
A DESCENT THEOREM FOR PURE MOTIVES

BRUNO KAHN

Abstract. We give necessary conditions for a category fibred in
pseudo-abelian additive categories over the classifying topos of a
profinite group to be a stack; these conditions are sufficient when
the coefficients are Q-linear. We use this to prove that pure mo-
tives à la Grothendieck (with rational coefficients) over a field form
a stack for the étale topology; this holds more generally for several
motivic categories considered in [5]. Finally, we clarify the con-
struction of Chow-Lefschetz motives given in [6], and simplify the
proof of the computation of the motivic Galois group of Lefschetz
motives modulo numerical equivalence, given in loc. cit.

Introduction

The first main result of this note is

Theorem 1. Let k be a field, ∼ an adequate equivalence relation on
algebraic cycles with rational coefficients and Mot∼(k) the category of
pure motives over k modulo ∼, in the sense of Grothendieck. Then the
assignment

l 7→Mot∼(l)

defines a stack of rigid ⊗-categories over the small étale site of Spec k.

Theorem 1 is so easy to prove that it ought to be part of the folklore.
Here is a sketch: for l/k a finite Galois extension with group G, write
Mot∼(l, G) for the category of descent data on Mot∼(l) relative to G.
We have to prove that the canonical functor Mot∼(k) →Mot∼(l, G)
is an equivalence of categories. Full faithfulness follows from a stan-
dard transfer argument, using that the coefficients are Q. For the
essential surjectivity, we use the fact that the base change functor
f ∗ : Mot∼(k) → Mot∼(l) has a right adjoint f∗; if (C, (bg)g∈G) ∈
Mot∼(l, G) is a descent datum, with C ∈Mot∼(l), the natural action
of G on f∗C gives a projector whose image yields the effectivity of the
descent datum.
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In fact, such a result and sketch of proof hold in much greater gen-
erality, which led me to give them an abstract formulation: this is the
subject of Section 1. In Theorem 1.5, we get necessary conditions for a
fibered category in pseudo-abelian additive categories over the classi-
fying topos of a profinite group to be a stack, which are sufficient when
the categories are Q-linear. They use a baby “3 functors formalism”
(for Galois étale morphisms!), see Definition 1.4. In Section 2, we show
how to weaken the hypotheses of this formalism in the presence of a
monoidal structure: this allows us to easily prove the stack property
for all motivic theories appearing in [5, Th. 4.3 a)], not just for pure
motives (Theorem 3.1). It also applies to the related theories of [2] and
[1].

What started me on this work was the desire to clarify and simplify
some constructions and reasonings in [6]. In its §4, I construct a cate-
gory of Chow-Lefschetz motives over a (possibly non separably closed)
field in two steps: first a “crude” category and then a better-behaved
one. By hindsight, it became likely that the second step was just the
process of creating the associated stack, and this is what is checked
in Proposition 4.1. The reasoning I wanted to simplify was the rather
ugly recourse to continuous descent data in the proof of [6, Th. 5]:
this is done here in Theorem 5.3, which also clarifies the proof of [2,
Prop. 6.23 (a)] (quoted without comment in [1, 4.6, exemples]), and
especially the rôle of semisimplicity.

Note that Theorem 1 does not extend to motives over a base S in the
sense, say, of Deninger-Murre [3]; indeed, for X, Y smooth projective
over S, the presheaf U 7→ CH∗(XU ×U YU)Q for U → S étale is already
not a sheaf in the Zariski topology! Similarly, Theorem 1 is obviously
false if the coefficients are not Q-linear. If one wanted to extend it
to these two cases, one would probably have to consider stable ∞-
categories. This is a sense in which Theorem 1 is “elementary”.

1. Stacks over a profinite group

1.1. The set up. Let E be a category; recall from [4, §§7, 8] that there
is a dictionary between fibered categories over E and pseudo-functors
E → Cat whose comparison 2-cocycle consists of natural isomorphisms;
we shall adopt here the latter viewpoint, which is also the one of [5].

Take E = BΠ, where Π is a profinlte group and BΠ is its classifying
topos, i.e. the category of finite continuous Π-sets. We are interested
in (contravariant) pseudo-functors A from BΠ to the 2-category of ad-
ditive categories. We want to give (necessary and) sufficient conditions
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for such an A to be a stack for the natural topology on BΠ (given by
finite covers). Recall what this means [8, Def. 026F]; given S ∈ BΠ:

(1) For anyA,B ∈ A(S), the presheaf (U
f−→ S) 7→ A(U)(f ∗A, f ∗B)

on BΠ/S is a sheaf;
(2) Any descent datum relative to a cover f : T → S is effective.
Condition (1) implies in particular that A commutes with coprod-

ucts. Assuming this holds, let us translate the above conditions in
Galois terms: given a Galois covering f : T → S of connected Π-sets,
with G = Gal(f):

(1G) the natural map A(S)(A,B)
a−→ A(T )(f ∗A, f ∗B)G is an isomor-

phism for any A,B ∈ A(S);
(2G) any descent datum relative to f is effective.
In (1G), let us explain the action of G on the right hand side: for

each g ∈ G, the equality fg = f and the pseudo-functor structure of A
yield a natural isomorphism ig : f ∗

∼⇒ g∗f ∗; these are compatible with
the natural isomorphisms cg,h : h∗g∗

∼⇒ (gh)∗. To ϕ : f ∗A→ f ∗B, one
associates ϕg = ig(B)−1(g∗ϕ)ig(A) (right action!). If ϕ is of the form
f ∗ψ, then ϕg = ϕ by naturality of ig.

The meaning of (2G) is the following: let C ∈ A(T ), provided with
isomorphisms bg : C

∼−→ g∗C verifying the usual 1-coboundary con-
dition with respect to the 2-cocycle cg,h (descent datum). Then there
exists B ∈ A(S) and an isomorphism f ∗B

∼−→ C which induces an
isomorphism of descent data, for the canonical descent datum on f ∗B
implicitly used in the previous paragraph.

To formalise this, we introduce the category A(T,G) of descent data:
an object is a descent datum as above, and morphisms are the ob-
vious ones. There is a functor f̃ : A(S) → A(T,G) sending A to
(f ∗A, (ig(A))); Condition (1G) amounts to say that f̃ is fully faithful,
and (2G) amounts to say that it is essentially surjective.

If (C, (bg)), (D, (b
′
g)) ∈ A(T,G) and ϕ :∈ A(T )(C,D), one defines

ϕg for g ∈ G as in the case of effective descent data, generalising the
previous construction.

1.2. Introducing an adjoint. Suppose that f ∗ has a right adjoint
f∗, with counit ε. For a descent datum (C, (bg)) and g ∈ G, we get
an endomorphism [g] of f∗C, corresponding to εgC by adjunction; in
formula:

[g] = f∗(ε
g
C) ◦ ηf∗C

where η is the unit of the adjunction.
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Lemma 1.1. a) We have

εgC = εC ◦ f ∗[g].

b) Let A ∈ A(S), (C, (bg)) be a descent datum, and let g ∈ G. If
ϕ : f ∗A→ C and ψ : A→ f∗C correspond to each other by adjunction,
then ϕg and [g]◦ψ correspond to each other by adjunction. In particular
(taking A = f∗C, ψ = 1A), we have [gh] = [g][h] (sic) and [g] is an
automorphism.
c) Suppose that C is an effective descent datum f ∗B. For any g ∈ G,
we have εgf∗B ◦ f ∗ηB = 1f∗B.

Proof. a) This is just the other adjunction identity relating [g] and εgC .
b) We have

ϕ = εC ◦ f ∗ψ, ψ = f∗ϕ ◦ ηA.
The first identity yields

ϕg = εgC ◦ (f ∗ψ)g = εgC ◦ f
∗ψ.

By the second identity, the morphism corresponding to ϕg is then
f∗(ϕ

g) ◦ ηA = f∗(ε
g
C) ◦ f∗f ∗ψ ◦ ηA = f∗(ε

g
C) ◦ ηf∗C ◦ ψ = [g] ◦ ψ

where we used the naturality of η. Hence also the last claim.
c) Indeed,
εgf∗B ◦ f

∗ηB = εgf∗B ◦ (f ∗ηB)g = (εf∗B ◦ (f ∗ηB))g = 1gf∗B = 1f∗B.

�

1.3. Cartesianity. Let C ∈ A(T ) and g ∈ G. We define a morphism
f ∗f∗C → g∗C as the composition

f ∗f∗C
ig(f∗C)−−−−→ g∗f ∗f∗C

g∗εC−−−→ g∗C.

Collecting over g, we get a morphism

(1.1) f ∗f∗C →
⊕
g∈G

g∗C.

Definition 1.2. The functor f ∗ is Cartesian if (f∗ exists and) (1.1) is
a natural isomorphism.

(In view of the isomorphism of Π-sets
∐

g∈G T
∼−→ T ×S T given by

yg 7→ (y, gy), Definition 1.2 amounts to saying that the “base change
morphism” f ∗f∗ ⇒ (f ×S 1)∗(1×S f)∗ in the diagram

A(T )
(1×Sf)∗−−−−−→ A(T ×S T )

f∗

y (f×S1)∗

y
A(S)

f∗−−−→ A(T )
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is an isomorphism. One should not confuse this notion with that of a
Cartesian morphism in a fibred category.)

Assume f ∗ Cartesian, and let (C, (bg)) be a descent datum. Com-
posing with the b−1

g in (1.1), we get an isomorphism

(1.2) f ∗f∗C
uC−→

⊕
g∈G

C

whose g-component is given, by definition, by εgC .

Lemma 1.3. Let h ∈ G. Then the action of f ∗[h] on the left hand side
of (1.2) amounts to the action of h by right translation on the indexing
set G of its right hand side.

Proof. Let g ∈ G. Using Lemma 1.1 a) and b), we find

εgC ◦ f
∗[h] = εC ◦ f ∗[g] ◦ f ∗[h] = εC ◦ f ∗[gh] = εghC .

�

1.4. Traces. To formulate the result, we need a further definition:

Definition 1.4. Suppose f ∗ is Cartesian. A trace structure on (f ∗, f∗)
is a natural transformation tr : f∗f

∗ ⇒ IdA(S) such that, for any B ∈
A(S):

(1) the composition

(1.3) B
ηB−→ f∗f

∗B
trB−−→ B

is multiplication by |G|;
(2) the isomorphism (1.2) (for C = f ∗B) converts f ∗ trB into the

sum map.

1.5. Main result.

Theorem 1.5. Suppose that A(S) is pseudo-abelian for all S.
a) If A is a stack, then

(i) A commutes with coproducts;
(ii) For any Galois covering f : T → S in BΠ, with S, T connected,

f ∗ is Cartesian and has a trace structure.
b) The converse is true if |Gal(f)| is invertible in the coefficients of A
for any f as in (ii).

Proof. a) The forgetful functor A(T,G) → A(T ) sending (C, (bg)) to
C has the right adjoint D 7→

⊕
g∈G g

∗D provided with the descent
datum (bh) given by the isomorphisms cg,h(D) : h∗g∗D

∼−→ (gh)∗D of
Subsection 1.1; the unit of this adjunction is given by the inverses of
the bg’s. Cartesianity is tautologically true, and the trace morphism is
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given by
⊕

g∈G g
∗C

(bg)−−→ C for (C, (bg)) ∈ A(T,G). Condition (1) of
Definition 1.4 is immediate, and Condition (2) is left to the reader.

b) Let G = Gal(f) as before. We check Conditions (1G) and (2G)
of Subsection 1.1:

(1G) By adjunction, the map A(S)(A,B) → A(T )(f ∗A, f ∗B) may
be rewritten as the map

A(S)(A,B)
a−→ A(S)(A, f∗f

∗B)

induced by the unit morphism ηB. Using (1.3), we get a map b in
the opposite direction such that ba is multiplication by |G|; hence a is
injective since on A(S)(A,B) is a Q-vector space.

I now claim that ab =
∑

g∈G g for the action of G on A(T )(f ∗A, f ∗B)

explained before. By Lemma 1.1 b), it suffices to prove that the com-
position

f∗f
∗B

trB−−→ B
ηB−→ f∗f

∗B

is
∑

g∈G[g]. By the faithfulness of f ∗ which has just been established,
it suffices to do this after applying f ∗. By Condition (2) of the trace
structure, this translates as a composition⊕

g∈G

f ∗B
Σ−→ f ∗B

∆−→
⊕
g∈G

f ∗B

in which Σ is the sum map and ∆ is the diagonal map by Lemma 1.1
c); the claim now follows from Lemma 1.3.

Coming back to the proof of (1G), we find that the composition

A(T )(f ∗A, f ∗B)G ↪→ A(T )(f ∗A, f ∗B)
ab−→ A(T )(f ∗A, f ∗B)G

is also multiplication by |G|, hence the desired bijectivity of a.
(2G) Let (C, (bg)) be a descent datum. Consider the idempotent

e = 1
|G|

∑
g∈G[g] in End f∗C, and let A = Im e. The adjoint of the

inclusion ι : A ↪→ f∗C yields a morphism ι̃ : f ∗A → C. Let us check
that this is a morphism of descent data, and an isomorphism.

The first point amounts to say that ι̃g = ι̃ for all g which, by Lemma
1.1 b), amounts to [g] ◦ ι = ι for all g: this is true by definition of ι.

For the second point, we define a morphism j : C → f ∗A as follows.
Let π : f∗C → A be the projection associated to the idempotent e.
Then j is the composition

C
∆−→

⊕
g∈G

C
∼−→ f ∗f∗C

f∗π−−→ f ∗A
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where the first morphism is the diagonal map and the second one is the
inverse of the isomorphism (1.2). It remains to show that j is inverse
to ι̃.

By the first point, we have f ∗[g] ◦ f ∗ι = f ∗ι which means, by
Lemma 1.3, that all the components of f ∗ι on (1.2) are equal, i.e.
that ∆εCf

∗ι = f ∗ι. Therefore, with an abuse of notation,

jι̃ = f ∗π∆εCf
∗ι = f ∗πf ∗ι = 1f∗A.

Finally, we have f ∗ιf ∗π = f ∗e = 1
|G|

∑
g∈G f

∗[g], hence

ι̃j = εCf
∗ιf ∗π∆ =

1

|G|
∑
g∈G

εCf
∗[g]∆ = 1C

as desired. �

2. The monoidal case

In this section, we assume that the categories A(S) are symmet-
ric monoidal (unital) and that the base change functors f ∗ are strong
symmetric monoidal (unital). We then have a “projection morphism”

A⊗ f∗C → f∗(f
∗A⊗ C)

for (A,C) ∈ A(S)×A(T ), constructed as the adjoint of

f ∗(A⊗ f∗C)
∼−→ f ∗A⊗ f ∗f∗C

1⊗εC−−−→ f ∗A⊗ C.
where the first isomorphism is the inverse of the monoidal structure of
f ∗. For C = 1T , we thus get a morphism

(2.1) A⊗ f∗1T
wA−−→ f∗f

∗A.

Definition 2.1. We say that f ∗ verifies the weak projection formula
if wA is an isomorphism for any A ∈ A(S), and is weakly Cartesian if
(1.2) is an isomorphism for C = 1T .

Lemma 2.2. Suppose that f ∗ verifies the weak projection formula and
is weakly Cartesian. Then f ∗ is Cartesian in the sense of Definition
1.2.

Proof. For A ∈ A(S), consider the commutative diagram

(2.2)

f ∗A⊗ f ∗f∗1T
f∗wA−−−→ f ∗f∗f

∗A

1⊗u1T

y uf∗A

y
f ∗A⊗

⊕
g∈G

1T

⊕
g∈G ef∗A−−−−−−→

⊕
g∈G

f ∗A
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where ef∗A is the unit constraint. The bottom horizontal map is an
isomorphism; so are the top one and the left vertical one by assumption.
Therefore uf∗A is also an isomorphism. �

Suppose that f ∗ is Cartesian and admits a trace structure in the
sense of Definition 1.4. Then there is a morphism tr : f∗1T → 1S such
that
(1u) the composition

1S
η1S−−→ f∗1T

tr−→ 1S

is multiplication by |G|;
(2u) the isomorphism (1.2) (for C = 1T ) converts f ∗ tr into the sum

map.
We call this a weak trace structure.
Conversely:

Proposition 2.3. Suppose that f ∗ verifies the weak projection formula
and is weakly Cartesian. Then a weak trace structure yields a trace
structure on f ∗ by the formula trA = (1A ⊗ tr) ◦ w−1

A .

Proof. The first identity of Definition 1.2 is clear from (1u), and the
second one follows from (2u) by using Diagram (2.2) again. �

3. Motivic theories

The following generalises Theorem 1 of the introduction:

Theorem 3.1. All motivic theories A of [5, Th. 4.3 a)] are stacks for
the étale topology on Spec k.

Proof. By Theorem 1.5, Lemma 2.2 and Proposition 2.3, it suffices to
check that, for any finite Galois extension f : T = Spec l→ S = Spec k,
f ∗ verifies the weak projection formula, is weakly Cartesian and has a
weak trace structure. UseM generically to denote the “motive” functor
Sm(−)→ A(−). Since f∗ coincides with the left adjoint f# of [5, Th.
4.1] which commutes with naïve restriction of scalars on Sm(−) via
M , we always have

f∗M(X) = M(X(S))

where X(S) denotes X viewed as an S-scheme, for any T -scheme X.
That (2.1) is a natural isomorphism is checked on pseudo-abelian

generators of A(S). Also, f ∗ commutes with Tate twists when they are
present in the theory A. We thus may take A = M(X) for X ∈ Sm(k)
or Smproj(k); then (2.1) becomes

M(X)⊗M(T )→M(X ×S T )
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which is an isomorphism because M is monoidal in all cases. That f ∗
is weakly Cartesian holds for the same reason (plus Galois theory).

Finally, we define the weak trace tr as the counit of the adjunction
(f#, f

∗) on 1S = M(Spec k) (recall that f# = f∗). The latter is the
(finite) correspondence given by the graph of the projection T → S,
while ε1S

is given by the transpose of this graph (this is the only geo-
metric input in this story!) From this, the weak cartesianity and the
axioms of the weak trace structure follow readily. �

4. Chow-Lefschetz motives

4.1. The associated stack. Let A0 be a fibred category over a site
Σ. Recall that there is an “associated stack” A together with a fibered
functor A0 → A which is 2-universal for fibered functors from A0 to
stacks. The stack A is constructed from A0 in two steps:
Associated prestack: A1: same objects as A0; for S ∈ Σ and X, Y ∈

A0(S), A1(S)(X, Y ) is the sheaf associated to the presheaf T →
S 7→ A0(T )(XT , YT ).

Associated stack (cf. [7, Lemma 3.2]): starting from A1, for S ∈ Σ
an object of A(S) is a descent datum of A1 for a suitable cover
(Ui)i∈I → S; morphisms are given by refining covers. This
operation is fully faithful (loc. cit., Remark 3.2.1).

In the case Σ = BΠ, these two constructions translate as follows,
with the notation of Section 1: in Step 1, one replaces the groups
A0(S)(A,B) by lim−→T

A0(T )(f ∗A, f ∗B)Gal(f), where f : T → S runs
through the (finite) Galois coverings of S; for Step 2, we take the 2-
colimit of the categories of descent data on A1.

4.2. The case of Chow-Lefschetz motives. In [6] we introduced
categories of “Chow-Lefschetz motives” LMot∼(k) over a field k (mod-
ulo an adequate equivalence relation ∼) in two steps: a) by defining
“crude” categories LMot∼(k)0 [6, §4.1]; b) by refining this construction
[6, §4.2].

Proposition 4.1. LMot∼(−) is the stack associated to LMot∼(−)0.

Proof. We first prove that LMot∼(−) is a stack. This is essentially
done in [6]: the descent property for morphisms is loc. cit., (4.4) and
the effectivity of descent data is shown in the proof of Theorem 5 in
loc. cit., §5.5 in the same way as here (we were inspired here by this
argument). If we want to apply Theorem 1.5 of the present paper, we
can note that the existence of a Cartesian left adjoint f# to f ∗ is proven
in [6, Lemma 4.5] (so we apply Theorem 1.5 to the opposite categories
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to LMot∼(−)). To be complete, it remains in view of Proposition 2.3
to prove the weak projection formula and to give a weak trace structure.
The proof of the first is the same as in Theorem 3.1, and the second
follows tautologically from the definition of morphisms in [6, (4.3)].

In remains to show that the canonical fibred functor LMot∼(−)0 →
LMot∼(−) induces an equivalence on the associated stacks; it suffices
to do it for the fibred functor LCorr(−)0 → LCorr(−) on categories
of correspondences. After forming the associated prestack as in §4.1,
this functor becomes fully faithful, and it remains to show that it be-
comes essentially surjective after forming the associated stack. But
an object of LCorr(k) is an abelian scheme over an étale k-algebra,
which clearly defines a descent datum for abelian varieties over (finite
separable extensions of) k. �

5. Tannakian categories

Let Π,A be as in Section 2, with the A(T ) rigid and abelian; we
assume that K = EndA(1) is a field of characteristic 0. We define A∞
as 2- lim−→U

A(Π/U), where U runs through the normal open subgroups
of Π: it has the same properties. Let ω∞ : A∞ → VecK be a fibre
functor (exact and faithful) to the category of finite-dimensional K-
vector spaces: by restriction, it defines a fibre functor ω on A(∗) =: A.
Let G = Aut⊗(ω) be its Tannakian group and H = Aut⊗(ω∞) be the
one of ω∞.

Definition 5.1. An Artin object of A is an object A such that f ∗A '
n1T for some f : T → ∗ and some n ≥ 0. Artin objects form a (full)
rigid ⊗-subcategory of A, denoted by A0.

Let A ∈ A0 be an Artin object; in Definition 5.1, we may choose T =
G = Π/U with U normal in Π. Then G acts on Kn ' Hom(1T , f

∗A) '
Hom(f ∗1∗, f

∗A) as in §1.1. If A0(G) denotes the full subcategory of
Artin objects split by f , this defines a ⊗-functor
(5.1) A0(G)→ RepK(G).

Lemma 5.2. This functor is an equivalence of categories.

Proof. Full faithfulness : letA,B ∈ A0(G), and let ϕ : Hom(1T , f
∗A)→

Hom(1T , f
∗B) be a G-equivariant homomorphism. Using the isomor-

phism f ∗A ' n1T , we get a homomorphism ϕ′ : Hom(f ∗A, f ∗A) →
Hom(f ∗A, f ∗B). Then ϕ′(1f∗A) maps to ϕ by (5.1) and isG-equivariant,
hence comes from a (unique) morphism A→ B by descent.

Essential surjectivity : for V ∈ RepK(G), the choice of a basis of V
yields a descent datum. �
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The ⊗-functor F ∗ : A → A∞ induces a homomorphism i : H → G.
Lemma 5.2 yields an equivalence of ⊗-categories A0 ∼−→ RepK(Π),
which is induced by ω since ω = ω∞ ◦ F ∗ (indeed, A∞(1∞, B) is func-
torially isomorphic to ω∞(B) for any split B ∈ A∞). Whence a homo-
morphism p : G→ Π.

Theorem 5.3. In the sequence

(5.2) H
i−→ G

p−→ Π

i is a monomorphism and p is faithfully flat; if the A(X)’s are semi-
simple, (5.2) is exact at G.

Proof. It is the same as for [6, Prop. 5.16], using [2, Prop. 2.21 (a)
and (b)] and [6, Prop. 5.12]. For p, noting that A0 is semi-simple since
Π is profinite, we must show that every subobject B ∈ A of an object
A ∈ A0 belongs to A0; but this is obvious by restricting to A∞, since
1∞ is simple by [2, Prop. 1.17]. For i, we must show that any object
C of A∞ is a direct summand of an object of the form F ∗A for A ∈ A;
since C comes from A(G) for some G = Π/U , it suffices to prove this
for C ∈ A(G) and f ∗ : A → A(G). But C is a direct summand of
f ∗f∗C by cartesianity. If the A(X)’s are semi-simple, so is A∞; by [6,
Prop. 5.12], for the exactness of (5.2) at G it suffices to show that, for
any simple S ∈ A, ω∞(S)H 6= 0 ⇒ ω(S)Ker p 6= 0. But ω∞(S)H 6= 0
implies that H acts trivially on ω∞(S), i.e. that F ∗S is trivial, i.e. that
S ∈ A0, which concludes the proof. �
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