

An approach to the Tate conjecture for surfaces over a finite field

Bruno Kahn

Conference on algebraic geometry and its applications, Nanjing, May 2, 2025

The Tate conjecture

k finitely generated field, X smooth projective k -variety, ℓ prime number $\neq \text{char } k$.

Conjecture (Tate, 1964)

$n \geq 0$, $CH^n(X) = \text{Chow group of cycles of codimension } n \text{ modulo rational equivalence: the cycle class map}$

$$CH^n(X) \otimes \mathbb{Q}_\ell \rightarrow H^{2n}(X_s, \mathbb{Q}_\ell(n))^G$$

is surjective.

Here $G = \text{Gal}(k_s/k)$ for a separable closure k_s of k and $X_s = X \otimes_k k_s$.

Known cases

- ① $n = 1$: abelian varieties (Tate, Zarhin/Mori, Faltings).
- ② $n = 1$, stable under product and domination, birationally invariant.
- ③ $n = 1$, k of char. 0 or finite or : K3 surfaces (Ramakrishnan, Nygaard-Ogus, Artin-Swinnerton Dyer, Charles. . .)
- ④ $n > 1$: several examples using Tannakian ideas.

k finite: the Tate conjecture (for a given X) is independent of l .

Reduction to surfaces

Theorem (Morrow, Ambrosi, K.)

For $n = 1$, the Tate conjecture follows from the special case of surfaces over \mathbb{Q} and \mathbb{F}_p .

Main result

For any variety S , write $H^i(S, j) := H^i_{\text{ét}}(S, \mathbb{Q}_l/\mathbb{Z}_l(j))$.

Theorem

X smooth projective surface over $k = \mathbb{F}_q$; assume that G acts trivially on $\text{NS}(X_s)$. Then, equivalent conditions:

- ① The Tate conjecture holds for X .
- ② For any affine open $U \subset X$ such that $\text{Pic}(U) = 0$, one has $H^3(U, 1) = 0$.
- ③ For any affine open $U \subset X$ such that $\text{Pic}(U) = 0$ and any smooth irreducible divisor $Z \subset U$, the map $H^3(U, 1) \rightarrow H^3(U - Z, 1)$ is injective.

(Hypothesis sufficient for the Tate conjecture.)

May assume X geometrically connected.

The Brauer group of X

For any variety S , $\text{Br}_l(S) := H^2_{\text{ét}}(S, \mathbb{G}_m)\{l\}$, the l -primary part of the cohomological Brauer group.

Proposition (works in any dimension and over any f.g. field k)

The Tate conjecture for X in codimension 1 $\iff \text{Br}_l(X_s)^G$ is finite.

Proof.

Kummer exact sequence yields short exact sequence

$$0 \rightarrow \text{NS}(X_s) \otimes \mathbb{Q}_l \rightarrow H^2(X_s, \mathbb{Q}_l(1)) \rightarrow V_l(\text{Br}_l(X)) \rightarrow 0$$

Take Galois cohomology and observe that

$$H^1(G, \text{NS}(X_s) \otimes \mathbb{Q}_l) = H^1(G, \text{NS}(X_s)) \otimes \mathbb{Q}_l = 0,$$

so Tate $\iff V_l(\text{Br}_l(X))^G = 0$. This is equivalent to finiteness of $\text{Br}_l(X_s)^G$ because $\text{Br}_l(X_s)$ is of cofinite type. □

The Brauer group of U

Back to k finite and X surface.

$U \subset X$ open subset, Z closed complement (reduced): short exact sequence

$$0 \rightarrow \text{Br}_I(X_s) \rightarrow \text{Br}_I(U_s) \rightarrow \bigoplus_{x \in Z \cap X^{(1)}} H^1((Z'_x)_s, 0)$$

where, for all $x \in Z \cap X^{(1)}$, Z'_x = intersection of smooth locus of Z with its irreducible component corresponding to x .

Proposition

The groups $H^1((Z'_x)_s, 0)^G$ are finite.

Proof.

Follows from Weil's Riemann hypothesis applied to the smooth completions of the Z'_x . □

The Brauer group of U (continued)

Proposition

$Tate \iff \forall U \text{ Br}_I(U_s)^G \text{ is finite} \iff \exists U \text{ Br}_I(U_s)^G \text{ is finite.}$

Proposition

$\text{Br}_I(U_s)^G \text{ finite} \iff \text{Br}_I(U_s)_G \text{ finite.}$

True for any G -module of cofinite type (because G is procyclic).

Passing from $\mathrm{Br}_I(U_s)_G$ to $H^3(U, 1)$

If $\mathrm{NS}(U_s)$ is torsion, then $H^2(U_s, 1) \xrightarrow{\sim} \mathrm{Br}_I(U_s)$, hence short exact sequence (Hochschild-Serre):

$$0 \rightarrow \mathrm{Br}_I(U_s)_G \rightarrow H^3(U, 1) \rightarrow H^3(U_s, 1)^G \rightarrow 0.$$

Lemma

If moreover U is affine, then isomorphism of divisible groups

$$\mathrm{Br}_I(U_s)_G \xrightarrow{\sim} H^3(U, 1).$$

Proof.

Follows from M. Artin's "affine Lefschetz" ($\mathrm{cd}_I(U_s) = 2$) applied twice! □

The condition $\text{Pic}(U) = 0$

Lemma

Suppose that G acts trivially on $\text{NS}(X_s)$. Then $\text{Pic}(U) = 0 \Rightarrow \text{NS}(U_s)$ is torsion.

Proof.

If G acts trivially on $\text{NS}(X_s)$, it acts trivially on its quotient $\text{NS}(U_s)$; also $\text{Pic}^0(X_s) \rightarrow \text{Pic}^0(U_s)$ is surjective hence $\text{Pic}^0(U_s)$ is torsion. Finally, $\text{Coker}(\text{Pic}(U) \rightarrow \text{Pic}(U_s)^G)$ is torsion by a transfer argument. Conclusion is easy. □

Remark

Can always reduce to this case after finite extension of k since $\text{NS}(X_s)$ is finitely generated. Sufficient for the Tate conjecture.

Proof of 1 \iff 2

Hypotheses

G acts trivially on $\text{NS}(X_s)$, U affine and $\text{Pic}(U) = 0$.

Tate $\iff \text{Br}_I(X_s)^G = 0 \iff \text{Br}_I(U)_G$ finite $\iff \text{Br}_I(U)_G = 0$
(because divisible) $\iff H^3(U, 1) = 0$.

Remarks

- a) Quasi-affine is not sufficient: by purity, $H^3(\mathbb{A}^2 - \{0\}, 1) = H^0(k, -1)$, $\neq 0$ in general.
- b) $\exists U$ because $\text{Pic}(X)$ finitely generated.

From 2 to 3

Still assume G acts trivially on $\mathrm{NS}(X_s)$ (blanket assumption now).

A.

Condition 2 equivalent to: For any affine open $U \subset X$ such that $\mathrm{Pic}(U) = 0$, and any open $V \subseteq U$, the map $H^3(U, 1) \rightarrow H^3(V, 1)$ is injective..

If true, then $H^3(U, 1) \hookrightarrow H^3(K, 1)$ ($K = k(X) = k(U)$), but

Theorem (K., 1991 Lake Louise K-theory proceedings)

$H^3(K, 1) = 0$.

Proof.

Hochschild-Serre \Rightarrow exact sequence

$$0 \rightarrow H^2(Kk_s, 1)_G \rightarrow H^3(K, 1) \rightarrow H^3(Kk_s, 1)^G \rightarrow 0.$$

Right hand side 0 because $cd(Kk_s) = 2$; For left hand side, *Bloch-Kato theorem*

$$K_2(Kk_s)/I^\nu \longrightarrow H^2(Kk_s, \mu_{I^\nu}^{\otimes 2}) \quad \forall \nu \geq 1$$

(predates Merkurjev-Suslin!), hence

$$(K_2(Kk_s) \otimes \mathbb{Q}_I/\mathbb{Z}_I(-1))_G \longrightarrow H^2(Kk_s, 1)_G$$

but left hand side is 0 by Tate's lemma. □

B.

A. equivalent to same statement, but with $Z := (U - V)_{\text{red}}$ irreducible of dimension 1.

Proof.

D_1, \dots, D_n irreducible components of codimension 1 of Z . For $0 \leq i \leq n$, U_i inductively defined as $U_{i-1} \setminus D_i$, with $U_0 = U$. Chain of open subsets

$$U \supset U_1 \supset \dots \supset U_n \supseteq V$$

each U_i affine since D_i principal, $\text{Pic}(U_i) = 0$, and $U_n - V$ of codimension ≥ 2 in U_n . By B., $H^3(U_i, 1) \hookrightarrow H^3(U_{i+1}, 1)$ for all i , and also $H^3(U_n, 1) \hookrightarrow H^3(V, 1)$ by cohomological purity. □

End of proof that 2 \iff 3

C.

B. equivalent to same statement, but with Z smooth.

Proof.

\bar{Z} closure of Z in X , F its singular locus. By Poonen (Bertini theorems over finite fields), $\exists C_0 \subset X$ smooth projective curve containing F ; a fortiori, $C = C_0 \cap U$ is smooth. Apply C. to (U, C) and then to $(U - C, Z \setminus C)$ (note that $Z \setminus C$ is smooth): we get that the composition

$$H^3(U, 1) \rightarrow H^3(U - C, 1) \rightarrow H^3(U - (C \cup Z), 1)$$

is injective. A fortiori, $H^3(U, 1) \rightarrow H^3(U - Z, 1)$ is injective. □

Going further

Gysin exact sequence

$$H^2(V, 1) \xrightarrow{\partial} H^1(Z, 0) \xrightarrow{i_*} H^3(U, 1) \xrightarrow{j^*} H^3(V, 1)$$

Proposition

In this sequence,

- a) *Image of ∂ contains image of $i^* : H^1(U, 0) \rightarrow H^1(Z, 0)$.*
- b) *i_* factors through the finite group $H^1(Z_s, 0)^G$.*
- c) *$i_* = 0$ (hence j^* injective) for $l \geq l_0$, where l_0 prime number depending on Z .*

Proof of a)

$f \in \Gamma(U, \mathbb{G}_a)$ equation of Z in U . Then f is invertible on V .
 $(f) \in H^1(V, \mathbb{Z}/(1))$ its Kummer class: composition

$$H^1(U, 0) \xrightarrow{j^*} H^1(V, 0) \xrightarrow{\cup(f)} H^2(V, 1) \xrightarrow{\partial} H^1(Z, 0)$$

equals i^* (follows from definition of the purity isomorphism).

Proof of b)

k_Z field of constants of Z . Commutative diagram of exact sequences

$$\begin{array}{ccccccc} 0 & \longrightarrow & H^0(Z_s, 0)_G & \longrightarrow & H^1(Z, 0) & \longrightarrow & H^1(Z_s, 0)^G \longrightarrow 0 \\ & & i^* \uparrow & & i^* \uparrow & & i^* \uparrow \\ 0 & \longrightarrow & H^0(U_s, 0)_G & \longrightarrow & H^1(U, 0) & \longrightarrow & H^1(U_s, 0)^G \longrightarrow 0 \end{array}$$

where left vertical arrow = multiplication by $[k_Z : k]$ in $\mathbb{Q}_I/\mathbb{Z}_I$, hence surjective. By a), image of ∂ contains $H^0(Z_s, 0)_G$.

Proof of c)

Needs

Lemma

The order of $H^1(Z_s, 0)^G$ is bounded independently of I .

Proof.

Again, follows from Riemann hypothesis applied to smooth completion of Z (bound depends on k_Z , the genus and the divisor at infinity). □

First idea fails

Recall: the Tate conjecture is independent of I . So we won! No, because I_0 a priori not bounded independently of Z .

Second idea

Inspired by Gillet's proof of Gersten's conjecture for dvr's (for K -theory with finite coefficients), J. Alg., 1986.

In three parts: first two parts work but not last.

Motivation: Gabber rigidity

Theorem (Gabber)

(A_h, I) Henselian pair, $U_h = \text{Spec}(A_h)$, $Z = \text{Spec}(A_h/I)$, $i : Z \hookrightarrow U_h$ the closed immersion. Then for any torsion abelian étale sheaf F on U_h and for all $q > 0$, $H^q(U_h, F) \xrightarrow{i^*} H^q(Z, F)$ is bijective.

Coming back to our (U, Z) : recall Nisnevich neighbourhood of $Z \hookrightarrow U$:
Cartesian square

$$\begin{array}{ccc} V_1 & \xrightarrow{j_1} & U_1 \\ p \downarrow & & q \downarrow \\ V & \xrightarrow{j} & U \end{array} \tag{1}$$

q étale and $q^{-1}(Z) \xrightarrow{\sim} Z$.

(U_h, Z) henselisation of pair (U, Z) : filtering colimit of such Nisnevich squares.

Second idea: first part

Corollary

$\exists (U_1, q)$ such that $H^1(U_1, 0) \rightarrow H^1(Z, 0)$ is surjective. Therefore $\partial_1 : H^2(V_1, 1) \rightarrow H^1(Z, 0)$ surjective (see proposition p. 16).

Unfortunately, not sufficient: how do we go down? No push-forward for p .

Normalising (1)

\bar{U}_1 normalisation of U in q ; more complicated diagram



j'' open immersion, \bar{q} fini (since q étale), $\bar{V}_1 = V \times_U \bar{U}_1$, $\bar{Z} = \bar{U}_1 - \bar{V}_1$ and other arrows follow. In particular, j' and u also open immersions, \bar{Z} closed and \bar{p} , \bar{r} also finite.

Note:

- Finite \Rightarrow affine, hence \bar{U}_1, \bar{V}_1 are affine. All vertices of (2) are affine.
- In particular, closed immersion \bar{i}_1 purely of codimension 1.
- \bar{r} separated \Rightarrow open immersion u is also closed, hence $\bar{Z} = Z \coprod T$ for some other closed subset T .
- \bar{U}_1 and \bar{V}_1 normal surfaces $\Rightarrow \bar{p}$ and \bar{q} flat (Serre's normality criterion \Rightarrow Cohen-Macaulay, etc.).

Second idea, second part

Since \bar{p}, \bar{q} finite and flat, trace maps available in étale cohomology;
commutative diagram

$$\begin{array}{ccccc} H^2(V, 1) & \xleftarrow{\bar{p}_*} & H^2(\bar{V}_1, 1) & \xrightarrow{j'^*} & H^2(V_1, 1) \\ \downarrow \partial & & \downarrow \bar{\partial}_1 & & \downarrow \partial_1 \\ H^3_Z(U, 1) & \xleftarrow{\bar{q}_*} & H^3_Z(\bar{U}_1, 1) \oplus H^3_T(\bar{U}_1, 1) & \xrightarrow{j''^*} & H^3_Z(U_1, 1) \\ & \swarrow \sim & \uparrow a & \searrow \sim & \\ & & H^1(Z, 0) & & \end{array} \quad (3)$$

where ∂_1 surjective (as seen) and a , an isomorphism on first summand defined by excision ($H^3_Z(\bar{U}_1, 1) \xrightarrow{\sim} H^3_Z(U_1, 1)$), and 0 on second. Left square commutes e.g. by proper (finite) base change.

Corollary

$$\text{Im } \partial \supseteq \text{Im}(\bar{q}_* \circ \bar{\partial}_1).$$

Second idea, third part

If could show that $\text{Im } \bar{\partial}_1 \supseteq \text{Im } a$, would win. Would like to use surjectivity of ∂_1 , but not sufficient. Would work if

- ① the composition

$$\bar{i}_{1,Z}^* : H^1(\bar{U}_1, 0) \xrightarrow{j''''*} H^1(U_1, 0) \xrightarrow{i_1^*} H^1(Z, 0)$$

is surjective, and

- ② $\exists f_1 \in \Gamma(\bar{U}_1, \mathbb{G}_a)$ such that Z principal of equation f_1 in \bar{U}_1 , and $f_1 \equiv 1 \pmod{T}$.

2 looks very expensive, but maybe 1 can be achieved (by enlarging U_1). Note that it is true for l large enough, because this holds for i^* (see again prop. p. 16).

Third idea: from below

Inspired by Gabber's geometric presentation lemma to prove Gersten's conjecture.

Suppose that we can construct an “ante-Nisnevich neighbourhood” of i :

$$\begin{array}{ccc} Z & \xrightarrow{i} & U \\ & \searrow i_1 & \downarrow v \\ & & U_1 \end{array} \tag{4}$$

i_1 closed immersion, v Nisnevich neighbourhood of Z , U_1 affine open in smooth projective surface for which Tate's conjecture is known. Then $(i_1)_* = 0$, hence $i_* = v^*(i_1)_* = 0$ (functoriality of Gysin maps).

In fact, “Nisnevich neighbourhood” not necessary: by the functoriality of Gysin morphisms, v may be any morphism such that

$$Z = v^{-1}(\overline{v(Z)}), \quad Z \xrightarrow{\sim} \overline{v(Z)} \tag{5}$$

(scheme-theoretically). Moreover, $v(Z)$ is constructible by Chevalley, but Z curve, hence $v(Z)$ open in its closure.

Gabber's lemma: this with $U_1 = \mathbb{A}^2$, but up to an open subset. Version over finite fields by Hogadi-Kulkarni (Crelle 2020):

Proposition

$\exists \nu : U \rightarrow \mathbb{A}^2$ and open subset $W \subseteq \mathbb{A}^2$ such that

- ① $\nu|_{\nu^{-1}(W)}$ is étale
- ② $Z \cap \nu^{-1}(W) \xrightarrow{\nu} W$ is a closed immersion.

But cannot afford to "lose" a closed subset in U (of codimension 2, à la rigueur...) So look at situation for ν on the whole of U . Second condition of (5) is (essentially) achieved, but not first: can be extra components – and will be in general, because ν has generic degree > 1 unless birational...

Similar problem as in second idea!

That's all!