RECIPROCITY SHEAVES, II

BRUNO KAHN, SHUJI SAITO, AND TAKAO YAMAZAKI

Abstract

We exhibit an intimate relationship between "reciprocity sheaves" from [7] and "modulus sheaves with transfers" from $[4,5]$.

Contents

Introduction 1

1. Review of basic definitions and results 4
2. $\bar{\square}$-invariance and SC-reciprocity 6
3. Relation with [7] 16
References 24

Intronuction

This paper is a synthesis of [7] and [4, 5]; part of it uses results of [14] and [16].

In [7], we introduced reciprocity (pre)sheaves as a generalization of Voevodsky's homotopy invariant (pre)sheaves with transfers, which are the main building block for constructing his triangulated categories of motives in [18]. (From now on, we shall replace homotopy invariant by \mathbf{A}^{1}-invariant for clarity.) Let $\mathbf{S m}$ be the category of separated smooth schemes of finite type over k. There is an additive category Cor which has the same objects as $\mathbf{S m}$ and whose morphisms are finite correspondences; the category PST of presheaves with transfers is defined as the additive dual of Cor [13, Lect. 1 and 2]. A presheaf with transfers F is \mathbf{A}^{1}-invariant if the projection $X \times \mathbf{A}^{1} \rightarrow X$ induces an isomorphism $F(X) \xrightarrow{\sim} F\left(X \times \mathbf{A}^{1}\right)$ for all $X \in \mathbf{S m}$. Let HI $\subset \mathbf{P S T}$ be the full subcategory of \mathbf{A}^{1}-invariant presheaves with transfers. The

[^0]reciprocity presheaves defined in [7] form a full subcategory Rec \subset PST, which contains HI.

In this paper, we introduce a new full subcategory $\mathbf{R S C} \subset \mathbf{P S T}$ which is fairly close to Rec and fits better with the new framework of modulus presheaves of transfers. The latter were introduced in [8] to construct a new triangulated category $\mathrm{MDM}^{\text {eff }}$ of motivic nature which enlarges Voevodsky's triangulated category of motives $\mathbf{D M}^{\text {eff }}$ [13, Lect. 14]. Due to problems encountered in [8], this theory was refounded in $[4,5]$ and [6]. In this paper, we only use results from [4] and [5], except for the tensor structure on MCor.

To give an idea of how one defines Rec and RSC, we need to reformulate the definition of \mathbf{A}^{1}-invariance. Recall [13, Lem. 2.16] that the inclusion HI \rightarrow PST has a left adjoint

$$
\begin{equation*}
h_{0}^{\mathbf{A}^{1}}: \mathbf{P S T} \rightarrow \mathbf{H I} . \tag{0.1}
\end{equation*}
$$

Thus $F \in \mathbf{P S T}$ is in HI if and only if for any $X \in \mathbf{S m}$ and $a \in F(X)$, the map $\mathbb{Z}_{\text {tr }}(X) \rightarrow F$ in PST associated to a by Yoneda's lemma factors through $h_{0}^{\mathbf{A}^{1}}(X):=h_{0}^{\mathbf{A}^{1}}\left(\mathbb{Z}_{\text {tr }}(X)\right)$, where $\mathbb{Z}_{\text {tr }}(X)$ is the presheaf with transfers represented by X. To define reciprocity presheaves, we introduced in [7] bigger quotients $h(M)$ of $\mathbb{Z}_{\mathrm{tr}}(X)$ associated to a modulus pair $M=\left(\bar{X}, X^{\infty}\right)$, consisting of a proper scheme \bar{X} over k and an effective Cartier divisor X^{∞} on it, such that $X=\bar{X} \backslash\left|X^{\infty}\right|$. Then a presheaf with transfers $F \in \mathbf{P S T}$ belongs to $\boldsymbol{R e c}$ [7, Definition 2.1.3] if
(*) For any quasi-affine $X \in \mathbf{S m}$ and any $a \in F(X)$, the associated map $a: \mathbb{Z}_{\mathrm{tr}}(X) \rightarrow F$ factors through $h(M)$ for some M as above.
The definition of the quotients $h(M)$ is very technical; it is inspired by the theorem of Rosenlicht-Serre on reciprocity for morphisms from curves to commutative algebraic groups [17, Ch. III].

Let us now recall the story of $[4,5]$. We define a category MCor: its objects are modulus pairs $M=\left(\bar{X}, X^{\infty}\right)$ as above such that $M^{\circ}=$ $\bar{X}-\left|X^{\infty}\right| \in \mathbf{S m}$: this is called the interior of M. Morphisms of MCor are finite correspondences between interiors satisfying an admissibility condition with respect to X^{∞} (see Definition 1.1.1). Let MPST be the additive dual of MCor. There is a pair of adjoint functors

$$
\text { MPST } \underset{\omega^{*}}{\stackrel{\omega_{1}}{\omega^{*}}} \text { PST. }
$$

Here ω^{*} is induced by the "interior" functor

$$
\omega: \text { MCor } \rightarrow \text { Cor }:\left(\bar{X}, X^{\infty}\right) \mapsto \bar{X} \backslash\left|X^{\infty}\right|
$$

and $\omega_{!}$is the left Kan extension of ω.
Let $\bar{\square}=\left(\mathbf{P}^{1}, \infty\right) \in$ MCor: we say that $F \in$ MPST is $\bar{\square}$-invariant if the "projection" $M \otimes \bar{\square} \rightarrow M$ induces an isomorphism $F(M) \xrightarrow{\sim}$ $F(M \otimes \bar{\square})$ for all $M \in \operatorname{MCor}$ (see $\S 1.2$ for the monoidal structure \otimes on MCor). We let CI \subset MPST denote the full subcategory of —-invariant objects.

We show in Theorem 2.1.8 that the inclusion CI \rightarrow MPST has a left adjoint $h_{0}^{\overline{\bar{D}}}:$ MPST \rightarrow CI. Define $h_{0}(M) \in \mathbf{P S T}$ to be $\omega_{!} h_{0}^{\bar{\square}} \mathbb{Z}_{\mathrm{tr}}(M)$, where $\mathbb{Z}_{\mathrm{tr}}(M) \in$ MPST is the presheaf represented by M and $\omega_{!}$is as before. Then RSC is the full subcategory of PST consisting of those presheaves verifying Condition $\left(^{*}\right)$ above, modified by dropping the quasi-affine condition on X and replacing $h(M)$ by $h_{0}(M)$.

Our main results are the following.
Theorem 1.
(1) (Corollary 2.3.4). We have $\mathbf{H I} \subset \mathbf{R S C}$.
(2) (Th. 2.3.3 and Prop. 2.3.7). We have $\omega_{!}(\mathbf{C I})=$ RSC. The induced functor $\omega_{\mathbf{C I}}: \mathbf{C I} \rightarrow \mathbf{R S C}$ has a fully faithful right adjoint $\omega^{\mathbf{C I}}: \mathbf{R S C} \rightarrow \mathbf{C I}$.
Theorem 2.
(1) $\begin{array}{rl}\text { (Th. 3.2.1). Let } M & =(\bar{X}, Y) \in \text { MCor be such that } X:= \\ X \\ X & Y \mid \text { is quasi-affine. Then } h_{0}(M)=h(M) \text {. Consequently, }\end{array}$ we have $\mathrm{RSC} \subset$ Rec.
(2) (Cor. 3.2.3). We have

$$
\mathbf{R S C} \cap \mathbf{N S T}=\operatorname{Rec} \cap \mathbf{N S T}
$$

Here, NST \subset PST is the full subcategory of Nisnevich sheaves with transfers [18].
Voevodsky's theory of homotopy invariant presheaves with transfers relies on an algebro-geometric version of classical homotopy theory, where the rôle of the interval is played by the affine line \mathbf{A}^{1}. Reciprocity presheaves with transfers were introduced in [7] to generalize the former, based on the completely different idea of reciprocity à la Rosenlicht-Serre. Conversely, the above theorems say that one may largely understand them in terms of a more sophisticated homotopy theory, based on rather than \mathbf{A}^{1}. This is a remarkable fact.

Remark 3. In [7, Conjecture 1 (1)], it is conjectured that the Cousin complex attached to $F \in \operatorname{Rec} \cap$ NST is exact. This is proved for $F \in \mathbf{R S C} \cap$ NST in [16, Cor. 3]. Thus, Theorem 2 (2) permits us to deduce the full statement of the original conjecture.

Corrections. In the first version of this paper [9], we made the following two claims about the functor $\omega_{\mathbf{C I}}$ from Theorem 1 (2): it induces 1) a monoidal structure on RSC from the one on $\mathbf{C I}$, and 2) an equivalence of categories

$$
\mathrm{CI} \cap \mathrm{MNST} \xrightarrow{\sim} \mathrm{RSC} \cap \mathrm{NST},
$$

where MNST \subset MPST is the full subcategory of 'Modulus Nisnevich sheaves with transfers' (see §1.4). Both proofs have turned out to be incorrect. The mistake in 2) originates in a false statement in the initial version of [16], which has been removed from its published version. See Remark 2.4.4 for a counterexample in characteristic zero.

Acknowledgments. Part of this work was done while the authors stayed at the university of Regensburg supported by the SFB grant "Higher Invariants". Another part was done in a Research in trio in CIRM, Luminy. Yet another part was done while the third author was visiting IMJ-PRG supported by the Foundation Sciences Mathématiques de Paris. Yet another part was done while the first author was visiting Tohôku University and the Tokyo Institute of Technology. We are grateful to the support and hospitality received in all places.

The authors express their deep gratitude to Kay Rülling for pointing out the errors mentioned in the previous paragraph. They are also grateful to the referee for careful reading and useful comments.

Notation and conventions. Throughout this paper we work over a base field k. Denote by Sch the category of separated schemes of finite type over k, and by $\mathbf{S m}$ the full subcategory of Sch consisting of all smooth k-schemes.

1. Review of basic definitions and Results

1.1. Modulus pairs. The following definitions (1) and (2) are taken from [4, Definitions 1.1.1, 1.3.1].

Definition 1.1.1.

(1) A pair $M=\left(\bar{X}, X_{\infty}\right)$ of $\bar{X} \in$ Sch and an effective Cartier divisor X_{∞} on \bar{X} is called a modulus pair if $\bar{X} \backslash\left|X_{\infty}\right| \in \mathbf{S m}$. It is called proper if \bar{X} is proper over k.
(2) Let $M=\left(\bar{X}, X_{\infty}\right), N=\left(\bar{Y}, Y_{\infty}\right)$ be two proper modulus pairs and put $X=\bar{X} \backslash\left|X_{\infty}\right|, Y=\bar{Y} \backslash\left|Y_{\infty}\right|$. We define $\operatorname{MCor}(M, N)$ to be the subgroup of $\operatorname{Cor}(X, Y)$ generated by all elementary correspondences $V \in \operatorname{Cor}(X, Y)$ such that the closure \bar{V} of V in $\bar{X} \times \bar{Y}$ satisfies $\nu^{*}\left(\bar{X} \times Y_{\infty}\right) \leq \nu^{*}\left(X_{\infty} \times \bar{Y}\right)$, where ν : $\bar{V}^{N} \rightarrow \bar{X} \times \bar{Y}$ is the composition of the normalization $\bar{V}^{N} \rightarrow \bar{V}$
and the inclusion $\bar{V} \hookrightarrow \bar{X} \times \bar{Y}$. We call these correspondences admissible (with respect to (M, N)). This defines a category MCor of proper modulus pairs.
There is a functor

$$
\begin{equation*}
\omega: \text { MCor } \rightarrow \text { Cor } \tag{1.1}
\end{equation*}
$$

defined by $\omega\left(\bar{X}, X_{\infty}\right)=\bar{X} \backslash\left|X_{\infty}\right|$.
The following is basic to his paper.
Lemma 1.1.2 ([6, §2.1]). The assignment

$$
\left(\bar{X}, X_{\infty}\right) \otimes\left(\bar{Y}, Y_{\infty}\right)=\left(\bar{X} \times \bar{Y}, X_{\infty} \times \bar{Y}+\bar{X} \times Y_{\infty}\right)
$$

defines a symmetric monoidal structure on MCor, with unit object $\mathbf{1}=(\operatorname{Spec} k, \emptyset)$. The functor ω of (1.1) is symmetric monoidal.
1.2. Modulus presheaves with transfers. Here is the definition of our main object of study (see [4, Definition 2.1.1, Notation 2.1.2]).

Definition 1.2.1.

(1) We denote by MPST the abelian category of all additive functors $\mathrm{MCor}^{\mathrm{op}} \rightarrow \mathrm{Ab}$.
(2) For $M \in$ MCor, we denote by $\mathbb{Z}_{\text {tr }}(M) \in$ MPST the object represented by M.
By [13, Def. 8.2] and [11, Appendix] we have the following.
Proposition 1.2.2. The category MPST has a symmetric monoidal structure that extends the tensor structure of Lemma 1.1.2 via the additive Yoneda functor. It admits an internal Hom such that

$$
\begin{equation*}
\underline{\operatorname{Hom}}_{\text {MPST }}\left(\mathbb{Z}_{\mathrm{tr}}(M), F\right)(N)=F(M \otimes N) \tag{1.2}
\end{equation*}
$$

for $M, N \in$ MCor and $F \in \operatorname{MPST}$.
1.3. Relation with PST. The functor ω of (1.1) induces a functor $\omega^{*}:$ PST \rightarrow MPST, $\omega^{*}(F)=F \circ \omega$.

Proposition 1.3.1.

(1) The functor ω^{*} is fully faithful and exact.
(2) There is a left adjoint $\omega_{!}:$MPST \rightarrow PST of ω^{*}, which is monoidal and exact. We have

In (2), $\operatorname{MSm}(X)$ is the inverse system $\left\{M=\left(\bar{X}, X_{\infty}\right) \in \mathbf{M C o r} \mid\right.$ $\left.X=\bar{X} \backslash\left|X_{\infty}\right|\right\}$, where transition maps are given by the diagonal $X \subset X \times X$ whenever it defines a morphism in MCor.

Proof. See [4, Prop. 2.2.1 and (2.2.1)]. The monoidality of $\omega_{!}$follows that of (1.1).
1.4. Modulus sheaves with transfers. In [5, Lemma-Definition 4.2.1], we define a full subcategory MNST \subset MPST of "modulus Nisnevich sheaves with transfers". In this paper we need the following:

Proposition 1.4.1.

(1) The category MNST is abelian; the full embedding $i_{\text {Nis }}:$ MNST \hookrightarrow MPST has an exact left adjoint $a_{\text {Nis }}$ ("sheafification").
(2) The functors $\omega_{!}$and ω^{*} of Proposition 1.3 .1 preserve MNST and NST; they induce an adjunction ($\omega_{\text {Nis }}, \omega^{\text {Nis }}$) between these two categories, and $\omega_{\mathrm{Nis}}, \omega^{\text {Nis }}$ are both exact. Moreover, the $\operatorname{pair}\left(\omega_{!}, \omega_{\text {Nis }}\right)$ commutes with the sheafification functors $a_{\text {Nis }}$ and $a_{\text {Nis }}^{V}:$ PST \rightarrow NST [18, Th. 3.1.4].

Proof. See [5, Theorem 4.2.4] for (1) and [5, Prop. 6.2.1] for (2).

2. $\bar{\square}$-Invariance and SC-REciprocity

2.1. $\bar{\square}$-invariance.

Definition 2.1.1. Let $\bar{\square}=\left(\mathbf{P}^{1}, \infty\right)$, and write $p: \bar{\square} \rightarrow \mathbf{1}$ for the canonical morphism. We say $F \in$ MPST is \square-invariant if the projection map $1_{M} \otimes p: M \otimes \bar{\square} \rightarrow M$ induces an isomorphism $p^{*}: F(M) \xrightarrow{\sim}$ $F(M \otimes \bar{\square})$ for any $M \in \mathbf{M C o r}$. We define CI to be the full subcategory of MPST consisting of all objects having $\bar{\square}$-invariance.

Lemma 2.1.2. The category $\mathbf{C I}$ is closed under taking subobjects, quotients and extensions in MPST.

Proof. Since the zero section $i_{0}: \mathbf{1} \rightarrow \bar{\square}$ is right inverse to p, p^{*} : $F(M) \rightarrow F(M \otimes \bar{\square})$ is an isomorphism if and only if $i_{0}^{*}: F(M \otimes \bar{\square}) \rightarrow$ $F(M)$ is injective. This implies that \square-invariance is preserved under taking subobjects. The remaining assertions then follow by the five lemma.

Consider the multiplication map

$$
\mu: \mathbf{A}^{1} \times \mathbf{A}^{1} \rightarrow \mathbf{A}^{1} ; \quad(x, y) \mapsto(x y)
$$

Let $\Gamma \subset \mathbf{A}^{1} \times \mathbf{A}^{1} \times \mathbf{A}^{1}$ be the graph of μ.
Lemma 2.1.3 ([6, Lem. 5.1.1]). We have $\Gamma \in \operatorname{MCor}(\bar{\square} \otimes \bar{\square} \bar{\square})$. In other words, the finite correspondence μ is admissible.

Definition 2.1.4. For $F \in$ MPST, define $h_{0}^{\bar{\square}}(F) \in \operatorname{MPST}$ by:

$$
\begin{equation*}
h_{0}^{\bar{\square}}(F)(M)=\operatorname{Coker}\left(F(M \otimes \bar{\square}) \xrightarrow{i_{0}^{*}-i_{1}^{*}} F(M)\right) \quad(M \in \text { MCor }) \tag{2.1}
\end{equation*}
$$

where i_{ε}^{*} for $\varepsilon=0,1$ is the pullback by the section $i_{\varepsilon}: \mathbf{1} \rightarrow \square$ sending Spec k to $\varepsilon \in \mathbf{A}^{1}(k)$. For $M \in$ MCor, we write $h_{0}^{\bar{\square}}(M)=h_{0}^{\bar{\square}}\left(\mathbb{Z}_{\mathrm{tr}}(M)\right)$.

Proposition 2.1.5. Let $F \in$ MPST.
(1) The following conditions are equivalent.
(i) $F \in \mathbf{C I}$.
(ii) The natural map $F \rightarrow h_{0}^{\bar{\square}}(F)$ is an isomorphism.
(iii) For any $M \in \operatorname{MCor}$ and $a \in F(M)$, the Yoneda map $\tilde{a}: \mathbb{Z}_{\mathrm{tr}}(M) \rightarrow F$ factors through $h_{0}^{\bar{\square}}(M)$.
(2) We have $h_{0}^{\bar{\square}}(F) \in \mathbf{C I}$ and the induced functor

$$
h_{0}^{\bar{\square}}: \mathbf{M P S T} \rightarrow \mathbf{C I} ; F \mapsto h_{0}^{\bar{\square}}(F)
$$

gives a left adjoint of the inclusion $i^{\bar{\square}}: \mathbf{C I} \hookrightarrow$ MPST.
(3) For any $M \in$ MCor, the morphism $h_{0}^{\overline{\bar{D}}}\left(1_{M} \otimes p\right): h_{0}^{\bar{\square}}(M \otimes \bar{\square}) \rightarrow$ $h_{0}^{\bar{\square}}(M)$ is an isomorphism.

Proof. It essentially reproduces the proof of the same facts for \mathbf{A}^{1} invariant presheaves, by adding modulus. The main point is Lemma 2.1.3.

Assume (i) and take $M \in$ MCor. The assumption implies that $i_{\varepsilon}^{*}: F(M \otimes \bar{\square}) \rightarrow F(M)$ for $\varepsilon=0,1$ are both inverse to $p^{*}: F(M) \xrightarrow{\sim}$ $F(M \otimes \bar{\square})$ so that $i_{0}^{*}-i_{1}^{*}=0$, which implies (ii).

Assume (ii). By (2.1) this implies that for any $M \in$ MCor we have

$$
\begin{equation*}
i_{0}^{*}=i_{1}^{*}: F(M \otimes \bar{\square}) \rightarrow F(M) \tag{2.2}
\end{equation*}
$$

By Lemma 2.1.3, we have a commutative diagram

By this diagram and (2.2), we get

$$
\begin{aligned}
& p^{*}\left(1_{M} \otimes i_{0}\right)^{*}=\left(1_{M \otimes \bar{\square}} \otimes i_{0}\right)^{*} \circ\left(1_{M} \otimes \mu\right)^{*} \\
&=\left(1_{M \otimes \bar{\square}} \otimes i_{1}\right)^{*} \circ\left(1_{M} \otimes \mu\right)^{*}=1_{M \otimes \bar{\square}}^{*} .
\end{aligned}
$$

This proves the surjectivity of p^{*}, hence (i) holds. Thus (i) \Longleftrightarrow (ii).

By the definition of $h_{0}^{\bar{\square}}(F)$, for any $M \in$ MCor, the map

$$
h_{0}^{\bar{\square}}(F)(M \otimes \bar{\square}) \xrightarrow{i_{0}^{*}-i_{1}^{*}} h_{0}^{\bar{\square}}(F)(M)
$$

is the zero map so that $h_{0}^{\bar{\square}}(F)(M) \simeq h_{0}^{\overline{\bar{D}}}\left(h_{0}^{\bar{\square}}(F)\right)(M)$. Hence the first assertion of (2) follows from the implication (ii) \Rightarrow (i).

Any $\tilde{a}: \mathbb{Z}_{\mathrm{tr}}(M) \rightarrow F$ induces a morphism $h_{0}^{\bar{\square}}(M) \rightarrow h_{0}^{\bar{\square}}(F)$ which commutes with the natural transformation of (ii). Hence (iii) follows from (ii).

If (iii) holds, F is a quotient of a direct sum of $h_{0}^{\bar{\square}}(M)$'s for $M \in$ MCor. Hence (i) holds by the first assertion of (2) and Lemma 2.1.2. This completes the proof of (1).

To show the second assertion of (2), note that (1) implies that for $F \in \mathbf{C I}$ and $M \in \mathbf{M C o r}$, the natural map $\mathbb{Z}_{\mathrm{tr}}(M) \rightarrow h_{0}^{\bar{\square}}(M)$ induces an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{\text {MPST }}\left(h_{0}^{\bar{\square}}(M), F\right) \simeq \operatorname{Hom}_{\text {MPST }}\left(\mathbb{Z}_{\mathrm{tr}}(M), F\right) \tag{2.3}
\end{equation*}
$$

For $G \in$ MPST, take a resolution of G of the form

$$
P_{1} \rightarrow P_{0} \rightarrow G \rightarrow 0 \quad \text { in MPST }
$$

where P_{1}, P_{0} are direct sums of representable objects. By its definition (2.1), the endofunctor $h_{0}^{\overline{\bar{~}}}$ of MPST is right exact so that the above sequence induce an exact sequence

$$
h_{0}^{\bar{\square}}\left(P_{1}\right) \rightarrow h_{0}^{\bar{\square}}\left(P_{0}\right) \rightarrow h_{0}^{\bar{\square}}(G) \rightarrow 0 .
$$

Moreover $h_{0}^{\bar{\square}}$ commutes with direct sums again by (2.1). In view of (2.3), we conclude that the natural map $G \rightarrow h_{0}^{\overline{\overline{ }}}(G)$ induces an isomorphism

$$
\operatorname{Hom}_{\text {MPST }}\left(h_{0}^{\bar{\square}}(G), F\right) \simeq \operatorname{Hom}_{\text {MPST }}(G, F) .
$$

which implies the desired claim.
It remains to prove (3). Since $h_{0}^{\bar{\square}}\left(1_{M} \otimes i_{0}\right)$ is a right inverse of $h_{0}^{\bar{\square}}\left(1_{M} \otimes p\right)$, it suffices to show that it is also a left inverse. Let $N \in$ MCor. For $\varphi \in \operatorname{MCor}(N, M \otimes \bar{\square})$, define

$$
\tilde{\varphi}=\left(1_{M} \otimes \mu\right) \circ\left(\varphi \otimes 1_{\bar{\square}}\right) \in \operatorname{MCor}(N \otimes \bar{\square}, M \otimes \bar{\square}) .
$$

Using the identities $\mu \circ\left(1_{\square} \otimes i_{0}\right)=i_{0} p$ and $\mu \circ\left(1_{\bar{\square}} \otimes i_{1}\right)=1_{\bar{\square}}$, we get

$$
\left(i_{0}^{*}-i_{1}^{*}\right) \tilde{\varphi}:=\tilde{\varphi} \circ\left(1_{N} \otimes i_{0}\right)-\tilde{\varphi} \circ\left(1_{N} \otimes i_{1}\right)=\left(1_{M} \otimes i_{0} p\right) \circ \varphi-\varphi
$$

which shows that $\bar{\varphi}=h_{0}^{\bar{\square}}\left(1_{M} \otimes i_{0}\right) h_{0}^{\bar{\square}}\left(1_{M} \otimes p\right) \bar{\varphi}$, where $\bar{\varphi}$ is the image of φ in $h_{0}^{\bar{\square}}(M \otimes \bar{\square})(N)$.

Definition 2.1.6. For $F \in \operatorname{MPST}$, define $h_{\square}^{0}(F) \in \operatorname{MPST}$ by

$$
\begin{equation*}
h_{\bar{\square}}^{0}(F)(M)=\operatorname{Hom}_{\mathbf{M P S T}}\left(h_{0}^{\bar{\square}}(M), F\right) \quad(M \in \mathbf{M C o r}) . \tag{2.4}
\end{equation*}
$$

Lemma 2.1.7. For $F \in \operatorname{MPST}, h_{\square}^{0}(F)$ is the maximal $\bar{\square}$-invariant subobject of F. The induced functor

$$
h_{\bar{\square}}^{0}: \mathbf{M P S T} \rightarrow \mathbf{C I} ; F \mapsto h_{\bar{\square}}^{0}(F)
$$

gives a right adjoint of the inclusion $i^{\bar{\square}}: \mathbf{C I} \hookrightarrow$ MPST.
Proof. The fact that $h_{\square}^{0}(F)$ is a subobject of F follows from (2.4) and the fact that $h_{0}^{\bar{\square}}(M)$ is a quotient of $\mathbb{Z}_{\text {tr }}(M)$. The fact that $h_{\square}^{0}(F) \in \mathbf{C I}$ follows from Proposition 2.1.5 (3). Now let $G \subset F$ be a subobject which is in CI. For $a \in F(M)$ with $M \in \operatorname{MCor}$, let $\tilde{a}: \mathbb{Z}_{\mathrm{tr}}(M) \rightarrow F$ be the corresponding map in MPST . If $a \in G(M), \tilde{a}$ factors through G and hence factors through $h_{0}^{\bar{\square}}(M)$ by Proposition 2.1.5 (1). Hence $a \in h_{\bar{\square}}^{0}(F)(M)$ by (2.4). This proves $G \subset h_{\bar{\square}}^{0}(F)$, which completes the proof of the first assertion. The second assertion follows easily from the first and Lemma 2.1.2.

Theorem 2.1.8. The category CI is a Serre subcategory of MPST, and is Grothendieck. The inclusion $i^{\square}: \mathbf{C I} \hookrightarrow$ MPST has
(i) a left adjoint given by $F \mapsto h_{0}^{\overline{\bar{D}}}(F)$;
(ii) a right adjoint given by $F \mapsto h_{\square}^{0}(F)$, where

$$
h_{\square}^{0} F(M)=\operatorname{Hom}\left(h_{0}^{\square}(M), F\right) \quad(M \in \text { MCor }) .
$$

The unit (resp. counit) morphism $F \rightarrow h_{0}^{\bar{\square}}(F)\left(\right.$ resp. $\left.h_{\bar{\square}}^{0}(F) \rightarrow F\right)$ is epi (resp. mono).
Proof. Everything follows from what we have proven so far, except for the Grothendieckness of CI, that we want to deduce from that of MPST. We cannot quite apply [4, Th. A. 10.1 d)], because $h_{0}^{\bar{\square}}$ is not exact: it provides generators and infinite direct sums, but not their exactness. But the latter holds because i^{\square} reflects infinite direct sums (if $\left(F_{\alpha}\right)$ is a family of objects in CI, their direct sum in MPST belongs to CI).

Proposition 2.1.9.

(1) One has $\underline{\operatorname{Hom}}_{\text {MPST }}(G, H) \in \mathbf{C I}$ for any $G \in \operatorname{MPST}$ and any $H \in \mathbf{C I}$.
(2) Via h_{0}^{\square}, the symmetric monoidal structure on MPST from Proposition 1.2.2 induces a symmetric monoidal structure on CI by the formula

$$
F \otimes_{\mathbf{C I}} G=h_{0}^{\bar{\square}}\left(F \otimes_{\mathbf{M P S T}} G\right) \quad(F, G \in \mathbf{C I})
$$

This tensor product commutes with all representable colimits.

Proof. (1) follows from (1.2) and the isomorphisms (easily checked by means of Yoneda's lemma):

$$
\begin{aligned}
\underline{\operatorname{Hom}}_{\mathbf{M P S T}} & \left(\bar{\square}, \underline{\operatorname{Hom}}_{\mathbf{M P S T}}(G, H)\right) \simeq \underline{\operatorname{Hom}}_{\mathbf{M P S T}}\left(\bar{\square} \otimes_{\mathbf{M P S T}} G, H\right) \\
& \simeq \underline{\operatorname{Hom}}_{\mathbf{M P S T}}\left(G, \underline{\operatorname{Hom}}_{\mathbf{M P S T}}(\bar{\square}, H)\right) \leftarrow \underline{\operatorname{Hom}}_{\mathbf{M P S T}}(G, H)
\end{aligned}
$$

where the last isomorphism, induced by p, follows from the assumption $H \in \mathbf{C I}$.
(2) Since $h_{0}^{\bar{\square}}$ is a localisation by the full faithfulness of $i^{\bar{\square}}$, we have to show the following.
Claim 2.1.10. If $f \in \operatorname{Hom}_{\text {MPST }}\left(G_{1}, G_{2}\right)$ is such that $h_{0}^{\bar{\square}}(f)$ is an isomorphism, then $g=h_{0}^{\overline{\bar{D}}}\left(f \otimes_{\text {MPST }} 1_{G^{\prime}}\right)$ is an isomorphism for any $G^{\prime} \in$ MPST.

By (co)Yoneda, it suffices to show that
$g^{*}: \operatorname{Hom}_{\text {MPST }}\left(h_{0}^{\bar{\square}}\left(G_{2} \otimes_{\mathbf{M P S T}} G^{\prime}\right), H\right) \rightarrow \operatorname{Hom}_{\text {MPST }}\left(h_{0}^{\bar{\square}}\left(G_{1} \otimes_{\mathbf{M P S T}} G^{\prime}\right), H\right)$
is an isomorphism for any $H \in \mathbf{C I}$. By adjunction, it suffices to show that
$f^{*}: \operatorname{Hom}_{\text {MPST }}\left(G_{2}, \underline{\operatorname{Hom}}_{\text {MPST }}\left(G^{\prime}, H\right)\right) \xrightarrow{\sim} \operatorname{Hom}_{\text {MPST }}\left(G_{1}, \underline{\operatorname{Hom}}_{\text {MPST }}\left(G^{\prime}, H\right)\right)$ which follows from (1).

Finally, the commutation of $\otimes_{\mathbf{C I}}$ with colimits follows from that of $\otimes_{\text {MPST }}$ and $h_{0}^{\overline{\bar{D}}}$.

2.2. $S C$-reciprocity.

Definition 2.2.1. For $F \in$ MPST, we define

$$
h_{0}(F):=\omega_{!} h_{0}^{\bar{\square}}(F) \in \text { PST. }
$$

For $M \in$ MCor, we put $h_{0}(M):=h_{0}\left(\mathbb{Z}_{\text {tr }}(M)\right)$.
Lemma 2.2.2. Let $M=\left(\bar{M}, M_{\infty}\right) \in \operatorname{MCor}$ with $M^{\circ}=M-\left|M_{\infty}\right|$. For $S \in \mathbf{S m}$, we have

$$
h_{0}(M)(S)=\operatorname{Coker}\left(i_{0}^{*}-i_{1}^{*}: \underline{\mathbf{M}} \operatorname{Cor}(\bar{\square} \otimes S, M) \rightarrow \operatorname{Cor}\left(S, M^{\circ}\right)\right),
$$

where $\underline{\mathbf{M C o r}}(\bar{\square} \otimes S, M)$ is the subgroup of $\operatorname{Cor}\left(\mathbf{A}^{1} \times S, M^{\circ}\right)$ generated by all elementary correspondences Z such that

$$
\varphi_{Z}^{*}\left(\mathbf{P}^{1} \times S \times M_{\infty}\right) \leq \varphi_{Z}^{*}(\infty \times S \times \bar{M})
$$

where $\varphi_{\bar{Z}}: \bar{Z}^{N} \rightarrow \bar{Z} \hookrightarrow \mathbf{P}^{1} \times S \times \bar{M}$ denotes the normalization of the closure \bar{Z} of Z in $\mathbf{P}^{1} \times S \times \bar{M}$.

Proof. This follows from Definition 2.1.4 and Proposition 1.3.1 (2).

Remark 2.2.3. Lemma 2.2.2 implies isomorphisms

$$
h_{0}(M)(\operatorname{Spec} k) \simeq H_{0}^{S}\left(\bar{M}, M_{\infty}\right) \simeq \mathrm{CH}_{0}(M),
$$

where $H_{n}^{S}\left(\bar{M}, M_{\infty}\right)$ for $n \in \mathbb{Z}$ is the Suslin homology considered in [15, Definition 3.1] and $\mathrm{CH}_{0}(M)=\mathrm{CH}_{0}\left(\bar{M} \mid M_{\infty}\right)$ is the Chow group with modulus considered in [12].
Definition 2.2.4.
(1) Let $F \in \mathbf{P S T}, X \in \mathbf{S m}$ and $a \in F(X)=\operatorname{Hom}_{\mathbf{P S T}}\left(\mathbb{Z}_{\mathrm{tr}}(X), F\right)$. We say $M=\left(\bar{X}, X_{\infty}\right) \in$ MCor is an SC-modulus for a if $X=$ $\bar{X} \backslash\left|X_{\infty}\right|$ and $a: \mathbb{Z}_{\mathrm{tr}}(X) \rightarrow F$ factors through $\mathbb{Z}_{\mathrm{tr}}(X) \rightarrow h_{0}(M)$. (SC stands for "Suslin complex".)
(2) We say $F \in \mathbf{P S T}$ has $S C$-reciprocity if, for any $X \in \mathbf{S m}$, any $a \in F(X)$ has an SC-modulus $M \in \operatorname{MSm}(X)$.
(3) We define RSC to be the full subcategory of PST consisting of all objects having SC-reciprocity.
Remark 2.2.5. The category RSC is closed under subobjects and quotient objects in PST. This is obvious from the definition. In particular, RSC is abelian and the inclusion functor $i^{\natural}:$ RSC \rightarrow PST is exact.

Recall that $i^{\bar{\square}}: \mathbf{C I} \hookrightarrow$ MPST denotes the inclusion.
Proposition 2.2.6. The functor $\rho:=\omega_{!} i^{\bar{\square}} h_{\square}^{0} \omega^{*}$ sends PST into RSC, and is right adjoint to the inclusion $i^{\natural}: \mathbf{R S C} \hookrightarrow \mathbf{P S T}$.
Proof. For $F \in \mathbf{P S T}$ and $X \in \mathbf{S m}$, we have by successive adjunctions and by Proposition 1.3.1 (2):

$$
\begin{align*}
& \rho F(X)=\underset{M \in \underset{\operatorname{MSm}(X)}{\lim } i^{\square} h_{\square}^{0} \omega^{*} F(M)}{ } \tag{2.5}\\
& =\underset{M \in \underset{M S m}{ }(X)}{\lim } \operatorname{MPST}\left(h_{0}^{\bar{\square}}(M), \omega^{*} F\right)=\underset{M \in \underset{\operatorname{MSm}(X)}{ }}{\lim } \operatorname{PST}\left(h_{0}(M), F\right)
\end{align*}
$$

which realises ρF as the largest subobject of F which is in RSC.
Corollary 2.2.7. Let $F \in$ PST. The counit map

$$
\begin{equation*}
i^{\natural} \rho F \rightarrow F \tag{2.6}
\end{equation*}
$$

of the adjunction in Proposition 2.2.6 agrees with the counit map of the adjunction $\left(\omega_{!} i^{\bar{\square}}, h_{\square}^{0} \omega^{*}\right)$. Moreover, $F \in \mathbf{R S C}$ if and only if (2.6) is an isomorphism.
Proof. The first statement simply restates the computation in (2.5). The second one follows from Proposition 2.2.6 and the definition of SC-reciprocity.

Question 2.2.8. Is RSC closed under extensions in PST?

This question appears to be very difficult (compare [7, Question 1]). We can only offer a trivial reduction:

Proposition 2.2.9. For $F \in \mathbf{P S T}$, the following are equivalent:
(i) There exist $G, H \in \mathbf{R S C}$ and an exact sequence in PST

$$
\begin{equation*}
0 \rightarrow G \rightarrow F \rightarrow H \rightarrow 0 \tag{2.7}
\end{equation*}
$$

(ii) The cokernel of (2.6) is in RSC.

Proof. (ii) \Rightarrow (i) is obvious. Conversely, assume (i). Applying the left exact functor ρ, we get an exact sequence in RSC (defining C)

$$
\begin{equation*}
0 \rightarrow G \rightarrow \rho F \rightarrow H \rightarrow C \rightarrow 0 \tag{2.8}
\end{equation*}
$$

The counit map (2.6) sends (2.8) to (2.7). A diagram chase then gives us the exact sequence in PST

$$
0 \rightarrow \rho F \rightarrow F \rightarrow C \rightarrow 0
$$

which concludes the proof.
2.3. Relations between CI, HI and RSC. Recall that HI $\subset \mathbf{P S T}$ is the full subcategory of \mathbf{A}^{1}-invariant presheaves with transfeers.

Lemma 2.3.1. For $H \in \mathbf{P S T}, H \in \mathbf{H I}$ if and only if $\omega^{*} H \in \mathbf{C I}$.
Proof. This follows from the fact that for $M=\left(\bar{M}, M_{\infty}\right) \in$ MCor with $M^{\circ}=\bar{M}-M_{\infty}$, we have

$$
\omega^{*} F(M)=F\left(M^{\circ}\right) \text { and } \omega^{*} F(M \otimes \bar{\square})=F\left(M^{\circ} \times \mathbf{A}^{1}\right)
$$

Proposition 2.3.2. The composite MPST $\xrightarrow{\omega_{l}}$ PST $\xrightarrow{h_{0}^{\mathbf{A}^{1}}} \mathbf{H I}$ factors through MPST $\xrightarrow{h_{0}^{\overline{0}}}$ CI, inducing a functor $\omega_{h}: \mathbf{C I} \rightarrow \mathbf{H I}$. This functor is right exact and monoidal for the \otimes-structures given on $\mathbf{C I}$ by Theorem 2.1.8 (2), and analogously on HI. It has an exact right adjoint ω^{h}, given by the restriction of ω^{*} to $\mathbf{H I}$.

Proof. The first claim and the monoidality of ω_{h} follow from that of $\omega_{!}$, as $\omega!\mathbb{Z}_{\mathrm{tr}}(\bar{\square})=\mathbb{Z}_{\mathrm{tr}}\left(\mathbf{A}^{1}\right)$. The existence, characterisation and exactness of ω^{h} follows from Lemma 2.3.1, and the right exactness of ω_{h} then follows.

Theorem 2.3.3. If $F \in \mathbf{C I}$, then $\omega_{!} F \in \mathbf{R S C}$.

Proof. We have a commutative diagram, for any $F \in$ MPST:

$$
\begin{align*}
& \omega_{!} i^{\bar{\square}} h_{\bar{\square}}^{0} F \xrightarrow[(a)]{\omega_{!} i^{\bar{\square}} h_{\square}^{0} \eta_{F}} \omega_{!} i^{\bar{\square}} h_{\square}^{0} \omega^{*} \omega_{!} F \\
& \omega!\varepsilon_{F}^{\prime} \downarrow \text { (c) } \quad \omega!\varepsilon_{\omega^{*} \omega_{!} F}^{\prime} \downarrow \text { (d) } \tag{2.9}\\
& \omega_{!} F \quad \xrightarrow[(b)]{\omega_{!} \eta_{F}} \quad \omega_{!} \omega^{*} \omega_{!} F \quad \xrightarrow[(e)]{\varepsilon_{\omega!} F} \omega_{!} F .
\end{align*}
$$

Here, η and ε are the unit and counit of the adjunction ($\omega!, \omega^{*}$), while ε^{\prime} is the counit of the adjunction $\left(i^{\square}, h_{\bar{\square}}^{0}\right)$. We have $(e) \circ(b)=1_{\omega!F}$ by the adjunction identities; since ω^{*} is fully faithful, (e) is an isomorphism hence so is (b). This shows that (c) factors through (a). On the other hand, ε^{\prime} is mono by Theorem 2.1.8, hence so are (c) and (d) since $\omega_{!}$is exact. Finally, the diagram boils down to two successive monomorphisms

$$
\begin{equation*}
\omega_{!} i^{\square} h_{\bar{\square}}^{0} F \hookrightarrow i^{\natural} \rho \omega_{!} F \longleftrightarrow \omega_{!} F \tag{2.10}
\end{equation*}
$$

with composition $\omega_{!} \varepsilon_{F}^{\prime}$. Therefore, $F \in \mathbf{C I} \Rightarrow \omega_{!} F \in \mathbf{R S C}$.
Corollary 2.3.4. We have $\mathbf{H I} \subset \mathbf{R S C}$.
Proof. Let $F \in \mathbf{H I}$. By Lemma 2.3.1, $\omega^{*} F \in \mathbf{C I}$, hence

$$
F \simeq \omega_{!} \omega^{*} F \in \mathbf{R S C}
$$

by Theorem 2.3.3. (See [16, Lemma 1.22] for a simpler proof.)
Corollary 2.3.5. For any $F \in \operatorname{MPST}, h_{0}(F) \in$ RSC.
Proof. This follows from Proposition 2.1.5 and Theorem 2.3.3.
Corollary 2.3.6. The inclusion functor $i^{\natural}: \operatorname{RSC} \hookrightarrow$ PST has a proleft adjoint ℓ.

Proof. It suffices to show that ℓ is defined on the generators $\mathbb{Z}_{\mathrm{tr}}(X)$. Since $h_{0}(M) \in \mathbf{R S C}$ for any $M \in \operatorname{MSm}(X)$ by Corollary 2.3.5, we have $\ell \mathbb{Z}_{\mathrm{tr}}(X)=" \lim _{\leftrightarrows}{ }^{\prime} M_{\in \operatorname{MSm}(X)} h_{0}(M)$.
Proposition 2.3.7. There exist unique functors $\omega_{\mathbf{C I}}$ and $\omega^{\mathbf{C I}}$ that make the two diagrams

commutative, where i^{\natural} is the inclusion. Moreover, $\omega^{\mathbf{C I}}$ is right adjoint to $\omega_{\mathbf{C I}}$. The counit map $\varepsilon: \omega_{\mathbf{C I}} \omega^{\mathbf{C I}} \Rightarrow \operatorname{Id}_{\mathbf{R S C}}$ is an isomorphism, $\omega_{\mathbf{C I}}$ is a localisation (in particular, is essentially surjective) and $\omega^{\mathbf{C I}}$ is fully faithful. Finally, $\omega_{\mathbf{C I}}$ is exact and $\omega^{\mathbf{C I}}$ is left exact.
Proof. The existence of $\omega_{\mathbf{C I}}$ is the contents of Theorem 2.3.3, and $\omega^{\mathbf{C I}}$ is defined by the commutativity of the diagram. For the second assertion, let $F \in \mathbf{C I}$ and $G \in \mathbf{R S C}$. Using two successive adjunctions, we compute:

$$
\begin{aligned}
\mathbf{C I}\left(F, \omega^{\mathbf{C I}} G\right)=\mathbf{C I}\left(F, h_{\square}^{0} \omega^{*} i^{\natural} G\right) \simeq \mathbf{P S T}\left(\omega_{!} i^{\square} F, i^{\natural} G\right) \\
=\mathbf{P S T}\left(i^{\natural} \omega_{\mathbf{C I}} F, i^{\natural} G\right) \simeq \mathbf{R S C}\left(\omega_{\mathbf{C I}} F, G\right)
\end{aligned}
$$

where the last isomorphism uses the (tautological) full faithfulness of i^{\natural}. So the adjunction $\left(\omega_{\mathbf{C I}}, \omega^{\mathbf{C I}}\right)$ is obtained by "cancelling" i^{\natural} from the adjunction $\left(\omega_{!} i^{\bar{\square}}, h_{\square}^{0} \omega^{*}\right)$, after applying Theorem 2.3.3. Therefore the third assertion follows from Corollary 2.2.7, and the next two are standard consequences [4, Lemma A.3.1]. The exactness of $\omega_{\text {CI }}$ follows from the exactness of i^{\square} and $\omega!$ (as well as the full faithfulness of i^{\natural}), and $\omega^{\mathbf{C I}}$ is left exact as a right adjoint.

Corollary 2.3.8. The category RSC is Grothendieck.
Proof. This follows from the same fact for CI (Theorem 2.1.8), the adjunction $\left(\omega_{\mathbf{C I}}, \omega^{\mathbf{C I}}\right)$ and [4, Th. A.10.1 d)].

Proposition 2.3.9. Let

$$
h_{0}^{\mathrm{rec}}: \mathbf{R S C} \rightarrow \mathbf{H I}
$$

be the restriction of $h_{0}^{\mathbf{A}^{1}}: \mathbf{P S T} \rightarrow \mathbf{H I}$ from (0.1). Then $h_{0}^{\text {rec }}$ is a left adjoint of the inclusion $\mathbf{H I} \hookrightarrow \mathbf{R S C}$ from Corollary 2.3.4. We have a natural isomorphism $\omega_{h} \simeq h_{0}^{\text {rec }} \omega_{\mathbf{C I}}$ (see Proposition 2.3.2 for ω_{h}).

Proof. The first claim follows immediately from the fact that $h_{0}^{\mathbf{A}^{1}}$ is a left adjoint to the inclusion $\mathbf{H I} \hookrightarrow$ PST. To show the second, we apply the natural isomorphism $\omega_{h} h_{0}^{\bar{\square}} G \simeq h_{0}^{\mathbf{A}^{1}} \omega_{!} G$ from Proposition 2.3.2 to $G=i^{\square} F$ for $F \in \mathbf{C I}$ to get a natural isomorphism

$$
\omega_{h} F \simeq \omega_{h} h_{0}^{\bar{\square}} i^{\square} F \simeq h_{0}^{\mathbf{A}^{1}} \omega_{!} i^{\bar{\square}} F \simeq h_{0}^{\mathbf{A}^{1}} i^{\natural} \omega_{\mathbf{C I}} F \simeq h_{0}^{\mathrm{rec}} \omega_{\mathbf{C I}} F
$$

as requested.
2.4. Sheaves in RSC. Let NST \subset PST be the full subcategory of Nisnevich sheaves with transfers [18, Th. 3.1.4]. Recall that the objects of NST are those $F \in$ PST whose restriction F_{X} to $X_{\text {Nis }}$ is a sheaf for any $X \in \mathbf{S m}$, where $X_{\text {Nis }}$ denotes the small Nisnevich
site of X. By [18, Th. 3.1.4] the inclusion $i_{\text {Nis }}^{V}:$ NST \rightarrow PST has an exact left adjoint $a_{\text {Nis }}^{V}$ such that for any $F \in \mathbf{P S T}$ and $X \in \mathbf{S m}$, $\left(a_{\text {Nis }}^{V} F\right)_{X}$ is the Nisnevich sheafication of F_{X} as a presheaf on $X_{\text {Nis }}$. Let $\mathbf{R S C} \mathbf{C}_{\text {Nis }}=\mathbf{R S C} \cap \mathbf{N S T}$ and $\mathbf{C I}_{\text {Nis }}=\mathbf{C I} \cap$ MNST (see $\S 1.4$ for MNST). We admit the following theorem.

Theorem 2.4.1. Assume k is perfect. Write

$$
\mathbf{C I}^{s p}=\left\{F \in \mathbf{C I} \mid \text { the unit map } F \rightarrow \omega^{\mathbf{C I}} \omega_{\mathbf{C I}} \text { Fis injective. }\right\}
$$

(1) [16, Th. 0.1 and 0.4] One has $a_{\text {Nis }}^{V}(\mathbf{R S C})=\mathbf{R S C}_{\text {Nis }}$ and $a_{\text {Nis }} \mathbf{C I}^{s p} \subset \mathbf{C I}_{\text {Nis }}$. (See Proposition 1.4.1 (1) for $a_{\text {Nis. }}$.)
(2) [14, Cor. 4.16]. One has $\omega^{\mathbf{C I}}\left(\mathbf{R S C}_{\mathrm{Nis}}\right) \subset \mathbf{C I}_{\mathrm{Nis}}$.

Corollary 2.4.2. The category $\mathbf{R S C}_{\mathrm{Nis}}$ is Grothendieck.
Proof. Since $a_{\text {Nis }}^{V}$ is exact, so is its restriction to RSC. The corollary now follows from Corollary 2.3.8 and (again) [4, Th. A.10.1 d)].

Theorem 2.4.3. Assume k is perfect.
(1) The functor ρ of Proposition 2.2.6 sends $\mathbf{N S T}$ into $\mathbf{R S C}_{\text {Nis }}$. It yields a right adjoint $\rho_{\text {Nis }}$ to the inclusion $i_{\text {Nis }}^{\natural}: \mathbf{R S C}_{\mathrm{Nis}} \hookrightarrow$ NST.
(2) The functor $\omega_{\mathbf{C I}}$ of Proposition 2.3.7 sends $\mathbf{C I}_{\text {Nis }}$ to $\mathbf{R S C} \mathbf{N i s}_{\text {Nis }}$. The induced functor $\omega_{\mathrm{CI}}^{\mathrm{Nis}}: \mathbf{C I}_{\mathrm{Nis}} \rightarrow \mathbf{R S C}_{\text {Nis }}$ is left adjoint to the fully faithful functor $\omega_{\mathrm{Nis}}^{\mathbf{C I}}: \mathbf{R S C}_{\mathrm{Nis}} \rightarrow \mathbf{C I}_{\mathrm{Nis}}$ given by Theorem 2.4.1 (2). Moreover, there is a natural ismorphism

$$
\begin{equation*}
a_{\mathrm{Nis}}^{V} \omega_{\mathbf{C I}} F \simeq \omega_{\mathbf{C I}}^{\mathrm{Nis}} a_{\mathrm{Nis}} F \tag{2.11}
\end{equation*}
$$

for any $F \in \mathbf{C I}^{s p}$.
Proof. Let $F \in$ NST. Considering F as an object of PST, we may view ρF as the largest subobject of F which belongs to RSC (see Proposition 2.2.6). Applying the left exact functor $a_{\text {Nis }}^{V}$ to this inclusion, we get a sequence

$$
\rho F \rightarrow a_{\mathrm{Nis}}^{V} \rho F \rightarrow a_{\mathrm{Nis}}^{V} F=F,
$$

where the second map is a monomorphism. But the middle term is in RSC by Theorem 2.4.1 (1). Hence the first map must be an isomorphism, which implies the first claim of (1). The last claim now follows easily from the adjunction in Proposition 2.2.6.

The first assertion of (2) is obvious since $\omega_{!}$preserves Nisnevich sheaves by Proposition 1.4.1. The second one then follows easily from Proposition 2.3.7. Given the natural isomorphism $\omega^{\mathbf{C I}} i_{\text {Nis }}^{V} \simeq i_{\text {Nis }} \omega_{\text {Nis }}^{\mathbf{C I}}$, this implies the last assertion by taking left adjoints.

Remark 2.4.4. The functor $\omega_{\mathbf{C I}}^{\text {Nis }}$ is not conservative. Assume $\operatorname{ch}(k)=0$. Let $F \in \mathbf{C I}$ be the image of the unit map

$$
h_{0}^{\bar{\square}}\left(\mathbf{P}^{1}, 2 \infty\right) \rightarrow \omega^{\mathbf{C I}} \omega_{\mathbf{C I}} h_{0}^{\bar{\square}}\left(\mathbf{P}^{1}, 2 \infty\right) .
$$

Then $F \in \mathbf{C I}^{s p}$, hence $a_{\text {Nis }} F \in \mathbf{C I}$ by Theorem 2.4.1 (1). We claim that the unit map $\iota: a_{\text {Nis }} F \rightarrow \omega_{\mathrm{Nis}}^{\mathbf{C I}} \omega_{\mathrm{CI}}^{\mathrm{Nis}} a_{\text {Nis }} F$ is not surjective. To see this, first note that by the exactness of $\omega_{\mathbf{C I}}$, we have

$$
h_{0}\left(\mathbf{P}^{1}, 2 \infty\right) \rightarrow \omega_{\mathbf{C I}} F \hookrightarrow \omega_{\mathbf{C I}} \omega^{\mathbf{C I}} h_{0}\left(\mathbf{P}^{1}, 2 \infty\right)=h_{0}\left(\mathbf{P}^{1}, 2 \infty\right)
$$

and hence $\omega_{\mathbf{C I}} F \cong h_{0}\left(\mathbf{P}^{1}, 2 \infty\right)$. Then by (2.11) and [15, Thm. 1.1], we have isomorphisms

$$
\omega_{\mathbf{C I}}^{\mathrm{Nis}} a_{\mathrm{Nis}} F \simeq a_{\mathrm{Nis}}^{V} \omega_{\mathbf{C I}} F \simeq \underline{\operatorname{Pic}}\left(\mathbf{P}^{1}, 2 \infty\right) \simeq \mathbb{Z} \oplus \mathbf{G}_{a} .
$$

Take $(X, D) \in \mathbf{M C o r}$ such that $X, D \in \mathbf{S m}$, with X connected. Then it follows from [14, Th. 6.4] that

$$
\omega_{\text {Nis }}^{\mathbf{C I}} \omega_{\mathbf{C I}}^{\text {Nis }} a_{\text {Nis }} F(X, 2 m D) \simeq \mathbb{Z} \oplus H^{0}\left(X, \mathcal{O}_{X}((2 m-1) D)\right)
$$

for any integer $m>0$. On the other hand, one can show

$$
a_{\mathrm{Nis}} F(X, 2 m D) \simeq \mathbb{Z} \oplus H^{0}\left(X, \mathcal{O}_{X}(m D)\right)
$$

This implies that $G:=\operatorname{Coker}(\iota) \in \mathbf{C I}_{\text {Nis }}$ is non-zero but $\omega_{\mathbf{C I}}^{\mathrm{Nis}}(G)=0$.

3. Relation with [7]

3.1. Review of reciprocity presheaves with transfers. In [7, Definition 2.1.3], we defined a full subcategory Rec of PST, which we now recall.

Let $(\bar{X}, Y) \in$ MCor and suppose that $X=\bar{X} \backslash|Y|$ is quasi-affine. For $S \in \mathbf{S m}$, let $\mathcal{C}_{(\bar{X}, Y)}(S)$ be the class of all finite morphisms $\varphi: \bar{C} \rightarrow$ $\bar{X} \times S$ satisfying the following conditions:

- $\bar{C} \in \mathbf{S c h}$ is integral and normal.
- There is a generic point η of S such that $\operatorname{dim} \bar{C} \times_{S} \eta=1$.
- The image of $\gamma_{\varphi}:=\operatorname{pr} \circ \varphi$ is not contained in $|Y|$, where pr : $\bar{X} \times S \rightarrow \bar{X}$ is the projection map.
For an effective Cartier divisor D on \bar{C}, we set

$$
\begin{equation*}
G(\bar{C}, D):=\bigcap_{x \in D} \operatorname{Ker}\left(\mathcal{O}_{\bar{C}, x}^{\times} \rightarrow \mathcal{O}_{D, x}^{\times}\right) . \tag{3.1}
\end{equation*}
$$

We then define

$$
\Phi(\bar{X}, Y)(S)=\bigoplus_{(\varphi: \bar{C} \rightarrow \bar{X} \times S) \in \mathcal{C}_{(\bar{X}, Y)}(S)} G\left(\bar{C}, \gamma_{\varphi}^{*} Y\right)
$$

It is proved in [7, Proposition 2.2.2] that $\Phi(\bar{X}, Y)$ defines a presheaf with transfers. It is also shown there that one has $\varphi_{*}\left(\operatorname{div}_{\bar{C}}(f)\right) \in$ $\operatorname{Cor}(S, X)$ for any $(\varphi: \bar{C} \rightarrow \bar{X} \times S) \in \mathcal{C}_{(\bar{X}, Y)}(S)$ and $f \in G\left(\bar{C}, \gamma_{\varphi}^{*} Y\right)$, yielding a map $\tau: \Phi(\bar{X}, Y) \rightarrow \mathbb{Z}_{\text {tr }}(X)$ in PST. We define

$$
h(M):=\operatorname{Coker}\left(\tau: \Phi(\bar{X}, Y) \rightarrow \mathbb{Z}_{\mathrm{tr}}(X)\right) \in \operatorname{PST}
$$

Definition 3.1.1 ([7, Definition 2.1.2, Remark 2.1.6]). We say $F \in$ PST has reciprocity if for any quasi-affine $X \in \mathbf{S m}$ and $a \in F(X)=$ $\operatorname{Hom}_{\mathbf{P S T}}\left(\mathbb{Z}_{\mathrm{tr}}(X), F\right)$, there is an $M=\left(\bar{X}, X_{\infty}\right) \in \mathbf{M C o r}$ such that $X=\bar{X} \backslash\left|X_{\infty}\right|$ and $a: \mathbb{Z}_{\mathrm{tr}}(X) \rightarrow F$ factors through $\mathbb{Z}_{\mathrm{tr}}(X) \rightarrow h(M)$. We define Rec to be the full subcategory of PST consisting of all objects having reciprocity.

3.2. Statement of the result and consequences.

Theorem 3.2.1. Let $M=(\bar{X}, Y) \in$ MCor be such that $X:=\bar{X} \backslash|Y|$ is quasi-affine. Then $h_{0}(M)=h(M)$. Hence we have RSC \subset Rec.

The proof of Theorem 3.2.1 will occupy $\S \S 3.3$ and 3.4. We first deduce some consequences.

Corollary 3.2.2. For any $F \in \mathbf{R S C}$, we have $F_{\mathrm{Zar}} \simeq F_{\text {Nis }}$, where $F_{\text {Zar }}$ (resp. F_{Nis}) is the Zariski (resp. Nisnevich) sheafification of F.
Proof. Combine Theorem 3.2.1 and [7, Theorem 7].
The next result depends on Theorem 2.4.1 (1).
Corollary 3.2.3. Assume k is perfect. Then we have $\mathbf{R S C}_{\text {Nis }}=$ Rec $_{\text {Nis }}$.

Proof. The inclusion follows immediately from Theorem 3.2.1. To prove the equality, let $F \in \operatorname{Rec}_{\text {Nis }}$. By (2.5) and Theorem 3.2.1, the map $i^{\natural} \rho F \rightarrow F$ of (2.6) is an isomorphism when evaluated at X if X is quasi-affine. By Theorem 2.4.3 (1), this extends to any $X \in \mathbf{S m}$ by using a quasi-affine Zariski cover. Thus $F \in \mathbf{R S C}_{\text {Nis }}$.

Remark 3.2.4. Here is an example of an object $F \in \boldsymbol{R e c} \backslash \mathbf{R S C}$. Define F as

$$
\operatorname{Coker}\left(\bigoplus_{(X, a)} \mathbb{Z}_{\mathrm{tr}}(X) \rightarrow \mathbb{Z}_{\mathrm{tr}}\left(\mathbf{P}^{1}\right)\right)
$$

where X runs through all smooth quasi-affine k-schemes and a runs through all elements of $\operatorname{Cor}\left(X, \mathbf{P}^{1}\right)$. By construction, $F(X)=0$ for any smooth quasi-affine X, hence $F \in$ Rec. On the other hand, we claim that the image $\eta \in F\left(\mathbf{P}^{1}\right)$ of the identity map $1_{\mathbf{P}^{1}} \in \mathbb{Z}_{\mathrm{tr}}\left(\mathbf{P}^{1}\right)\left(\mathbf{P}^{1}\right)$
does not have an SC modulus. Since \mathbf{P}^{1} is proper, this amounts to say that the composition

$$
\underline{\operatorname{Hom}}\left(\mathbb{Z}_{\mathrm{tr}}\left(\mathbf{A}^{1}\right), \mathbb{Z}_{\mathrm{tr}}\left(\mathbf{P}^{1}\right)\right) \xrightarrow{i_{0}^{*}-i_{1}^{*}} \mathbb{Z}_{\mathrm{tr}}\left(\mathbf{P}^{1}\right) \xrightarrow{\eta} F
$$

is nonzero. The quasi-affineness of the X 's yields that for any proper $Y \in \mathbf{S m}$ the image of $\bigoplus_{(X, a)} \mathbb{Z}_{\mathrm{tr}}(X)(Y) \rightarrow \mathbb{Z}_{\mathrm{tr}}\left(\mathbf{P}^{1}\right)(Y)=\operatorname{Cor}\left(Y, \mathbf{P}^{1}\right)$ is generated by cycles of the form $Y \times x$ where x ranges over closed points of \mathbf{P}^{1}. In particular, if we take $Y=\mathbf{P}^{1}$ we find that $F\left(\mathbf{P}^{1}\right)$ is not finitely generated. On the other hand, [10, Th. 3.3.1] shows

$$
\begin{aligned}
\operatorname{Coker}\left(\underline{\operatorname{Hom}}\left(\mathbb{Z}_{\mathrm{tr}}\left(\mathbf{A}^{1}\right), \mathbb{Z}_{\mathrm{tr}}\left(\mathbf{P}^{1}\right)\right)\left(\mathbf{P}^{1}\right) \xrightarrow{i_{0}^{*}-i_{1}^{*}}\right. & \left.\mathbb{Z}_{\mathrm{tr}}\left(\mathbf{P}^{1}\right)\left(\mathbf{P}^{1}\right)\right) \\
& \simeq \operatorname{Pic}\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right) \simeq \mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

Hence η cannot vanish at \mathbf{P}^{1}.
Corollary 3.2.5. Assume k is perfect.
(1) A presheaf with transfers represented by a smooth commutative algebraic group has SC-reciprocity.
(2) The presheaf with transfers $H^{0}\left(-, \Omega_{-}^{i}\right)$ has SC-reciprocity for any $i \geq 0$. The same is true for the presheaf with transfers $H^{0}\left(-, \Omega_{-/ k}^{i}\right)$.
(3) Suppose that k is of positive characteristic. Then the presheaf with transfers $H^{0}\left(-, W_{n} \Omega_{-}^{i}\right)$ has SC-reciprocity for any $i \geq 0$ and $n \geq 1$.

Proof. Combine Corollary 3.2.3 and [7, Theorems 4, 5].
The next corollary uses the work of Binda et al [1]: we suppose k is of characteristic $p>0$ and we use the notation $[1 / p]$ to designate categories constructed out of sheaves of $\mathbb{Z}[1 / p]$-modules: they are full subcategories of those considered in this paper.

Corollary 3.2.6. Assume that char $k=p>0$. Then the functor h_{0}^{rec} from Proposition 2.3.9 induces an equivalence of categories

$$
\mathbf{R S C}_{\mathrm{Nis}}[1 / p] \xrightarrow{\sim} \mathbf{H I}_{\mathrm{Nis}}[1 / p] .
$$

Proof. By Proposition 2.3.9, it suffices to show that $F \xrightarrow{\sim} h_{0}^{\text {rec }}(F)$ for any $F \in \mathbf{R S C}_{\text {Nis }}[1 / p]$. If $F \in \operatorname{Rec}_{\text {Nis }}[1 / p]$, this follows from [1, Th. 3.5 (2)], hence the claim when k is perfect by Corollary 3.2.3. The general case reduces to this one by [3, Prop. 4.5].
Remarks 3.2.7. There is a finer operation which consists of inverting p on morphisms rather than on objects, but Corollary 3.2.6 is false for these categories. For example, the sheaf $\bigoplus_{n \geq 1} W_{n}$ is a non-zero object of $\mathbf{R S C}_{\text {Nis }}$, but $h_{0}^{\text {rec }}$ maps it to 0 in $\mathbf{H I}_{\text {Nis }}$.

In the sequel, (\bar{X}, Y) is as in Theorem 3.2.1.
3.3. Preliminary lemmas. In the rest of this section, we use a change of coordinates $\bar{\square} \simeq\left(\mathbf{P}^{1}, 1\right)$ given by $\mathbf{A}^{1} \rightarrow \mathbf{P}^{1} \backslash\{1\}, t \mapsto t /(t-1)$. Let $\square:=\mathbf{P}^{1}-\{1\}$. Take $S \in \mathbf{S m}$ and a closed integral subscheme $V \subset S \times \square \times X$ that is finite and surjective over $S \times \square$. We have a commutative diagram

where \bar{V} is the closure of V in $\bar{X} \times \mathbf{P}^{1} \times S, \bar{W}$ is the image of \bar{V} under the projection p, and $\bar{V}^{N} \rightarrow \bar{V}$ and $\bar{W}^{N} \rightarrow \bar{W}$ are the normalizations. Let $\varphi_{V}: \bar{V}^{N} \rightarrow \bar{X} \times \mathbf{P}^{1} \times S$ be the natural map. Let $\iota_{\infty}: \bar{X} \times S \rightarrow \bar{X} \times \mathbf{P}^{1} \times S$ be induce by $\infty \in \mathbf{P}^{1}$. Put

$$
\partial^{\infty} \bar{V}=\iota_{\infty}^{-1}(\bar{V})=p(\bar{V} \cap(\bar{X} \times\{\infty\} \times S)) \subset \bar{X} \times S
$$

Putting $\bar{W}^{o}=\bar{W} \backslash \partial^{\infty} V$ and $\bar{W}^{N, o}=\bar{W}^{N} \times \bar{W}^{W^{o}}$, we have

$$
\begin{equation*}
\bar{V} \times_{\bar{W}} \bar{W}^{N, o} \subset \bar{W}^{N, o} \times\left(\mathbf{P}^{1}-\{\infty\}\right) \tag{3.3}
\end{equation*}
$$

Let \bar{V}^{o} be the reduced part of an irreducible component of $\bar{V} \times \bar{W} \bar{W}^{N, o}$ which dominates $\bar{W}^{N, o}$. (Thus $\bar{V}^{o} \rightarrow \bar{V}$ is birational.)

Lemma 3.3.1. If $\bar{W}^{o}=\emptyset$, then $V=W \times \square$ with $W=\bar{W} \cap(X \times S)$. Proof. The assumption implies $\bar{W} \subset p(\bar{V} \cap(\bar{X} \times\{\infty\} \times S))$ and hence

$$
\operatorname{dim} \bar{W} \leq \operatorname{dim} \bar{V} \cap(\bar{X} \times\{\infty\} \times S)<\operatorname{dim} \bar{V}
$$

Noting $\bar{V} \hookrightarrow \bar{W} \times \mathbf{P}^{1}$, we get $\bar{V}=\bar{W} \times \mathbf{P}^{1}$, which implies the desired assertion.

Lemma 3.3.2. If $\bar{W}^{o} \neq \emptyset, \bar{V}^{o}$ is finite over $\bar{W}^{N, o}$.
Proof. \bar{V} is proper over \bar{W} so that \bar{V}^{o} is proper over $\bar{W}^{N, o}$. On the other hand $\bar{W}^{N, o} \times\left(\mathbf{P}^{1}-\{\infty\}\right)$ is affine over $\bar{W}^{N, o}$ and so is \bar{V}^{o}. This implies the lemma.

Now we consider the modulus condition for V :

$$
\begin{equation*}
\varphi_{V}^{-1}\left(Y \times \mathbf{P}^{1} \times S\right) \leq \varphi_{V}^{-1}(\bar{X} \times\{1\} \times S) \tag{3.4}
\end{equation*}
$$

Let y be the standard coordinate on $\mathbf{P}^{1}-\{\infty\}=\operatorname{Spec}(k[y])$. (Note that the divisor involved in the modulus condition is $\{1\} \subset \mathbf{P}^{1}-\{\infty\}$ defined by the ideal $(1-y) \subset k[y]$.$) Let I \subset \mathcal{O}_{\bar{W}^{N, o}}$ be the ideal sheaf of $Y \times \bar{X}^{W^{N, o}} \subset \bar{W}^{N, o}$.
Lemma 3.3.3. Assuming $\bar{W}^{o} \neq \emptyset$, (3.4) is equivalent to the conditions:
(i) $\bar{V} \cap(Y \times \square \times S)=\emptyset$.
(ii) Locally on $\bar{W}^{N, o}, \bar{V}^{o}$ is defined by an equation

$$
\begin{gathered}
f(y):=(1-y)^{m}+\sum_{1 \leq \nu \leq m} a_{\nu}(1-y)^{m-\nu} \text { with } a_{\nu} \in \Gamma\left(\bar{W}^{N, o}, I^{\nu}\right), \\
\text { in } \bar{W}^{N, o} \times\left(\mathbf{P}^{1}-\{1\}\right)=\bar{W}^{N, o} \times \operatorname{Spec}(k[y])(\text { see }(3.3)) .
\end{gathered}
$$

Proof. By Lemma 3.3.2, the minimal polynomial over $k(\bar{W})$ of the image of y in $\Gamma\left(\bar{V}^{o}, \mathcal{O}\right)$:

$$
f(t)=(1-t)^{m}+\sum_{1 \leq \nu \leq m} a_{\nu}(1-t)^{m-\nu}
$$

has its coefficients $a_{\nu} \in A:=\Gamma\left(\bar{W}^{N, o}, \mathcal{O}\right)$. We claim that \bar{V}^{o} coincides with the closed subscheme $T \subset \bar{W}^{N, o} \times \operatorname{Spec}(k[y])$ defined by the equation $f(y) \in A[y]$. Indeed it is clear that \bar{V}^{o} is contained in T, hence it suffices to show that T is integral. Note that T is a Cartier divisor in $\bar{W}^{N, o} \times\left(\mathbf{P}^{1}-\{1\}\right)$ which is finite over $\bar{W}^{N, o}$. It follows that each irreducible component dominates $\bar{W}^{N, o}$. Hence the integrality is checked over the generic point, which holds by the irreducibility of f. The claim is proved. Thus we are reduced to showing the following.

Claim 3.3.4. The condition (3.4) holds if and only if $\bar{V} \cap(Y \times \square \times S)=\emptyset$ and $a_{\nu} \in \Gamma\left(\bar{W}^{N, o}, I^{\nu}\right)$ for all ν.

The question is Zariski local and we may assume that I is generated by $\pi \in \Gamma\left(\bar{W}^{N, o}, \mathcal{O}\right)$. Then (3.4) holds if and only if $\bar{V} \cap(Y \times \square \times S)=\emptyset$ and

$$
\begin{equation*}
\theta:=\frac{1-\bar{y}}{\pi} \in \Gamma\left(\bar{V}^{N} \times{\overline{W^{N}}} \bar{W}^{N, o}, \mathcal{O}\right) . \tag{3.5}
\end{equation*}
$$

Noting $\pi \in k(\bar{W})$, the minimal polynomial of θ over $k(\bar{W})$ is

$$
g(t)=t^{m}+\sum_{1 \leq \nu \leq m} \frac{a_{\nu}}{\pi^{\nu}} t^{m-\nu} .
$$

Since \bar{V}^{o} is finite over $\bar{W}^{N, o}$ as is shown before, $\bar{V}^{N} \times \bar{W}^{N} \bar{W}^{N, o}$ is finite over $\bar{W}^{N, o}$. Hence (3.5) is equivalent to the condition that θ is integral over $\Gamma\left(\bar{W}^{N, o}, \mathcal{O}\right)$, which is equivalent to

$$
\frac{a_{\nu}}{\pi^{\nu}} \in \Gamma\left(\bar{W}^{N, o}, \mathcal{O}\right) \quad \text { for all } \nu
$$

This proves the claim and the proof of Lemma 3.3.3 is completed.

3.4. Proof of Theorem 3.2.1. We put

$$
C_{1}(\bar{X} \mid Y):=\omega_{!} \underline{\operatorname{Hom}}_{\mathrm{MPST}}\left(\mathbb{Z}_{\mathrm{tr}}(\bar{\square}), \mathbb{Z}_{\mathrm{tr}}(M)\right) \in \mathbf{P S T}
$$

and write by ∂ for the boundary map $\delta_{1,0}^{0 *}-\delta_{1, \infty}^{0 *}: C_{1}(\bar{X} \mid Y) \rightarrow \mathbb{Z}_{\mathrm{tr}}(M)$. Fix $S \in \mathbf{S m}$. By Definitions 2.2.4 and 3.1.1, it suffices to construct a homomorphism :

$$
\begin{equation*}
\xi: C_{1}(\bar{X} \mid Y)(S) \rightarrow \Phi(\bar{X}, Y)(S) \tag{3.6}
\end{equation*}
$$

such that the following diagram commutes:

and such that we have

$$
\begin{equation*}
\operatorname{Image}(\tau)=\operatorname{Image}(\tau \circ \xi) \tag{3.8}
\end{equation*}
$$

Take a closed integral subscheme $V \subset S \times \square \times X$, finite and surjective over $S \times \square$ and satisfying (3.4). Consider the commutative diagram (3.2) and let $\varphi: \bar{W}^{N} \rightarrow \bar{X} \times S$ be the induced map. We first suppose $\bar{W}^{o} \neq \emptyset$. Then we have (see $\S 3.1$ for notations)

$$
\left(\bar{W}^{N} \xrightarrow{\varphi} \bar{X} \times S\right) \in \mathcal{C}_{(\bar{X}, Y)}(S) .
$$

The projection $V \rightarrow \square=\mathbf{P}^{1}-\{1\}$ induces a rational function $g_{V} \in$ $k(\bar{V})^{\times}$. By [2, Prop.1.4 and §1.6] we have

$$
\begin{equation*}
\partial V=\varphi_{*} \operatorname{div}_{\bar{W}^{N}}\left(N g_{V}\right) \in \mathbb{Z}_{\mathrm{tr}}(X)(S)=\operatorname{Cor}(S, X) \tag{3.9}
\end{equation*}
$$

where $N: k(\bar{V})^{\times} \rightarrow k(\bar{W})^{\times}$is the norm map induced by $\bar{V} \rightarrow \bar{W}$. By Lemma 3.3.3 we have
$N g_{V}=f(0)=1+\sum_{1 \leq \nu \leq m} a_{\nu} \in \Gamma\left(\bar{W}^{N, o}, I\right) \subset G\left(\bar{W}^{N}, \gamma_{\varphi}^{*} Y\right) \subset \Phi(\bar{X}, Y)(S)$.
We now define a map

$$
\begin{equation*}
\xi: C_{1}(\bar{X} \mid Y)(S) \rightarrow \Phi(\bar{X}, Y)(S) \tag{3.10}
\end{equation*}
$$

by declaring

$$
\xi(V)= \begin{cases}N g_{V} & \text { if } \bar{W}^{o} \neq \emptyset \\ 0 & \text { if } \bar{W}^{o}=\emptyset\end{cases}
$$

Note that if $\bar{W}^{o}=\emptyset$, then we have $\partial(V)=0$ by Lemma 3.3.1. It follows that the diagram (3.7) commutes thanks to (3.9).

It remains to show (3.8). To this end, we take $\left(\varphi_{0}: \bar{C} \rightarrow \bar{X} \times\right.$ $S) \in \mathcal{C}_{(\bar{X}, Y)}(S)$ and show $\tau\left(G\left(\bar{C}, \gamma_{\varphi_{0}}^{*} Y\right)\right) \subset$ Image $(\tau \circ \xi)$ (see $\S 3.1$ for notations). Let $\bar{W} \hookrightarrow \bar{X} \times S$ be the image of φ_{0} and let $\bar{W}^{N} \rightarrow \bar{W}$ be its normalization so that $\left(\varphi: \bar{W}^{N} \rightarrow \bar{X} \times S\right) \in \mathcal{C}_{(\bar{X}, Y)}(S)$. Since $\tau\left(G\left(\bar{C}, \gamma_{\varphi_{0}}^{*} Y\right)\right) \subset \tau\left(G\left(\bar{W}^{N}, \gamma_{\varphi}^{*} Y\right)\right)$, it suffices to show the following.
Lemma 3.4.1. The subgroup $G\left(\bar{W}^{N}, \gamma_{\varphi}^{*} Y\right) \subset \Phi(\bar{X}, Y)(S)$ is contained in the image of $\xi: C_{1}(\bar{X} \mid Y)(S) \rightarrow \Phi(\bar{X}, Y)(S)$.
Proof. Take $g \in G\left(\bar{W}^{N}, \gamma_{\varphi}^{*} Y\right)$. Let $\Sigma \subset \bar{W}^{N}$ be the closure of the union of points $x \in \bar{W}^{N}$ of codimension one such that $v_{x}(g)<0$, where v_{x} is the valuation associated to x. Since \bar{W}^{N} is normal, we have $g \in \Gamma\left(\bar{W}^{N}-\Sigma, \mathcal{O}\right)$ and $g \in G\left(\bar{W}^{N}, \gamma_{\varphi}^{*} Y\right)$ implies

$$
\begin{equation*}
g-1 \in \Gamma\left(\bar{W}^{N}-\Sigma, I\right) \tag{3.11}
\end{equation*}
$$

where $I \subset \mathcal{O}_{\bar{W}^{N}}$ is the ideal sheaf of $\gamma_{\varphi}^{*} Y \subset \bar{W}^{N}$. Let

$$
\psi_{g}: \bar{W}^{N}-\Sigma \rightarrow \mathbf{P}^{1}-\{\infty\}
$$

be the morphism induced by g and $\Gamma \subset \bar{W}^{N} \times \mathbf{P}^{1}$ be the closure of the graph of ψ_{g}. Let

$$
\bar{V} \subset \bar{W} \times \mathbf{P}^{1} \subset \bar{X} \times \mathbf{P}^{1} \times S
$$

be the image of Γ under $\bar{W}^{N} \times \mathbf{P}^{1} \rightarrow \bar{W} \times \mathbf{P}^{1}$. By (3.11) we have $\left|\gamma_{\varphi}^{*} Y\right| \subset \psi_{g}^{-1}(1)$ and hence

$$
\begin{equation*}
\bar{V} \cap(Y \times \square \times S)=\emptyset \tag{3.12}
\end{equation*}
$$

so that

$$
V:=\bar{V} \cap(\bar{X} \times \square \times S) \subset X \times \square \times S
$$

It suffices to show the following.
Claim 3.4.2. $V \in C_{1}(\bar{X} \mid Y)(S)$ and $\xi(V)=g$.
Once we prove the first assertion, the second follows easily from the construction of ξ. To prove the first assertion, by (3.12), the map $V \rightarrow \square \times S$ is proper and hence finite since X is quasi-affine by the assumption. Moreover it is surjective since $\operatorname{dim} V=\operatorname{dim} \bar{W}=\operatorname{dim} S+$

1. Hence it suffices to check the condition (ii) of Lemma 3.3.3. By definition
$(\boldsymbol{\oplus}) \Gamma \cap\left(\left(\bar{W}^{N}-\Sigma\right) \times\left(\mathbf{P}^{1}-\{\infty\}\right)\right)$ is the graph of ψ_{g} and hence is defined by $y-g$ where y is the standard coordinate of $\mathbf{P}^{1}-$ $\{\infty\}=\operatorname{Spec}(k[y])$.
We have a diagram of schemes

where ι_{∞} are induced by $\infty \in \mathbf{P}^{1}$. The natural map $\Gamma \rightarrow \Gamma^{\prime}$ is a closed immersion onto an irreducible component that dominates \bar{V}. We claim

$$
\begin{equation*}
\Sigma \subset \iota_{\infty}^{-1}(\Gamma) . \tag{3.14}
\end{equation*}
$$

The claim implies $\bar{W}^{N, o}:=\bar{W}^{N} \times_{\bar{W}}\left(\bar{W} \backslash \iota_{\infty}^{-1}(\bar{V})\right) \subset \bar{W}^{N}-\Sigma$. Let \bar{V}^{o} be the reduced part of the irreducible component of

$$
\bar{V}^{o \prime}:=\bar{V} \times \bar{W} \bar{W}^{N, o}=\Gamma^{\prime} \times \bar{W}^{N} \bar{W}^{N, o} \subset \bar{W}^{N, o} \times\left(\mathbf{P}^{1}-\{\infty\}\right)
$$

which dominates \bar{V}; see the following diagram:

By ($\boldsymbol{\oplus}), \bar{V}^{o}$ is defined in $\bar{W}^{N, o} \times \operatorname{Spec}(k[y])$ by the equation $y-g$ and thus V satisfies Lemma 3.3.3 (ii).

It remains to show (3.14). From (3.13), it is equivalent to

$$
\begin{equation*}
\Sigma \subset \operatorname{pr}\left(\left(\bar{W}^{N} \times \infty\right) \cap \Gamma\right) \tag{3.15}
\end{equation*}
$$

Since $p r_{\Gamma}$ is proper birational and \bar{W}^{N} is normal, $p r_{\Gamma}$ is an isomorphism above all codimension one points in \bar{W}^{N} (but not necessarily in all codimension one points of Γ). For a generic point $x \in \Sigma$, there is a unique codimension one point $y \in \Gamma$ such that $x=p r_{\Gamma}(y)$ and we have
$v_{y}(g)=v_{x}(g)<0$ for $g \in k(\Gamma)=k\left(\bar{W}^{N}\right)$. The projection $\bar{W}^{N} \times$ $\mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ induces a morphism $\Gamma \backslash\left(\bar{W}^{N} \times\{\infty\}\right) \rightarrow \mathbf{P}^{1}-\{\infty\}$, which corresponds to g. Hence we must have $y \in\left(\bar{W}^{N} \times\{\infty\}\right) \cap \Gamma$ which proves (3.15) by the properness of $p r_{\Gamma}$. This completes the proof of Lemma 3.4.1.

References

[1] F. Binda, J. Cao, W. Kai, R. Sugiyama, Torsion and divisibility for reciprocity sheaves and 0-cycles with modulus, J. Alg. 469 (2017), 437-463.
[2] W. Fulton, Intersection Theory, Ergebnisse der Math. und ihrer Grenzgebiete 3. Folge 2, Springer-Verlag, 1984.
[3] B. Kahn, Motifs et adjoints, Rendic. Sem. Math. Univ. Padova 139 (2018), 77-128.
[4] B. Kahn, H. Miyazaki, S. Saito, T. Yamazaki, Motives with modulus, I: Modulus sheaves with transfers for non-proper modulus pairs, https://arxiv.org/ abs/1908.02975, Épijournal de Géométrie Algébrique 5 (2021), Art. 1, 46 pp.
[5] B. Kahn, H. Miyazaki, S. Saito, T. Yamazaki, Motives with modulus, II: Modulus sheaves with transfers for proper modulus pairs, https://arxiv.org/abs/ 1910.14534, Épijournal de Géométrie Algébrique 5 (2021), Art. 2, 31 pp.
[6] B. Kahn, H. Miyazaki, S. Saito, T. Yamazaki, Motives with modulus, III: The categories of motives, preprint, 2020, https://arxiv.org/abs/2011.11859.
[7] B. Kahn, S. Saito, T. Yamazaki, Reciprocity sheaves (with two appendices by Kay Rülling), Compos. Math. 152 (2016), no. 9, 1851-1898.
[8] B. Kahn, S. Saito, T. Yamazaki, Motives with modulus, https://arxiv.org/ abs/1511.07124, withdrawn.
[9] B. Kahn, S. Saito, T. Yamazaki, Reciprocity sheaves and motives with modulus, https://arxiv.org/pdf/1707.07398v3.pdf.
[10] B. Kahn, R. Sujatha, Birational motives, II: triangulated birational motives, IMRN 2017, 6778-6831.
[11] B. Kahn, T. Yamazaki, Voevodsky's motives and Weil reciprocity, Duke Math. J. 62 (2013), 2751-2796.
[12] M. Kerz, S. Saito, Chow group of 0-cycles with modulus and higher dimensional class field theory, Duke Math. J, 165, no. 15 (2016), 2811-28974.
[13] C. Mazza, V. Voevodsky, C. Weibel, Lecture notes on motivic cohomology, Clay Math. Monographs 2, AMS, 2006.
[14] K. Rülling and S. Saito, Reciprocity sheaves and abelian ramification theory, preprint, 2018, https://arxiv.org/abs/1812.08716.
[15] K. Rülling, T. Yamazaki, Suslin homology of relative curves with modulus, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 567-589.
[16] S. Saito, Purity of reciprocity sheaves, Adv. Math. 366 (2020), 107067, 70 pp.
[17] J.-P. Serre, Groupes algébriques et corps de classes, Hermann, 1959.
[18] V. Voevodsky, Triangulated categories of motives over a field, in E. Friedlander, A. Suslin, V. Voevodsky Cycles, transfers and motivic cohomology theories, Ann. Math. Studies 143, Princeton University Press, 2000, 188-238.

IMJ-PRG, Case 247, 4 place Jussieu, 75252 Paris Cedex 05, France
Email address: bruno.kahn@imj-prg.fr
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,, Tokyo 153-8941, Japan

Email address: sshuji@msb.biglobe.ne.jp
Institute of Mathematics, Tohoku University, Aoba, Sendai 9808578, Japan

Email address: takao.yamazaki.b6@tohoku.ac.jp

[^0]: Date: February 18, 2021.
 2010 Mathematics Subject Classification. 19E15 (14F42, 19F15).
 The first author acknowledges the support of Agence Nationale de la Recherche (ANR) under reference ANR-12-BL01-0005. The second author is supported by JSPS KAKENHI Grant (15H03606). The third author is supported by JSPS KAKENHI Grant (15K04773).

