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Famous conjectures still unproven:

Bass’ conjecture /question (1973): X Z-scheme separated of finite type: are
the K(X) finitely generated?

Beilinson-Soulé conjecture (1983): X regular (separated): gry K;(X) tor-
sion of finite exponent if n > [i/2] ( < HI(X,Z(n)) = 0 for n > 0,
j<0)

Parshin conjecture (1983): X smooth projective over a finite field:
Ki(X)®Q =0 fori> 0.

Many dévissages, few answers.



Variant:

Weak Bass’ conjecture: X Z-scheme separated of finite type: are the K(X)
finitely generated up to isogenies’
(f.g. up to isogeny: sum of f.g. abelian group and group of finite exponent.)

<= higher Chow groups of X finitely generated up to isogeny

= Beilinson-Soulé conjecture.



Theorem 1 (Quillen, 1972/74). Bass™ conjecture is true in Krull dimension
<1.



Sketch of proof: dimension 0 reduces to Quillen’s computation of Ky(Fy).
Dimension 1: reduce to X = smooth afline curve over Fg or SpecOp, O
ring of integers in a number field F'; use Quillen’s Q)-construction

K;(X) = Ki(X) = m11(BQP(X))
P(X) = {locally free sheaves on X}.

Abbreviate QP(X) to Q.

BQ = H-space: by Whitehead-Serre, m«(BQ) fg. < H«(BQ) fg.



Rank filtration: Qn = {F € Q |tk E < n}, T, : Q,—1 — 9y inclusion
functor.
EeQuThl|FE={F—E||FeQ, 1}

Proposition 2 (Quillen). B(T), | E) = XT(Ey), T(Ey) = Tits building of
Ey (generic fibre of E).

Theorem 3 (Solomon-Tits). n > 2: T(Ey) has the homotopy type of a
bouquet of (n — 2)-spheres.

Definition 4. St(E) = H,_o(T(Ey)) = Hyp—1(Ty | E)): the Steinberg
module.

In fact, need

(St(E) if > 2
~ Ker(St(F) — Z) ifn=2
SH(E) = er(St(E) — Z) 1 n

Z itn=1

\Z ifn =20



Gabriel-Zisman spectral sequence

E2, = Hy(Qp, Hy(E — Ty, | E)) = Hy14(Qn)

E € Q,,_1 = T, | F has terminal object |[E = E| = contractible, hence
spectral sequence degenerates to long exact sequence

(1) < Hi(Qn-1) = Hi( Q)= @ H;_p(Aut(E),St(E))—...

In particular, H;(Q,_1) — H;(Qp) surjective for n > 1, bijective for
n>i+1 (and = H;(Q) then).

[somorphism classes of projective modules of rank n =~ Pic(X) (finite!),

hence suffices to prove H;_,(Aut(FE), St(£)) f.g. VE.

In char. 0: follows from Borel-Serre + Raghunathan; in char. > 0: direct
proof of Quillen using the Bruhat-Tits building (!)



Observation (= 2008): the exact sequences (1) define an exact couple,
hence a spectral sequence = Hy(BQ). Can it give more information and
be generalised?

Spectral sequence out of infinitely many degenerating spectral sequences...
777



Morally: Quillen considers BQ,,_1 — B9, as a homotopy fibration. Ho-
mology spectral sequence suggests a homotopy cofibration.



Definition 5 (2011). T : C — D functor. T is cellular if
e 1" is fully faithtul.
e For any d € D —C and any ¢ € C, D(d,c) = 0.

(Other terminology: sieve.)

Theorem 6.1 cellular: homotopy cocartesian diagram of categories

(D-C) [Fp = C
L
D-C — D.
Notation: Fp : D — Cat functor d — T | d, [ Grothendieck construction

(so (D—C) [Fp CD[Fp=T]D), e the augmentation, p induced by
first projection, ¢ = inclusion.



Corollary 7. Qg — Q1 — -+ — Oy — --- — Q sequence of categories.
We assume:

e The functors Ty, : Q,—1 — 9Qn are cellular;

Ao h_lg On.
Write ¥y, for ¥ . Then, for any abelian group A, spectral sequence of
homological type:

L Hpig1(Qp — Qp1,Fp; A) ifp>0
HC](Q07 A) pr =0
Here Hy(Qp — Qp—1, Fp; A) shorthand for the homology of the homotopy

cofibre of the augmentation (Qp,—Qy,—1) [ Fp — Qn—9,,—1 as in Theorem
6.

— Hp_|_q(Q, A)

b,q



X Noetherian integral scheme: by Quillen’s resolution theorem, his () con-
structions on coherent O y-sheaves and the full subcategory of torsion-free
sheaves are homotopy equivalent. Write @ for the second one and define 9,
as the full subcategory of torsion-free sheaves of (generic) rank < n. Get
rank spectral sequence:

) Bhy= @ Hy(Auw(E).SHE)) = Hyiy(BQ)
rk E=p

(Different from Rognes’ rank spectral sequence: X = Spec R, converges to
homology of BGL(R)" ~ QBQ.)

Vogel's argument: in Quillen’s classical case, this spectral sequence is the
same as the one described before.



Ezample 8. X = SpecF: one summand, Hy(Aut(£), St(E)) finite for ¢ >
0 and also for ¢ = 0, p > 1 because St(E) irreducible. = Hy,(BQP(Fy))
finite for n > 1 = (Cartan-Serre) K;(F,) finite for ¢ > 0.

Example 9. X projective over F,: Aut(E) still finite VE = E}%,q torsion for

q > 0, i.e. only one interesting row (¢ = 0) up to torsion. But infinitely
many summands. .. How about F*terms?

How to compute the d! differentials?

Idea: use Ash-Rudoplh’s universal modular symbols.



V' n-dimensional vector space over field K: (vq,...,vp) € (V — {0})"
— [v1, ..., vp] € St(V) (Ash-Rudolph, 1979).
Relations (Ash-Rudolph):

o [Uy,...,up| = 0if v;'s linearly dependent;
e [f vy, ..., vy all non-zero, then
n .
Z(—l)z[vg, oy U4y = 0.
1=0

Theorem 10 (Ash-Gunnells-McConnell 2012, K.-Sun 2014). This is a pre-
sentation of St(V).



Fei Sun’s thesis (2015): computation of the d' differentials in terms of
universal modular symbols. Uses formula for “d" on the coefficients” (a

little mysterious).

This talk: better explain Sun’s results.



First tool: bootstrap idea of the rank spectral sequence.

Q(V) := Q | V has final object [V = V] hence contractible; filter it also
by rank!

{W —=>V]e9V)|rkW < p}.

Jp(V)
t > n, Jp(V) = T LV, J4(V) =0,

Jp(V) = Q(V) for p
Tp(V) « Jp—1(V) = Jp(V) cellular.

Apply Cor. 7, get a spectral sequence Eéjq = Hpiq(pt) with
ml _ )Ow St(W) if ¢ =0
B 0 else

i.e. GL(V)-equivariant resolutiuon of Z:



- EB St(W) — @ St(W) S Z — 0

Jp(V)=Jp(V) = Jp—1 (V) ={IW = V] € JV) | tkW = p}.

U ;] U =

Proposition 11. For p < n and (W — V|,[IW" — V]) € Jp(V) X
Jp—1(V'). we have, with obvious notation

nmw (u') if u' factors through u
ap(u,u/) — {O oo



Corollary 12. G C GL(V'): spectral sequence
Liy= @  Hylw StW)) = HypolC)
Wel,(V)/G
[y stabiliser of W, (=)/G = G-orbits.

This spectral sequence maps to (2) (for G = Aut(E), Ey = V), so control-
ling its d' differentials gives control on those of (2).



Second tool: product structure.

V. W € Q of dimensions n, m. & induces a functor
Q(V) x QW) — Q(V e W)

mapping Qp(V) X Qg(W) to Qpiqe(V & W). Hence a pairing of spectral
sequences, yielding GL(V') x GL(W)-equivariant pairing of the resolutions
(3). In particular, get canonical GL(V') x GL(W )-equivariant pairing

(4) St(V) @ St(W) — St(V & W)

and a pairing of the spectral sequences of Corollary 12.



Proposition 13. (vy,...,vy) € V", (wq,...,wm) € W, Then (1) sends
V1, ..., 0p] ® lwr, ..., wm] to v, ..., vp, W1, ..., W



Corollary 14. In (3), let v € V™ and [v] = [vy, ..., vn] € St(V) be the
corresponding symbol. Assume the v;’s linearly independent. Let W; =
(U1, .+.,0jy...,0p). Then, for |W = V]e J,—1(V):

/

0 f W g {Wy,...,Wn};
v ([V)u = < [v1,. .., 04 ..., Up) if W =W, and w is an admissible mono;
| —v1, ..U, vp] if W =W and w is an admissible epi.

This is “d" on the coefficients. Gives d! (in principle) on chain level, hence
controls differentials of the rank spectral sequence.



Remark 15. Ash-Doud (2018) define a GL(V )-equivariant resolution of Z:

- - 5, -
B oSV @ S IS L @ S
dim W=n—1 dim W=1

(LZ—M)

where the T¥’s run through Gr(V') and 9, is defined on a nonzero universal
modular symbol [vy,...,v] € St(W), with dim W = k, by
k .
Okt - vl) = Y (=1 [wi, ..., ;. ., wy]
1=1
where [wl,...,u?j,...,wk} S <w1,...,fu§j,...,wk>.

Very similar to (3), but different (indexings of € are different). In fact, (5)
maps to (3) but not quasi-isomorphism.



The End



