MOTIVIC GALOIS GROUPS

BRUNO KAHN

1. TANNAKIAN CATEGORIES ([26], CF. [7])

K field of characteristic 0, \mathcal{A} rigid tensor K-linear abelian category, L extension of K.

Definition 1. An *L*-valued fibre functor is a tensor functor $\omega : \mathcal{A} \to Vec_L$ which is *faithful* and *exact*.

Definition 2. \mathcal{A} is

- neutralised Tannakian if one is given a K-valued fibre functor
- neutral Tannakian if $\exists K$ -valued fibre functor
- Tannakian if \exists *L*-valued fibre functor for some *L*.

Example 1. G affine K-group scheme, $\mathcal{A} = Rep_K(G), \omega : \mathcal{A} \to Vec_K$ the forgetful functor.

 (\mathcal{A}, ω) neutralised Tannakian category: $G_K := Aut^{\otimes}(\omega)$ is (canonically) the K-points of an affine K-group scheme $G(\omega)$.

Theorem 1 (Grothendieck-Saavedra [26]). a) For (\mathcal{A}, ω) as in Example 1, $G(\mathcal{A}, \omega) = G$. b) In general ω enriches into a tensor equivalence of categories

 $\tilde{\omega}: \mathcal{A} \xrightarrow{\sim} Rep_K(G(\mathcal{A}, \omega)).$

c) Dictionary (special case): \mathcal{A} semi-simple \iff G proreductive.

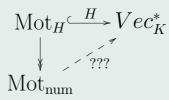
When \mathcal{A} Tannakian but not neutralised, need replace $G(\mathcal{A}, \omega)$ by a *gerbe* (or a groupoid): Saavedra-Deligne [8].

Theorem 2 (Deligne [8]). \mathcal{A} rigid K-linear abelian. Equivalent conditions:

- \mathcal{A} is Tannakian
- $\forall M \in \mathcal{A}, \exists n > 0: \Lambda^n(M) = 0.$
- $\forall M \in \mathcal{A}, \dim_{rigid}(M) \in \mathbf{N}.$

2. Are motives Tannakian?

Ideally, would like $Mot_{num}(k, \mathbf{Q})$ Tannakian, fibre functors given by Weil cohomologies H. Two problems:



- $Mot_{num}(k, \mathbf{Q})$ is never Tannakian because $\dim_{rigid}(X) = \chi(X)$ may be negative (e.g. X curve of genus g: $\chi(X) = 2 2g$).
- Second problem: matter of commutativity constraint need modify it.
- Yields Grothendieck's standard conjectures ([13], cf. [20]):
 - (HN) $\sim_H = \sim_{\text{num}}$.
 - (C) $\forall X$ the Künneth components of $H(\Delta_X)$ are algebraic.

Another conjecture (B) (skipped):

- (HN) \Rightarrow (B) \Rightarrow (C).
- (HN) \iff (B) in characteristic 0.
- **Theorem 3** (Lieberman-Kleiman [19]). Conjecture (B) holds for abelian varieties.
- **Theorem 4** (Katz-Messing [18]). Conjecture (C) is true if k finite.
- **Corollary 1** (Jannsen [14]). If k finite, a suitable modification $Mot_{num}(k, \mathbf{Q})$ is (abstractly) Tannakian.
- Apart from this, wide open!
- **Definition 3.** When $Mot_{num}(k, \mathbf{Q})$ exists, the gerbe that classifies it is called the [pure] motivic Galois group $GMot_k$. H Weil cohomology with coefficients K: fibre of $GMot_k$ at H is proreductive K-group $GMot_{H,k}$.
- More generally, \mathcal{A} thick rigid subcategory of Mot_{num} , get an "induced" Galois group $GMot(\mathcal{A})$ of \mathcal{A} , quotient of the motivic Galois group. E.g. \mathcal{A} thick rigid subcategory generated by h(X): get the motivic Galois group of $X GMot_{H,k}(X)$ (of finite type).

Examples 2.

- (1) $\mathcal{A} = \text{Artin motives}$ (generated by $h(\text{Spec } E), [E:k] < \infty$): $GMot(\mathcal{A}) = G_k$.
- (2) \mathcal{A} = pure Tate motives (generated by L or $h(\mathbf{P}^1)$): $GMot(\mathcal{A}) = \mathbb{G}_m$.
- (3) \mathcal{A} = pure Artin-Tate motives (put these two together): $GMot(\mathcal{A}) = G_k \times \mathbb{G}_m$.
- (4) E elliptic curve over $\mathbf{Q}, H = H_{Betti}$.
 - E not CM \Rightarrow $GMot_{H,\mathbf{Q}}(E) = GL_2$.
 - $E \ \mathrm{CM} \Rightarrow GMot_{H,\mathbf{Q}}(E) = \text{torus in } GL_2 \text{ or its normaliser.}$

Example 3. Suppose Conjecture (HN) true.

- Characteristic 0: Betti cohomology yields (several) **Q**-valued fibre functors, as long as $card(k) \leq card(\mathbf{C})$: Mot_{num} (k, \mathbf{Q}) is neutral. Comparison isomorphisms \Rightarrow isomorphisms between various motivic Galois groups.
- Characteristic $p: k \supseteq \mathbf{F}_{p^2}$ finite $\Rightarrow \operatorname{Mot}_{\operatorname{num}}(k, \mathbf{Q})$ is not neutral: if $K \subseteq \mathbf{R}$ or $K \subseteq \mathbf{Q}_p$, no K-valued fibre functor (Serre: endomorphisms of a supersingular elliptic curve = quaternion \mathbf{Q} -algebra nonsplit by \mathbf{R}, \mathbf{Q}_p).

3. CONNECTION WITH HODGE AND TATE CONJECTURES **3.1.** Tate conjecture. k finitely generated, $G_k := Gal(\bar{k}/k), H = H_l \ (l \neq \operatorname{char} k)$: the \otimes -functor

$$H_l: \mathrm{Mot}_H \to Vec^*_{\mathbf{Q}_l}$$

enriches into a \otimes -functor

$$\hat{H}_l : \operatorname{Mot}_H \to \operatorname{Rep}_{\mathbf{Q}_l}^{\operatorname{cont}}(G_k)^*.$$

Tate conjecture $\iff \tilde{H}_l$ fully faithful (it is faithful by definition).

Proposition 1. Tate conjecture \Rightarrow Conjecture (B).

Hence under Tate conjecture, Conjecture (C) holds and can modify commutativity constraint: $\tilde{}$

$$\widetilde{H}_l: \widetilde{\mathrm{Mot}}_H \to Rep_{\mathbf{Q}_l}^{cont}(G_k)$$

 $(Rep_{\mathbf{Q}_{l}}^{cont}(G_{k}), \text{ forgetful functor})$ neutralised Tannakian \mathbf{Q}_{l} -category with fundamental group Γ_{k} : for $V \in Rep_{\mathbf{Q}_{l}}^{cont}(G_{k}), \Gamma_{k}(V) = Zariski$ closure of G_{k} in GL(V).

Proposition 2 (folklore, cf. [27], [17]). Assume Tate conjecture. Equivalent conditions:

- Conjecture (HN);
- $Im \tilde{H}_l \subseteq Rep_{\mathbf{Q}_l}^{cont}(G_k)_{ss}$ (full subcategory of semi-simple representations).

Under these conditions, Mot_{num} Tannakian, reduce to Γ_k^{ss} (for $Rep_{\mathbf{Q}_l}^{cont}(G_k)_{ss}$) proreductive and canonical epimorphism

$$\Gamma_k^{ss} \longrightarrow GMot_{H_l,k}.$$

In particular, $\forall X, GMot_{H_l,k}(X) = Zariski closure of G_k in GL(H_l(X)).$

Delicate question: essential image of \tilde{H}_l ? Conjectural answers for k finite (see below) and k number field (Fontaine-Mazur [11]).

3.2. Hodge conjecture.

 $\sigma: k \hookrightarrow \mathbf{C}, H = H_{\sigma}$: this time enriches into \otimes -functor

$$\hat{H}_{\sigma} : \mathrm{Mot}_{H_{\sigma}} \to PHS^*_{\mathbf{Q}}$$

(graded pure Hodge structures over **Q**). Hodge conjecture $\iff \hat{H}_{\sigma}$ fully faithful. **Proposition 3.** Hodge conjecture \Rightarrow Conjecture (B) \iff Conjecture (HN). Hence, under Hodge conjecture, get modified fully faithful tensor functor

$$\widetilde{H}_{\sigma}: \widetilde{\mathrm{Mot}}_{\mathrm{num}} \to PHS_{\mathbf{Q}}.$$

Latter category semi-simple neutralised Tannakian (via forgetful functor). If extend scalars to **R**, fundamental group = Hodge torus $S = R_{\mathbf{C}/\mathbf{R}}\mathbb{G}_m$. Over **Q** it is the Mumford-Tate group MT: for $V \in PHS_{\mathbf{Q}}$, $MT(V) = \mathbf{Q}$ - Zariski closure of S in GL(V).

Hodge conjecture $\iff \forall X, GMot_{k,H_{\sigma}}(X) = MT(X) \subseteq GL(H_{\sigma}(X)).$

Sometimes gives proof of Hodge conjecture (for powers of X, X abelian variety)!

4. Unconditional motivic Galois groups

Want an unconditional theory of motives (not assuming the unproven standard conjectures)

4.1. First approach (Deligne, André).

Both are in characteristic 0.

 Deligne [10]: replace motives by systems of compatible realisations: motives for absolute Hodge cycles (systems of cohomology classes corresponding to each other by comparison isomorphisms). Gives semi-simple Tannakian category. Hodge conjecture ⇒ absolute Hodge cycles are algebraic so same category.

 André [3]: only adjoin to algebraic cycles the inverses of the Lefschetz operators: motives for cycles. Gives semi-simple Tannakian category.
 Conjecture (B) ⇒ motivated cycles are algebraic so same category.

(Hodge conjecture \Rightarrow Conjecture (B) so cheaper approach!)

A abelian variety over number field:

- **Theorem 5** (Deligne [9]). Every Hodge cycle on A is absolutely Hodge.
- **Corollary 2.** Tate conjecture \Rightarrow Hodge conjecture on A.

Better:

Theorem 6 (André [3]). Every Hodge cycle on A is motivated.

Corollary 3. Conjecture (B) for abelian fibrations on curves \Rightarrow Hodge conjecture on A.

Tannakian arguments:

- **Theorem 7** (Milne [23]). Hodge conjecture for complex CM abelian varieties \Rightarrow Tate conjecture for all abelian varieties over a finite field.
- **Theorem 8** (André [4]). A abelian variety over a finite field: every Tate cycle is motivated.

4.2. Second approach (André-K): tensor sections.

 \mathcal{A} pseudo-abelian **Q**-linear category, \mathcal{R} Kelly radical of \mathcal{A} (like Jacobson radical of rings): smallest ideal such that \mathcal{A}/\mathcal{R} semi-simple.

If \mathcal{A} tensor category, \mathcal{R} may or may not be stable under \otimes . True e.g. if \mathcal{A} Tannakian.

Theorem 9 (André-K [6]). Suppose that \mathcal{R} is \otimes -ideal, $\mathcal{A}(\mathbf{1}, \mathbf{1}) = \mathbf{Q}$ and $\mathcal{R}(M, M)$ nilpotent ideal of $\mathcal{A}(M, M)$ for all M. Then the projection functor

$$\mathcal{A}
ightarrow \mathcal{A}/\mathcal{R}$$

has tensor sections, and any two are tensor-conjugate.

Application:

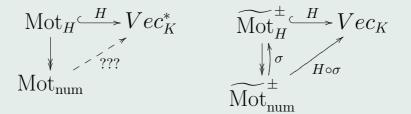
H classical Weil cohomology,

 $\mathcal{A} = \operatorname{Mot}_{H}^{\pm}(k, \mathbf{Q})$:= { $M \in \operatorname{Mot}_{H}(k, \mathbf{Q})$ | sum of even Künneth projectors of M algebraic}.

Then \mathcal{A} satisfies assumptions of Theorem 9: in characteristic 0 by comparison isomorphisms, in characteristic p by Weil conjectures.

Theorem 10 (André-K [5]). a) $\operatorname{Mot}_{\operatorname{num}}^{\pm} := Im(\operatorname{Mot}_{H}^{\pm} \to \operatorname{Mot}_{\operatorname{num}})$ independent of H. b) Can modify commutativity constraints in $\operatorname{Mot}_{H}^{\pm}$ and $\operatorname{Mot}_{\operatorname{num}}^{\pm}$, yielding $\operatorname{\widetilde{Mot}}_{H}^{\pm}$ and $\operatorname{\widetilde{Mot}}_{\operatorname{num}}^{\pm}$.

c) Projection functor $\widetilde{\mathrm{Mot}}_{H}^{\pm} \to \widetilde{\mathrm{Mot}}_{\mathrm{num}}^{\pm}$ has tensor sections σ ; any two are tensorconjugate.



Variant with

 $\operatorname{Mot}_{H}^{*}(k, \mathbf{Q}) := \{ M \in \operatorname{Mot}_{H}(k, \mathbf{Q}) \mid \text{ all Künneth projectors of } M \text{ algebraic} \}.$

5. Description of motivic Galois groups

Assume all conjectures (standard, Hodge, Tate).

5.1. In general:

Short exact sequence

$$1 \to GMot_{\bar{k}} \to GMot_k \to G_k \to 1$$

Last morphism: G_k corresponds to motives of 0-dimensional varieties (Artin motives). The group $GMot_{\bar{k}}$ is connected, hence $= GMot_k^0$.

If $k \subseteq k'$, $GMot^0_{k'} \twoheadrightarrow GMot^0_k$ (but not iso unless k'/k algebraic: otherwise, "more" elliptic curves over k' than over k).

Conjecture (C) \Rightarrow weight grading on Mot_{num} \iff central homomorphism

$$w: \mathbb{G}_m \to GMot_k.$$

On the other hand, Lefschetz motive gives homomorphism

$$t: GMot_k \to \mathbb{G}_m$$

and $t \circ w = 2$ (-2 with Grothendieck's conventions).

5.2. Over a finite field:

- **Theorem 11** (cf. [22]). a) Mot_{num} generated by Artin motives and motives of abelian varieties.
- b) Essential image of \tilde{H}_l : l-adic representations of G_k whose eigenvalues are Weil numbers.
- Uses Honda's theorem [16]: every Weil orbit corresponds to an abelian variety.
- **Corollary 4.** $GMot_k^0 = group \ of \ multiplicative \ type \ determined \ by \ action \ of \ G_{\mathbf{Q}} \ on Weil \ numbers.$
- Even though \widetilde{Mot}_{num} not neutral, $GMot_k^0$ abelian so situation not so bad!

5.3. Over a number field:

 $S := (GMot_k^0)^{ab}$: the Serre protorus: describe its character group X(S):

$$\mathbf{Q}^{cm} = \bigcup \{ E \mid E \text{ CM number field} \}$$

Complex conjugation c central in $Gal(\mathbf{Q}^{cm}/\mathbf{Q})$ (largest Galois subfield of $\overline{\mathbf{Q}}$ with this property).

Definition 4. $f : Gal(\mathbf{Q}^{cm}/\mathbf{Q}) \to \mathbf{Z}$ CM type if f(s) + f(cs) independent of s. $G_{\mathbf{Q}}$ acts on CM types by $\tau f(s) = f(\tau s)$.

Theorem 12 ([24]). $X(S) = \mathbb{Z}[CM \ types].$

Can also describe the centre C of $GMot_k^0$ (pro-isogenous to S), etc.: cf. [25].

6. MIXED (TATE) MOTIVES

Expect Tannakian category of mixed motives

 $\operatorname{Mot}_{\operatorname{num}}(k, \mathbf{Q}) \subset \operatorname{MMot}(k, \mathbf{Q})$

with socle $Mot_{num}(k, \mathbf{Q})$, classifying non smooth projective varieties. Corresponding motivic Galois group extension of $GMot_k$ by a pro-unipotent group (or gerbe).

Constructions of MMot:

- Conjecturally, heart of "motivic t-structure" on DM (Deligne, Beilinson: cf. Hanamura [15]).
- In characteristic 0: explicit category constructed by Nori.
- Over a finite field: Tate conjecture \Rightarrow Mot_{num} = MMot (cf. [22]).
- Can settle for subcategory: mixed Tate motives TMMot_k . Exists unconditionally if k number field (cf. Levine's talk and [21]).

- **Goncharov** [12]: TMMot_{\mathbf{Z}} (mixed Tate motives over \mathbf{Z}) defined as full subcategory of TMMot_{\mathbf{Q}} by non-ramification conditions.
- Γ the motivic Galois group corresponding to TMMot_z: Proreductive quotient of Γ is \mathbb{G}_m (see above).
- **Theorem 13** (Goncharov [12]). Action of \mathbb{G}_m on prounipotent kernel U yields a grading on Lie(U): for this grading, Lie(U) is free with one generator in every odd degree ≤ -3 .

- [1] Hodge cycles, motives and Shimura varieties, Lect. Notes in Math. 900, Springer, 1982.
- [2] Motives, Proc. Symp. pure Math. 55 (I), AMS, 1994.
- [3] Y. André Pour une théorie inconditionnelle des motifs, Publ. Math. IHÉS 83 (1996), 5-49.
- [4] Y. André Cycles de Tate et cycles motivés sur les variétés abéliennes en caractéristique p, preprint, 2003.
- [5] Y. André, B. Kahn Construction inconditionnelle de groupes de Galois motiviques, C. R. Acad. Sci. Paris 334 (2002), 989–994.
- [6] Y. André, B. Kahn Nilpotence, radicaux et structures monoïdales (with an appendix of P. O'Sullivan), Rendiconti Sem. Math. Univ Padova 108 (2002), 107–291.
- [7] L. Breen Tannakian categories, in [2], 337–376.
- [8] P. Deligne Catégories tannakiennes, in The Grothendieck Festschrift, Progress in Math. 87 (II), Birkhäuser, 1990, 111–198.
- [9] P. Deligne Hodge cycles on abelian varieties (notes by J. S. Milne), in [1], 9–100.
- [10] P. Deligne, J.S. Milne Tannakian categories, in [1], 101–228.
- [11] J.-M. Fontaine, B. Mazur Geometric Galois representations, in Elliptic curves, modular forms, and Fermat's last theorem (J. Coates, S.T. Yau, eds.), Intern. Press, Cambridge, MA, 1995, 41–78.
- [12] A. Goncharov Multiple polylogarithms and mixed Tate motives, preprint, 2001.
- [13] A. Grothendieck Standard conjectures on algebraic cycles, Algebraic Geometry Bombay Colloquium, 1968, Oxford, 1969, 193–199.
- [14] U. Jannsen Motives, numerical equivalence and semi-simplicity, Invent. Math. 107 (1992), 447–452.
- [15] M. Hanamura Mixed motives and algebraic cycles, III, Math. Res. Lett. 6 (1999), 61–82.
- [16] T. Honda Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83–95.
- [17] B. Kahn On the semi-simplicity of Galois actions, to appear in the Rendiconti Sem. Mat. Univ. Padova 112 (2004).
- [18] N. Katz, W. Messing Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77.
- [19] S. Kleiman Algebraic cycles and the Weil conjectures, in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 359–386.
- [20] S. Kleiman The standard conjectures, in [2], 3–20.
- [21] M. Levine Tate motives and the vanishing conjectures for algebraic K-theory, in Algebraic K-theory and algebraic topology (Lake Louise, 1991), NATO ASI Series, Ser. C 407, Kluwer, 1993, 167–188.
- [22] J. S. Milne Motives over finite fields, in [2], 401–459.
- [23] J. S. Milne Lefschetz motives and the Tate conjecture, Compos. Math. 117 (1999), 45–76.
- [24] J. S. Milne, K-Y. Shih Langland's construction of the Taniyama group, in [1], 229–260.
- [25] J.-P. Serre Propriétés conjecturales des groupes de Galois motiviques, in [2], 377–400.
- [26] N. Saavedra Rivano Catégories tannakiennes, Lect. Notes in Math. 265, Springer, 1972.
- [27] J. T. Tate Conjectures on algebraic cycles in l-adic cohomology, in [2], 71–83.