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1. Tannakian categories ([26], cf. [7])

K field of characteristic 0, A rigid tensor K-linear abelian category, L extension of K.

Definition 1. An L-valued fibre functor is a tensor functor ω : A → V ecL which is
faithful and exact.

Definition 2. A is

• neutralised Tannakian if one is given a K-valued fibre functor
• neutral Tannakian if ∃ K-valued fibre functor
• Tannakian if ∃ L-valued fibre functor for some L.

Example 1. G affine K-group scheme, A = RepK(G), ω : A → V ecK the forgetful
functor.



(A, ω) neutralised Tannakian category: GK := Aut⊗(ω) is (canonically) the K-points of
an affine K-group scheme G(ω).

Theorem 1 (Grothendieck-Saavedra [26]). a) For (A, ω) as in Example 1, G(A, ω) = G.
b) In general ω enriches into a tensor equivalence of categories

ω̃ : A ∼−→ RepK(G(A, ω)).

c) Dictionary (special case): A semi-simple ⇐⇒ G proreductive.

When A Tannakian but not neutralised, need replace G(A, ω) by a gerbe (or a groupoid):
Saavedra-Deligne [8].

Theorem 2 (Deligne [8]). A rigid K-linear abelian. Equivalent conditions:

• A is Tannakian
• ∀M ∈ A, ∃n > 0: Λn(M) = 0.
• ∀M ∈ A, dimrigid(M) ∈ N.



2. Are motives Tannakian?

Ideally, would like Motnum(k,Q) Tannakian, fibre functors given by Weil cohomologies H .
Two problems:

•
MotH
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• Motnum(k,Q) is never Tannakian because dimrigid(X) = χ(X) may be negative (e.g.
X curve of genus g: χ(X) = 2− 2g).

Second problem: matter of commutativity constraint – need modify it.

Yields Grothendieck’s standard conjectures ([13], cf. [20]):

• (HN) ∼H=∼num.
• (C) ∀X the Künneth components of H(∆X) are algebraic.



Another conjecture (B) (skipped):

• (HN) ⇒ (B) ⇒ (C).
• (HN) ⇐⇒ (B) in characteristic 0.

Theorem 3 (Lieberman-Kleiman [19]). Conjecture (B) holds for abelian varieties.

Theorem 4 (Katz-Messing [18]). Conjecture (C) is true if k finite.

Corollary 1 (Jannsen [14]). If k finite, a suitable modification M̃otnum(k,Q) is (ab-
stractly) Tannakian.

Apart from this, wide open!

Definition 3. When M̃otnum(k,Q) exists, the gerbe that classifies it is called the [pure]
motivic Galois group GMotk. H Weil cohomology with coefficients K: fibre of GMotk at
H is proreductive K-group GMotH,k.

More generally, A thick rigid subcategory of Motnum, get an “induced” Galois group
GMot(A) of A, quotient of the motivic Galois group. E.g. A thick rigid subcategory
generated by h(X): get the motivic Galois group of X GMotH,k(X)(of finite type).



Examples 2.

(1) A = Artin motives (generated by h(Spec E), [E : k] < ∞): GMot(A) = Gk.
(2) A = pure Tate motives (generated by L or h(P1)): GMot(A) = Gm.
(3) A = pure Artin-Tate motives (put these two together): GMot(A) = Gk ×Gm.
(4) E elliptic curve over Q, H = HBetti.

• E not CM ⇒ GMotH,Q(E) = GL2.
• E CM ⇒ GMotH,Q(E) = torus in GL2 or its normaliser.



Example 3. Suppose Conjecture (HN) true.

• Characteristic 0: Betti cohomology yields (several) Q-valued fibre functors, as long as
card(k) ≤ card(C): Motnum(k,Q) is neutral. Comparison isomorphisms ⇒ isomor-
phisms between various motivic Galois groups.

• Characteristic p: k ⊇ Fp2 finite ⇒ Motnum(k,Q) is not neutral : if K ⊆ R or
K ⊆ Qp, no K-valued fibre functor (Serre: endomorphisms of a supersingular elliptic
curve = quaternion Q-algebra nonsplit by R,Qp).



3. Connection with Hodge and Tate conjectures

3.1. Tate conjecture.
k finitely generated, Gk := Gal(k̄/k), H = Hl (l 6= char k): the ⊗-functor

Hl : MotH → V ec∗Ql

enriches into a ⊗-functor
Ĥl : MotH → Repcont

Ql
(Gk)

∗.

Tate conjecture ⇐⇒ H̃l fully faithful (it is faithful by definition).

Proposition 1. Tate conjecture ⇒ Conjecture (B).

Hence under Tate conjecture, Conjecture (C) holds and can modify commutativity con-
straint:

H̃l : M̃otH → Repcont
Ql

(Gk).



(Repcont
Ql

(Gk), forgetful functor) neutralised Tannakian Ql-category with fundamental group
Γk: for V ∈ Repcont

Ql
(Gk), Γk(V ) = Zariski closure of Gk in GL(V ).

Proposition 2 (folklore, cf. [27], [17]). Assume Tate conjecture. Equivalent conditions:

• Conjecture (HN);
• ImH̃l ⊆ Repcont

Ql
(Gk)ss (full subcategory of semi-simple representations).

Under these conditions, Motnum Tannakian, reduce to Γss
k (for Repcont

Ql
(Gk)ss) proreductive

and canonical epimorphism
Γss

k −→→ GMotHl,k.

In particular, ∀X , GMotHl,k(X) = Zariski closure of Gk in GL(Hl(X)).

Delicate question: essential image of H̃l? Conjectural answers for k finite (see below)
and k number field (Fontaine-Mazur [11]).



3.2. Hodge conjecture.

σ : k ↪→ C, H = Hσ: this time enriches into ⊗-functor

Ĥσ : MotHσ
→ PHS∗

Q

(graded pure Hodge structures over Q). Hodge conjecture ⇐⇒ Ĥσ fully faithful.

Proposition 3. Hodge conjecture ⇒ Conjecture (B) ⇐⇒ Conjecture (HN).

Hence, under Hodge conjecture, get modified fully faithful tensor functor

H̃σ : M̃otnum → PHSQ.

Latter category semi-simple neutralised Tannakian (via forgetful functor). If extend scalars
to R, fundamental group = Hodge torus S = RC/RGm. Over Q it is the Mumford-Tate
group MT : for V ∈ PHSQ, MT (V ) = Q− Zariski closure of S in GL(V ).

Hodge conjecture ⇐⇒ ∀X , GMotk,Hσ
(X) = MT (X) ⊆ GL(Hσ(X)).

Sometimes gives proof of Hodge conjecture (for powers of X , X abelian variety)!



4. Unconditional motivic Galois groups

Want an unconditional theory of motives (not assuming the unproven standard conjectures)

4.1. First approach (Deligne, André).

Both are in characteristic 0.

• Deligne [10]: replace motives by systems of compatible realisations: motives for
absolute Hodge cycles (systems of cohomology classes corresponding to each other by
comparison isomorphisms). Gives semi-simple Tannakian category.

Hodge conjecture ⇒ absolute Hodge cycles are algebraic so same category.

• André [3]: only adjoin to algebraic cycles the inverses of the Lefschetz operators:
motives for cycles. Gives semi-simple Tannakian category.

Conjecture (B) ⇒ motivated cycles are algebraic so same category.
(Hodge conjecture ⇒ Conjecture (B) so cheaper approach!)



A abelian variety over number field:

Theorem 5 (Deligne [9]). Every Hodge cycle on A is absolutely Hodge.

Corollary 2. Tate conjecture ⇒ Hodge conjecture on A.

Better:

Theorem 6 (André [3]). Every Hodge cycle on A is motivated.

Corollary 3. Conjecture (B) for abelian fibrations on curves ⇒ Hodge conjecture on
A.

Tannakian arguments:

Theorem 7 (Milne [23]). Hodge conjecture for complex CM abelian varieties ⇒ Tate
conjecture for all abelian varieties over a finite field.

Theorem 8 (André [4]). A abelian variety over a finite field: every Tate cycle is
motivated.



4.2. Second approach (André-K): tensor sections.

A pseudo-abelian Q-linear category, R Kelly radical of A (like Jacobson radical of rings):
smallest ideal such that A/R semi-simple.

If A tensor category, R may or may not be stable under ⊗. True e.g. if A Tannakian.

Theorem 9 (André-K [6]). Suppose that R is ⊗-ideal, A(1,1) = Q and R(M, M)
nilpotent ideal of A(M, M) for all M . Then the projection functor

A → A/R

has tensor sections, and any two are tensor-conjugate.



Application:
H classical Weil cohomology,

A = Mot±H(k,Q)

:= {M ∈ MotH(k,Q) | sum of even Künneth projectors of M algebraic}.

ThenA satisfies assumptions of Theorem 9: in characteristic 0 by comparison isomorphisms,
in characteristic p by Weil conjectures.

Theorem 10 (André-K [5]). a) Mot±num := Im(Mot±H → Motnum) independent of H.

b) Can modify commutativity constraints in Mot±H and Mot±num, yielding M̃ot
±
H and

M̃ot
±
num.

c) Projection functor M̃ot
±
H → M̃ot

±
num has tensor sections σ; any two are tensor-

conjugate.

MotH
� � H //
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V ec∗K

Motnum
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M̃ot
±
H

� � H //

����

V ecK

M̃ot
±
num

σ

RR

H◦σ
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Variant with

Mot∗H(k,Q) := {M ∈ MotH(k,Q) | all Künneth projectors of M algebraic}.



5. Description of motivic Galois groups

Assume all conjectures (standard, Hodge, Tate).

5.1. In general:

Short exact sequence
1 → GMotk̄ → GMotk → Gk → 1

Last morphism: Gk corresponds to motives of 0-dimensional varieties (Artin motives). The
group GMotk̄ is connected, hence = GMot0

k.

If k ⊆ k′, GMot0
k′ →→ GMot0

k (but not iso unless k′/k algebraic: otherwise, “more” elliptic
curves over k′ than over k).
Conjecture (C) ⇒ weight grading on Motnum ⇐⇒ central homomorphism

w : Gm → GMotk.

On the other hand, Lefschetz motive gives homomorphism

t : GMotk → Gm

and t ◦ w = 2 (−2 with Grothendieck’s conventions).



5.2. Over a finite field:

Theorem 11 (cf. [22]). a) Motnum generated by Artin motives and motives of abelian
varieties.
b) Essential image of H̃l: l-adic representations of Gk whose eigenvalues are Weil
numbers.

Uses Honda’s theorem [16]: every Weil orbit corresponds to an abelian variety.

Corollary 4. GMot0
k = group of multiplicative type determined by action of GQ on

Weil numbers.

Even though M̃otnum not neutral, GMot0
k abelian so situation not so bad!



5.3. Over a number field:

S := (GMot0
k)

ab: the Serre protorus: describe its character group X(S):

Qcm =
⋃
{E | E CM number field}

Complex conjugation c central in Gal(Qcm/Q) (largest Galois subfield of Q̄ with this
property).

Definition 4. f : Gal(Qcm/Q) → Z CM type if f (s) + f (cs) independent of s. GQ acts
on CM types by τf (s) = f (τs).

Theorem 12 ([24]). X(S) = Z[CM types].

Can also describe the centre C of GMot0
k (pro-isogenous to S), etc.: cf. [25].



6. Mixed (Tate) motives

Expect Tannakian category of mixed motives

Motnum(k,Q) ⊂ MMot(k,Q)

with socle Motnum(k,Q), classifying non smooth projective varieties. Corresponding motivic
Galois group extension of GMotk by a pro-unipotent group (or gerbe).

Constructions of MMot:

• Conjecturally, heart of “motivic t-structure” on DM (Deligne, Beilinson: cf. Hana-
mura [15]).

• In characteristic 0: explicit category constructed by Nori.
• Over a finite field: Tate conjecture ⇒ Motnum = MMot (cf. [22]).
• Can settle for subcategory: mixed Tate motives TMMotk. Exists unconditionally if k

number field (cf. Levine’s talk and [21]).



Goncharov [12]: TMMotZ (mixed Tate motives over Z) defined as full subcategory of
TMMotQ by non-ramification conditions.

Γ the motivic Galois group corresponding to TMMotZ: Proreductive quotient of Γ is Gm

(see above).

Theorem 13 (Goncharov [12]). Action of Gm on prounipotent kernel U yields a grading
on Lie(U): for this grading, Lie(U) is free with one generator in every odd degree
≤ −3.
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