Motives with modulus Bruno Kahn

Indo-French program for mathematics IMSc, Chennai, 11-24 January 2016 With Shuji Saito and Takao Yamazaki

What are motives?

Grothendieck's idea: universal cohomology theory for algebraic varieties, made out of algebraic cycles.

(not

Pure motives: for smooth projective varieties.
Mixed motives: for all varieties.
More generally: why not replace base field by base scheme... covered in this talk).

1. REVIEW: PURE MOTIVES (GROTHENDIECK) Smooth projective varieties

Weil cohomology theory: cohomology theory on smooth projective k-varieties (k a field) satisfying certain axioms: Künneth formula, Poincaré duality...

Classical examples: *l*-adic cohomology for $l \neq \text{char } k$ (coefficients \mathbb{Q}_l), Betti cohomology (coefficients \mathbb{Q}), de Rham cohomology (coefficients k) in characteristic 0, crystalline cohomology (coefficients quotient field of Witt vectors on k) in characteristic > 0.

Grothendieck: wants universal Weil cohomology with values in suitable abelian category!

Algebraic cycles

X variety over field k (or more generally, any scheme): algebraic cycle over X = linear combination of closed irreducible subsets Z_{α} of X (with coefficients in a ring R)

Cycle of dimension (codimension) i: all Z_{α} are of dimension (codimension) i. Notation: $Z_i(X, R), Z^i(X, R)$.

To intersect cycles, need in general to mod out by some "adequate" equivalence relation ~ (notation $A_i^{\sim}(X, R), A_{\sim}^i(X, R)$):

Rational equivalence: parametrize cycles by lines $(\mathbf{P}^1 \text{ or } \mathbf{A}^1)$. Algebraic equivalence: parametrize cycles by smooth curves or smooth algebraic varieties.

Homological equivalence: take image of cycle map with value in some cohomology theory.

Numerical equivalence (on smooth proper varieties): mod out by kernel of intersection pairing.

Pure motives

 \sim adequate equivalence relation on algebraic cycles, R commutative ring of coefficients:

 $\mathbf{Corr}_{\sim}(k, R)$ category of algebraic correspondences:

Objects: smooth projective varieties. **Morphisms:** $\operatorname{Hom}(X, Y) = A_{\dim X}^{\sim}(X \times Y, R)$. **Composition of correspondences:** $X, Y, Z \in \operatorname{Corr}_{\sim}(k, R), \ \alpha \in \operatorname{Hom}(X, Y), \ \beta \in \operatorname{Hom}(Y, Z)$:

$$\beta \circ \alpha = p_{13*}(p_{12}^* \alpha \cdot p_{23}^* \beta)$$

$$X \times Y \times Z$$

$$X \times Y \qquad X \times Z \qquad Y \times Z$$

$$\alpha \qquad \beta \circ \alpha \qquad \beta$$

Graph functor: $\gamma : \mathbf{Sm}^{\mathrm{proj}}(k) \to \mathbf{Corr}_{\sim}(k, R)$

 $X\mapsto X, \quad (f:X\to Y)\mapsto \Gamma_f\in A^\sim_{\dim X}(X\times Y,R) \quad (\text{graph of } f)$

Get from correspondences to motives by string of functors

$$\mathbf{Sm}^{\mathrm{proj}}(k) \to \mathbf{Corr}_{\sim}(k, R) \xrightarrow{\natural} \mathcal{M}_{\sim}^{\mathrm{eff}}(k, R) \xrightarrow{\mathbb{L}^{-1}} \mathcal{M}_{\sim}(k, R)$$
$$X \mapsto X \qquad \mapsto h(X) \qquad \mapsto h(X)$$
$$f \mapsto \Gamma_{f}$$

 \natural : adjoin kernels to idempotents (called *Karoubian envelope* or *idempotent completion*). \natural and \mathbb{L}^{-1} fully faithful.

To pass from $\mathcal{M}^{\text{eff}}_{\sim}(k, R)$ (effective motives) to $\mathcal{M}_{\sim}(k, R)$ (all motives), invert the Lefschetz motive:

 \otimes -structures on $\mathbf{Sm}^{\mathrm{proj}}(k), \mathbf{Corr}_{\sim}(k, R), \mathcal{M}_{\sim}^{\mathrm{eff}}(k, R)$ induced by $(X, Y) \mapsto X \times Y$. Unit object in $\mathcal{M}_{\sim}^{\mathrm{eff}}(k, R)$: $\mathbf{1} = h(\operatorname{Spec} k)$. Then $h(\mathbf{P}^1) = \mathbf{1} \oplus \mathbb{L}$, \mathbb{L} the Lefschetz motive: quasi-invertible $(M \mapsto M \otimes \mathbb{L})$ fully faithful).

$$\mathcal{M}_{\sim}(k,R) = \mathcal{M}_{\sim}^{\mathrm{eff}}(k,R)[\mathbb{L}^{-1}].$$

Basic results on pure motives

Theorem 1 (easy). $\mathcal{M}_{\sim}(k, A)$ rigid \otimes -category: every object has a dual and every object is isomorphic to its double dual.

Dual of h(X): $h(X) \otimes \mathbb{L}^{-\dim X}$.

Theorem 2 (Jannsen, 1991). $\mathcal{M}_{num}(k, \mathbb{Q})$ is abelian semi-simple.

 $\mathcal{M}_{num}(k,\mathbb{Q})$ Grothendieck's candidate for receptacle of a universal cohomology theory.

The problem

H Weil cohomology theory with coefficients in K:

$$\mathcal{M}_{H}(k,\mathbb{Q}) \xrightarrow{H^{*}} \operatorname{Vec}_{K}^{*}$$

$$\downarrow$$

$$\mathcal{M}_{\operatorname{num}}(k,\mathbb{Q})$$

 $\operatorname{Vec}_{K}^{*}$ finite-dimensional graded K-vector spaces; horizontal functor faithful, vertical functor full. If want H^{*} to factor through $\mathcal{M}_{\operatorname{num}}(k, \mathbb{Q})$, need vertical functor to be an equivalence of categories:

Homological equivalence = numerical equivalence

The main standard conjecture of Grothendieck: still open after almost 50 years!

(Then grander vision: motivic Galois group...)

2. MIXED MOTIVES?

Grothendieck: no construction but a vision: there should be an abelian rigid \otimes -category $\mathcal{MM}(k, \mathbb{Q})$ of "mixed motives" such that (at least)

- The socle (semi-simple part) of $\mathcal{MM}(k, \mathbb{Q})$ is $\mathcal{M}_{\text{num}}(k, \mathbb{Q})$; every object is of finite length.
- Any k-variety X has cohomology objects $h^i(X) \in \mathcal{MM}(k, \mathbb{Q})$ and cohomology objects with compact supports $h^i_c(X) \in \mathcal{MM}(k, \mathbb{Q})$, which are "universal" for suitable cohomology theories.

No construction of $\mathcal{MM}(k,\mathbb{Q})$ yet (apart from 1-motives), but two ideas to get towards it:

- (1) (Deligne, Jannsen, André, Nori; Bloch-Kriz): add a few homomorphisms which are not (known to be) algebraic.
- (2) (suggested by Deligne and Beilinson; Hanamura, Levine, Voevodsky): might be easier to construct a *triangulated category* out of algebraic cycles, and to look for a "motivic *t*-structure" with heart $\mathcal{MM}(k, \mathbb{Q})$.

3. What is K_2 ?

Steinberg: k field,

$$K_2(k) = k^* \otimes_{\mathbb{Z}} k^* / \langle x \otimes (1-x) \mid x \neq 0, 1 \rangle.$$

Conceptual definition?

First answer: **Tate** (1970es) for K_2/n :

 $K_2/n = (\mathbf{G}_m \otimes \mathbf{G}_m)/n + \text{ transfers} + \text{ projection formula.}$

How about K_2 itself? Two answers: Suslin, Kato (1980es).

Suslin:

 $K_2 = \mathbf{G}_m \otimes \mathbf{G}_m + \text{transfers} + \text{projection formula} + homotopy invariance.$

 \longrightarrow Suslin-Voevodsky's motivic cohomology, Voevodsky's homotopy invariant motives.

Kato:

 $K_2 = \mathbf{G}_m \otimes \mathbf{G}_m + \text{ transfers} + \text{ projection formula} + Weil reciprocity.$

 \longrightarrow reciprocity sheaves and motives with modulus.

4. Review: Voevodsky's triangulated categories of motives (over a field)

k base field

Goal: two \otimes -triangulated categories $\mathbf{DM}_{gm}^{\text{eff}} \hookrightarrow \mathbf{DM}^{\text{eff}}$ $X \in \mathbf{Sm}(k) \mapsto M(X) \in \mathbf{DM}_{gm}^{\text{eff}}$ (covariant) with **Mayer-Vietoris:** $X = U \cup V$ open cover \mapsto exact triangle

 $M(U \cap V) \to M(U) \oplus M(V) \to M(X) \xrightarrow{+1}$

Homotopy invariance: $M(X \times \mathbf{A}^1) \xrightarrow{\sim} M(X)$.

DM^{eff} "large" category allowing to compute Hom groups via Nisnevich hypercohomology.

Construction:

Cor additive ⊗-category: Objects: Smooth varieties Morphisms: finite correspondences

 $\mathbf{Cor}(X,Y) = \mathbb{Z}[Z \subset X \times Y \mid Z \text{ integral}, \\ Z \to X \text{ finite and surjective over a component of } X].$

Graph functor $\mathbf{Sm} \to \mathbf{Cor}$. $\mathbf{DM}_{gm}^{\text{eff}} = \text{pseudo-abelian envelope of}$

 $K^b(\mathbf{Cor})/\langle MV + HI \rangle$

(MV = Mayer-Vietoris, HI = homotopy invariance as on previous page).

Any $X \in \mathbf{Sm}$ has a motive $M(X) \in \mathbf{DM}_{gm}^{\text{eff}}$; $M(\text{Spec } k) =: \mathbb{Z}, M(\mathbf{P}^1) = \mathbb{Z} \oplus \mathbb{Z}(1)[2], \mathbb{Z}(1)$ Tate (or Lefschetz) object.

Product of varieties induces \otimes -structure on $\mathbf{Sm}, \mathbf{Cor}, \mathbf{DM}_{gm}^{eff}$: get \mathbf{DM}_{gm} from \mathbf{DM}_{gm}^{eff} by \otimes -inverting $\mathbb{Z}(1)$. Similar to construction of effective motives:

 $(\mathbb{Z}(1)^{-1} \text{ and vertical functors fully faithful if } k \text{ perfect!})$

To define \mathbf{DM}^{eff} : $\mathbf{PST} = \text{Mod} - \mathbf{Cor} = \{\text{additive contravariant functors } \mathbf{Cor} \to \mathbf{Ab}\}$ $\mathbf{NST} = \{F \in \mathbf{PST} \mid F \text{ is a Nisnevich sheaf}\}$

Cor $\ni X \mapsto \mathbb{Z}_{tr}(X) \in \mathbf{PST}$ the presheaf with transfers represented by X: it belongs to **NST**.

$$\mathbf{DM}^{\mathrm{eff}} = D(\mathbf{NST}) / \langle HI \rangle.$$

Natural functor $\mathbf{DM}_{gm}^{\text{eff}} \to \mathbf{DM}^{\text{eff}}$, fully faithful if k perfect (non-trivial theorem!)

To avoid perfectness hypothesis: strengthen Mayer-Vietoris to "Nisnevich Mayer-Vietoris" (using elementary distinguished squares) in definition of \mathbf{DM}_{gm}^{eff} .

 \mapsto variant of definition of \mathbf{DM}^{eff} :

 $\mathbf{DM}^{\text{eff}} = D(\mathbf{PST})/\langle MV_{\text{Nis}} + HI \rangle$

Completely parallel to \mathbf{DM}_{gm}^{eff} !

$\mathbf{HI} = \{ F \in \mathbf{NST} \mid F(X) \xrightarrow{\sim} F(X \times \mathbf{A}^1) \; \forall X \in \mathbf{Sm} \}.$

If k perfect: \mathbf{DM}^{eff} has a t-structure with heart **HI**, the homotopy tstructure (here, not known how to avoid perfectness hypothesis). This is not the searched-for motivic t-structure! But very useful nevertheless.

5. ROSENLICHT'S THEOREMS

(See Serre's Groupes algébriques et corps de classes.)

C smooth projective curve over $k = \overline{k}, U \subset C$ affine open subset.

Theorem 3. $f : U \to G$ k-morphism with G commutative algebraic group; \exists effective divisor \mathfrak{m} with support C - U such that

$$f(\operatorname{div}(g)) = 0 \text{ if } g \in k(C)^*, g \equiv 1 \pmod{\mathfrak{m}}.$$

Here, extended f to homomorphism $Z_0(U) \to G(k)$ by linearity; hypothesis on $g \Rightarrow$ support of div $(g) \subset U$. **Theorem 4.** Given \mathfrak{m} and $u_0 \in U$, the functor

 $G \mapsto \{f: U \to G \mid f(u_0) = 0 \text{ and } f \text{ has modulus } \mathfrak{m}\}$

from commutative algebraic groups to abelian groups is corepresentable by the generalized Jacobian $J(C, \mathfrak{m})$.

If \mathfrak{m} reduced, get connected component of relative Picard group $J(C, \mathfrak{m}) = \operatorname{Pic}^0(C, C - U).$

In general, extension of this by unipotent group.

6. **Reciprocity sheaves**

A reciprocity sheaf is a **NST** satisfying a reciprocity condition inspired by Rosenlicht's modulus condition. (Definition skipped!)

Examples 5.

- HI sheaves have reciprocity.
- G commutative algebraic group: the sheaf represented by G has reciprocity (e.g. $G = \mathbf{G}_a$).
- The modulus condition is "representable":

Definition 6. A modulus pair is a pair $M = (\overline{M}, \overline{M}^{\infty})$ with (i) $\overline{M}^{\infty} \subset \overline{M}$ the closed immersion of an effective Cartier divisor; (ii) $M^{0} := \overline{M} - \overline{M}^{\infty}$ is smooth.

Theorem 7 (K-S-Y, 2014). *M* modulus pair with \overline{M} proper and M° quasi-affine. There exists a quotient h(M) of $\mathbb{Z}_{tr}(M^{\circ})$ which represents the functor

 $\mathbf{PST} \ni F \mapsto \{ \alpha \in F(M^{\mathsf{O}}) \mid \alpha \text{ has modulus } M \}.$

Moreover, h(M) has reciprocity and

 $h(M)(k) = CH_0(M)$

 $CH_0(M)$ Kerz-Saito group of 0-cycles with modulus.

$\mathbf{Rec} \subset \mathbf{PST}$ full subcategory of reciprocity PST:

- closed under subobjects and quotients (in particular abelian)
- \bullet not clearly closed under extensions
- inclusion functor does not have a left adjoint (it has a right adjoint) So-so category...

Idea: take modulus pairs seriously, try and make a triangulated category out of them.

7. Motives with modulus

7.1. Categories of modulus pairs.

Definition 8. $\underline{\mathbf{M}}\mathbf{Cor}$:

Objects: Modulus pairs M. **Morphisms:**

 $\underline{\mathbf{M}}\mathbf{Cor}(M,N) = \langle Z \in \mathbf{Cor}(M^{\mathrm{o}},N^{\mathrm{o}}) \mid Z \text{ integral, } p^{*}M^{\infty} \geq q^{*}N^{\infty},$ $p,q \text{ projections } \overline{Z}^{N} \to \overline{Z} \to \overline{M}, \overline{Z}^{N} \to \overline{Z} \to \overline{N}; \overline{Z} \to \overline{M} \text{ proper} \rangle$ $\overline{Z} \text{ closure of } Z \text{ in } \overline{M} \times \overline{N}, \overline{Z}^{N} \text{ normalisation of } \overline{Z}. \text{ Properness on } \overline{M} \text{ necessary for composition!}$ $\mathbf{MCor: full subcategory of } \underline{\mathbf{M}}\mathbf{Cor} \text{ where } \overline{M} \text{ is proper (proper modulus pairs).}$ Tensor structure on $\underline{\mathbf{M}}\mathbf{Cor}$ and \mathbf{MCor} :

 $(\overline{M}, M^{\infty}) \otimes (\overline{N}, N^{\infty}) = (\overline{M} \times \overline{N}, M^{\infty} \times \overline{N} + \overline{M} \times N^{\infty}).$

Diagram of \otimes -additive categories and \otimes -functors:

 $\tau(M) = M, \ \underline{\omega}(M) = M^{o}, \ \omega = \underline{\omega} \circ \tau, \ \lambda(X) = (X, \emptyset) \ (\lambda \text{ is left adjoint to } \underline{\omega}).$

Categories of presheaves

MPST = Mod - MCor, MPST = Mod - MCor.

Diagram of \otimes -functors

 $?_!$ left adjoint to $?^*$.

Theorem 9. ω and τ have pro-left adjoints. In particular, $\omega_{!}$ and $\tau_{!}$ are exact.

7.2. Topologies. To make sense of topologies on modulus pairs, need to use <u>MCor</u> (MCor not sufficient), plus some subtleties (skipped). Get category of σ -sheaves <u>MPST</u> $_{\sigma}$, $\sigma \in \{\text{Zar}, \text{Nis}, \text{\acute{e}t}\}$ and pair of *exact* adjoint functors:

 $\frac{\mathbf{MPST}_{\sigma}}{\underline{\omega}_{\sigma}} \Big| \underbrace{\underline{\omega}_{\sigma}}_{\mathbf{PST}_{\sigma}} \Big|$

Will use mainly $\sigma = Nis$, $\underline{M}NST := \underline{M}PST_{Nis}$.

7.3. Voevodsky's abstract homotopy theory. $(\mathcal{C}, \otimes) \otimes$ -category: an *interval* in \mathcal{C} is a quintuple (I, i_0, i_1, p, μ) :

- $\bullet \ I \in \mathcal{C}$
- $i_0, i_1 : \mathbf{1} \to I, p : I \to \mathbf{1}$ (**1** unit object)
- $\bullet\; \mu: I \otimes I \to I$

with conditions

- $p \circ i_0 = p \circ i_1 = 1_1$
- $\mu \circ (1_I \otimes i_0) = i_0 \circ p, \ \mu \circ (1_I \otimes i_1) = 1_I.$

 $(\mathcal{C}, \otimes, I) \otimes$ -category with interval: a presheaf F on \mathcal{C} is I-invariant if $F(X) \xrightarrow{\sim} F(X \otimes I)$ for any $X \in \mathcal{C}$ (via the morphism $1_X \otimes p$).

Main example: $\mathcal{C} = \mathbf{Sm}$, $I = \mathbf{A}^1$, i_t : Spec $k \to \mathbf{A}^1$ inclusion of point t, $\mu : \mathbf{A}^1 \times \mathbf{A}^1 \to \mathbf{A}^1$ multiplication map. Get \mathbf{A}^1 -invariance (= homotopy invariance). 7.4. The affine line with modulus. Proposition 10. The object $\overline{\Box} = (\mathbf{P}^1, \infty)$ has the structure of an interval, given by the interval structure on $\overline{\Box}^{\circ} = \mathbf{A}^1$.

In fact, more convenient to "put 1 at ∞ ", i.e. redefine $\overline{\Box}$ as $(\mathbf{P}^1, 1)$.

Theorem 11. If $F \in \mathbf{MPST}$ is $\overline{\Box}$ -invariant, $\omega_! F$ has reciprocity.

Consequence: \otimes -structure on **Rec** (cf. Ivorra-Rülling: *the K-groups of reciprocity functors*).

Definition 12.

$$\underline{\mathbf{M}}\mathbf{D}\mathbf{M}_{gm}^{\text{eff}} = (K^{b}(\underline{\mathbf{M}}\mathbf{Cor})/\langle MV_{\text{Nis}} + CI \rangle)^{\natural}.$$
$$\underline{\mathbf{M}}\mathbf{D}\mathbf{M}^{\text{eff}} = D(\underline{\mathbf{M}}\mathbf{PST})/\langle MV_{\text{Nis}} + CI \rangle = D(\underline{\mathbf{M}}\mathbf{NST})/\langle CI \rangle.$$

CI: $\overline{\Box}$ -invariance.

Naturally commutative diagram

 $\iota, M\iota \otimes$ and fully faithful, $\underline{\omega}_{\text{eff}} \otimes$ and localisations, $\underline{\omega}^{\text{eff}}$ right adjoint to $\underline{\omega}_{\text{eff}}$ (hence fully faithful), Φ fully faithful if k perfect (Voevodsky).

Main theorem. X smooth proper: $\underline{\omega}^{\text{eff}}M(X) = M(X, \emptyset).$

Corollary 13. *a) p exponential characteristic of* $k: \omega^{\text{eff}}(\mathbf{DM}_{\text{gm}}^{\text{eff}}[1/p]) \subset \underline{\mathbf{MDM}}_{\text{gm}}^{\text{eff}}[1/p].$

b) k perfect: $M\Phi$ fully faithful.

c) k perfect, X smooth proper, $\mathcal{Y} = (\overline{\mathcal{Y}}, \mathcal{Y}^{\infty}) \in \underline{\mathbf{M}}\mathbf{Cor}, \ j \in \mathbb{Z}$: canonical isomorphism

 $\operatorname{Hom}_{\underline{\mathbf{M}}\mathbf{D}\mathbf{M}_{\operatorname{gm}}^{\operatorname{eff}}}(M(\mathcal{Y}), M(X, \emptyset)[j]) \simeq H^{2d+j}((\overline{\mathcal{Y}} - \mathcal{Y}^{\infty}) \times X, \mathbb{Z}(d))$

right hand side = Voevodsky's motivic cohomology. In particular, vanishes for j > 0. Next steps in the programme (not exhaustive):

- (In progress:) get homotopy *t*-structure on $\mathbf{MDM}^{\text{eff}} \subset \underline{\mathbf{MDM}}^{\text{eff}}$ when k perfect, by extending Voevodsky's theorems on homotopy invariant presheaves with transfers.
- Construct realisation functors for interesting non homotopy invariant cohomology theories.