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Abstract
We describe Somekawa’s K-group associated to a finite collection of semiabelian
varieties (or more general sheaves) in terms of the tensor product in Voevodsky’s cat-
egory of motives. While Somekawa’s definition is based on Weil reciprocity, Voevod-
sky’s category is based on homotopy invariance. We apply this to explicit descriptions
of certain algebraic cycles.

1. Introduction

1.1
In this article, we construct an isomorphism

K.kIF1; : : : ;Fn/
�
�!HomDMeff

�

�
Z;F1Œ0�˝ � � � ˝FnŒ0�

�
: (1.1)

Here k is a perfect field, and F1; : : : ;Fn are homotopy invariant Nisnevich sheaves
with transfers in the sense of [31]. On the right-hand side, the tensor product F1Œ0�˝

� � � ˝ FnŒ0� is computed in Voevodsky’s triangulated category DMeff
� of effective

motivic complexes. The group K.kIF1; : : : ;Fn/ will be defined in Definition 5.1 by
an explicit set of generators and relations: it is a generalization of the group which
was defined by K. Kato and studied by M. Somekawa [24] when F1; : : : ;Fn are semi-
abelian varieties.

1.2
In [24, Introduction], Somekawa wrote that he expected an isomorphism of the form

K.kIG1; : : : ;Gn/' ExtnMM

�
Z;G1Œ�1�˝ � � � ˝GnŒ�1�

�
;

where MM is a conjectural abelian category of mixed motives over k, G1; : : : ;Gn are
semiabelian varieties overk, andG1Œ�1�; : : : ;GnŒ�1� are the corresponding 1-motives.
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Since we do not have such a category MM at hand, (1.1) provides the closest approx-
imation to Somekawa’s expectation.

1.3
The most basic case of (1.1) is F1 D � � � D Fn D Gm. By [24, Theorem 1.4], the
left-hand side is isomorphic to the usual Milnor K-group KMn .k/. The right-hand
side is almost by definition the motivic cohomology group Hn.k;Z.n//. Thus, when
k is perfect, we get a new and less combinatorial proof of the Suslin–Voevodsky
isomorphism (see [27, Theorem 3.4], [17, Theorem 5.1])

KMn .k/'H
n
�
k;Z.n/

�
: (1.2)

1.4
The isomorphism (1.1) also has the following application to algebraic cycles. Let X
be a k-scheme of finite type. Write CH 0.X/ for the homotopy invariant Nisnevich
sheaf with transfers (see [8, Theorem 2.2])

U 7! CH0
�
X �k k.U /

�
.U smooth connected):

Let i; j 2 Z. We write CHi .X; j / for Bloch’s homological higher Chow group
(see [15, Section 1.1]): if X is equidimensional of dimension d , it agrees with the
group CHd�i .X; j / of [5].

THEOREM 1.5
Suppose that chark D 0. Let X1; : : : ;Xn be quasi-projective k-schemes. Put X D
X1 � � � � �Xn. For any r � 0, we have an isomorphism

K
�
kICH 0.X1/; : : : ;CH 0.Xn/;Gm; : : : ;Gm

� �
�! CH�r.X; r/; (1.3)

where we put r copies of Gm on the left-hand side.�

1.6
When X1; : : : ;Xn are smooth projective,�� special cases of (1.3) were previously
known. The case r D 0 was proved by Raskind and Spiess [21, Corollary 4.2.6],
and the case nD 1 was proved by Akhtar [1, Theorem 6.1] (without assuming k to
be perfect). The extension to quasi-projective case is new and nontrivial.

�Using recent results of Shane Kelly [14], one may remove the characteristic zero hypothesis if we invert the
exponential characteristic of k.
��In this case, Theorem 1.5 is valid in any characteristic (see Remark 12.4).
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1.7
Theorem 1.5 is proven using the Borel–Moore motivic homology introduced in [7,
Section 9]. We also have a variant which involves motivic homology (see Theo-
rem 12.3). Here is an application. Let C1;C2 be two smooth connected curves over
our perfect field k, and put S D C1 �C2. Assume that C1 and C2 both have a 0-cycle
of degree 1. Then the special case nD 2 and r D 0 of Theorem 12.3 gives an isomor-
phism

Z˚AlbS .k/˚K.kIAlbC1 ;AlbC2/
�
�!H0.S;Z/:

Here, for a smooth variety X , we denote by AlbX the Albanese variety of X in the
sense of Serre [22]; it is a semiabelian variety universal for morphisms from X to
semiabelian varieties (see [31, Theorem 3.4.2]). The right-hand side in this case is
Suslin homology (see [28] and Section 12.2).

Since Somekawa’s groups are defined in an explicit manner, one can sometimes
determine the structure of K.kIAlbC1 ;AlbC2/ completely. For instance, when k is
finite, we have K.kIAlbC1 ;AlbC2/D 0 by [10]. This immediately implies the bijec-
tivity of the generalized Albanese map

aS WH0.S;Z/degD0!AlbS .k/

of Ramachandran and Spiess–Szamuely [25]. Note that aS is not bijective for a
smooth projective surface S in general (see [13, Proposition 9]).

1.8
We conclude this introduction by pointing out the main difficulty and main ideas in
the proof of (1.1).

The definitions of the two sides of (1.1) are quite different: the left-hand side is
based on Weil reciprocity, while the right-hand side is based on homotopy invariance.
Thus it is not even obvious how to define map (1.1) to start with. Our solution is to
write both sides as quotients of a common larger group and to prove that one quotient
factors through the other. This provides map (1.1), which is automatically surjective
(Theorem 5.3).

The proof of its injectivity turns out to be much more difficult. We need to find
many relations coming from Weil reciprocity. Our main idea, inspired by [24, The-
orem 1.4] (recalled in Section 1.3), is to use the Steinberg relation to create Weil
reciprocity relations. To show that this provides us with enough such relations, we
need to carry out a heavy computation of symbols in Section 11.
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2. Mackey functors and presheaves with transfers

2.1
A Mackey functor over k is a contravariant additive (i.e., commuting with coproducts)
functor A from the category of étale k-schemes to the category of abelian groups,
provided with a covariant structure verifying the following exchange condition: if

Y 0
f 0

����! Y

g0

??y g

??y
X 0

f
����! X

is a Cartesian square of étale k-schemes, then the diagram

A.Y 0/
f 0
�

����! A.Y /

g0�

??y g�

??y
A.X 0/

f �

����! A.X/

commutes. Here, � denotes the contravariant structure while � denotes the covariant
structure. The Mackey functor A is cohomological if we further have

f�f
� D deg.f /

for any f W X 0! X , with X connected. We denote by Mack the abelian category
of Mackey functors, and by Mackc its full subcategory of cohomological Mackey
functors.

2.2
A Mackey functor may be viewed as a contravariant additive functor on the category
Span of “spans” on étale k-schemes, defined as follows [29, (1.4)]: objects are étale
k-schemes. A morphism from X to Y is an equivalence class of diagram (span)

X
g
 �Z

f
�! Y (2.1)

where, as usual, two spans .Z;f;g/ and .Z0; f 0; g0/ are equivalent if there exists
an isomorphism Z

�
�! Z0 making the obvious diagram commute. The composi-

tion of spans is defined via fiber product in an obvious manner (compare Quillen’s
Q-construction in [19, Section 2]).

If A is a Mackey functor, the corresponding functor on Span has the same value
on objects, while its value on span (2.1) is given by g�f �.
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Note that Span is a preadditive category: one may add (but not subtract) two
morphisms with the same source and target. We may as well view a Mackey functor
as a contravariant additive functor on the associated additive category Z Span. In the
notation of the appendix, we thus have MackDMod –Z Span.

2.3
Let Cor be Voevodsky’s category of finite correspondences on smooth k-schemes,
denoted by SmCor.k/ in [31, Section 2.1]. Recall that the objects of Cor are the same
as those of the category Sm=k of smooth varieties over k. Following [31, Section 2.1],
we denote by c.X;Y / the group of morphisms in Cor from X to Y , which is, by
definition, the free abelian group on the set of closed integral subschemes of X � Y
which are finite and surjective over some irreducible component of X .

Let PST be the category of presheaves with transfers (i.e., contravariant additive
functors from Cor to abelian groups), denoted by PreShv.SmCor.k// in [31, Sec-
tion 3.1]. In the same style as Section 2.2, we have, by definition, PSTDMod – Cor.

2.4
The category Z Span is isomorphic to the full subcategory of Cor consisting of
smooth k-schemes of dimension 0 (D étale k-schemes). In particular, any presheaf
with transfers in the sense of Voevodsky [31, Definition 3.1.1] restricts to a Mackey
functor over k. By [30, Corollary 3.15], the restriction of a homotopy invariant
presheaf with transfers yields a cohomological Mackey functor. In other words, we
have exact functors

� W PST!Mack; (2.2)

� WHI!Mackc ; (2.3)

where HI is the full subcategory of PST consisting of homotopy invariant presheaves
with transfers.

2.5
By definition, the functor (2.2) equals i�, where i is the inclusion Z Span! Cor.
This inclusion has a left adjoint �0 (scheme of constants). Both functors i and �0 are
symmetric monoidal: for �0, reduce the problem to the case where k is algebraically
closed.

2.6
Let A be an additive symmetric monoidal category. In the appendix, we show that the
symmetric monoidal structure of A extends canonically to the category Mod –A of
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(right) A-modules (Section A.8). Given a symmetric monoidal functor f WA!B,
its extension fŠ to right modules is symmetric monoidal (Section A.12).

2.7
If A D Cor in Section 2.6, we get a tensor structure in PST: we show in Exam-
ple A.11 that it agrees with the one defined by Voevodsky [31, p. 206].

For the reader’s convenience, we recall how to compute this tensor product (see
Example A.11 and [31, Section 3.2]). For a smooth variety X over k, denote as usual
by L.X/ the Nisnevich sheaf with transfers represented by X . Let F and F 0 be
presheaves with transfers. There are exact sequences of the form

M
j

L.Yj /!
M
i

L.Xi /! F ! 0;

M
j 0

L.Y 0j 0/!
M
i 0

L.X 0i 0/! F 0! 0:

Then the tensor product F ˝PST F 0 of F and F 0 is given by

Coker
�M
j;i 0

L.Yj �X
0
i 0/˚

M
i;j 0

L.Xi � Y
0
j 0/!

M
i;j

L.Xi �X
0
i 0/
�
:

2.8
If A D Z Span in Section 2.6, we get a tensor structure on Mack. Another tensor

product of Mackey functors
M
˝ was originally defined by L. G. Lewis (unpublished);

it was used in [9, Section 5] and [10]. If either A or B is cohomological, A
M
˝B is

cohomological. In Example A.18, we show that
M
˝ agrees with the tensor structure

from Section 2.6.

For the reader’s convenience, we recall the definition of
M
˝. Let A1; : : : ;An be

Mackey functors. For any étale k-scheme X , we define

.A1
M
˝� � �

M
˝An/.X/ WD

hM
Y!X

A1.Y /˝ � � � ˝An.Y /
i.
R;

where Y !X runs through all finite étale morphisms, and R is the subgroup gener-
ated by all elements of the form

a1˝ � � � ˝ f�.ai /˝ � � � ˝ an � f
�.a1/˝ � � � ˝ ai ˝ � � � ˝ f

�.an/;

where Y1
f
! Y2 ! Y is a tower of étale morphisms, 1 � i � n, ai 2 Ai .Y1/, and

aj 2Aj .Y2/ .j D 1; : : : ; i � 1; i C 1; : : : ; n/.
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2.9
The functor �D i� D .�0/� of (2.2) is symmetric monoidal; namely, if F and G are
presheaves with transfers, then

�F
M
˝�G

�
�! �.F ˝PST G /: (2.4)

Indeed, by (A.1) and the right exactness of
M
˝ and ˝PST we reduce to F and G

representable. But if L.X/ 2 PST is the presheaf represented by a smooth k-scheme
X , then i� converts the “atomization” homomorphism

M
x2X.0/

L.x/!L.X/

into an isomorphism, and the monoidality of � follows. (This also shows the exactness
of i�, which we shall not use here.)

2.10
Let F 2 PST. We define C1.F / 2 PST by C1.F /.X/D F .X �A1/ for all smooth
X . For a 2 k D A1.k/, the morphism X !X �A1; x 7! .x; a/ defines a morphism
i�a W C1.F /! F in PST.

The inclusion functor HI ! PST has a left adjoint h0 given by h0.F / D

Coker.i�0 � i
�
1 W C1.F /! F /, and the symmetric monoidal structure of PST induces

one on HI via h0. In other words, if F ;G 2HI, we define

F ˝HI G D h0.F ˝PST G /: (2.5)

Note that (2.3) is not symmetric monoidal (since it is the restriction of (2.2)).

2.11
For any F 2 PST, the unit morphism F ! h0.F / induces a surjection

F .k/!! h0.F /.k/: (2.6)

This is obvious from the formula h0.F /D Coker.C1.F /! F /.

2.12
We shall also need to work with Nisnevich sheaves with transfers. We denote by NST
the category of Nisnevich sheaves with transfers (objects of PST which are sheaves in
the Nisnevich topology). By [31, Theorem 3.1.4], the inclusion functor NST! PST
has an exact left adjoint F 7! FNis (sheafification). The category NST then inherits a
tensor product by the formula
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F ˝NST G D .F ˝PST G /Nis:

Similarly, we define HINis DHI\NST. The sheafification functor restricts to an
exact functor HI!HINis (see [31, Theorem 3.1.11]), and HINis gets a tensor product
by the formula

F ˝HINis G D .F ˝HI G /Nis:

To summarize, all functors in the following naturally commutative diagram are
symmetric monoidal:

PST
Nis
����! NST

h0

??y hNis
0

??y
HI

Nis
����! HINis;

(2.7)

where each functor is left adjoint to the corresponding inclusion.

2.13
Let F be a presheaf on Sm=k, and let FNis be the associated Nisnevich sheaf. Then
we have an isomorphism

F .k/
�
�! FNis.k/: (2.8)

Indeed, any covering of Speck for the Nisnevich topology refines to a trivial
covering. In particular, the functor F 7! FNis.k/ is exact.

This applies in particular to a presheaf with transfers and the associated Nisnevich
sheaf with transfers.

2.14
Let F1; : : : ;Fn 2HINis. Then (2.4) yields a canonical isomorphism

.F1
M
˝� � �

M
˝Fn/.k/' .F1˝PST � � � ˝PST Fn/.k/: (2.9)

Composing (2.9) with the unit morphism Id) hNis
0 from (2.7) and taking (2.5) into

account, we get a canonical morphism

.F1
M
˝� � �

M
˝Fn/.k/! .F1˝HINis � � � ˝HINis Fn/.k/; (2.10)

which is surjective by Sections 2.11 and 2.13.
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2.15
IfG is a commutative k-group scheme whose identity component is a quasi-projective
variety, then G has a canonical structure of Nisnevich sheaf with transfers (see [25,
proof of Lemma 3.2] completed by [3, Lemma 1.3.2]). This applies in particular to
semiabelian varieties and also to the “full” Albanese scheme (see [20]) of a smooth
variety (which is an extension of a lattice by a semiabelian variety). In particular, if
G1; : : : ;Gn are such k-group schemes, (2.10) yields a canonical surjection

.G1
M
˝� � �

M
˝Gn/.k/! .G1˝HINis � � � ˝HINis Gn/.k/; (2.11)

where the Gi ’s are considered on the left as Mackey functors, and on the right as
homotopy invariant Nisnevich sheaves with transfers.

3. Presheaves with transfers and motives

3.1
The left adjoint hNis

0 in (2.7) “extends” to a left adjoint C� of the inclusion

DMeff
� !D�.NST/

where the left-hand side is Voevodsky’s triangulated category of effective motivic
complexes [31, Section 3, especially Proposition 3.2.3].

More precisely, DMeff
� is defined as the full subcategory of objects of D�.NST/

whose cohomology sheaves are homotopy invariant. The canonical t-structure of
D�.NST/ induces a t-structure on DMeff

� , with heart HINis. The functor C� is right
exact with respect to these t-structures, and if F 2NST, thenH0.C�.F //D hNis

0 .F /.

3.2
The tensor structure of Section 2.12 on NST extends to one on D�.NST/ (see [31,
p. 206]). Via C�, this tensor structure descends to a tensor structure on DMeff

� (see [31,
p. 210]), which will simply be denoted by ˝. The relationship between this tensor
structure and the one of Section 2.12 is as follows: If F ;G 2HINis, then

F ˝HINis G DH 0
�
F Œ0�˝ G Œ0�

�
; (3.1)

where F Œ0�;G Œ0� are viewed as complexes of Nisnevich sheaves with transfers con-
centrated in degree 0.

We shall need the following lemma, which is not explicit in [31].

LEMMA 3.3
The tensor product˝ of DMeff

� is right exact with respect to the homotopy t-structure.
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Proof
By definition,

C ˝D D C�.C
L
˝D/

for C;D 2DMeff
� , where

L
˝ is the tensor product ofD�.NST/ defined in [31, p. 206].

We want to show that if C and D are concentrated in degrees at most 0, then so is
C ˝D. Using the canonical left resolutions of [31, p. 206], it is enough to do it for
C and D of the form C�.L.X// and C�.L.Y // for two smooth schemes X;Y . Since
C� is symmetric monoidal, we have that

C�
�
L.X/

�
˝C�

�
L.Y /

� �
 � C�

�
L.X/

L
˝L.Y /

�
D C�

�
L.X � Y /

�
;

and the claim is obvious in view of the formula for C� (see [31, p. 207]).

3.4
Let C 2DMeff

� . For any X 2 Sm=k and any i 2 Z, we have that

HiNis.X;C /'HomDMeff
�

�
M.X/;C Œi �

�
;

where M.X/D C�.L.X// is the motive of X computed in DMeff
� (cf. [31, Proposi-

tion 3.2.7]).
Specializing to the case X D Speck (M.X/D Z) and taking Section 2.13 into

account, we get that

HomDMeff
�

�
Z;C Œi �

�
'H i .C /.k/: (3.2)

Combining (3.1), (2.8), and (3.2), we get the following.

LEMMA 3.5
Let F1; : : : ;Fn be homotopy invariant Nisnevich sheaves with transfers. Then we have
a canonical isomorphism

.F1˝HINis � � � ˝HINis Fn/.k/'HomDMeff
�

�
Z;F1Œ0�˝ � � � ˝FnŒ0�

�
: (3.3)

3.6
Summarizing, for any F1; : : : ;Fn 2HINis, we get a surjective homomorphism

.F1
M
˝� � �

M
˝Fn/.k/!HomDMeff

�

�
Z;F1Œ0�˝ � � � ˝FnŒ0�

�
(3.4)

by composing (2.9), (2.6), (2.5), (2.8), and (3.3).
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4. Presheaves with transfers and local symbols

4.1
Given a presheaf with transfers G , recall from [30, p. 96] the presheaf with transfers
G�1 defined by the formula

G�1.U /D Coker
�
G .U �A1/! G

�
U �

�
A1 � ¹0º

���
: (4.1)

If G 2HINis, then G .U � .A1�¹0º//' G .U /˚G�1.U / for all smooth U . Thus
G�1 2HINis and G 7! G�1 is an exact endofunctor of HINis.

Suppose that G 2 HINis. Let X 2 Sm=k (connected), let K D k.X/, and let
x 2 X be a point of codimension 1. By [30, Lemma 4.36], there is a canonical iso-
morphism

G�1
�
k.x/

�
'H 1

Zar;x.X;G / (4.2)

yielding a canonical map

@x W G .K/! G�1
�
k.x/

�
: (4.3)

The following lemma follows from the construction of the isomorphisms (4.2). It
is part of the general fact that G defines a cycle module in the sense of Rost (cf. [6,
Proposition 5.4.64]).

LEMMA 4.2
(a) Let f W Y ! X be a dominant morphism, with Y smooth and connected. Let

LD k.Y /, and let y 2 Y .1/ be such that f .y/D x. Then the diagram

G .L/
.@y/
����! G�1

�
k.y/

�
f �

x?? ef �

x??
G .K/

@x
����! G�1

�
k.x/

�
commutes, where e is the ramification index of vy relative to vx .

(b) If f is finite surjective, the diagram

G .L/
.@y/
����!

M
y2f �1.x/

G�1
�
k.y/

�

f�

??y f�

??y
G .K/

@x
����! G�1

�
k.x/

�
commutes.
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PROPOSITION 4.3
Let G 2HINis. There is a canonical isomorphism

G�1 DHom.Gm;G /:

Proof
The statement means that G�1 represents the functor

H 7!HomHINis.H ˝HINis Gm;G /:

Sheafifying (4.1) for the Nisnevich topology and using homotopy invariance, we
obtain an isomorphism

Coker.G ! p�p
�G /

�
�! G�1;

where p W A1 � ¹0º ! Speck is the structural morphism. Moreover, [30, Proposi-
tion 5.4] shows that Rip�p�G .K/DH i

Nis.A
1
K � ¹0º; p

�G / D 0 for any field K=k
and i > 0; hence by [30, Proposition 4.20] one has that Rip�p�G D 0 for any i > 0.
It follows that p�p�G Œ0�

�
�!Rp�p

�G Œ0�.
By [31, Proposition 3.2.8], we have that

Rp�p
�G Œ0�DHom

�
M
�
A1 � ¹0º

�
;G Œ0�

�
;

where Hom is the (partially defined) internal Hom of DMeff
� . By [31, Proposition 3.5.4]

(Gysin triangle) and homotopy invariance, we have an exact triangle, split by any
rational point of A1 � ¹0º:

Z.1/Œ1�!M
�
A1 � ¹0º

�
! Z

C1
�! :

To get a canonical splitting, we may choose the rational point 1 2A1 � ¹0º.
By [31, Corollary 3.4.3], we have an isomorphism Z.1/Œ1�' GmŒ0�. Hence, in

DMeff
� , we have an isomorphism

G�1Œ0�'HomDMeff
�

�
GmŒ0�;G Œ0�

�
: (4.4)

Let H 2HINis. We get that

HomDMeff
�

�
H Œ0�;G�1Œ0�

�

'HomDMeff
�

�
H Œ0�˝GmŒ0�;G Œ0�

�
by (4.4)

'HomHINis

�
H 0

�
H Œ0�˝GmŒ0�

�
;G
�

by Lemma 3.3

DHomHINis.H ˝HINis Gm;G / by (3.1);

as desired.
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Remark 4.4
The proof of Proposition 4.3 also shows that, in DMeff

� , we have an isomorphism

Hom
�
GmŒ0�;G Œ0�

�
'Hom.Gm;G /Œ0�;

where the left Hom is computed in DMeff
� and the right Hom is computed in HINis. In

particular, Hom.GmŒ0�;�/ WDMeff
� !DMeff

� is t -exact.

PROPOSITION 4.5
Let C be a smooth, proper, connected curve over k, with function field K . For any
G 2HINis, there exists a canonical homomorphism

TrC=k WH
1
Zar.C;G /! G�1.k/

such that, for any x 2 C , the composition

G�1
�
k.x/

�
'H 1

x .C;G /!H 1
Zar.C;G /

TrC
�! G�1.k/

equals the transfer map Trk.x/=k associated to the finite surjective morphism
Speck.x/! Speck.

Proof
By [31, Proposition 3.2.7], we have that

H 1
Zar.C;G /

�
�!H 1

Nis.C;G /'HomDMeff
�

�
M.C/;G Œ1�

�
:

The structural morphism C ! Speck yields a morphism of motivesM.C/! Z,
which, by Poincaré duality [31, Theorem 4.3.2], yields a canonical morphism

GmŒ1�' Z.1/Œ2�!M.C/:

(One may view this morphism as the image of the canonical morphism L! h.C /

in the category of Chow motives.)
Therefore, by Proposition 4.3 and Remark 4.4, we get a map

TrC=k WH
1
Zar.X;G /!HomDMeff

�

�
GmŒ1�;G Œ1�

�
D G�1.k/:

It remains to prove the claimed compatibility. Let M x.C / be the motive of
C with supports in x, defined as C�.Coker.L.C � ¹xº/! L.C//. Let Zk.x/ D
M.Speck.x//. By [31, Proof of Proposition 3.5.4], we have an isomorphism
M x.C /' Zk.x/.1/Œ2�, and we have to show that the composition

Z.1/Œ2�!M.C/
gx
�! Zk.x/.1/Œ2�
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induces Trk.x/=k , up to twisting and shifting. To see this, we observe that gx is the
image of the morphism of Chow motives

h.C /! h
�
Speck.x/

�
.1/

dual to the morphism h.Speck.x//! h.C / induced by the inclusion Speck.x/! C .
This is easy to check from the definition of gx in [31]. (Observe that, in this special
case, Blx.C /D C , and note that we may use a variant of said construction by replac-
ing C �A1 with C � P1 to stay within smooth projective varieties.) The conclusion
now follows from the fact that the composition

Speck.x/! C ! Speck

is the structural morphism of Speck.x/.

PROPOSITION 4.6 (Reciprocity)
Let C be a smooth, proper, connected curve over k, with function field K . Then the
sequence

G .K/
.@x/
����!

M
x2C

G�1
�
k.x/

� P
x Trk.x/=k
��������! G�1.k/

is a complex.

Proof
This follows from Proposition 4.5, since the composition

G .K/!
M
x2C

H 1
x .C;G /

.gx/
�!H 1.C;G /

is 0.

THEOREM 4.7
Suppose that F 2HINis. Then there exists a canonical isomorphism

F ' .F ˝HINis Gm/�1:

Proof
We compute again in DMeff

� . As recalled in the proof of Proposition 4.3, we have that
GmŒ0�D Z.1/Œ1�. Hence the cancellation theorem from [33, Corollary 4.10] yields a
canonical isomorphism

F Œ0�'HomDMeff
�

�
GmŒ0�;F Œ0�˝GmŒ0�

�
:
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By taking H 0, we obtain that

F 'HomHINis
.Gm;F ˝HINis Gm/:

The right-hand side is isomorphic to .F ˝HINis Gm/�1 by Proposition 4.3.

4.8
If F ;G are presheaves with transfers, there is a bilinear morphism of presheaves with
transfers (i.e., a natural transformation over PST� PST):

F .U /˝ G�1.V /

D Coker
�
F .U /˝ G .V �A1/!F .U /˝ G

�
V �

�
A1 � ¹0º

���
! Coker

�
.F ˝PST G /.U � V �A1/! .F ˝PST G /

�
U � V �

�
A1 � ¹0º

���
D .F ˝PST G /�1.U � V /;

which induces a morphism

F ˝PST G�1! .F ˝PST G /�1: (4.5)

Notation 4.9
Let F ;G 2 HINis, and let H D F ˝HINis G . Let X;K;x be as in Section 4.1. For
.a; b/ 2 F .K/� G .K/, we denote by a � b the image of a˝ b in H .K/ by the map

F .K/˝ G .K/!H .K/: (4.6)

We define the local symbol on F

F .K/�K�! F
�
k.x/

�

to be the composition

F .K/�K�
�
! .F ˝HINis Gm/.K/

@x
! .F ˝HINis Gm/�1

�
k.x/

�
' F

�
k.x/

�
;

where the first map is given by (4.6) with G DGm and the last isomorphism is given
by Theorem 4.7. The image of .a; b/ 2 F .K/ �K� by the local symbol is denoted
by @x.a; b/ 2 F .k.x//.

PROPOSITION 4.10 (cf. [6, Proposition 5.5.27])
Let F ;G 2HINis, and consider the morphism induced by (4.5),

F ˝HINis G�1
ˆ
�! .F ˝HINis G /�1:
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Let X;K;x be as in Section 4.1. Then the diagram

F .OX;x/˝ G .K/

i�x˝@x

.F ˝HINis G /.K/

@xF
�
k.x/

�
˝ G�1

�
k.x/

�

.F ˝HINis G�1/
�
k.x/

� ˆ
.F ˝HINis G /�1

�
k.x/

�

commutes, where i�x is induced by the reduction map OX;x ! k.x/. In other words,
with Notation 4.9 we have the identity

@x.a � b/Dˆ.i
�
xa � @xb/ (4.7)

for .a; b/ 2 F .OX;x/� G .K/.

COROLLARY 4.11
Let F 2HINis, let X;K;x be as in Section 4.1, and let .a; f / 2 F .K/�K�.
(a) Suppose that there is Qa 2 F .OX;x/ whose image in F .K/ is a.� Then we have

that

@x.a; f /D vx.f /a.x/;

where a.x/ is the image of Qa in F .k.x//.
(b) Suppose that vx.f � 1/ > 0. Then @x.a; f /D 0.

Proof
Since (4.3) is given by vx when G DGm, (a) follows from Proposition 4.10 (applied
with G DGm) and Theorem 4.7. Part (b) follows again from Proposition 4.10, after
switching the roles of F and G .

PROPOSITION 4.12
Let G be a semiabelian variety. The local symbol on G defined in Notation 4.9 agrees
with Somekawa’s local symbol [24, (1.1)] (generalizing the Rosenlicht–Serre local
symbol) on G.

Proof
Up to base changing from k to Nk (see Lemma 4.2(a)), we may assume k algebraically

�By [30, Corollary 4.19], Qa is unique.
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closed. By [23, Chapter III, Proposition 1], it suffices to show that the local symbol in
Notation 4.9 satisfies the properties in [23, Chapter III, Definition 2], which charac-
terize the Rosenlicht–Serre local symbol. In this definition, Condition (i) is obvious,
Condition (ii) is Corollary 4.11(b), Condition (iii) is Corollary 4.11(a), and Condi-
tion (iv) is Proposition 4.6.

5. K-groups of Somekawa type

Definition 5.1
Let F1; : : : ;Fn 2HINis.
(a) A relation datum of Somekawa type for F1; : : : ;Fn is a collection .C;h;

.gi /iD1;:::;n/ of the following objects: (1) a smooth proper connected curve C
over k, (2) h 2 k.C /�, and (3) gi 2 Fi .k.C // for each i 2 ¹1; : : : ; nº, which
satisfies the condition

for any c 2 C , there is i.c/ such that c 2Ri for all i ¤ i.c/, (5.1)

where Ri WD ¹c 2 C j gi 2 Im.Fi .OC;c/! Fi .k.C ///º.
(b) We define the K-group of Somekawa type K.kIF1; : : : ;Fn/ to be the quotient

of .F1
M
˝� � �

M
˝Fn/.k/ by its subgroup generated by elements of the form
X
c2C

Trk.c/=k
�
g1.c/˝ � � � ˝ @c.gi.c/; h/˝ � � � ˝ gn.c/

�
; (5.2)

where .C;h; .gi /iD1;:::;n/ runs through all relation data of Somekawa type.

Remark 5.2
In view of Proposition 4.12, our group K.kIF1; : : : ;Fn/ coincides with the Milnor
K-group defined in [24] when F1; : : : ;Fn are semiabelian varieties over k.� (Note
that Somekawa works with all finite extensions but over an arbitrary field; we work
with finite separable extensions but are assuming k perfect.)

THEOREM 5.3
Let F1; : : : ;Fn 2HINis. The homomorphism (2.10) factors throughK.kIF1; : : : ;Fn/.
Consequently, we get a surjective homomorphism (1.1).

Proof
Put F WDF1˝HINis � � �˝HINis Fn. Let .C;h; .gi /iD1;:::;n/ be a relation datum of Some-
kawa type. We must show that the element (5.2) goes to 0 in F .k/ via (2.10). Consider

�As was observed by W. Raskind, the signs appearing in [24, (1.2.2)] should not be there (cf. [21, p. 10, foot-
note]).
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the element gD g1˝ � � � ˝ gn 2 F .K/. It follows from (4.7) that, for any c 2 C , we
have

g1.c/˝ � � � ˝ @c.gi.c/; h/˝ � � � ˝ gn.c/

D g1.c/˝ � � � ˝ @c
�
gi.c/˝ ¹hº

�
˝ � � � ˝ gn.c/D @c

�
g˝ ¹hº

�
:

The claim now follows from Proposition 4.6.

6. K-groups of geometric type

Definition 6.1
Let F1; : : : ;Fn 2 PST.
(a) A relation datum of geometric type for F1; : : : ;Fn is a collection .C;f;

.gi /iD1;:::;n/ of the following objects: (1) a smooth projective connected curve
C over k, (2) a surjective morphism f W C ! P1, and (3) gi 2 Fi .C

0/ for each
i 2 ¹1; : : : ; nº, where C 0 D f �1.P1 n ¹1º/.

(b) We define the K-group of geometric typeK 0.kIF1; : : : ;Fn/ to be the quotient

of .F1
M
˝� � �

M
˝Fn/.k/ by its subgroup generated by elements of the form

X
c2C 0

vc.f /Trk.c/=k
�
g1.c/˝ � � � ˝ gn.c/

�
; (6.1)

where .C;f; .gi /iD1;:::;n/ runs through all relation data of geometric type.
(Here we used the notation gi .c/ D ��c .gi / 2 F .k.c//, where �c W c D

Speck.c/! C 0 is the closed immersion.)

The rest of this section is devoted to a proof of the following theorem.

THEOREM 6.2
Let F1; : : : ;Fn 2HINis. The homomorphism (2.10) induces an isomorphism

K 0.kIF1; : : : ;Fn/
�
�!HomDMeff

�

�
Z;F1Œ0�˝ � � � ˝FnŒ0�

�
: (6.2)

Remark 6.3
By combining Theorems 5.3 and 6.2, we obtain a surjective homomorphism

K.kIF1; : : : ;Fn/!K 0.kIF1; : : : ;Fn/ (6.3)

for any F1; : : : ;Fn 2 HINis. The existence of this surjection is not clear from the
definition.
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6.4
Let F 2 PST. Suppose that we are given the following data: (a) a smooth projective
connected curve C over k, (b) a surjective morphism f W C ! P1, and (c) a map
˛ W L.C 0/! F in PST, where C 0 D f �1.�/ and �D P1 n ¹1º.' A1/. To such a
triple .C;f;˛/, we associate an element

˛
�
div.f /

�
2 F .k/; (6.4)

where we regard div.f / as an element of Z0.C 0/D c.Speck;C 0/DL.C 0/.k/.
One can rewrite the element (6.4) as follows. The map ˛ W L.C 0/! F can be

regarded as a section ˛ 2 F .C 0/. To each closed point c 2 C 0, we write ˛.c/ for the
image of ˛ in F .k.c// by the map induced by c D Speck.c/! C 0. Now (6.4) is
rewritten as

X
c2C 0

vc.f /Trk.c/=k ˛.c/: (6.5)

PROPOSITION 6.5
Let F 2 PST. We define F .k/rat to be the subgroup of F .k/ generated by elements
(6.4) for all triples .C;f;˛/ as in Section 6.4. Then we have that

h0.F /.k/DF .k/=F .k/rat:

Proof
By definition we have that

h0.F /.k/D Coker
�
i�0 � i

�
1 W F .�/! F .k/

�
; (6.6)

where �D P1 n ¹1º.' A1/ and i�a is the pullback by the inclusion ia W ¹aº !� for
a 2 ¹0;1º.

Suppose that we are given a triple .C;f;˛/ as in Section 6.4, and set C 0 D
f �1.�/. The graph �f jC 0 of f jC 0 defines an element of c.�;C 0/D L.C 0/.�/. In
the commutative diagram

L.C 0/.�/
˛
! F .�/

i�
0
�i�1
# #i�

0
�i�1

L.C 0/.k/
˛
! F .k/;

the image of �f jC 0 in L.C 0/.k/D Z0.C 0/ is div.f /, which shows the vanishing of
˛.div.f // in h0.F /.k/.

Conversely, given ˛ 2 F .�/, (6.4) for the triple .P1; idP1 ; ˛/ coincides with
.i�0 � i

�
1/.˛/. This completes the proof.
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LEMMA 6.6
Let F1; : : : ;Fn 2 PST. Put F WD F1˝PST � � � ˝PST Fn. Let .C;f;˛/ be a triple con-
sidered in Section 6.4. Then ˛ 2 F .C 0/ is the sum of a finite number of elements of
the form

Trh.g1˝ � � � ˝ gn/; (6.7)

where D is a smooth projective curve, h W D ! C is a surjective morphism, gi 2
Fi .h

�1.C 0// for i D 1; : : : ; n, and Trh W F .h�1.C 0//! F .C 0/ is the transfer with
respect to hjh�1.C 0/.

Proof
By the facts recalled in Section 2.7, we reduce the problem to the case Fi D L.Xi /,
where Xi is a smooth variety over k for each i D 1; : : : ; n. Then we have F DL.X/

with X DX1 � � � � �Xn. Let Z be an integral closed subscheme of C 0 �X which is
finite and surjective over C 0. It suffices to show that Z 2 c.C 0;X/D L.X/.C 0/ can
be written as (6.7).

Let q W D0! Z be the normalization, and let h W D0! C 0 be the composition
D0!Z! C 0, so that h is a finite surjective morphism. For i D 1; : : : ; n, we define
gi 2 c.D

0;Xi /D L.Xi /.D
0/ to be the graph of D0! X ! Xi . If we set g D g1 ˝

� � � ˝ gn 2L.X/.D
0/, then by definition we have that Trh.g/DZ in L.X/.C 0/. The

assertion is proved.

6.7
Now it follows from Definition 6.1(b), Proposition 6.5, Lemma 6.6, and (6.5) that
(2.9) and (2.6) induce an isomorphism

K 0.kIF1; : : : ;Fn/' h0.F1˝PST � � � ˝PST Fn/.k/

for any F1; : : : ;Fn 2 PST. If F1; : : : ;Fn 2 HINis, the right-hand side is canonically
isomorphic to HomDMeff

�
.Z;F1Œ0�˝ � � � ˝ FnŒ0�/ by (3.3) and (2.8). This completes

the proof of Theorem 6.2.

7. Milnor K-theory

7.1
Our aim is to show that the map (6.3) is bijective. The first step is the special case of
the multiplicative groups.

Recall that if C is a smooth projective connected curve over k, then the compo-
sition
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KMrC1
�
k.C /

� @c
�!

M
c2C

KMr
�
k.c/

� ˚Nk.c/=k
�! KMr .k/

is the zero map by Weil reciprocity (see [4, Chapter I, (5.4)]). Here, for each closed
point c 2 C , we write @c W KMrC1.k.C //! KMr .k.c// and Nk.c/=k W KMr .k.c//!
KMr .k/ for the tame symbol and the norm map. The tame symbol satisfies (and is
characterized by) the property

@c
�
¹a1; : : : ; an; f º

�
D vc.f /

®
a1.c/; : : : ; an.c/

¯

for any a1; : : : ; an 2O�C;c and f 2 k.C /�.

PROPOSITION 7.2
When F1 D � � � D Fn DGm, the map (6.3) is bijective.

Proof
It suffices to show that relations (6.1) vanish in K.kIGm; : : : ;Gm/. Because of
Somekawa’s isomorphism [24, Theorem 1.4]

K.kIGm; : : : ;Gm/'K
M
n .k/ (7.1)

given by ¹x1; : : : ; xnºE=k 7!NE=k.¹x1; : : : ; xnº/, it suffices to show this vanishing in
the usual Milnor K-group KMn .k/, which follows from the Weil reciprocity recalled
above.

The following lemmas appear to be crucial in the proof of the main theorem.

LEMMA 7.3
Let C be a smooth projective connected curve over k, and let Z D ¹p1; : : : ; psº be
a finite set of closed points of C . If k is infinite, then we have that KM2 .k.C // D
¹k.C /�;O�C;Zº.

Proof
Let pi be the maximal ideal of AD OC;Z corresponding to pi . Since A is a semilo-
cal principal ideal domain, we can choose generators �1; : : : ; �s of p1; : : : ;ps . Since
k is infinite, we can change �i into �i�i for suitable �1; : : : ;�s 2 k� to achieve
�i C �j 6� 0 .mod pk/ for i; j; k all distinct. (Indeed, the set of bad .�1; : : : ;�s/ is
contained in a finite union of hyperplanes in Nks .) It follows that �i C �j 2A� for all
i ¤ j .

By the relation ¹f;�f º D 0 .f 2 k.C /�/, we have thatKM2 .k.C //D ¹A
�;A�ºCP

i<j ¹�i ; �j º. Now the identity
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¹�i ; �j º D ¹�i ; �j º � ¹��j ; �j º D ¹��i=�j ; �j º

D ¹��i=�j ; �j º C
®
��i=�j ; 1C .�i=�j /

¯
D ¹��i=�j ; �i C �j º

proves the lemma.

LEMMA 7.4
Let C be a smooth projective connected curve over k, let Z � C be a proper closed
subset, and let r > 0. If k is an infinite field, thenKMrC1k.C / is generated by elements
of the form ¹a1; : : : ; arC1º where the ai 2 k.C /� satisfy Supp.div.ai //\Z D ; for
all 1� i � r and Supp.div.ai //\ Supp.div.aj //D; for all 1� i < j � r .

Proof
We proceed by induction on r . The assertion follows from Lemma 7.3 when r D
1. Suppose that r > 1. Take a1; : : : ; arC1 2 k.C /�. By induction, there exist bm;i 2
k.C /� such that Supp.div.bm;i // \ Z D ; for all i < r and m, Supp.div.bm;i // \
Supp.div.bm;j //D; for all i < j < r and m, and

¹a1; : : : ; arº D
X
m

¹bm;1; : : : ; bm;rº

holds in KMr k.C /. For each m, Lemma 7.3 shows that there exist cm;i ; dm;i 2 k.C /�

such that

Supp
�
div.cm;i /

�
\
�
Z [

r�1[
jD1

Supp
�
div.bm;j /

��
D;

and that

¹bm;r ; arC1º D
X
i

¹cm;i ; dm;iº

holds in KM2 k.C /. Then we have that

¹a1; : : : ; arC1º D
X
m;i

¹bm;1; : : : ; bm;r�1; cm;i ; dm;iº

in KMrC1k.C /, and we are done.

8. K-groups of Milnor type
We now generalize the notion of Milnor K-groups to arbitrary homotopy invariant
Nisnevich sheaves with transfers, although we shall seriously use this generalization
only for special, representable sheaves.
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8.1
Let F 2 HINis. We shall call a homomorphism Gm! F a cocharacter of F . (By
Proposition 4.3, the group HomHINis.Gm;F / is canonically isomorphic to F�1.k/.)

Let F1; : : : ;Fn 2HINis. Denote by St.kIF1; : : : ;Fn/ the subgroup of .F1˝PST

� � � ˝PST Fn/.k/ generated by the elements

a1˝ � � � ˝ 	i .a/˝ � � � ˝ 	j .1� a/˝ � � � ˝ an (8.1)

where 	i WGm! Fi , 	j WGm! Fj are two cocharacters with i < j , a 2 k� n ¹1º,
and am 2 Fm.k/ .m¤ i; j /.

Definition 8.2

For F1; : : : ;Fn 2 HINis, we write QK.kIF1; : : : ;Fn/ for the quotient of .F1
M
˝� � �

M
˝Fn/.k/ by the subgroup generated by TrE=k St.EIF1; : : : ;Fn/, where E runs
through all finite extensions of k. This is the K-group of Milnor type associated to
F1; : : : ;Fn.

8.3
Let F1; : : : ;Fn 2HINis. We have a canonical isomorphism

.F1
M
˝� � �

M
˝Fn/.k/' .Z

M
˝� � �

M
˝Z

M
˝F1

M
˝� � �

M
˝Fn/.k/

because Z is the unit object for the tensor structure of Mackey functors. Since there
is no nontrivial cocharacter of Z, it induces an isomorphism

QK.kIF1; : : : ;Fn/' QK.kIZ; � � � ;Z;FrC1; : : : ;Fn/:

8.4
The assignment k 7! QK.kIF1; : : : ;Fn/ inherits the structure of a cohomological
Mackey functor, which is natural in .F1; : : : ;Fn/. In particular, the choice of elements
fi 2 Fi .k/DHomHINis.Z;Fi / for i D 1; : : : ; r induces a homomorphism

QK.kIFrC1; : : : ;Fn/' QK.kIZ; : : : ;Z;FrC1; : : : ;Fn/! QK.kIF1; : : : ;Fn/: (8.2)

LEMMA 8.5
Let F1; : : : ;Fn 2HINis. The image ofSt.kIF1; : : : ;Fn/ vanishes inK.kIF1; : : : ;Fn/.
Consequently, we have a surjective homomorphism QK.kIF1; : : : ;Fn/! K.kIF1;

: : : ;Fn/ and a composite surjective homomorphism

QK.kIF1; : : : ;Fn/�!!K 0.kIF1; : : : ;Fn/: (8.3)
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Proof
This is a straightforward generalization of Somekawa’s proof of [24, Theorem 1.4].
We need to show that the image of (8.1) vanishes in K.kIF1; : : : ;Fn/. By functo-
riality, we may assume that Fi D Fj D Gm for some i < j and that 	i ; 	j are
the identity cocharacters. Given am 2 Fm.k/ (m ¤ i; j ) and a 2 k� n ¹1º, we put
ai D 1� at

�1; aj D 1� t 2Gm.k.P1//D k.t/�. Then .P1; t; .a1; : : : ; an// is a rela-
tion datum of Somekawa type. Note that ai 2 Gm.P1 n ¹0; aº/, and note that aj 2
Gm.P1 n ¹1;1º/. Direct computation shows that

aj .0/D @1.aj ; t /D @1.aj ; t /D 1; @a.ai ; t /D a
�1; aj .a/D 1� a:

Thus this relation datum yields the vanishing of

¹a1; : : : ; ai�1; a
�1; aiC1; : : : ; aj�1; 1� a;ajC1; : : : ; anºk=k ;

which is the negative of the image of (8.1) in K.kIF1; : : : ;Fn/.

LEMMA 8.6
Let F1; : : : ;Fn 2 HINis, and let G 0 �!! G 00 be an epimorphism in HINis. If (8.3) is
bijective for .G 0;F1; : : : ;Fn/, it is bijective for .G 00;F1; : : : ;Fn/.

Proof
Let G D Ker.G 0! G 00/. For H 2 ¹G ;G 0;G 00º, we put QKH D QK.kIH ;F1; : : : ;Fn/,
K 0

H
DK 0.kIH ;F1; : : : ;Fn/. In the commutative diagram

QKG ����! QKG 0
f

����! QKG 00 ����! 0??y
??y

??y
K 0

G
����! K 0

G 0
����! K 0

G 00
����! 0

the upper row is a complex and f is surjective. The lower row is exact because of
Theorem 6.2 and Lemma 3.3, and all vertical arrows are surjective. The assertion
now follows from a diagram chase.

8.7
Let E=k be an étale k-algebra, and let F 2 HINis. We define the Weil restriction
RE=kF 2HINis of F by the formula RE=kF .U /DF .U �k E/ for all smooth vari-
eties U . If F is a semiabelian variety, then RE=kF is the (usual) Weil restriction
of F .

LEMMA 8.8
Let E=k be a finite extension. Let F1; : : : ;Fn�1 2 HINis, and let Fn be a Nisnevich
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sheaf with transfers over E . We have canonical isomorphisms

K.kIF1; : : : ;Fn�1;RE=kFn/'K.EIF1; : : : ;Fn/;

K 0.kIF1; : : : ;Fn�1;RE=kFn/'K
0.EIF1; : : : ;Fn/;

QK.kIF1; : : : ;Fn�1;RE=kFn/' QK.EIF1; : : : ;Fn/:

Proof
The first isomorphism was constructed in [26, Lemma 4] when F1; : : : ;Fn are semi-
abelian varieties. The same construction works for arbitrary F1; : : : ;Fn and also for
K 0 and QK .

8.9
If F1 D � � � D Fn DGm, (8.3) is bijective by Proposition 7.2. This is false in general,
for example, if all the Fi ’s are proper (Definition 10.1) and n > 1. However, we have
the following.

PROPOSITION 8.10
(a) Let F1 DF 01 ˚F 001 . Then the natural map

QK.kIF1; : : : ;Fn/! QK.kIF 01; : : : ;Fn/˚
QK.kIF 001 ; : : : ;Fn/

is bijective.
(b) Let T1; : : : ; Tn be tori. Assume that, for each i , there exists an exact sequence

of tori

0! P 1i ! P 0i ! Ti ! 0

where P 0i and P 1i are invertible tori (i.e., direct summands of permutation
tori). Then (8.3) is bijective for Fi D Ti .

Proof
(a) This is formal, as QK.kIF1; : : : ;Fn/ is a quotient of the multiadditive multifunctor

.F1
M
˝� � �

M
˝Fn/.k/ (see Section 8.4).

(b) Note that, by Hilbert’s Theorem 90, the sequences 0! P 1i ! P 0i ! Ti ! 0

are exact in HINis. Lemma 8.6 reduces the problem to the case where all the Ti ’s are
permutation tori. Then Lemma 8.8 reduces the problem to the case where all the Ti ’s
are split tori. Finally, we reduce the problem to F1 D � � � D Fn DGm by (a).

Question 8.11
Is Proposition 8.10(b) true for general tori?
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8.12
Let T1; : : : ; Tn be as in Proposition 8.10(b). Let C=k be a smooth projective con-
nected curve with function fieldK , and let v 2 C be a closed point. Put F D T1˝HINis

� � �˝HINis Tn. By Theorem 4.7 and (4.3), we get a residue map @v W F ˝HINis Gm.K/!

F .k.v//. From Lemma 3.5, Theorem 6.2, and Proposition 8.10(b), this can be rein-
terpreted as

@v W QK.KIT1; : : : ; Tn;Gm/! QK
�
k.v/IT1; : : : ; Tn

�
: (8.4)

As v varies, these maps satisfy the reciprocity law of Proposition 4.6 and the compat-
ibility of Lemma 4.2.

9. Reduction to the representable case
Following [31, p. 207], we write that hNis

0 .X/ WD hNis
0 .L.X// for a smooth variety X

over k.

PROPOSITION 9.1
The following statements are equivalent:
(a) The homomorphism (6.3) is bijective for any F1; : : : ;Fn 2HINis.
(b) Let F1 D � � � D Fn D h

Nis
0 .C 0/ for a smooth connected curve C 0=k. Then (6.3)

is bijective.
(c) Let C be a smooth projective connected curve over k, and let f W C ! P1 be a

surjective morphism. Let C 0 D f �1.P1 n ¹1º/. Let � WL.C 0/! hNis
0 .C 0/DWA

be the canonical surjection, which we regard as an element of A.C 0/. These
data define a relation datum of geometric type .C;f; .�; : : : ; �// for F1 D � � � D

Fn DA, and its associated element (6.1) is
X
c2C 0

vc.f /Trk.c/=k
�
�.c/˝ � � � ˝ �.c/

�
2A

M
˝� � �

M
˝A.k/: (9.1)

Then the image of (9.1) in K.kIA; : : : ;A/ vanishes.

Proof
Only the implication (c)) (a) requires a proof. Let .C;f; .gi // be a relation datum
of geometric type for F1; : : : ;Fn. We need to show the vanishing ofX

c2C 0

vc.f /
®
g1.c/; : : : ; gn.c/

¯
k.c/=k

in K.kIF1; : : : ;Fn/: (9.2)

For each i D 1; : : : ; n, the section gi W L.C 0/! Fi factors through a morphism
'i WA! Fi since Fi is homotopy invariant. The homomorphism K.kIA; : : : ;A/!

K.kIF1; : : : ;Fn/ defined by .'1; : : : ; 'n/ sends the image of (9.1) in K.kIA; : : : ;A/
to (9.2). Hence (9.2) vanishes by the assumption (c).
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10. Proper sheaves

Definition 10.1
Let F be a Nisnevich sheaf with transfers. We call F proper if, for any smooth
curve C over k and any closed point c 2 C , the induced map F .OC;c/! F .k.C //

is surjective. We say that F is universally proper if the above condition holds when
replacing k by any finitely generated extension K=k and C by any regular K-curve.

Example 10.2
(a) A semiabelian variety G over k is proper in the sense of Definition 10.1 if and

only if G is an abelian variety.
(b) Recall from [12] that F 2 HINis is called birational if F .X/! F .U / is

bijective for any smooth k-variety X and any open dense subset U � X .
A birational sheaf F 2 HINis is by definition proper. Examples of birational
sheaves will be given in Lemma 11.2(b) below. In particular, if C is a smooth
proper curve, then hNis

0 .C / is proper.

In fact, the following holds.

LEMMA 10.3
Let F 2HINis.
(a) F is proper if and only if F .C /

�
�! F .k.C // for any smooth k-curve C .

(b) F is universally proper if and only if it is birational (see Example 10.2(b)).

Proof
Let us prove (b), as the proof of (a) is a subset of it. It is obvious from the definitions
that birational sheaves are universally proper. Conversely, assume F to be universally
proper. Let X be a smooth k-variety. By [30, Corollary 4.19], the map F .X/!

F .U / is injective for any dense open subset of X . Let x 2 X .1/, and let p W X !
Ad�1 be a dominant rational map defined at x, where d D dimX . (We may find
such a p thanks to Noether’s normalization theorem.) Applying the hypothesis to
the generic fiber of p, we find that F .OX;x/! F .k.X// is surjective. Since this
is true for all points x 2 X .1/, we get the surjectivity of F .X/! F .k.X// from
Voevodsky’s Gersten resolution [30, Theorem 4.37].

The following proposition is not necessary for the proof of the main theorem, but
its proof is much simpler than the general case.
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PROPOSITION 10.4
Let F1; : : : ;Fn 2 HINis. Assume that F1; : : : ;Fn�1 are proper. Then the homomor-
phism (6.3) is bijective.

Proof
Suppose that .C;f; .gi /iD1;:::;n/ is a relation datum of geometric type for .F1; : : : ;
Fn/. It suffices to show the vanishing of the image of

X
c2C 0

vc.f /Trk.c/=k
�
g1.c/˝ � � � ˝ gn.c/

�
2 .F1

M
˝� � �

M
˝Fn/.k/ (10.1)

in K.kIF1; : : : ;Fn/. Let Ngi be the image of gi in F .k.C //. By assumption we
have that Ngi 2 Im.Fi .OC;c/! Fi .k.C /// for all c 2 C and i D 1; : : : ; n� 1. Hence
.C;f; . Ngi /iD1;:::;n/ is a relation datum of Somekawa type (with i.c/D n for all c 2
C ). By Corollary 4.11, the element (10.1) coincides with

X
c2C 0

Trk.c/=k
�
g1.c/˝ � � � ˝ gn�1.c/˝ @c.gn; f /

�
I

hence, its image in K.kIF1; : : : ;Fn/ vanishes by Definition 5.1.

11. Main theorem

Definition 11.1
Let F 2HINis. We say that F is curvelike if there exists an exact sequence in HINis

0! T ! F ! NF ! 0; (11.1)

where NF is proper (Definition 10.1) and T sits in an exact sequence in HINis

0!RE1=kGm!RE2=kGm! T ! 0; (11.2)

where E1 and E2 are étale k-algebras.�

This terminology is justified by the following lemma.

LEMMA 11.2
(a) If C is a smooth curve over k, then hNis

0 .C / is the Nisnevich sheaf associated
to the presheaf of relative Picard groups

U 7! Pic. NC �U;D �U /;

�It then follows from Hilbert’s Theorem 90 applied to RE1=kGm that T D Tét; hence, T agrees with the
cokernel of RE1=kGm!RE2=kGm as tori. We shall not need this remark in the remainder of our paper.
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where NC is the smooth projective completion of C , D D NC n C , and U runs
through smooth k-schemes.

(b) IfX is a smooth projective variety over k, then, for any smooth variety U over
k, we have that

hNis
0 .X/.U /D CH0.Xk.U //; (11.3)

where k.U / denotes the total ring of fractions of U . In particular, hNis
0 .X/ is

birational.
(c) For any smooth curve C , hNis

0 .C / is curvelike.

Proof
Parts (a) and (b) are proven in [28, Theorem 3.1] and [8, Theorem 2.2], respectively.
We prove (c). This follows from (b) if C is projective over k. We assume that C
is affine. With the notation of (a), we have the Gysin exact triangle [31, Proposi-
tion 3.5.4]

M.D/.1/Œ1�!M.C/!M. NC/
C1
�! :

By [31, Theorem 3.4.2], we have that hNis
i .C / D 0 for all i ¤ 0 and hNis

1 . NC/ D

RE=kGm, where E DH 0. NC ;O NC /. Hence we get an exact sequence

0!RE=kGm!RD=kGm! hNis
0 .C /! hNis

0 . NC/! 0;

which proves (c).

Remark 11.3
Let F 2HINis be curvelike. The sheaves T and NF in (11.1) are uniquely determined
by F up to unique isomorphism. Indeed, this amounts to showing that any morphism
T ! NF is trivial. This is reduced to the case T DRE=kGm as in (11.2), and further
to T D Gm by adjunction as in Lemma 8.8. Then HomHINis.Gm; NF /' NF�1.k/D 0

by definition (see (4.1) and Definition 10.1).
We call T and NF the toric and proper parts of F , respectively (see the footnote

on p. 2778).

LEMMA 11.4
(a) Let F 2 HINis be curvelike with toric part T , and let C be a smooth proper

connected k-curve. Let Z be a proper closed subset of C , let ADOC;Z , and
let K D k.C /. Then the sequence

0! T .A/
f
! T .K/˚F .A/

g
! F .K/! 0
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is exact, where f and g are given by f .a/D .a; a/ and g.b; c/D b�c, under
the identification T .A/� F .A/�F .K/ and T .A/� T .K/� F .K/.

(b) Let F1; : : : ;Fn 2HINis be curvelike with toric parts T1; : : : ; Tn, and let C;Z;
A;K be as in (a). Then the group F1.K/˝ � � � ˝ Fn.K/ has the following
presentation:
Generators: For each subset I 	 ¹1; : : : ; nº, elements ŒI If1; : : : ; fn� with

fi 2 Fi .A/ if i 2 I and fi 2 Ti .K/ if i … I .
Relations:

� Multilinearity:

ŒI If1; : : : ; fi C f
0
i ; : : : ; fn�D ŒI If1; : : : ; fi ; : : : ; fn�

C ŒI If1; : : : ; f
0
i ; : : : ; fn�:

� Let I � ¹1; : : : ; nº, and let i0 … I . Let ŒI If1; : : : ; fn� be a gen-
erator. Suppose that fi0 2 Ti0.A/. Then ŒI If1; : : : ; fn� D ŒI [
¹i0ºIf1; : : : ; fn�.

Proof
Consider the commutative diagram

0 0 0??y
??y

??y
0 ����! T .A/ ����! F .A/ ����! NF .A/ ����! 0??ya

??yb
??yc

0 ����! T .K/ ����! F .K/ ����! NF .K/ ����! 0??y
??y

??y
0 ����!

L
T�1.ki / ����!

L
F�1.ki / ����!

L
NF�1.ki /??y

??y
??y

0 0 0

Here the ki ’s run through the residue fields of points of Z and the (exact) ver-
tical sequences are those from [30, Theorem 4.37]. Since 0! T ! F ! NF ! 0 is
an exact sequence of Nisnevich sheaves and any field has Nisnevich cohomological
dimension 0, all horizontal sequences are left exact and the middle one is also exact at
NF .K/. (See Section 4.1 for the exactness of the bottom row.) Since NF is proper, we

have that NF�1.ki /D 0 (see the end of Remark 11.3); it follows that c is an isomor-
phism and that the upper horizontal sequence is also exact at NF .A/. Now (a) follows
from a diagram chase and (b) follows from (a).
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Remark 11.5
A shorter but more delicate proof is that the maps a; b; c have compatible retractions.
Since C is a curve, this may be deduced from the proof of [31, Lemma 4.5] (see also
[31, Corollary 4.18]).

PROPOSITION 11.6
Let C=k be a smooth proper connected curve, let v 2 C , and let K D k.C /. Then
there exists a unique law associating to a system .F1; : : : ;Fn/ of n curvelike sheaves
a homomorphism

@v W F1.K/˝ � � � ˝Fn.K/˝K
�! QK

�
k.v/IF1; : : : ;Fn

�

such that
(a) If 
 is a permutation of ¹1; : : : ; nº, the diagram

F1.K/˝ � � � ˝Fn.K/˝K
� @v
����! QK

�
k.v/IF1; : : : ;Fn

�
�

??y �

??y
F�.1/.K/˝ � � � ˝F�.n/.K/˝K

� @v
����! QK

�
k.v/IF�.1/; : : : ;F�.n/

�
commutes.

(b) If ŒI; f1; : : : ; fn� is a generator of F1.K/˝ � � � ˝Fn.K/ as in Lemma 11.4(b)
for some Z containing v, with I D ¹1; : : : ; iº, then

@v.f1˝� � �˝fn˝f /D
®
f1.v/; : : : ; fi .v/; @v

�
¹fiC1; : : : ; fn; f ºK=K

�¯
k.v/=k

where @v.¹fiC1; : : : ; fn; f ºK=K/ is the residue (8.4).

Proof
By Lemma 11.4(b), it suffices to check that @v agrees on relations. Up to permutation,
we may assume that I D ¹1; : : : ; iº and i0 D i C 1. The claim then follows from
Proposition 4.10.

LEMMA 11.7
(a) Keep the notation of Proposition 11.6. Let L=K be a finite extension, write

D for the smooth projective model of L, and write h W D! C for the cor-
responding morphism. Let Z D h�1.v/. Write FnC1 D Gm. Then, for any
i 2 ¹1; : : : ; nC 1º, the diagram
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F1.L/˝ � � � ˝FnC1.L/
.@w/

M
w2Z

QK
�
k.w/IF1; : : : ;Fn

�

.Trk.w/=k.v//F1.K/˝ � � � ˝Fi .L/˝ � � � ˝FnC1.K/

u

d

F1.K/˝ � � � ˝FnC1.K/
@v QK

�
k.v/IF1; : : : ;Fn

�

commutes, where u is given componentwise by functoriality for j ¤ i and by
the identity for j D i , and d is given componentwise by the identity for j ¤ i
and by TrL=K for j D i .

(b) The homomorphisms @v’s induce residue maps

@v W .F1
M
˝� � �

M
˝Fn

M
˝Gm/.K/! QK

�
k.v/IF1; : : : ;Fn

�
;

which verify the compatibility of Lemma 4.2(b).

Proof
(a) For clarity, we distinguish two cases: i < nC 1 and i D nC 1. In the former case,
up to permutation we may assume that i D n. It is enough to check commutativity on
generators in the style of Lemma 11.4(b). Let Tl denote the toric part of Fl . In view
of Lemma 11.4(a) and Proposition 11.6(a), it suffices to check the commutativity for
x D f1˝ � � � ˝ fn˝ f when one of the following two conditions is satisfied:
(1) For some j 2 ¹0; : : : ; n� 1º, fl 2 Fl.OC;v/ (1� l � j ), fl 2 Tl.K/ (j C 1�

l � n� 1), fn 2 Tn.L/, and f 2K�.
(2) For some j 2 ¹0; : : : ; n� 1º, fl 2 Fl.OC;v/ (1� l � j ), fl 2 Tl.K/ (j C 1�

l � n� 1), fn 2 Fn.OD;Z/, and f 2K�.
Let w 2Z. If (1) holds, we have that

@w
�
u.x/

�
D
®
f1.w/; : : : ; fj .w/; @w

�
¹fjC1; : : : ; fn; f ºL=L

�¯
k.w/=k.w/

and

@v
�
d.x/

�
D
®
f1.v/; : : : ; fj .v/; @v

�®
fjC1; : : : ;TrL=K.fn/; f

¯
K=K

�¯
k.v/=k.v/

:

Observe that the restriction of fl .v/ to k.w/ is fl .w/ for every w 2 Z and l D
1; : : : ; j . Since the residue maps .@w/ (8.4) verify the compatibility of Lemma 4.2,
the commutativity for x follows. (Recall that Trk.w/=k.v/.¹a1; : : : ; anºk.w/=k.w// D
¹a1; : : : ; anºk.w/=k.v/:)
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If (2) holds, we have that

@w
�
u.x/

�
D
®
f1.w/; : : : ; fj .w/; @w

�
¹fjC1; : : : ; fn�1; f ºL=L

�
; fn.w/

¯
k.w/=k.w/

and

@v
�
d.x/

�
D
®
f1.v/; : : : ; fj .v/;

@v
�
¹fjC1; : : : ; fn�1; f ºK=K

�
;TrL=K.fn/.v/

¯
k.v/=k.v/

:

In addition to the observation mentioned in (1), we remark that the restriction of
@v.¹fjC1; : : : ; fn�1; f ºK=K/ to k.w/ is @w.¹fjC1; : : : ; fn�1; f ºL=L/ for every w 2
Z. The commutativity for x follows from Lemma 4.2(b) applied to Fn.

If i D nC 1, the check is similar, with the projection formula working on the last
variable.

Now (b) follows from (a) and the definition of
M
˝ from Section 2.8.

LEMMA 11.8
The homomorphisms @v’s of Lemma 11.7 induce residue maps

@v W QK.KIF1; : : : ;Fn;Gm/! QK
�
k.v/IF1; : : : ;Fn

�
;

which verify the compatibility of Lemma 4.2(b).

Proof
Set FnC1 D Gm. Let i < j be two elements of ¹1; : : : ; nC 1º, and let 	i W Gm !

Fi , 	j W Gm! Fj be two cocharacters. Let f 2 K� � ¹1º. We must show that @v
vanishes on

x D f1˝ � � � ˝ 	i .f /˝ � � � ˝ 	j .1� f /˝ � � � ˝ fnC1

for any .f1; : : : ; fnC1/ 2 F1.K/�� � ��FnC1.K/ (product excluding .i; j /). By func-
toriality, we may assume that 	i ; 	j are the identity cocharacters. We distinguish two
cases for clarity: j < nC 1 and j D nC 1. But exactly the same argument works for
both cases. Presently we suppose j < nC 1.

Up to permutation, we may assume that i D n � 1, j D n. Let us say that an
element .x1; : : : ; xn�2/ 2 F1.K/ � � � � � Fn�2.K/ is in normal form if, for each s D
1; : : : ; n�2, either xs 2 Fs.Ov/ or xs 2 Ts.K/. (Here Ts is the toric part of Fs .) Then
Lemma 11.4 reduces the problem to the case where .f1; : : : ; fn�2/ is in normal form.
Up to permutation, we may assume that fs 2 Fs.Ov/ for s � r and fs 2 Ts.K/ for
r < s � n� 2. Then

@vx D
®
f1.v/; : : : ; fr .v/; @v

�®
frC1; : : : ; fn�2; f; .1� f /; fnC1

¯
K=K

�¯
k.v/=k.v/

:



2784 KAHN and YAMAZAKI

Let 'v W QK.k.v/; TrC1; : : : ; Tn/! QK.k.v/;F1; : : : ;Fn/ be the homomorphism
induced by .f1.v/; : : : ; fr .v// via (8.2), and let 'K W TrC1.K/˝� � �˝Tn.K/˝K�!
F1.K/˝� � �˝Fn.K/˝K

� be the analogous homomorphism defined by .f1; : : : ; fr /.
The diagram

TrC1.K/˝ � � � ˝ Tn.K/˝K
� @v
����! QK

�
k.v/ITrC1; : : : ; Tn

�
'K

??y 'v

??y
F1.K/˝ � � � ˝Fn.K/˝K

� @v
����! QK

�
k.v/IF1; : : : ;Fn

�
commutes. But the top map factors through

@v W QK.KITrC1; : : : ; Tn;Gm/! QK
�
k.v/ITrC1; : : : ; Tn

�

obtained in (8.4), hence the desired vanishing.
Thus we have shown that the map @v of Proposition 11.6 vanishes on St.KIF1;

: : : ;Fn;Gm/. The conclusion now follows from Lemma 11.7(b).

11.9
Let F 2HINis, and let C be a smooth proper k-curve. The support of a section f 2
F .k.C // is the finite set

Supp.f /D
®
c 2 C

ˇ̌
f … F .OC;c/

¯
:

The following lemma and proposition generalize Lemma 7.4.

LEMMA 11.10
Let T1; : : : ; Tr be r curvelike tori. Put TrC1 DGm. LetD be a smooth proper k-curve,
and let Z �D be a proper closed subset. If the field k is infinite, the group QK.k.D/I
T1; : : : ; Tr ;Gm/ is generated by elements ¹f1; : : : ; frC1ºk.E/=k.D/ whereE is another
curve, p WE!D is a finite surjective morphism, and fi 2 Ti .k.E// satisfy

Supp.fi /\ p
�1.Z/D; for all 1� i � r;

Supp.fi /\ Supp.fj /D; for all 1� i < j � r:
(11.4)

Proof
As in the proof of Proposition 8.10(b), we reduced the problem to the case where all
the Ti ’s are REi=kGm for some étale k-algebras Ei=k. Using the formula

.RE1=kGm;E1/E2 'RE1˝kE2=E2Gm;E1˝E2

and Lemma 8.8 repeatedly, we further reduce the problem to the case where all the
Ti ’s are Gm. Then it follows from Lemma 7.4.
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PROPOSITION 11.11
Let F1; : : : ;Fn be n curvelike sheaves, and let C be a smooth proper k-curve. Put
FnC1 DGm. If the field k is infinite, the group QK.k.C /IF1; : : : ;Fn;Gm/ is generated
by elements ¹f1; : : : ; fnC1ºk.D/=k.C/, where D is another curve, D! C is a finite
surjective morphism, and fi 2 Fi .k.D// satisfy

Supp.fi /\ Supp.fj /D; for all 1� i < j � n: (11.5)

Proof
Let Ti be the toric part of Fi . Given a finite surjective morphism D! C and fi 2
Fi .k.D// .i D 1; : : : ; nC 1/, we construct a sequence .Zi ; g

.1/
i ; g

.2/
i /iD1;:::;nC1 of

closed subsets Zi � D and sections g.1/i 2 Fi .OD;Zi /, g
.2/
i 2 Ti .k.D// such that

fi D g
.1/
i Cg

.2/
i by induction. First we putZ1 D;, g.1/1 D f1, and g.2/1 D 0. Suppose

that we have constructed .Zi�1; g
.1/
i�1; g

.2/
i�1/. We define Zi D Zi�1 [ Supp.g.1/i�1/.

Then we apply Lemma 11.4(a) to find g.1/i 2 Fi .OD;Zi / and g.2/i 2 Ti .k.D// such

that fi D g
.1/
i C g

.2/
i . By construction, we have that

Supp.g.1/i /\ Supp.g.1/j /D;

for all 1� i < j � nC 1, and

¹f1; : : : ; fnC1ºk.D/=k.C/ D
X

e2¹1;2ºn

¹g
.e1/
1 ; : : : ; g

.enC1/

nC1 ºk.D/=k.C/;

where e D .e1; : : : ; enC1/. Given e 2 ¹1; 2ºn, let I D ¹i 2 ¹1; : : : ; nº j ei D 1º. The
collection of g.1/i for i 2 I defines a homomorphism

QK
�
k.D/ITi1 ; : : : ; Tim ;Gm

�
! QK

�
k.D/IF1; : : : ;Fn;Gm

�
;

where i1 < � � � < im are the elements of ¹1; : : : ; nº n I . The proposition then follows
by applying Lemma 11.10 with Z D

S
eiD1

Supp.g.1/i / for each e.

LEMMA 11.12
Let C;D;F1; : : : ;Fn be as in Proposition 11.11. Let fi 2 Fi .k.D//, and let v 2D.
Put � WD ¹f1; : : : ; fnC1ºk.D/=k.C/, regarded as an element of QK.k.C /IF1; : : : ;Fn;
Gm/.
(a) If v.fnC1 � 1/ > 0, then @v.�/D 0.
(b) Suppose that (11.5) holds. If v 2 Supp.fi / for some 1� i � n, then

@v.�/D
®
f1.v/; : : : ; @v.fi ; fnC1/; : : : ; fn.v/

¯
k.v/=k

:
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Proof
This follows from Corollary 4.11 and Proposition 4.10.

PROPOSITION 11.13
Let C be a smooth projective connected curve, and let F1; : : : ;Fn 2HINis be curve-
like. The composition

X
v2C

Trk.v/=k ı@v W QK
�
k.C /IF1; : : : ;Fn;Gm

�
! QK.kIF1; : : : ;Fn/

!K.kIF1; : : : ;Fn/

is the zero map.

Proof
(a) Assume first that k is infinite. If � D ¹f1; : : : ; fnC1ºk.D/=k.C/ satisfies (11.5),
then we have that

P
v2C Trk.v/=k ı@v.�/D 0 by Definition 5.1 and Lemma 11.12(b).

Hence the claim follows from Proposition 11.11.
(b) If k is finite, we use a classical trick: let p1; p2 be two distinct prime numbers,

and let ki be the Zpi -extension of k. Let x 2 QK.k.C /IF1; : : : ;Fn;Gm/. By (a), the
image of x in K.kIF1; : : : ;Fn/ vanishes in K.k1IF1; : : : ;Fn/ and K.k2IF1; : : : ;
Fn/, hence is 0 by a transfer argument.

Finally, we arrive at the following.

THEOREM 11.14
The homomorphism (1.1) is an isomorphism for any F1; : : : ;Fn 2HINis.

Proof
It suffices to show the statement in Proposition 9.1(c). With the notation therein, A

is curvelike by Lemma 11.2(c). The image of (9.1) in K.kIA; : : : ;A/ is seen to beP
v2C Trk.v/=k ı@v.¹�; : : : ; �; f ºk.C/=k.C// by Lemma 11.12, hence trivial by Propo-

sition 11.13.

12. Application to algebraic cycles

12.1
We assume that k is of characteristic zero. Let X be a k-scheme of finite type, and
let M c.X/ WD C c� .X/ 2 DMeff

� be the motive of X with compact supports (see [31,
Section 4.1]). Then the sheaf CH 0.X/ of Section 1.4 agrees withH0.M c.X// by [8,
Theorem 2.2]. If X is quasi-projective, we have an isomorphism
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CH�i .X; j C 2i/'HomDMeff
�

�
Z;M c.X/.i/Œ�j �

�

for all i 2 Z�0; j 2 Z by [31, Proposition 4.2.9].�

Proof of Theorem 1.5
Using Lemma 3.3, we see that

HomDMeff
�

�
Z;CH 0.X1/Œ0�˝ � � � ˝CH 0.Xn/Œ0�˝GmŒ0�

˝r
�

'HomDMeff
�

�
Z;M c.X1/˝ � � � ˝M

c.Xn/˝GmŒ0�
˝r
�

'HomDMeff
�

�
Z;M c.X/.r/Œr�

�
' CH�r.X; r/:

(Here we used GmŒ0�' Z.1/Œ1�.) Now the theorem follows from Theorem 11.14.

12.2
Let X be a k-scheme of finite type. Recall that for i 2 Z�0, j 2 Z the motivic homol-
ogy of X is defined by [7, Definition 9.4]

Hj
�
X;Z.�i/

�
WDHomDMeff

�

�
Z;M.X/.i/Œ�j �

�
: (12.1)

When i D 0, Hj .X;Z.0// agrees with Suslin homology (see [28]).

THEOREM 12.3
Let X1; : : : ;Xn be k-schemes of finite type. Suppose that either the Xi are smooth or
chark D 0. Put X DX1 � � � � �Xn. For any r � 0, we have an isomorphism

K
�
kIhNis

0 .X1/; : : : ; h
Nis
0 .Xn/;Gm; : : : ;Gm

� �
�!H�r

�
X;Z.�r/

�
:

Proof
Using Lemma 3.3, we see that

HomDMeff
�

�
Z; hNis

0 .X1/Œ0�˝ � � � ˝ h
Nis
0 .Xn/Œ0�˝GmŒ0�

˝r
�

'HomDMeff
�

�
Z;M.X1/˝ � � � ˝M.Xn/˝GmŒ0�

˝r
�

'HomDMeff
�

�
Z;M.X/.r/Œr�

�
'H�r

�
X;Z.�r/

�
:

Now the theorem follows from Theorem 11.14.

�The proof of [31, Proposition 4.2.9] is written for equidimensional schemes but is the same in general. More-
over, the quasi-projective assumption can be removed if one replaces higher Chow groups by the Zariski hyper-
cohomology of the cycle complex as in [15, after Theorem 1.7].
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Remark 12.4
If X1; : : : ;Xn are smooth projective varieties, then (1.3) is valid in any characteristic.
Indeed, we have that M.Xi /DM c.Xi / and hence CH 0.Xi /D h

Nis
0 .Xi /. Moreover,

[32] and [8, Appendix B] show that H�r.X;Z.�r//' CH�r.X; r/. Thus (1.3) fol-
lows from Theorem 12.3.

Appendix. Extending monoidal structures

A.1
Let A be an additive category. We write Mod –A for the category of contravariant
additive functors from A to abelian groups. This is a Grothendieck abelian category.
We have the additive Yoneda embedding

yA WA!Mod –A

sending an object to the corresponding representable functor.

A.2
An object of Mod –A is free if it is a direct sum of representable objects. Let M 2
Mod –A. For any A 2A, the Yoneda isomorphism

M.A/'Mod –A
�
yA.A/;M

�

realizes M canonically as a quotient of a free module:

L0.M/D
M
.A;f /

yA.A/�!!M;

where .A;f / runs through pairs of an object A 2 A and an element f 2 M.A/.
Iterating, we get a canonical and functorial free resolution

� � � !Ln.M/! � � � !L0.M/!M ! 0 (A.1)

as in [17, Lemma 8.1].

A.3
Let f WA!B be an additive functor. We have an induced functor f � WMod –B!

Mod –A (composition with f ). As in [2, Example 1, Propositions 5.1 and 5.4], the
functor f � has a left adjoint fŠ and a right adjoint f�, and the diagram
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A
yA
����! Mod –A

f

??y fŠ

??y
B

yB
����! Mod –B

is naturally commutative.

A.4
If f is fully faithful, then fŠ and f� are fully faithful and f � is a localization, as in
[2, Example 1, Proposition 5.6].

A.5
Suppose that f has a left adjoint g. Then we have natural isomorphisms

g� ' fŠ; g� ' f
�

as in [2, Example 1, Proposition 5.5].

A.6
Suppose further that f is fully faithful. Then g� ' fŠ is fully faithful. From the com-
position

g�g�) IdMod–A) g�gŠ

of the unit with the counit, one then deduces a canonical morphism of functors

g�) gŠ:

A.7
Let A and B be two additive categories. Their tensor product is the category A � B

whose objects are finite collections .Ai ;Bi / with .Ai ;Bi / 2A�B, and

.A� B/
�
.Ai ;Bi /; .Cj ;Dj /

�
D
M
i;j

A.Ai ;Cj /˝B.Bi ;Dj /:

We have a “cross-product” functor

� WMod –A�Mod –B!Mod –.A� B/

given by

.M �N/
�
.Ai ;Bi /

�
D
M
i

M.Ai /˝N.Bi /:
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A.8
Let A be provided with a biadditive bifunctor 
 WA�A!A. We may view 
 as an
additive functor A� A!A. We may then extend 
 to Mod –A by the composition

Mod –A�Mod –A
�
�!Mod –.A� A/

�Š
�!Mod –A:

This is an extension in the sense that the diagram

A�A
yA�yA
�����! Mod –A�Mod –A

���

??y �

??y
A

yA
����! Mod –A

is naturally commutative.
If 
 is monoidal (resp., monoidal symmetric), then its associativity and commu-

tativity constraints canonically extend to Mod –A.

A.9
As a composition of right exact functors, 
 is right exact in the abelian category
Mod –A. The tensor product of two free modules (as in Section A.2) is free. On
the other hand, free objects have no reason to be flat in general (see caveat in [17,
Remark 8.6]). We shall see in Corollary A.15 that they are flat when A is rigid.

A.10
ForM 2Mod –A, let L�.M/!M be its canonical free resolution ofM from (A.1).
If N 2Mod –A is another object, then the sequence

L1.M/ 
L0.N /˚L0.M/ 
L1.N /!L0.M/ 
L0.N /!M 
N ! 0

is exact, yielding a presentation of M 
N by free objects.

Example A.11
If ADCor, then Mod –AD PST. The free resolution L�.M/ of an objectM 2 PST
is Voevodsky’s resolution L.M/ in [31, p. 206]; from Section A.10, we recover his
definition of M ˝N in [31, p. 206] or in [17, Definition 8.2].

A.12
Let A;B be two additive symmetric monoidal categories, and let f W A! B be
an additive symmetric monoidal functor. The above definition shows that the functor
fŠ WMod –A!Mod –B is also symmetric monoidal.
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A.13
In Section A.8, let us write 
Š D

R
for clarity. Let P 2Mod –.A � A/. Then

R
P is

the left Kan extension of P along 
 in the sense of [16, Chapter X, Section 3]. This
gives a formula for

R
P as a coend [16, Theorem X.4.1]; for A 2A:Z
P.A/D

Z .B;B0/

A.A;B 
B 0/˝P.B;B 0/: (A.2)

In particular, we have the following.

PROPOSITION A.14
Suppose is A rigid. Then (A.2) simplifies asZ

P.A/D

Z B

P.B;A 
B�/;

where B� is the dual of B 2A. In particular, if P DM �N for M;N 2Mod –A,
we have, for A 2A, that

.M 
N/.A/D

Z B

M.B/˝N.A 
B�/; (A.3)

which describes M 
 N as a “convolution.” In particular, for N D yA.C /, M 

yA.C / is given by the formula�

M 
 yA.C /
�
.A/DM.A˝C �/: (A.4)

Proof
Applying (A.2) and rigidity, we have thatZ

P.A/D

Z .B;B0/

A.A;B 
B 0/˝P.B;B 0/

D

Z .B;B0/

A.A 
B�;B 0/˝P.B;B 0/

D

Z B

P.B;A 
B�/;

because in the third formula, the variable B 0 is dummy. (This simplification is not in
Mac Lane [16]!)

We get (A.4) from (A.3), sinceZ B

M.B/˝ yA.C /.A 
B
�/D

Z B

M.B/˝A.A 
B�;C /

'

Z B

M.B/˝A.A 
C �;B/DM.A 
C �/;

because the variable B is dummy in the penultimate term.
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COROLLARY A.15
If A is rigid, any free object of Mod –A is flat.

Proof
This is an immediate consequence of (A.4).

A.16
We shall need a refinement of (A.3). For this, we first have the probably well-known
lemma, of which we include a proof for lack of reference. (Unfortunately it is not in
Mac Lane’s book either.)

LEMMA A.17 (Change of variables)

Let C
R
�
L

D be a pair of adjoint functors between small categories (L is left adjoint

and R is right adjoint); moreover, let T WDop � C !X be a functor, where small
colimits are representable in X. Then there is a canonical isomorphism

Z c

T .Lc; c/'

Z d

T .d;Rd/:

Proof
Let � W IdC ) RL and " W LR) IdD be the unit and the counit of the adjunction,
respectively. Using " we get a natural transformation

"�d;d 0 D T ."d ; 1/ W T .d;Rd
0/! T .LRd;Rd 0/:

By the universal property of coends, this yields a morphism ' W
R d
T .d;Rd/!R c

T .Lc; c/. Using �, we similarly get a natural transformation �c;c
0

� W T .Lc; c0/!

T .Lc;RLc0/ and a morphism  W
R c
T .Lc; c/!

R d
T .d;Rd/.

Write X D
R d
T .d;Rd/. Checking that  ı ' D 1 amounts to checking that, for

any d0 2D , the composition

T .d0;Rd0/
"�
d0;d0
����! T .LRd0;Rd0/!

Z c

T .Lc; c/
 
�!X

equals the canonical map �d0 W T .d0;Rd0/! X . By definition, this composition is
equal to

T .d0;Rd0/
"�
d0;d0
����! T .LRd0;Rd0/

�
Rd0;Rd0
�
������! T .LRd0;RLRd0/

�LRd0
����! X;

that is,

�LRd0 ı T .1; �Rd0/ ı T ."d0 ; 1/D �LRd0 ı T ."d0 ; 1/ ı T .1; �Rd0/:



VOEVODSKY’S MOTIVES AND WEIL RECIPROCITY 2793

By the universal property of X , we have the identity

�LRd0 ı T ."d0 ; 1/D �d0 ı T
�
1;R."d0/

�
I

hence,

�LRd0 ı T ."d0 ; 1/ ı T .1; �Rd0/D �d0 ı T
�
1;R."d0/

�
ı T .1; �Rd0/D �d0

because of the adjunction identity R."d0/ ı �d0 D 1. The proof that ' ı  D 1 is
similar.

Example A.18
In Proposition A.14, take A D Z Span.k/. This category is rigid, all objects being
self-dual. (Duality acts on morphisms by converting a span .f;g/ into .g; f /.) For any
étale k-scheme X , the obvious forgetful functor ! W Z Span.X/! Z Span.k/ has a
left adjoint Y 7! X �k Y . For a Mackey functor M 2Mack.k/, write MX DM ı

!. Applying Lemma A.17 with C D Z Span.k/, D D Z Span.X/, and T .Y;Z/ D
NX .Y /˝M.Z/ and using that all objects are self-dual, we convert (A.3) into the
formula

.M
M
˝N/.X/D

Z Y2Z Span.X/

MX .Y /˝NX .Y /:

Unfolding the definition of the coend, we immediately get the formula of Sec-
tion 2.8. The case of more than two factors follows by associativity.
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