
RECIPROCITY SHEAVES, II

BRUNO KAHN, SHUJI SAITO, AND TAKAO YAMAZAKI

Abstract. We exhibit an intimate relationship between “reci-
procity sheaves” from [7] and “modulus sheaves with transfers”
from [4, 5].
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Introduction

This paper is a synthesis of [7] and [4, 5]; part of it uses results of
[14] and [16].

In [7], we introduced reciprocity (pre)sheaves as a generalization of
Voevodsky’s homotopy invariant (pre)sheaves with transfers, which are
the main building block for constructing his triangulated categories of
motives in [18]. (From now on, we shall replace homotopy invariant
by A1-invariant for clarity.) Let Sm be the category of separated
smooth schemes of finite type over k. There is an additive category
Cor which has the same objects as Sm and whose morphisms are
finite correspondences; the category PST of presheaves with transfers
is defined as the additive dual of Cor [13, Lect. 1 and 2]. A presheaf
with transfers F is A1-invariant if the projection X×A1 → X induces
an isomorphism F (X)

∼−→ F (X ×A1) for all X ∈ Sm. Let HI ⊂ PST
be the full subcategory of A1-invariant presheaves with transfers. The
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reciprocity presheaves defined in [7] form a full subcategory Rec ⊂
PST, which contains HI.

In this paper, we introduce a new full subcategory RSC ⊂ PST
which is fairly close to Rec and fits better with the new framework
of modulus presheaves of transfers. The latter were introduced in [8]
to construct a new triangulated category MDMeff of motivic nature
which enlarges Voevodsky’s triangulated category of motives DMeff

[13, Lect. 14]. Due to problems encountered in [8], this theory was
refounded in [4, 5] and [6]. In this paper, we only use results from [4]
and [5], except for the tensor structure on MCor.

To give an idea of how one defines Rec and RSC, we need to refor-
mulate the definition of A1-invariance. Recall [13, Lem. 2.16] that the
inclusion HI→ PST has a left adjoint

(0.1) hA
1

0 : PST→ HI.

Thus F ∈ PST is in HI if and only if for any X ∈ Sm and a ∈ F (X),
the map Ztr(X) → F in PST associated to a by Yoneda’s lemma

factors through hA
1

0 (X) := hA
1

0 (Ztr(X)), where Ztr(X) is the presheaf
with transfers represented by X. To define reciprocity presheaves, we
introduced in [7] bigger quotients h(M) of Ztr(X) associated to a mod-
ulus pair M = (X,X∞), consisting of a proper scheme X over k and
an effective Cartier divisor X∞ on it, such that X = X \ |X∞|. Then a
presheaf with transfers F ∈ PST belongs to Rec [7, Definition 2.1.3]
if

(*) For any quasi-affine X ∈ Sm and any a ∈ F (X), the
associated map a : Ztr(X) → F factors through h(M)
for some M as above.

The definition of the quotients h(M) is very technical; it is inspired
by the theorem of Rosenlicht-Serre on reciprocity for morphisms from
curves to commutative algebraic groups [17, Ch. III].

Let us now recall the story of [4, 5]. We define a category MCor:
its objects are modulus pairs M = (X,X∞) as above such that M◦ =
X−|X∞| ∈ Sm: this is called the interior of M . Morphisms of MCor
are finite correspondences between interiors satisfying an admissibility
condition with respect to X∞ (see Definition 1.1.1). Let MPST be
the additive dual of MCor. There is a pair of adjoint functors

MPST
ω!−→
ω∗
←−

PST.

Here ω∗ is induced by the “interior” functor

ω : MCor→ Cor : (X,X∞) 7→ X \ |X∞|,
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and ω! is the left Kan extension of ω.
Let � = (P1,∞) ∈MCor: we say that F ∈MPST is �-invariant

if the “projection” M ⊗ � → M induces an isomorphism F (M)
∼−→

F (M ⊗ �) for all M ∈ MCor (see §1.2 for the monoidal structure
⊗ on MCor). We let CI ⊂ MPST denote the full subcategory of
�-invariant objects.

We show in Theorem 2.1.8 that the inclusion CI→MPST has a left
adjoint h�0 : MPST → CI. Define h0(M) ∈ PST to be ω!h

�
0 Ztr(M),

where Ztr(M) ∈ MPST is the presheaf represented by M and ω! is
as before. Then RSC is the full subcategory of PST consisting of
those presheaves verifying Condition (*) above, modified by dropping
the quasi-affine condition on X and replacing h(M) by h0(M).

Our main results are the following.

Theorem 1.

(1) (Corollary 2.3.4). We have HI ⊂ RSC.
(2) (Th. 2.3.3 and Prop. 2.3.7). We have ω!(CI) = RSC. The

induced functor ωCI : CI → RSC has a fully faithful right
adjoint ωCI : RSC→ CI.

Theorem 2.

(1) (Th. 3.2.1). Let M = (X,Y ) ∈ MCor be such that X :=
X \ |Y | is quasi-affine. Then h0(M) = h(M). Consequently,
we have RSC ⊂ Rec.

(2) (Cor. 3.2.3). We have

RSC ∩NST = Rec ∩NST .

Here, NST ⊂ PST is the full subcategory of Nisnevich sheaves
with transfers [18].

Voevodsky’s theory of homotopy invariant presheaves with transfers
relies on an algebro-geometric version of classical homotopy theory,
where the rôle of the interval is played by the affine line A1. Reci-
procity presheaves with transfers were introduced in [7] to generalize
the former, based on the completely different idea of reciprocity à la
Rosenlicht-Serre. Conversely, the above theorems say that one may
largely understand them in terms of a more sophisticated homotopy
theory, based on � rather than A1. This is a remarkable fact.

Remark 3. In [7, Conjecture 1 (1)], it is conjectured that the Cousin
complex attached to F ∈ Rec ∩ NST is exact. This is proved for
F ∈ RSC ∩NST in [16, Cor. 3]. Thus, Theorem 2 (2) permits us to
deduce the full statement of the original conjecture.
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Corrections. In the first version of this paper [9], we made the follow-
ing two claims about the functor ωCI from Theorem 1 (2): it induces
1) a monoidal structure on RSC from the one on CI, and 2) an equiv-
alence of categories

CI ∩MNST
∼−→ RSC ∩NST,

where MNST ⊂MPST is the full subcategory of ‘Modulus Nisnevich
sheaves with transfers’ (see §1.4). Both proofs have turned out to be
incorrect. The mistake in 2) originates in a false statement in the initial
version of [16], which has been removed from its published version. See
Remark 2.4.4 for a counterexample in characteristic zero.
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“Higher Invariants”. Another part was done in a Research in trio in
CIRM, Luminy. Yet another part was done while the third author was
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are grateful to the support and hospitality received in all places.

The authors express their deep gratitude to Kay Rülling for pointing
out the errors mentioned in the previous paragraph. They are also
grateful to the referee for careful reading and useful comments.

Notation and conventions. Throughout this paper we work over a
base field k. Denote by Sch the category of separated schemes of finite
type over k, and by Sm the full subcategory of Sch consisting of all
smooth k-schemes.

1. Review of basic definitions and results

1.1. Modulus pairs. The following definitions (1) and (2) are taken
from [4, Definitions 1.1.1, 1.3.1].

Definition 1.1.1.

(1) A pair M = (X,X∞) of X ∈ Sch and an effective Cartier
divisor X∞ on X is called a modulus pair if X \ |X∞| ∈ Sm. It
is called proper if X is proper over k.

(2) Let M = (X,X∞), N = (Y , Y∞) be two proper modulus pairs
and put X = X \|X∞|, Y = Y \|Y∞|. We define MCor(M,N)
to be the subgroup of Cor(X, Y ) generated by all elementary
correspondences V ∈ Cor(X, Y ) such that the closure V of
V in X × Y satisfies ν∗(X × Y∞) ≤ ν∗(X∞ × Y ), where ν :

V
N → X ×Y is the composition of the normalization V

N → V
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and the inclusion V ↪→ X × Y . We call these correspondences
admissible (with respect to (M,N)). This defines a category
MCor of proper modulus pairs.

There is a functor

(1.1) ω : MCor→ Cor

defined by ω(X,X∞) = X \ |X∞|.
The following is basic to his paper.

Lemma 1.1.2 ([6, §2.1]). The assignment

(X,X∞)⊗ (Y , Y∞) = (X × Y ,X∞ × Y +X × Y∞).

defines a symmetric monoidal structure on MCor, with unit object
1 = (Spec k, ∅). The functor ω of (1.1) is symmetric monoidal.

1.2. Modulus presheaves with transfers. Here is the definition of
our main object of study (see [4, Definition 2.1.1, Notation 2.1.2]).

Definition 1.2.1.

(1) We denote by MPST the abelian category of all additive func-
tors MCorop → Ab.

(2) For M ∈ MCor, we denote by Ztr(M) ∈ MPST the object
represented by M .

By [13, Def. 8.2] and [11, Appendix] we have the following.

Proposition 1.2.2. The category MPST has a symmetric monoidal
structure that extends the tensor structure of Lemma 1.1.2 via the ad-
ditive Yoneda functor. It admits an internal Hom such that

(1.2) HomMPST(Ztr(M), F )(N) = F (M ⊗N)

for M,N ∈MCor and F ∈MPST.

1.3. Relation with PST. The functor ω of (1.1) induces a functor
ω∗ : PST→MPST, ω∗(F ) = F ◦ ω.

Proposition 1.3.1.

(1) The functor ω∗ is fully faithful and exact.
(2) There is a left adjoint ω! : MPST → PST of ω∗, which is

monoidal and exact. We have

ω!F (X) ' lim−→
M∈MSm(X)

F (M) (F ∈MPST, X ∈ Sm).

In (2), MSm(X) is the inverse system {M = (X,X∞) ∈ MCor |
X = X \ |X∞|}, where transition maps are given by the diagonal
X ⊂ X ×X whenever it defines a morphism in MCor.
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Proof. See [4, Prop. 2.2.1 and (2.2.1)]. The monoidality of ω! follows
that of (1.1). �

1.4. Modulus sheaves with transfers. In [5, Lemma-Definition 4.2.1],
we define a full subcategory MNST ⊂MPST of “modulus Nisnevich
sheaves with transfers”. In this paper we need the following:

Proposition 1.4.1.

(1) The category MNST is abelian; the full embedding iNis : MNST ↪→
MPST has an exact left adjoint aNis (“sheafification”).

(2) The functors ω! and ω∗ of Proposition 1.3.1 preserve MNST
and NST; they induce an adjunction (ωNis, ω

Nis) between these
two categories, and ωNis, ω

Nis are both exact. Moreover, the
pair (ω!, ωNis) commutes with the sheafification functors aNis and
aVNis : PST→ NST [18, Th. 3.1.4].

Proof. See [5, Theorem 4.2.4] for (1) and [5, Prop. 6.2.1] for (2). �

2. �-invariance and SC-reciprocity

2.1. �-invariance.

Definition 2.1.1. Let � = (P1,∞), and write p : � → 1 for the
canonical morphism. We say F ∈MPST is �-invariant if the projec-
tion map 1M ⊗ p : M ⊗�→M induces an isomorphism p∗ : F (M)

∼−→
F (M⊗�) for any M ∈MCor. We define CI to be the full subcategory
of MPST consisting of all objects having �-invariance.

Lemma 2.1.2. The category CI is closed under taking subobjects, quo-
tients and extensions in MPST.

Proof. Since the zero section i0 : 1 → � is right inverse to p, p∗ :
F (M)→ F (M ⊗�) is an isomorphism if and only if i∗0 : F (M ⊗�)→
F (M) is injective. This implies that �-invariance is preserved under
taking subobjects. The remaining assertions then follow by the five
lemma. �

Consider the multiplication map

µ : A1 ×A1 → A1; (x, y) 7→ (xy),

Let Γ ⊂ A1 ×A1 ×A1 be the graph of µ.

Lemma 2.1.3 ([6, Lem. 5.1.1]). We have Γ ∈ MCor(� ⊗ �,�). In
other words, the finite correspondence µ is admissible.
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Definition 2.1.4. For F ∈MPST, define h�0 (F ) ∈MPST by:

(2.1) h�0 (F )(M) = Coker
(
F (M ⊗�)

i∗0−i∗1−→ F (M)
)

(M ∈MCor)

where i∗ε for ε = 0, 1 is the pullback by the section iε : 1→ � sending

Spec k to ε ∈ A1(k). For M ∈MCor, we write h�0 (M) = h�0 (Ztr(M)).

Proposition 2.1.5. Let F ∈MPST.

(1) The following conditions are equivalent.
(i) F ∈ CI.

(ii) The natural map F → h�0 (F ) is an isomorphism.
(iii) For any M ∈ MCor and a ∈ F (M), the Yoneda map

ã : Ztr(M)→ F factors through h�0 (M).

(2) We have h�0 (F ) ∈ CI and the induced functor

h�0 : MPST→ CI; F 7→ h�0 (F )

gives a left adjoint of the inclusion i� : CI ↪→MPST.
(3) For any M ∈MCor, the morphism h�0 (1M⊗p) : h�0 (M⊗�)→

h�0 (M) is an isomorphism.

Proof. It essentially reproduces the proof of the same facts for A1-
invariant presheaves, by adding modulus. The main point is Lemma
2.1.3.

Assume (i) and take M ∈ MCor. The assumption implies that

i∗ε : F (M ⊗�) → F (M) for ε = 0, 1 are both inverse to p∗ : F (M)
∼−→

F (M ⊗�) so that i∗0 − i∗1 = 0, which implies (ii).
Assume (ii). By (2.1) this implies that for any M ∈MCor we have

(2.2) i∗0 = i∗1 : F (M ⊗�)→ F (M).

By Lemma 2.1.3, we have a commutative diagram

F (M ⊗�)
(1M⊗i0)∗

//

(1M⊗µ)∗

��

F (M)

p∗

��

F (M ⊗�⊗�)
(1

M⊗�⊗i0)∗

// F (M ⊗�).

By this diagram and (2.2), we get

p∗(1M ⊗ i0)∗ = (1M⊗� ⊗ i0)∗ ◦ (1M ⊗ µ)∗

= (1M⊗� ⊗ i1)∗ ◦ (1M ⊗ µ)∗ = 1∗
M⊗�.

This proves the surjectivity of p∗, hence (i) holds. Thus (i) ⇐⇒ (ii).
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By the definition of h�0 (F ), for any M ∈MCor, the map

h�0 (F )(M ⊗�)
i∗0−i∗1−→ h�0 (F )(M)

is the zero map so that h�0 (F )(M) ' h�0 (h�0 (F ))(M). Hence the first
assertion of (2) follows from the implication (ii) ⇒ (i).

Any ã : Ztr(M) → F induces a morphism h�0 (M) → h�0 (F ) which
commutes with the natural transformation of (ii). Hence (iii) follows
from (ii).

If (iii) holds, F is a quotient of a direct sum of h�0 (M)’s for M ∈
MCor. Hence (i) holds by the first assertion of (2) and Lemma 2.1.2.
This completes the proof of (1).

To show the second assertion of (2), note that (1) implies that for

F ∈ CI and M ∈MCor, the natural map Ztr(M) → h�0 (M) induces
an isomorphism

(2.3) HomMPST(h�0 (M), F ) ' HomMPST(Ztr(M), F ).

For G ∈MPST, take a resolution of G of the form

P1 → P0 → G→ 0 in MPST,

where P1, P0 are direct sums of representable objects. By its definition
(2.1), the endofunctor h�0 of MPST is right exact so that the above
sequence induce an exact sequence

h�0 (P1)→ h�0 (P0)→ h�0 (G)→ 0.

Moreover h�0 commutes with direct sums again by (2.1). In view of

(2.3), we conclude that the natural map G → h�0 (G) induces an iso-
morphism

HomMPST(h�0 (G), F ) ' HomMPST(G,F ).

which implies the desired claim.
It remains to prove (3). Since h�0 (1M ⊗ i0) is a right inverse of

h�0 (1M ⊗ p), it suffices to show that it is also a left inverse. Let N ∈
MCor. For ϕ ∈MCor(N,M ⊗�), define

ϕ̃ = (1M ⊗ µ) ◦ (ϕ⊗ 1�) ∈MCor(N ⊗�,M ⊗�).

Using the identities µ ◦ (1�⊗ i0) = i0p and µ ◦ (1�⊗ i1) = 1�, we get

(i∗0 − i∗1)ϕ̃ := ϕ̃ ◦ (1N ⊗ i0)− ϕ̃ ◦ (1N ⊗ i1) = (1M ⊗ i0p) ◦ ϕ− ϕ

which shows that ϕ̄ = h�0 (1M ⊗ i0)h�0 (1M ⊗ p)ϕ̄, where ϕ̄ is the image

of ϕ in h�0 (M ⊗�)(N). �
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Definition 2.1.6. For F ∈MPST, define h0
�

(F ) ∈MPST by

(2.4) h0
�(F )(M) = HomMPST(h�0 (M), F ) (M ∈MCor).

Lemma 2.1.7. For F ∈ MPST, h0
�

(F ) is the maximal �-invariant
subobject of F . The induced functor

h0
� : MPST→ CI; F 7→ h0

�(F )

gives a right adjoint of the inclusion i� : CI ↪→MPST.

Proof. The fact that h0
�

(F ) is a subobject of F follows from (2.4) and

the fact that h�0 (M) is a quotient of Ztr(M). The fact that h0
�

(F ) ∈ CI
follows from Proposition 2.1.5 (3). Now let G ⊂ F be a subobject
which is in CI. For a ∈ F (M) with M ∈MCor, let ã : Ztr(M) → F
be the corresponding map in MPST . If a ∈ G(M), ã factors through

G and hence factors through h�0 (M) by Proposition 2.1.5 (1). Hence
a ∈ h0

�
(F )(M) by (2.4). This proves G ⊂ h0

�
(F ), which completes the

proof of the first assertion. The second assertion follows easily from
the first and Lemma 2.1.2. �

Theorem 2.1.8. The category CI is a Serre subcategory of MPST,
and is Grothendieck. The inclusion i� : CI ↪→MPST has

(i) a left adjoint given by F 7→ h�0 (F );
(ii) a right adjoint given by F 7→ h0

�
(F ), where

h0
�F (M) = Hom(h�0 (M), F ) (M ∈MCor).

The unit (resp. counit) morphism F → h�0 (F ) (resp. h0
�

(F ) → F ) is
epi (resp. mono).

Proof. Everything follows from what we have proven so far, except
for the Grothendieckness of CI, that we want to deduce from that of
MPST. We cannot quite apply [4, Th. A.10.1 d)], because h�0 is not
exact: it provides generators and infinite direct sums, but not their
exactness. But the latter holds because i� reflects infinite direct sums
(if (Fα) is a family of objects in CI, their direct sum in MPST belongs
to CI). �

Proposition 2.1.9.

(1) One has HomMPST(G,H) ∈ CI for any G ∈ MPST and any
H ∈ CI.

(2) Via h�0 , the symmetric monoidal structure on MPST from
Proposition 1.2.2 induces a symmetric monoidal structure on
CI by the formula

F ⊗CI G = h�0 (F ⊗MPST G) (F,G ∈ CI).

This tensor product commutes with all representable colimits.
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Proof. (1) follows from (1.2) and the isomorphisms (easily checked by
means of Yoneda’s lemma):

HomMPST(�,HomMPST(G,H)) ' HomMPST(�⊗MPST G,H)

' HomMPST(G,HomMPST(�, H))
∼← HomMPST(G,H)

where the last isomorphism, induced by p, follows from the assumption
H ∈ CI.

(2) Since h�0 is a localisation by the full faithfulness of i�, we have
to show the following.

Claim 2.1.10. If f ∈ HomMPST(G1, G2) is such that h�0 (f) is an iso-

morphism, then g = h�0 (f ⊗MPST 1G′) is an isomorphism for any
G′ ∈MPST.

By (co)Yoneda, it suffices to show that

g∗ : HomMPST(h�0 (G2⊗MPSTG
′), H)→ HomMPST(h�0 (G1⊗MPSTG

′), H)

is an isomorphism for any H ∈ CI. By adjunction, it suffices to show
that

f ∗ : HomMPST(G2,HomMPST(G′, H))
∼−→ HomMPST(G1,HomMPST(G′, H))

which follows from (1).
Finally, the commutation of ⊗CI with colimits follows from that of

⊗MPST and h�0 . �

2.2. SC-reciprocity.

Definition 2.2.1. For F ∈MPST, we define

h0(F ) := ω!h
�
0 (F ) ∈ PST.

For M ∈MCor, we put h0(M) := h0(Ztr(M)).

Lemma 2.2.2. Let M = (M,M∞) ∈ MCor with Mo = M − |M∞|.
For S ∈ Sm, we have

h0(M)(S) = Coker(i∗0 − i∗1 : MCor(�⊗ S,M)→ Cor(S,M◦)
)
,

where MCor(�⊗S,M) is the subgroup of Cor(A1×S,M◦) generated
by all elementary correspondences Z such that

ϕ∗Z(P1 × S ×M∞) ≤ ϕ∗Z(∞× S ×M),

where ϕZ : Z
N → Z ↪→ P1 × S ×M denotes the normalization of the

closure Z of Z in P1 × S ×M .

Proof. This follows from Definition 2.1.4 and Proposition 1.3.1 (2). �
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Remark 2.2.3. Lemma 2.2.2 implies isomorphisms

h0(M)(Spec k) ' HS
0 (M,M∞) ' CH0(M),

where HS
n (M,M∞) for n ∈ Z is the Suslin homology considered in [15,

Definition 3.1] and CH0(M) = CH0(M |M∞) is the Chow group with
modulus considered in [12].

Definition 2.2.4.

(1) Let F ∈ PST, X ∈ Sm and a ∈ F (X) = HomPST(Ztr(X), F ).
We say M = (X,X∞) ∈MCor is an SC-modulus for a if X =
X \|X∞| and a : Ztr(X)→ F factors through Ztr(X) � h0(M).
(SC stands for “Suslin complex”.)

(2) We say F ∈ PST has SC-reciprocity if, for any X ∈ Sm, any
a ∈ F (X) has an SC-modulus M ∈MSm(X).

(3) We define RSC to be the full subcategory of PST consisting
of all objects having SC-reciprocity.

Remark 2.2.5. The category RSC is closed under subobjects and quo-
tient objects in PST. This is obvious from the definition. In particular,
RSC is abelian and the inclusion functor i\ : RSC→ PST is exact.

Recall that i� : CI ↪→MPST denotes the inclusion.

Proposition 2.2.6. The functor ρ := ω!i
�h0

�
ω∗ sends PST into RSC,

and is right adjoint to the inclusion i\ : RSC ↪→ PST.

Proof. For F ∈ PST and X ∈ Sm, we have by successive adjunctions
and by Proposition 1.3.1 (2):

(2.5) ρF (X) = lim−→
M∈MSm(X)

i�h0
�ω
∗F (M)

= lim−→
M∈MSm(X)

MPST(h�0 (M), ω∗F ) = lim−→
M∈MSm(X)

PST(h0(M), F )

which realises ρF as the largest subobject of F which is in RSC. �

Corollary 2.2.7. Let F ∈ PST. The counit map

(2.6) i\ρF → F

of the adjunction in Proposition 2.2.6 agrees with the counit map of the
adjunction (ω!i

�, h0
�
ω∗). Moreover, F ∈ RSC if and only if (2.6) is

an isomorphism.

Proof. The first statement simply restates the computation in (2.5).
The second one follows from Proposition 2.2.6 and the definition of
SC-reciprocity. �

Question 2.2.8. Is RSC closed under extensions in PST?
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This question appears to be very difficult (compare [7, Question 1]).
We can only offer a trivial reduction:

Proposition 2.2.9. For F ∈ PST, the following are equivalent:

(i) There exist G,H ∈ RSC and an exact sequence in PST

(2.7) 0→ G→ F → H → 0.

(ii) The cokernel of (2.6) is in RSC.

Proof. (ii) ⇒ (i) is obvious. Conversely, assume (i). Applying the left
exact functor ρ, we get an exact sequence in RSC (defining C)

(2.8) 0→ G→ ρF → H → C → 0.

The counit map (2.6) sends (2.8) to (2.7). A diagram chase then gives
us the exact sequence in PST

0→ ρF → F → C → 0

which concludes the proof. �

2.3. Relations between CI, HI and RSC. Recall that HI ⊂ PST
is the full subcategory of A1-invariant presheaves with transfeers.

Lemma 2.3.1. For H ∈ PST, H ∈ HI if and only if ω∗H ∈ CI.

Proof. This follows from the fact that for M = (M,M∞) ∈ MCor
with M◦ = M −M∞, we have

ω∗F (M) = F (M◦) and ω∗F (M ⊗�) = F (M◦ ×A1).

�

Proposition 2.3.2. The composite MPST
ω!−→ PST

hA
1

0−→ HI factors

through MPST
h�0−→ CI, inducing a functor ωh : CI → HI. This

functor is right exact and monoidal for the ⊗-structures given on CI
by Theorem 2.1.8 (2), and analogously on HI. It has an exact right
adjoint ωh, given by the restriction of ω∗ to HI.

Proof. The first claim and the monoidality of ωh follow from that of ω!,
as ω!Ztr(�) = Ztr(A

1). The existence, characterisation and exactness
of ωh follows from Lemma 2.3.1, and the right exactness of ωh then
follows. �

Theorem 2.3.3. If F ∈ CI, then ω!F ∈ RSC.
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Proof. We have a commutative diagram, for any F ∈MPST:

(2.9)

ω!i
�h0

�
F

ω!i
�h0

�
ηF

−−−−−→
(a)

ω!i
�h0

�
ω∗ω!F

ω!ε
′
F

y(c) ω!ε
′
ω∗ω!F

y(d)

ω!F
ω!ηF−−−→
(b)

ω!ω
∗ω!F

εω!F−−−→
(e)

ω!F.

Here, η and ε are the unit and counit of the adjunction (ω!, ω
∗), while

ε′ is the counit of the adjunction (i�, h0
�

). We have (e)◦(b) = 1ω!F by the
adjunction identities; since ω∗ is fully faithful, (e) is an isomorphism
hence so is (b). This shows that (c) factors through (a). On the
other hand, ε′ is mono by Theorem 2.1.8, hence so are (c) and (d)
since ω! is exact. Finally, the diagram boils down to two successive
monomorphisms

(2.10) ω!i
�h0

�F ↪−→ i\ρω!F ↪−→ ω!F

with composition ω!ε
′
F . Therefore, F ∈ CI ⇒ ω!F ∈ RSC. �

Corollary 2.3.4. We have HI ⊂ RSC.

Proof. Let F ∈ HI. By Lemma 2.3.1, ω∗F ∈ CI, hence

F ' ω!ω
∗F ∈ RSC

by Theorem 2.3.3. (See [16, Lemma 1.22] for a simpler proof.) �

Corollary 2.3.5. For any F ∈MPST, h0(F ) ∈ RSC.

Proof. This follows from Proposition 2.1.5 and Theorem 2.3.3. �

Corollary 2.3.6. The inclusion functor i\ : RSC ↪→ PST has a pro-
left adjoint `.

Proof. It suffices to show that ` is defined on the generators Ztr(X).
Since h0(M) ∈ RSC for any M ∈ MSm(X) by Corollary 2.3.5, we
have `Ztr(X) = “ lim←− ”M∈MSm(X)h0(M). �

Proposition 2.3.7. There exist unique functors ωCI and ωCI that
make the two diagrams

CI �
� i� /

ωCI

��

MPST

ω!

��

CI MPST
h0
�oo

RSC �
�

i\
/ PST RSC �

�

i\
/

ωCI

OO

PST

ω∗

OO
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commutative, where i\ is the inclusion. Moreover, ωCI is right adjoint
to ωCI. The counit map ε : ωCIω

CI ⇒ IdRSC is an isomorphism, ωCI

is a localisation (in particular, is essentially surjective) and ωCI is fully
faithful. Finally, ωCI is exact and ωCI is left exact.

Proof. The existence of ωCI is the contents of Theorem 2.3.3, and ωCI is
defined by the commutativity of the diagram. For the second assertion,
let F ∈ CI and G ∈ RSC. Using two successive adjunctions, we
compute:

CI(F, ωCIG) = CI(F, h0
�ω
∗i\G) ' PST(ω!i

�F, i\G)

= PST(i\ωCIF, i
\G) ' RSC(ωCIF,G)

where the last isomorphism uses the (tautological) full faithfulness of
i\. So the adjunction (ωCI, ω

CI) is obtained by “cancelling” i\ from

the adjunction (ω!i
�, h0

�
ω∗), after applying Theorem 2.3.3. Therefore

the third assertion follows from Corollary 2.2.7, and the next two are
standard consequences [4, Lemma A.3.1]. The exactness of ωCI follows

from the exactness of i� and ω! (as well as the full faithfulness of i\),
and ωCI is left exact as a right adjoint. �

Corollary 2.3.8. The category RSC is Grothendieck.

Proof. This follows from the same fact for CI (Theorem 2.1.8), the
adjunction (ωCI, ω

CI) and [4, Th. A.10.1 d)]. �

Proposition 2.3.9. Let

hrec
0 : RSC→ HI

be the restriction of hA
1

0 : PST → HI from (0.1). Then hrec
0 is a left

adjoint of the inclusion HI ↪→ RSC from Corollary 2.3.4. We have a
natural isomorphism ωh ' hrec

0 ωCI (see Proposition 2.3.2 for ωh).

Proof. The first claim follows immediately from the fact that hA
1

0 is a
left adjoint to the inclusion HI ↪→ PST. To show the second, we apply
the natural isomorphism ωhh

�
0G ' hA

1

0 ω!G from Proposition 2.3.2 to

G = i�F for F ∈ CI to get a natural isomorphism

ωhF ' ωhh
�
0 i

�F ' hA
1

0 ω!i
�F ' hA

1

0 i\ωCIF ' hrec
0 ωCIF

as requested. �

2.4. Sheaves in RSC. Let NST ⊂ PST be the full subcategory
of Nisnevich sheaves with transfers [18, Th. 3.1.4]. Recall that the
objects of NST are those F ∈ PST whose restriction FX to XNis

is a sheaf for any X ∈ Sm, where XNis denotes the small Nisnevich
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site of X. By [18, Th. 3.1.4] the inclusion iVNis : NST → PST has
an exact left adjoint aVNis such that for any F ∈ PST and X ∈ Sm,
(aVNisF )X is the Nisnevich sheafication of FX as a presheaf on XNis.
Let RSCNis = RSC ∩NST and CINis = CI ∩MNST (see §1.4 for
MNST). We admit the following theorem.

Theorem 2.4.1. Assume k is perfect. Write

CIsp = {F ∈ CI | the unit map F → ωCIωCIF is injective.}

(1) [16, Th. 0.1 and 0.4] One has aVNis(RSC) = RSCNis and
aNisCIsp ⊂ CINis. (See Proposition 1.4.1 (1) for aNis.)

(2) [14, Cor. 4.16]. One has ωCI(RSCNis) ⊂ CINis.

Corollary 2.4.2. The category RSCNis is Grothendieck.

Proof. Since aVNis is exact, so is its restriction to RSC. The corollary
now follows from Corollary 2.3.8 and (again) [4, Th. A.10.1 d)]. �

Theorem 2.4.3. Assume k is perfect.

(1) The functor ρ of Proposition 2.2.6 sends NST into RSCNis.

It yields a right adjoint ρNis to the inclusion i\Nis : RSCNis ↪→
NST.

(2) The functor ωCI of Proposition 2.3.7 sends CINis to RSCNis.
The induced functor ωNis

CI : CINis → RSCNis is left adjoint to the
fully faithful functor ωCI

Nis : RSCNis → CINis given by Theorem
2.4.1 (2). Moreover, there is a natural ismorphism

(2.11) aVNisωCIF ' ωNis
CI aNisF

for any F ∈ CIsp.

Proof. Let F ∈ NST. Considering F as an object of PST, we may
view ρF as the largest subobject of F which belongs to RSC (see
Proposition 2.2.6). Applying the left exact functor aVNis to this inclu-
sion, we get a sequence

ρF → aVNisρF → aVNisF = F,

where the second map is a monomorphism. But the middle term is in
RSC by Theorem 2.4.1 (1). Hence the first map must be an isomor-
phism, which implies the first claim of (1). The last claim now follows
easily from the adjunction in Proposition 2.2.6.

The first assertion of (2) is obvious since ω! preserves Nisnevich
sheaves by Proposition 1.4.1. The second one then follows easily from
Proposition 2.3.7. Given the natural isomorphism ωCIiVNis ' iNisω

CI
Nis,

this implies the last assertion by taking left adjoints. �
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Remark 2.4.4. The functor ωNis
CI is not conservative. Assume ch(k) = 0.

Let F ∈ CI be the image of the unit map

h�0 (P1, 2∞)→ ωCIωCIh
�
0 (P1, 2∞).

Then F ∈ CIsp, hence aNisF ∈ CI by Theorem 2.4.1 (1). We claim
that the unit map ι : aNisF → ωCI

Nisω
Nis
CI aNisF is not surjective. To see

this, first note that by the exactness of ωCI, we have

h0(P1, 2∞) � ωCIF ↪→ ωCIω
CIh0(P1, 2∞) = h0(P1, 2∞),

and hence ωCIF ∼= h0(P1, 2∞). Then by (2.11) and [15, Thm. 1.1], we
have isomorphisms

ωNis
CI aNisF ' aVNisωCIF ' Pic(P1, 2∞) ' Z⊕Ga.

Take (X,D) ∈MCor such that X,D ∈ Sm, with X connected. Then
it follows from [14, Th. 6.4] that

ωCI
Nisω

Nis
CI aNisF (X, 2mD) ' Z⊕H0(X,OX((2m− 1)D))

for any integer m > 0. On the other hand, one can show

aNisF (X, 2mD) ' Z⊕H0(X,OX(mD)).

This implies that G := Coker(ι) ∈ CINis is non-zero but ωNis
CI (G) = 0.

3. Relation with [7]

3.1. Review of reciprocity presheaves with transfers. In [7, Def-
inition 2.1.3], we defined a full subcategory Rec of PST, which we now
recall.

Let (X,Y ) ∈ MCor and suppose that X = X \ |Y | is quasi-affine.
For S ∈ Sm, let C(X,Y )(S) be the class of all finite morphisms ϕ : C →
X × S satisfying the following conditions:

• C ∈ Sch is integral and normal.
• There is a generic point η of S such that dimC ×S η = 1.
• The image of γϕ := pr ◦ ϕ is not contained in |Y |, where pr :
X × S → X is the projection map.

For an effective Cartier divisor D on C, we set

(3.1) G(C,D) :=
⋂
x∈D

Ker
(
O×
C,x
→ O×D,x

)
.

We then define

Φ(X,Y )(S) =
⊕

(ϕ:C→X×S)∈C(X,Y )(S)

G(C, γ∗ϕY )
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It is proved in [7, Proposition 2.2.2] that Φ(X,Y ) defines a presheaf
with transfers. It is also shown there that one has ϕ∗(divC(f)) ∈
Cor(S,X) for any (ϕ : C → X × S) ∈ C(X,Y )(S) and f ∈ G(C, γ∗ϕY ),

yielding a map τ : Φ(X,Y )→ Ztr(X) in PST. We define

h(M) := Coker(τ : Φ(X,Y )→ Ztr(X)) ∈ PST.

Definition 3.1.1 ([7, Definition 2.1.2, Remark 2.1.6]). We say F ∈
PST has reciprocity if for any quasi-affine X ∈ Sm and a ∈ F (X) =
HomPST(Ztr(X), F ), there is an M = (X,X∞) ∈ MCor such that
X = X \ |X∞| and a : Ztr(X) → F factors through Ztr(X) � h(M).
We define Rec to be the full subcategory of PST consisting of all
objects having reciprocity.

3.2. Statement of the result and consequences.

Theorem 3.2.1. Let M = (X,Y ) ∈MCor be such that X := X \ |Y |
is quasi-affine. Then h0(M) = h(M). Hence we have RSC ⊂ Rec.

The proof of Theorem 3.2.1 will occupy §§3.3 and 3.4. We first
deduce some consequences.

Corollary 3.2.2. For any F ∈ RSC, we have FZar ' FNis, where FZar

(resp. FNis) is the Zariski (resp. Nisnevich) sheafification of F .

Proof. Combine Theorem 3.2.1 and [7, Theorem 7]. �

The next result depends on Theorem 2.4.1 (1).

Corollary 3.2.3. Assume k is perfect. Then we have RSCNis =
RecNis.

Proof. The inclusion follows immediately from Theorem 3.2.1. To
prove the equality, let F ∈ RecNis. By (2.5) and Theorem 3.2.1, the
map i\ρF → F of (2.6) is an isomorphism when evaluated at X if X
is quasi-affine. By Theorem 2.4.3 (1), this extends to any X ∈ Sm by
using a quasi-affine Zariski cover. Thus F ∈ RSCNis. �

Remark 3.2.4. Here is an example of an object F ∈ Rec\RSC. Define
F as

Coker

⊕
(X,a)

Ztr(X)→ Ztr(P
1)


where X runs through all smooth quasi-affine k-schemes and a runs
through all elements of Cor(X,P1). By construction, F (X) = 0 for
any smooth quasi-affine X, hence F ∈ Rec. On the other hand, we
claim that the image η ∈ F (P1) of the identity map 1P1 ∈ Ztr(P

1)(P1)
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does not have an SC modulus. Since P1 is proper, this amounts to say
that the composition

Hom(Ztr(A
1),Ztr(P

1))
i∗0−i∗1−−−→ Ztr(P

1)
η−→ F

is nonzero. The quasi-affineness of the X’s yields that for any proper
Y ∈ Sm the image of

⊕
(X,a) Ztr(X)(Y ) → Ztr(P

1)(Y ) = Cor(Y,P1)
is generated by cycles of the form Y × x where x ranges over closed
points of P1. In particular, if we take Y = P1 we find that F (P1) is
not finitely generated. On the other hand, [10, Th. 3.3.1] shows

Coker(Hom(Ztr(A
1),Ztr(P

1))(P1)
i∗0−i∗1−−−→ Ztr(P

1)(P1))

' Pic(P1 ×P1) ' Z× Z.

Hence η cannot vanish at P1.

Corollary 3.2.5. Assume k is perfect.

(1) A presheaf with transfers represented by a smooth commutative
algebraic group has SC-reciprocity.

(2) The presheaf with transfers H0(−,Ωi
−) has SC-reciprocity for

any i ≥ 0. The same is true for the presheaf with transfers
H0(−,Ωi

−/k).

(3) Suppose that k is of positive characteristic. Then the presheaf
with transfers H0(−,WnΩi

−) has SC-reciprocity for any i ≥ 0
and n ≥ 1.

Proof. Combine Corollary 3.2.3 and [7, Theorems 4, 5]. �

The next corollary uses the work of Binda et al [1]: we suppose k
is of characteristic p > 0 and we use the notation [1/p] to designate
categories constructed out of sheaves of Z[1/p]-modules: they are full
subcategories of those considered in this paper.

Corollary 3.2.6. Assume that char k = p > 0. Then the functor hrec
0

from Proposition 2.3.9 induces an equivalence of categories

RSCNis[1/p]
∼−→ HINis[1/p].

Proof. By Proposition 2.3.9, it suffices to show that F
∼−→ hrec

0 (F ) for
any F ∈ RSCNis[1/p]. If F ∈ RecNis[1/p], this follows from [1, Th. 3.5
(2)], hence the claim when k is perfect by Corollary 3.2.3. The general
case reduces to this one by [3, Prop. 4.5]. �

Remarks 3.2.7. There is a finer operation which consists of inverting p
on morphisms rather than on objects, but Corollary 3.2.6 is false for
these categories. For example, the sheaf

⊕
n≥1Wn is a non-zero object

of RSCNis, but hrec
0 maps it to 0 in HINis.
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In the sequel, (X,Y ) is as in Theorem 3.2.1.

3.3. Preliminary lemmas. In the rest of this section, we use a change
of coordinates � ' (P1, 1) given by A1 → P1 \ {1}, t 7→ t/(t − 1).
Let � := P1 − {1}. Take S ∈ Sm and a closed integral subscheme
V ⊂ S × � × X that is finite and surjective over S × �. We have a
commutative diagram

(3.2) V �
� //

��

X ×�× S

��

V
N //

��

V �
� //

��

X ×P1 × S
p

��

W
N //

γ

))

W �
� //// X × S

��

X

where V is the closure of V in X×P1×S, W is the image of V under the

projection p, and V
N → V and W

N → W are the normalizations. Let

ϕV : V
N → X×P1×S be the natural map. Let ι∞ : X×S → X×P1×S

be induce by ∞ ∈ P1. Put

∂∞V = ι−1
∞ (V ) = p(V ∩ (X × {∞} × S)) ⊂ X × S.

Putting W
o

= W\∂∞V and W
N,o

= W
N ×W W

o
, we have

(3.3) V ×W W
N,o ⊂ W

N,o × (P1 − {∞}).

Let V
o

be the reduced part of an irreducible component of V ×W W
N,o

which dominates W
N,o

. (Thus V
o → V is birational.)

Lemma 3.3.1. If W
o

= ∅, then V = W ×� with W = W ∩ (X × S).

Proof. The assumption implies W ⊂ p(V ∩ (X ×{∞}×S)) and hence

dimW ≤ dimV ∩ (X × {∞} × S) < dimV .

Noting V ↪→ W × P1, we get V = W × P1, which implies the desired
assertion. �

Lemma 3.3.2. If W
o 6= ∅, V o

is finite over W
N,o

.

Proof. V is proper over W so that V
o

is proper over W
N,o

. On the

other hand W
N,o × (P1 − {∞}) is affine over W

N,o
and so is V

o
. This

implies the lemma. �
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Now we consider the modulus condition for V :

(3.4) ϕ−1
V (Y ×P1 × S) ≤ ϕ−1

V (X × {1} × S).

Let y be the standard coordinate on P1 − {∞} = Spec(k[y]). (Note
that the divisor involved in the modulus condition is {1} ⊂ P1 − {∞}
defined by the ideal (1− y) ⊂ k[y].) Let I ⊂ O

W
N,o be the ideal sheaf

of Y ×X W
N,o ⊂ W

N,o
.

Lemma 3.3.3. Assuming W
o 6= ∅, (3.4) is equivalent to the conditions:

(i) V ∩ (Y ×�× S) = ∅.
(ii) Locally on W

N,o
, V

o
is defined by an equation

f(y) := (1− y)m +
∑

1≤ν≤m

aν(1− y)m−ν with aν ∈ Γ(W
N,o
, Iν),

in W
N,o × (P1 − {1}) = W

N,o × Spec(k[y]) (see (3.3)).

Proof. By Lemma 3.3.2, the minimal polynomial over k(W ) of the im-
age of y in Γ(V

o
,O):

f(t) = (1− t)m +
∑

1≤ν≤m

aν(1− t)m−ν

has its coefficients aν ∈ A := Γ(W
N,o
,O). We claim that V

o
coin-

cides with the closed subscheme T ⊂ W
N,o× Spec(k[y]) defined by the

equation f(y) ∈ A[y]. Indeed it is clear that V
o

is contained in T ,
hence it suffices to show that T is integral. Note that T is a Cartier

divisor in W
N,o × (P1 − {1}) which is finite over W

N,o
. It follows that

each irreducible component dominates W
N,o

. Hence the integrality is
checked over the generic point, which holds by the irreducibility of f .
The claim is proved. Thus we are reduced to showing the following.

Claim 3.3.4. The condition (3.4) holds if and only if V ∩(Y ×�×S) = ∅
and aν ∈ Γ(W

N,o
, Iν) for all ν.

The question is Zariski local and we may assume that I is generated

by π ∈ Γ(W
N,o
,O). Then (3.4) holds if and only if V ∩(Y ×�×S) = ∅

and

(3.5) θ :=
1− y
π
∈ Γ(V

N ×
W

N W
N,o
,O).

Noting π ∈ k(W ), the minimal polynomial of θ over k(W ) is

g(t) = tm +
∑

1≤ν≤m

aν
πν

tm−ν .
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Since V
o

is finite over W
N,o

as is shown before, V
N ×

W
N W

N,o
is finite

over W
N,o

. Hence (3.5) is equivalent to the condition that θ is integral

over Γ(W
N,o
,O), which is equivalent to

aν
πν
∈ Γ(W

N,o
,O) for all ν.

This proves the claim and the proof of Lemma 3.3.3 is completed. �

3.4. Proof of Theorem 3.2.1. We put

C1(X|Y ) := ω! HomMPST(Ztr(�),Ztr(M)) ∈ PST

and write by ∂ for the boundary map δ0∗
1,0− δ0∗

1,∞ : C1(X|Y )→ Ztr(M).
Fix S ∈ Sm. By Definitions 2.2.4 and 3.1.1, it suffices to construct a
homomorphism :

(3.6) ξ : C1(X|Y )(S)→ Φ(X,Y )(S)

such that the following diagram commutes:

(3.7)

C1(X|Y )(S)
∂−−−→ Ztr(X)(S)yξ ∥∥∥

Φ(X,Y )(S)
τ−−−→ Ztr(X)(S)

and such that we have

(3.8) Image(τ) = Image(τ ◦ ξ).
Take a closed integral subscheme V ⊂ S×�×X, finite and surjective
over S × � and satisfying (3.4). Consider the commutative diagram

(3.2) and let ϕ : W
N → X × S be the induced map. We first suppose

W
o 6= ∅. Then we have (see §3.1 for notations)

(W
N ϕ−→ X × S) ∈ C(X,Y )(S).

The projection V → � = P1 − {1} induces a rational function gV ∈
k(V )×. By [2, Prop.1.4 and §1.6] we have

(3.9) ∂V = ϕ∗ div
W

N (NgV ) ∈ Ztr(X)(S) = Cor(S,X),

where N : k(V )× → k(W )× is the norm map induced by V → W . By
Lemma 3.3.3 we have

NgV = f(0) = 1+
∑

1≤ν≤m

aν ∈ Γ(W
N,o
, I) ⊂ G(W

N
, γ∗ϕY ) ⊂ Φ(X,Y )(S).

We now define a map

(3.10) ξ : C1(X|Y )(S)→ Φ(X,Y )(S)
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by declaring

ξ(V ) =

{
NgV if W

o 6= ∅;
0 if W

o
= ∅.

Note that if W
o

= ∅, then we have ∂(V ) = 0 by Lemma 3.3.1. It
follows that the diagram (3.7) commutes thanks to (3.9).

It remains to show (3.8). To this end, we take (ϕ0 : C → X ×
S) ∈ C(X,Y )(S) and show τ(G(C, γ∗ϕ0

Y )) ⊂ Image(τ ◦ ξ) (see §3.1 for

notations). Let W ↪→ X × S be the image of ϕ0 and let W
N → W

be its normalization so that (ϕ : W
N → X × S) ∈ C(X,Y )(S). Since

τ(G(C, γ∗ϕ0
Y )) ⊂ τ(G(W

N
, γ∗ϕY )), it suffices to show the following.

Lemma 3.4.1. The subgroup G(W
N
, γ∗ϕY ) ⊂ Φ(X,Y )(S) is contained

in the image of ξ : C1(X|Y )(S)→ Φ(X,Y )(S).

Proof. Take g ∈ G(W
N
, γ∗ϕY ). Let Σ ⊂ W

N
be the closure of the

union of points x ∈ W
N

of codimension one such that vx(g) < 0,

where vx is the valuation associated to x. Since W
N

is normal, we

have g ∈ Γ(W
N − Σ,O) and g ∈ G(W

N
, γ∗ϕY ) implies

(3.11) g − 1 ∈ Γ(W
N − Σ, I),

where I ⊂ O
W

N is the ideal sheaf of γ∗ϕY ⊂ W
N

. Let

ψg : W
N − Σ→ P1 − {∞}

be the morphism induced by g and Γ ⊂ W
N ×P1 be the closure of the

graph of ψg. Let

V ⊂ W ×P1 ⊂ X ×P1 × S
be the image of Γ under W

N × P1 → W × P1. By (3.11) we have
|γ∗ϕY | ⊂ ψ−1

g (1) and hence

(3.12) V ∩ (Y ×�× S) = ∅
so that

V := V ∩ (X ×�× S) ⊂ X ×�× S.
It suffices to show the following.

Claim 3.4.2. V ∈ C1(X|Y )(S) and ξ(V ) = g.

Once we prove the first assertion, the second follows easily from the
construction of ξ. To prove the first assertion, by (3.12), the map
V → � × S is proper and hence finite since X is quasi-affine by the
assumption. Moreover it is surjective since dimV = dimW = dimS +
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1. Hence it suffices to check the condition (ii) of Lemma 3.3.3. By
definition

(♠) Γ ∩
(
(W

N − Σ) × (P1 − {∞})
)

is the graph of ψg and hence
is defined by y − g where y is the standard coordinate of P1 −
{∞} = Spec(k[y]).

We have a diagram of schemes

(3.13) W
ι∞ // W ×P1 Voo

W
N ι∞ //

πW

OO

idW $$

W
N ×P1

OO

pr
��

Γ′ := V ×W W
Noo

OO

vv

Γoo

πV

ff

prΓ

ss
W

N

where ι∞ are induced by∞ ∈ P1. The natural map Γ→ Γ′ is a closed
immersion onto an irreducible component that dominates V . We claim

(3.14) Σ ⊂ ι−1
∞ (Γ).

The claim implies W
N,o

:= W
N ×W (W\ι−1

∞ (V )) ⊂ W
N − Σ. Let V

o

be the reduced part of the irreducible component of

V
o′

:= V ×W W
N,o

= Γ′ ×
W

N W
N,o ⊂ W

N,o × (P1 − {∞})

which dominates V ; see the following diagram:

W
N,o
� _

��

lL

zz

W
N,o × (P1 − {∞})

� _

��

oo V
o′
� _

��

? _oo V
o
� _

��

? _oo

W
N − Σ �

� // W
N

��

W
N ×P1

��

oo Γ′

��

? _oo Γ

~~

? _oo

W W ×P1oo V .? _oo

By (♠), V
o

is defined in W
N,o × Spec(k[y]) by the equation y − g and

thus V satisfies Lemma 3.3.3 (ii).
It remains to show (3.14). From (3.13), it is equivalent to

(3.15) Σ ⊂ pr
(
(W

N ×∞) ∩ Γ
)
.

Since prΓ is proper birational and W
N

is normal, prΓ is an isomorphism

above all codimension one points in W
N

(but not necessarily in all
codimension one points of Γ). For a generic point x ∈ Σ, there is a
unique codimension one point y ∈ Γ such that x = prΓ(y) and we have
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vy(g) = vx(g) < 0 for g ∈ k(Γ) = k(W
N

). The projection W
N ×

P1 → P1 induces a morphism Γ \ (W
N × {∞}) → P1 − {∞}, which

corresponds to g. Hence we must have y ∈ (W
N × {∞}) ∩ Γ which

proves (3.15) by the properness of prΓ. This completes the proof of
Lemma 3.4.1. �
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