \mapsto M(X) \in \mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}}$ (covariant) with
Mayer-Vietoris: $X=U \cup V$ open cover \mapsto exact triangle

$$
M(U \cap V) \rightarrow M(U) \oplus M(V) \rightarrow M(X) \xrightarrow{+1}
$$

Homotopy invariance: $M\left(X \times \mathbf{A}^{1}\right) \xrightarrow{\sim} M(X)$.
$\mathbf{D M}^{\text {eff "large" category allowing to compute Hom groups via Nisnevich }}$ hypercohomology.

Construction:

Cor additive \otimes-category:
Objects: Smooth varieties
Morphisms: finite correspondences
$\operatorname{Cor}(X, Y)=\mathbb{Z}[Z \subset X \times Y \mid Z$ integral, $Z \rightarrow X$ finite and surjective over a component of $X]$.

Graph functor $\mathbf{S m} \rightarrow \mathbf{C o r}$.
$\mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}}=$ pseudo-abelian envelope of

$$
K^{b}(\mathbf{C o r}) /\langle M V+H I\rangle
$$

(MV = Mayer-Vietoris, $\mathrm{HI}=$ homotopy invariance as on previous page).
Any $X \in \mathbf{S m}$ has a motive $M(X) \in \mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}} ; M(\operatorname{Spec} k)=: \mathbb{Z}, M\left(\mathbf{P}^{1}\right)=$ $\mathbb{Z} \oplus \mathbb{Z}(1)[2], \mathbb{Z}(1)$ Tate (or Lefschetz) object.
Product of varieties induces \otimes-structure on $\mathbf{S m}, \mathbf{C o r}, \mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}}$: get $\mathbf{D M}_{\mathrm{gm}}$ from $\mathbf{D} \mathbf{M}_{\mathrm{gm}}^{\mathrm{eff}}$ by \otimes-inverting $\mathbb{Z}(1)$.

Similar to construction of effective motives:

$\mathrm{Sm} \rightarrow$ Cor $\rightarrow \frac{K^{b}(\text { Cor })}{\langle M V+H I\rangle} \xrightarrow{\natural} \mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}} \xrightarrow{\mathbb{Z}(1)^{-1}} \mathbf{D M}_{\mathrm{gm}}$
$\left(\mathbb{Z}(1)^{-1}\right.$ and vertical functors fully faithful if k perfect!)

To define $\mathbf{D M}{ }^{\text {eff. }}$
PST $=\operatorname{Mod}-\mathbf{C o r}=\{$ additive contravariant functors $\mathbf{C o r} \rightarrow \mathbf{A b}\}$ NST $=\{F \in \mathbf{P S T} \mid F$ is a Nisnevich sheaf $\}$
Cor $\ni X \mapsto \mathbb{Z}_{\mathrm{tr}}(X) \in$ PST the presheaf with transfers represented by X : it belongs to NST.

$$
\mathbf{D M}^{\mathrm{eff}}=D(\mathbf{N S T}) /\langle H I\rangle
$$

Natural functor $\mathbf{D} \mathbf{M g}_{\mathrm{gm}}^{\mathrm{eff}} \rightarrow \mathbf{D} \mathbf{M}^{\text {eff }}$, fully faithful if k perfect (non-trivial theorem!)

To avoid perfectness hypothesis: strengthen Mayer-Vietoris to "Nisnevich Mayer-Vietoris" (using elementary distinguished squares) in definition of $\mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}}$.
\mapsto variant of definition of $\mathbf{D M}{ }^{\text {eff }}$:

$$
\mathbf{D M}^{\mathrm{eff}}=D(\mathbf{P S T}) /\left\langle M V_{\mathrm{Nis}}+H I\right\rangle
$$

Completely parallel to $\mathbf{D} \mathbf{M}_{\mathrm{gm}}^{\mathrm{eff}}$!

$$
\mathbf{H I}=\left\{F \in \mathbf{N S T} \mid F(X) \xrightarrow{\sim} F\left(X \times \mathbf{A}^{1}\right) \forall X \in \mathbf{S m}\right\} .
$$

If k perfect: $\mathbf{D M}{ }^{\text {eff }}$ has a t-structure with heart $\mathbf{H I}$, the homotopy t structure (here, not known how to avoid perfectness hypothesis).
This is not the searched-for motivic t-structure! But very useful nevertheless.

5. Rosenlicht's theorems

(See Serre's Groupes algébriques et corps de classes.)
C smooth projective curve over $k=\bar{k}, U \subset C$ affine open subset.
Theorem 3. $f: U \rightarrow G$-morphism with G commutative algebraic group; \exists effective divisor \mathfrak{m} with support $C-U$ such that

$$
f(\operatorname{div}(g))=0 \text { if } g \in k(C)^{*}, g \equiv 1 \quad(\bmod \mathfrak{m}) .
$$

Here, extended f to homomorphism $Z_{0}(U) \rightarrow G(k)$ by linearity; hypothesis on $g \Rightarrow$ support of $\operatorname{div}(g) \subset U$.

Theorem 4. Given \mathfrak{m} and $u_{0} \in U$, the functor

$$
G \mapsto\left\{f: U \rightarrow G \mid f\left(u_{0}\right)=0 \text { and } f \text { has modulus } \mathfrak{m}\right\}
$$

from commutative algebraic groups to abelian groups is corepresentable by the generalized Jacobian $J(C, \mathfrak{m})$.

If \mathfrak{m} reduced, get connected component of relative Picard group

$$
J(C, \mathfrak{m})=\operatorname{Pic}^{0}(C, C-U)
$$

In general, extension of this by unipotent group.

6. Reciprocity sheaves

A reciprocity sheaf is a NST satisfying a reciprocity condition inspired by Rosenlicht's modulus condition. (Definition skipped!)

Examples 5.

- HI sheaves have reciprocity.
- G commutative algebraic group: the sheaf represented by G has reciprocity (e.g. $G=\mathbf{G}_{a}$).
- The modulus condition is "representable":

Definition 6. A modulus pair is a pair $M=\left(\bar{M}, \bar{M}^{\infty}\right)$ with (i) $\bar{M}^{\infty} \subset \bar{M}$ the closed immersion of an effective Cartier divisor; (ii) $M^{0}:=\bar{M}-\bar{M}^{\infty}$ is smooth.

Theorem 7 (K-S-Y, 2014). M modulus pair with \bar{M} proper and M° quasi-affine. There exists a quotient $h(M)$ of $\mathbb{Z}_{\mathrm{tr}}\left(M^{0}\right)$ which represents the functor

$$
\text { PST } \ni F \mapsto\left\{\alpha \in F\left(M^{0}\right) \mid \alpha \text { has modulus } M\right\} .
$$

Moreover, $h(M)$ has reciprocity and

$$
h(M)(k)=C H_{0}(M)
$$

$\mathrm{CH}_{0}(\mathrm{M})$ Kerz-Saito group of 0 -cycles with modulus.

Rec \subset PST full subcategory of reciprocity PST:

- closed under subobjects and quotients (in particular abelian)
- not clearly closed under extensions
- inclusion functor does not have a left adjoint (it has a right adjoint) So-so category...

Idea: take modulus pairs seriously, try and make a triangulated category out of them.

7. Motives with modulus

7.1. Categories of modulus pairs.

Definition 8. MCor:

Objects: Modulus pairs M.
Morphisms:
$\underline{\operatorname{MCor}}(M, N)=\left\langle Z \in \operatorname{Cor}\left(M^{0}, N^{0}\right)\right| Z$ integral, $p^{*} M^{\infty} \geq q^{*} N^{\infty}$, p, q projections $\bar{Z}^{N} \rightarrow \bar{Z} \rightarrow \bar{M}, \bar{Z}^{N} \rightarrow \bar{Z} \rightarrow \bar{N} ; \bar{Z} \rightarrow \bar{M}$ proper \rangle
\bar{Z} closure of Z in $\bar{M} \times \bar{N}, \bar{Z}^{N}$ normalisation of \bar{Z}. Properness on \bar{M} necessary for composition!
MCor: full subcategory of MCor where \bar{M} is proper (proper modulus pairs).

Tensor structure on MCor and MCor:

$$
\left(\bar{M}, M^{\infty}\right) \otimes\left(\bar{N}, N^{\infty}\right)=\left(\bar{M} \times \bar{N}, M^{\infty} \times \bar{N}+\bar{M} \times N^{\infty}\right) .
$$

Diagram of \otimes-additive categories and \otimes-functors:

$\tau(M)=M, \underline{\omega}(M)=M^{\circ}, \omega=\underline{\omega} \circ \tau, \lambda(X)=(X, \emptyset)(\lambda$ is left adjoint to $\underline{\omega}$).
Categories of presheaves

MPST $=\operatorname{Mod}-\mathbf{M C o r}, \quad \underline{\text { MPST }}=\operatorname{Mod}-\underline{\text { MCor }}$.

Diagram of \otimes-functors

?! left adjoint to ?*.
Theorem 9. ω and τ have pro-left adjoints. In particular, $\omega_{!}$and $\tau_{!}$ are exact.
7.2. Topologies. To make sense of topologies on modulus pairs, need to use MCor (MCor not sufficient), plus some subtleties (skipped). Get category of σ-sheaves $\underline{\text { MPST }}{ }_{\sigma}, \sigma \in\{$ Zar, Nis, ét $\}$ and pair of exact adjoint functors:

Will use mainly $\sigma=$ Nis, $\underline{\text { MNST }}:=\underline{\text { MPST }_{\text {Nis }}}$
7.3. Voevodsky's abstract homotopy theory. $(\mathcal{C}, \otimes) \otimes$-category: an interval in \mathcal{C} is a quintuple $\left(I, i_{0}, i_{1}, p, \mu\right)$:

- $I \in \mathcal{C}$
- $i_{0}, i_{1}: \mathbf{1} \rightarrow I, p: I \rightarrow \mathbf{1}$ (1 unit object)
- $\mu: I \otimes I \rightarrow I$
with conditions
- $p \circ i_{0}=p \circ i_{1}=1_{1}$
- $\mu \circ\left(1_{I} \otimes i_{0}\right)=i_{0} \circ p, \mu \circ\left(1_{I} \otimes i_{1}\right)=1_{I}$.
$(\mathcal{C}, \otimes, I) \otimes$-category with interval: a presheaf F on \mathcal{C} is I-invariant if $F(X) \xrightarrow{\sim} F(X \otimes I)$ for any $X \in \mathcal{C}$ (via the morphism $1_{X} \otimes p$).
Main example: $\mathcal{C}=\mathbf{S m}, I=\mathbf{A}^{1}, i_{t}: \operatorname{Spec} k \rightarrow \mathbf{A}^{1}$ inclusion of point t, $\mu: \mathbf{A}^{1} \times \mathbf{A}^{1} \rightarrow \mathbf{A}^{1}$ multiplication map. Get \mathbf{A}^{1}-invariance ($=$ homotopy invariance).
7.4. The affine line with modulus.

Proposition 10. The object $\bar{\square}=\left(\mathbf{P}^{1}, \infty\right)$ has the structure of an interval, given by the interval structure on $\bar{\square}^{0}=\mathbf{A}^{1}$.

In fact, more convenient to "put 1 at ∞ ", i.e. redefine $\bar{\square}$ as $\left(\mathbf{P}^{1}, 1\right)$.
Theorem 11. If $F \in \operatorname{MPST}$ is $\bar{\square}$-invariant, $\omega_{!} F$ has reciprocity.
Consequence: \otimes-structure on Rec (cf. Ivorra-Rülling: the K-groups of reciprocity functors).

Definition 12.

$$
\underline{\mathbf{M D M}_{\mathrm{gm}}^{\mathrm{eff}}}=\left(K^{b}(\underline{\mathbf{M}} \mathbf{C o r}) /\left\langle M V_{\mathrm{Nis}}+C I\right\rangle\right)^{\mathrm{t}} .
$$

$\underline{\mathbf{M D M}}^{\mathrm{eff}}=D(\underline{\mathbf{M P S T}}) /\left\langle M V_{\mathrm{Nis}}+C I\right\rangle=D(\underline{\mathbf{M N S T}}) /\langle C I\rangle$.
CI: $\bar{\square}$-invariance.
Naturally commutative diagram

$\iota, M \iota \otimes$ and fully faithful, $\underline{\omega}_{\text {eff }} \otimes$ and localisations, $\underline{\omega}^{\text {eff }}$ right adjoint to $\underline{\omega}_{\text {eff }}$ (hence fully faithful), Φ fully faithful if k perfect (Voevodsky).

Main theorem. X smooth proper: $\underline{\omega}^{\text {eff }} M(X)=M(X, \emptyset)$.

Corollary 13. a) p exponential characteristic of $k: \omega^{\mathrm{eff}}\left(\mathbf{D M}_{\mathrm{gm}}^{\mathrm{eff}}[1 / p]\right) \subset$ MDM $_{\mathrm{gm}}^{\mathrm{eff}}[1 / p]$.
b) k perfect: $M \Phi$ fully faithful.
c) k perfect, X smooth proper, $\mathcal{Y}=\left(\overline{\mathcal{Y}}, \mathcal{Y}^{\infty}\right) \in \underline{\mathbf{M} C o r, ~} j \in \mathbb{Z}$: canonical isomorphism

$$
\operatorname{Hom}_{\underline{\mathbf{M D M}_{\mathrm{gm}}^{\mathrm{eff}}}}(M(\mathcal{Y}), M(X, \emptyset)[j]) \simeq H^{2 d+j}\left(\left(\overline{\mathcal{Y}}-\mathcal{Y}^{\infty}\right) \times X, \mathbb{Z}(d)\right)
$$

right hand side $=$ Voevodsky's motivic cohomology. In particular, vanishes for $j>0$.

Next steps in the programme (not exhaustive):

- (In progress:) get homotopy t-structure on $\mathbf{M D M}^{\text {eff }} \subset$ MDM $^{\text {eff }}$ when k perfect, by extending Voevodsky's theorems on homotopy invariant presheaves with transfers.
- Construct realisation functors for interesting non homotopy invariant cohomology theories.

