The rank spectral sequence for Quillen's Q construction

 Bruno KahnA Festival remembering Vic Snaith: Topology, Number Theory and interactions

Bristol, July 11, 2023.

Famous conjectures still unproven:
Bass' conjecture/question (1973): X Z-scheme separated of finite type: are the $K_{i}^{\prime}(X)$ finitely generated?

Beilinson-Soulé conjecture (1983): X regular (separated): $\operatorname{gr}_{\gamma}^{n} K_{i}(X)$ torsion of finite exponent if $n \geq[i / 2]\left(\Longleftrightarrow H^{j}(X, \mathbf{Z}(n))=0\right.$ for $n>0$, $j \leq 0$).

Parshin conjecture (1983): X smooth projective over a finite field: $K_{i}(X) \otimes \mathbf{Q}=0$ for $i>0$.

Many dévissages, few answers.

Variant:
Weak Bass' conjecture: X Z-scheme separated of finite type: are the $K_{i}^{\prime}(X)$ finitely generated up to isogenies?
(f.g. up to isogeny: sum of f.g. abelian group and group of finite exponent.)
\Longleftrightarrow higher Chow groups of X finitely generated up to isogeny
\Rightarrow Beilinson-Soulé conjecture.

Theorem 1 (Quillen, 1972/74). Bass' conjecture is true in Krull dimension ≤ 1.

Sketch of proof: dimension 0 reduces to Quillen's computation of $K_{*}\left(\mathbf{F}_{q}\right)$. Dimension 1: reduce to $X=$ smooth affine curve over \mathbf{F}_{q} or $\operatorname{Spec} O_{F}, O_{F}$ ring of integers in a number field F; use Quillen's Q-construction

$$
K_{i}^{\prime}(X)=K_{i}(X)=\pi_{i+1}(B Q P(X))
$$

$P(X)=\{$ locally free sheaves on $X\}$.
Abbreviate $Q P(X)$ to \mathcal{Q}.
$B \mathcal{Q}=\mathrm{H}$-space: by Whitehead-Serre, $\pi_{*}(B \mathcal{Q})$ f.g. $\Longleftrightarrow H_{*}(B \mathcal{Q})$ f.g.

Rank filtration: $\mathcal{Q}_{n}=\{E \in \mathcal{Q} \mid \operatorname{rk} E \leq n\}, T_{n}: \mathcal{Q}_{n-1} \rightarrow \mathcal{Q}_{n}$ inclusion functor.
$E \in \mathcal{Q}_{n}: T_{n} \downarrow E:=\left\{[F \rightarrow E] \mid F \in \mathcal{Q}_{n-1}\right\}$.
Proposition 2 (Quillen). $B\left(T_{n} \downarrow E\right) \approx \Sigma T\left(E_{\eta}\right), T\left(E_{\eta}\right)=$ Tits building of E_{η} (generic fibre of E).
Theorem 3 (Solomon-Tits). $n \geq 2: T\left(E_{\eta}\right)$ has the homotopy type of a bouquet of $(n-2)$-spheres.

Definition 4. $\left.\operatorname{St}(E)=H_{n-2}\left(T\left(E_{\eta}\right)\right)=H_{n-1}\left(T_{n} \downarrow E\right)\right)$: the Steinberg module.

In fact, need

$$
\widetilde{\operatorname{St}}(E)= \begin{cases}\operatorname{St}(E) & \text { if } n>2 \\ \operatorname{Ker}(\operatorname{St}(E) \rightarrow \mathbf{Z}) & \text { if } n=2 \\ \mathbf{Z} & \text { if } n=1 \\ \mathbf{Z} & \text { if } n=0\end{cases}
$$

Gabriel-Zisman spectral sequence

$$
E_{p, q}^{2}=H_{p}\left(\mathcal{Q}_{n}, H_{q}\left(E \mapsto T_{n} \downarrow E\right)\right) \Rightarrow H_{p+q}\left(\mathcal{Q}_{n}\right)
$$

$E \in \mathcal{Q}_{n-1} \Rightarrow T_{n} \downarrow E$ has terminal object $[E=E] \Rightarrow$ contractible, hence spectral sequence degenerates to long exact sequence

$$
\begin{equation*}
\cdots \rightarrow H_{i}\left(\mathcal{Q}_{n-1}\right) \rightarrow H_{i}\left(\mathcal{Q}_{n}\right) \rightarrow \underset{\operatorname{rk} E=n}{\bigoplus_{E=n}} H_{i-n}(\operatorname{Aut}(E), \widetilde{\operatorname{St}}(E)) \rightarrow \ldots \tag{1}
\end{equation*}
$$

In particular, $H_{i}\left(\mathcal{Q}_{n-1}\right) \rightarrow H_{i}\left(\mathcal{Q}_{n}\right)$ surjective for $n>i$, bijective for $n>i+1\left(\right.$ and $=H_{i}(\mathcal{Q})$ then $)$.

Isomorphism classes of projective modules of rank $n \simeq \operatorname{Pic}(X)$ (finite!), hence suffices to prove $H_{i-n}(\operatorname{Aut}(E), \widetilde{\operatorname{St}}(E))$ f.g. $\forall E$.

In char. 0: follows from Borel-Serre + Raghunathan; in char. >0 : direct proof of Quillen using the Bruhat-Tits building (!)

Observation (≈ 2008) : the exact sequences (1) define an exact couple, hence a spectral sequence $\Rightarrow H_{*}(B \mathcal{Q})$. Can it give more information and be generalised?

Spectral sequence out of infinitely many degenerating spectral sequences... ???

Morally: Quillen considers $B \mathcal{Q}_{n-1} \rightarrow B \mathcal{Q}_{n}$ as a homotopy fibration. Homology spectral sequence suggests a homotopy cofibration.

Definition 5 (2011). $T: \mathcal{C} \rightarrow \mathcal{D}$ functor. T is cellular if

- T is fully faithful.
- For any $d \in \mathcal{D}-\mathcal{C}$ and any $c \in \mathcal{C}, \mathcal{D}(d, c)=\emptyset$.
(Other terminology: sieve.)
Theorem 6. T cellular: homotopy cocartesian diagram of categories

\[

\]

Notation: $\mathbf{F}_{T}: \mathcal{D} \rightarrow \mathbf{C a t}$ functor $d \mapsto T \downarrow d, \int$ Grothendieck construction (so $\left.(\mathcal{D}-\mathcal{C}) \int \mathbf{F}_{T} \subset \mathcal{D} \int \mathbf{F}_{T}=T \downarrow \mathcal{D}\right)$, ε the augmentation, p induced by first projection, $\iota=$ inclusion.

Corollary 7. $\mathcal{Q}_{0} \rightarrow \mathcal{Q}_{1} \rightarrow \cdots \rightarrow \mathcal{Q}_{n} \rightarrow \cdots \rightarrow \mathcal{Q}$ sequence of categories. We assume:

- The functors $T_{n}: \mathcal{Q}_{n-1} \rightarrow \mathcal{Q}_{n}$ are cellular;
- $\mathcal{Q}=\underset{\longrightarrow}{\lim } \mathcal{Q}_{n}$.

Write \mathbf{F}_{n} for $\mathbf{F}_{T_{n}}$. Then, for any abelian group A, spectral sequence of homological type:

$$
E_{p, q}^{1}=\left\{\begin{array}{ll}
H_{p+q-1}\left(\mathcal{Q}_{p}-\mathcal{Q}_{p-1}, \tilde{\mathbf{F}}_{p} ; A\right) & \text { if } p>0 \\
H_{q}\left(\mathcal{Q}_{0}, A\right) & \text { if } p=0
\end{array} \Rightarrow H_{p+q}(\mathcal{Q}, A)\right.
$$

Here $H_{*}\left(\mathcal{Q}_{p}-\mathcal{Q}_{p-1}, \tilde{\mathbf{F}}_{p} ; A\right)$ shorthand for the homology of the homotopy cofibre of the augmentation $\left(\mathcal{Q}_{n}-\mathcal{Q}_{n-1}\right) \int \mathbf{F}_{p} \rightarrow \mathcal{Q}_{n}-\mathcal{Q}_{n-1}$ as in Theorem 6.
X Noetherian integral scheme: by Quillen's resolution theorem, his Q constructions on coherent \mathcal{O}_{X}-sheaves and the full subcategory of torsion-free sheaves are homotopy equivalent. Write \mathcal{Q} for the second one and define \mathcal{Q}_{n} as the full subcategory of torsion-free sheaves of (generic) rank $\leq n$. Get rank spectral sequence:

$$
\begin{equation*}
E_{p, q}^{1}=\bigoplus_{\mathrm{rk} E=p} H_{q}(\operatorname{Aut}(E), \widetilde{\mathrm{St}}(E)) \Rightarrow H_{p+q}(B \mathcal{Q}) \tag{2}
\end{equation*}
$$

(Different from Rognes' rank spectral sequence: $X=\operatorname{Spec} R$, converges to homology of $B G L(R)^{+} \approx \Omega B \mathcal{Q}$.)

Vogel's argument: in Quillen's classical case, this spectral sequence is the same as the one described before.

Example 8. $X=\operatorname{Spec} \mathbf{F}_{q}$: one summand, $H_{q}(\operatorname{Aut}(E), \widetilde{\operatorname{St}}(E))$ finite for $q>$ 0 and also for $q=0, p>1$ because $\widetilde{\mathrm{St}}(E)$ irreducible. $\Rightarrow H_{n}\left(B Q P\left(\mathbf{F}_{q}\right)\right)$ finite for $n>1 \Rightarrow\left(\right.$ Cartan-Serre) $K_{i}\left(\mathbf{F}_{q}\right)$ finite for $i>0$.

Example 9. X projective over $\mathbf{F}_{q}: \operatorname{Aut}(E)$ still finite $\forall E \Rightarrow E_{p, q}^{1}$ torsion for $q>0$, i.e. only one interesting row $(q=0)$ up to torsion. But infinitely many summands. . . How about E^{2}-terms?

How to compute the d^{1} differentials?
Idea: use Ash-Rudoplh's universal modular symbols.
$V n$-dimensional vector space over field $K:\left(v_{1}, \ldots, v_{n}\right) \in(V-\{0\})^{n}$ $\mapsto\left[v_{1}, \ldots, v_{n}\right] \in \widetilde{\mathrm{St}}(V)$ (Ash-Rudolph, 1979).
Relations (Ash-Rudolph):

- $\left[v_{1}, \ldots, v_{n}\right]=0$ if v_{i} 's linearly dependent;
- If v_{0}, \ldots, v_{n} all non-zero, then

$$
\sum_{i=0}^{n}(-1)^{i}\left[v_{0}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right]=0
$$

Theorem 10 (Ash-Gunnells-McConnell 2012, K.-Sun 2014). This is a presentation of $\widetilde{\operatorname{St}}(V)$.

Fei Sun's thesis (2015): computation of the d^{1} differentials in terms of universal modular symbols. Uses formula for " d^{1} on the coefficients" (a little mysterious).

This talk: better explain Sun's results.

First tool: bootstrap idea of the rank spectral sequence.
$\mathcal{Q}(V):=\mathcal{Q} \downarrow V$ has final object $[V=V]$ hence contractible; filter it also by rank!

$$
J_{p}(V)=\{[W \rightarrow V] \in \mathcal{Q}(V) \mid \operatorname{rk} W \leq p\} .
$$

$J_{p}(V)=\mathcal{Q}(V)$ for $p \geq n, J_{n-1}(V)=T_{n} \downarrow V, J_{-1}(V)=\emptyset$, $T_{p}(V): J_{p-1}(V) \rightarrow J_{p}(V)$ cellular.

Apply Cor. 7 , get a spectral sequence $E_{p, q}^{1} \Rightarrow H_{p+q}(p t)$ with

$$
E_{p, q}^{1}= \begin{cases}\bigoplus_{W} \widetilde{\operatorname{St}}(W) & \text { if } q=0 \\ 0 & \text { else }\end{cases}
$$

i.e. $G L(V)$-equivariant resolutiuon of \mathbf{Z} :
(3) $0 \rightarrow \widetilde{\mathrm{St}}(V) \xrightarrow{\eta_{V}}$ $\bigoplus \quad \widetilde{\mathrm{St}}(W) \xrightarrow{\partial_{n-1}} \ldots$

$$
[W \rightarrow V] \in \bar{J}_{n-1}(V)
$$

$$
\begin{gathered}
\xrightarrow{\partial_{2}} \bigoplus_{[W \rightarrow V] \in \bar{J}_{1}(V)} \widetilde{\mathrm{St}}(W) \xrightarrow{\partial_{1}} \bigoplus_{[W \rightarrow V] \in \bar{J}_{0}(V)} \widetilde{\mathrm{St}}(W) \xrightarrow{\varepsilon} \mathbf{Z} \rightarrow 0 \\
\bar{J}_{p}(V)=J_{p}(V)-J_{p-1}(V)=\{[W \rightarrow V] \in J(V) \mid \text { rk } W=p\} .
\end{gathered}
$$

Proposition 11. For $p \leq n$ and $\left([W \xrightarrow{u} V],\left[W^{\prime} \xrightarrow{u^{\prime}} V\right]\right) \in \bar{J}_{p}(V) \times$ $\bar{J}_{p-1}(V)$, we have, with obvious notation

$$
\partial_{p}\left(u, u^{\prime}\right)= \begin{cases}\eta_{W}\left(u^{\prime}\right) & \text { if } u^{\prime} \text { factors through } u \\ 0 & \text { else } .\end{cases}
$$

Corollary 12. $G \subseteq \mathrm{GL}(V)$: spectral sequence

$$
I_{p, q}^{1}=\bigoplus_{W \in \bar{J}_{p}(V) / G} H_{q}\left(\Gamma_{W}, \widetilde{\mathrm{St}}(W)\right) \Rightarrow H_{p+q}(G)
$$

Γ_{W} stabiliser of $W,(-) / G=G$-orbits.
This spectral sequence maps to (2) (for $G=\operatorname{Aut}(E), E_{\eta}=V$), so controlling its d^{1} differentials gives control on those of (2).

Second tool: product structure.
$V, W \in \mathcal{Q}$ of dimensions $n, m . \oplus$ induces a functor

$$
\mathcal{Q}(V) \times \mathcal{Q}(W) \rightarrow \mathcal{Q}(V \oplus W)
$$

mapping $\mathcal{Q}_{p}(V) \times \mathcal{Q}_{q}(W)$ to $\mathcal{Q}_{p+q}(V \oplus W)$. Hence a pairing of spectral sequences, yielding $\mathrm{GL}(V) \times \mathrm{GL}(W)$-equivariant pairing of the resolutions
(3). In particular, get canonical $\mathrm{GL}(V) \times \mathrm{GL}(W)$-equivariant pairing

$$
\begin{equation*}
\widetilde{\mathrm{St}}(V) \otimes \widetilde{\mathrm{St}}(W) \rightarrow \widetilde{\mathrm{St}}(V \oplus W) \tag{4}
\end{equation*}
$$

and a pairing of the spectral sequences of Corollary 12.

Proposition 13. $\left(v_{1}, \ldots, v_{n}\right) \in V^{n},\left(w_{1}, \ldots, w_{m}\right) \in W^{m}$. Then (4) sends $\left[v_{1}, \ldots, v_{n}\right] \otimes\left[w_{1}, \ldots, w_{m}\right]$ to $\left[v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{m}\right]$.

Corollary 14. In (3), let $\underline{v} \in V^{n}$ and $[v]=\left[v_{1}, \ldots, v_{n}\right] \in \widetilde{\operatorname{St}}(V)$ be the corresponding symbol. Assume the v_{i} 's linearly independent. Let $W_{i}=$ $\left\langle v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right\rangle$. Then, for $[W \xrightarrow{u} V] \in \bar{J}_{n-1}(V)$:

if $W \notin\left\{W_{1}, \ldots, W_{n}\right\}$;

This is " d^{1} on the coefficients. Gives d^{1} (in principle) on chain level, hence controls differentials of the rank spectral sequence.

Remark 15. Ash-Doud (2018) define a GL(V)-equivariant resolution of \mathbf{Z} :

$$
\begin{aligned}
(5) 0 \rightarrow \widetilde{\mathrm{St}}(V) \xrightarrow{\delta_{n}} \bigoplus_{\operatorname{dim} W=n-1} \widetilde{\mathrm{St}}(W) \xrightarrow{\delta_{n-1}} \ldots \xrightarrow{\delta_{2}} \bigoplus_{\operatorname{dim} W=1} \widetilde{\mathrm{St}}(W) \\
\quad \xrightarrow{\delta_{1}} \mathbf{Z} \rightarrow 0
\end{aligned}
$$

where the W 's run through $\operatorname{Gr}(\underset{\sim}{V})$ and δ_{k} is defined on a nonzero universal modular symbol $\left[v_{1}, \ldots, v_{k}\right] \in \widetilde{\operatorname{St}}(W)$, with $\operatorname{dim} W=k$, by

$$
\delta_{k}\left(\left[v_{1}, \ldots, v_{k}\right]\right)=\sum_{j=1}^{k}(-1)^{j}\left[w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k}\right]
$$

where $\left[w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k}\right] \in\left\langle w_{1}, \ldots, \hat{w}_{j}, \ldots, w_{k}\right\rangle$.
Very similar to (3), but different (indexings of \bigoplus are different). In fact, (5) maps to (3) but not quasi-isomorphism.

The $\mathcal{E} n d$

