AN APPROACH TO THE TATE CONJECTURE FOR SURFACES OVER
A FINITE FIELD

BRUNO KAHN

ABSTRACT. We give a reformuation of the Tate conjecture for a surface over a
finite field in terms of suitable affine open subsets. We then present three attempts
to prove this reformulation, each of them falling short. Interestingly, the last two
are related to techniques used in proofs of Gersten’s conjecture.

INTRODUCTION

Since the Tate conjecture in codimension 1 has been reduced to surfaces over
the prime field [17, 1, 14], it is tempting to try to prove it in such case (but see the
philosophical comment below). In this note and in the spirit of [14], I present a
reformulation for a surface X over a finite field £ in terms of affine open subsets
U C X which verify Pic(U) = 0. I then present three ideas, so far unsuccessful,
to prove this reformulation.

I thank Olivier Wittenberg, Hiroyasu Miyazaki and Takeshi Saito for their pa-
tience in reading or listening to explanations of initial versions of this work.

Philosophical comment. There are so many possible paths towards a proof of the
Tate conjecture (for divisors) that there is no guarantee that the present strategy is
right. Some positive evidence is that the arguments below strongly use the hypothe-
ses that dim X = 2 and that £ is finite: M. Artin’s theorem on the cohomological
dimension of affine schemes, and the procyclicity of the absolute Galois group. Yet
no proof comes out so far. Perhaps out of frustration, I thought it worthwhile to
make these ideas public nevertheless.

Notation. Let [ be a prime number. For any scheme S on which [ is invertible
and any integers (i,7) € N x Z, we write H'(S,j) := H: (S, Qi/Zi(j)) and
Bri(S) := HZ(S,Gy,){l} for the [-primary part of the cohomological Brauer
group.

Let k be a field, ks a separable closure of k and G = Gal(ks/k). If Vis a
k-variety, we write Vs := V ®y, ks.
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1. THE REFORMULATION

Theorem 1.1. Suppose k finite, and let X be a smooth projective surface over k;
assume that G acts trivially on NS(X). Then the following are equivalent:

(1) The Tate conjecture holds for X.

(2) For any affine open U C X such that Pic(U) = 0, one has H3(U,1) = 0.

(3) For any affine open U C X such that Pic(U) = 0 and any smooth irre-
ducible divisor Z C U, the map H3(U,1) — H3(U — Z,1) is injective.

Remarks 1.2. a) We can always reduce to the case where G acts trivially on NS(X)
after passing to a finite extension of k, since NS(Xj) is finitely generated. This is
sufficient for the Tate conjecture.

b) Such U’s as in (2) and (3) exist because Pic(X) is finitely generated.

¢) Quasi-affine is not sufficient in (2): by purity, H3(A? — {0},1) = HO(k, —1),
which is # 0 in general.

For the proof, we may assume X geometrically connected. Of course, (2) is a
step from (1) to (3). We shall prove successively (1) <= (2) and (2) <= (3).

1.1. The Brauer group of X. The following proposition works for any smooth
projective variety X over any finitely generated field k.

Proposition 1.3. The Tate conjecture holds for X in codimension 1 if and only if
Bry(X,)Y is finite.

Proof. The Kummer exact sequences yield a short exact sequence
0 — NS(X,) ® Q — H*(Xs, Qu(1)) — Vi(Bri(X)) — 0
where V] denotes the rational Tate module. Take Galois cohomology and observe
that
H'(G,NS(X,) @ Qi) = H'(G,NS(X,)) ® Q =0,

so the Tate conjecture holds if and only if Vj(Br;(Xs))® = 0. This is equivalent

to the finiteness of Br;(X,)®, because Br;(X,) is of cofinite type (as a quotient of
H?(X,,1)). a

1.2. Cohomology of curves. We go back to the case where & is finite and X is a
surface.

Proposition 1.4. Let Z be a smooth curve over k. Then H'(Zs,0) is divisible and
H'(Z,,0)C is finite, of order bounded independently of 1.

Proof. This easily follows from Weil’s Riemann hypothesis applied to the smooth
completion Z of Z and the Gysin exact sequence relating H'(Z,0) and H'(Z;, 0).
The proof shows that the bound only depends on the field of constants, the genus
of Z and the divisor at infinity. (]
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1.3. The Brauer group of U. Let U C X be an open subset and Z its (reduced)
closed complement: we have a short exact sequence

0—Br(X,) »Bu(U.) —» & HY((Z))s0)
z€ZNX M

where, forallx € ZNX (1), Z!. is the intersection of the smooth locus of Z with
its irreducible component corresponding to x. Proposition 1.4 then yields

Proposition 1.5. The Tate conjecture holds for X if and only if for any U open in
X, Bry(U,)€ is finite, and also if and only if there exists such a U. O

Proposition 1.6. Br;(U,)“ is finite if and only if Br)(Us) g is finite.

Proof. This is true for any GG-module of cofinite type, because G is procyclic: an
endomorphism of a finite-dimensional Q;-vector space is injective if and only if it
is surjective. U

1.4. Passing from Br;(Us)¢ to H3(U,1). If NS(Uy) is torsion, then H?(Us, 1)
% Br;(Us), hence the Hochschild-Serre spectral sequence yields a short exact

sequence:
0 — Brj(Uy)g — H3(U,1) —» H*(U,,1)¢ = 0.

Lemma 1.7. If moreover U is affine, the first map of this sequence is an isomor-
phism of divisible groups.

Proof. This follows from M. Artin’s theorem that c¢d;(Us) = 2 [2, Cor. 3.2], ap-
plied twice: first, the right hand term of the sequence is 0, and then Br;(Us) is
divisible because H3(Us, 1) = 0.. O

1.5. The condition Pic(U) = 0.

Lemma 1.8. Suppose that G acts trivially on NS(X,). Then the map Pic(Us)% —
NS(Us) is surjective. We have the equivalences: Pic(U) is torsion <= Pic(Us)
is torsion <= NS(Us) is torsion. In particular, Pic(U) = 0 = NS(Us) is
torsion.

Proof. If G acts trivially on NS(X), it acts trivially on its quotient NS(Us); more-
over, Pic’(X,) — Pic?(Us) is surjective (compare the exact sequences of [5, Prop.
1.8 and Ex. 10.3.4]), hence Pic®(Uy) is torsion since k is finite. It follows that the
map
Pic(U,)% — NS(U,)¢ = NS(U,)

has torsion kernel; it is surjective because the next term H'(G,Pic®(Uy)) is 0.
Indeed, since cd;(G) = 1, this group is a quotient of H'(G, Pic(X)) which is 0
for the same reason as in the proof of Proposition 1.4.

Finally, the groups Ker(Pic(U) — Pic(Us)%) and Coker(Pic(U) — Pic(Us)%)
are torsion by a transfer argument. The conclusion follows easily. U
1.6. Proof of (1) <= (2). This follows from what has been proven so far.

Namely: the Tate conjecture holds for X <= Br;(X,)® finite <= Br;(Us)g
finite <= Br;(Us)g = 0 (because it is divisible) <= H?3(U, 1) = 0.
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1.7. From (2) to (3). We still assume that G acts trivially on NS(X) (a blanket
assumption now).

Proposition 1.9. Condition (2) is equivalent to the following: for any affine open
U C X such that Pic(U) = 0 and any open V. C U, the map H3(U,1) —
H3(V, 1) is injective.

Proof. If the statement is true, then H?(U, 1) injects into H3(K, 1) where K =
kE(X) = k(U); but this group is 0 by [13, prop. 4]. O

Proposition 1.10. The condition of Proposition 1.9 is equivalent to the same state-
ment, but with Z := (U — V')eq irreducible of dimension 1.

Proof. Let Dy, ..., D, be the irreductible components of codimension 1 of Z. For
0 < i < n, define U; inductively as U;_; \ D;, with Uy = U. We have a chain of
open subsets

Uo>U;2...U, 2V
where each U; is affine since D; is principal, Pic(U;) = 0, and U,, — V is of
codimension > 2 in U,,. By the hypothesis, H3(U;, 1) < H?*(U;11,1) for all 4,
and also H3(U,, 1) < H3(V, 1) by cohomological purity. O

Proposition 1.11. The condition of Proposition 1.10 is equivalent to the same
statement, but with Z smooth.

Proof. Let Z be the closure of Z in X and F be its singular locus. By Poonen [16,
Cor. 3.4], there exists a smooth projective curve Cy C X containing F'; a fortiori,
C = CyNU is smooth. Apply the hypothesis to (U, C') and then to (U —C, Z\ C)
(note that Z \ C'is smooth): we get that the composition

H3U,1) - H3(U - C,1) - H*(U — (CU 2),1)
is injective. A fortiori, H3(U, 1) — H3(U — Z,1) is injective. O

This concludes the proof of (2) <= (3), hence of Theorem 1.1.

2. GOING FURTHER

Let (U, Z) be as in Condition (3) of Theorem 1.1, and let V' = U — Z. We have
the Gysin exact sequence

2.1) 22,1 % 5 (2,0) & B3(U,1) L H3 (V1)

which yields two reformulations of this condition: the vanishing of i,, and the
surjectivity of 0. The following proposition cuts down the size of the image of i..

Proposition 2.1. In (2.1),

a) the image of O contains the image of i* : H'(U,0) — H(Z,0).

b) i factors through the finite group H'(Z,0)¢.

c) ix = 0 (hence j* is injective) for I > ly, where ly is a prime number depending
on Z.
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Proof. a) Let f € T'(U, G,) be an equation of Z in U. Then f is inversible on V.
Let (f) € HY(V,Z;(1)) be its Kummer class: the composition

H'(,0) 2 5 (v,0) Y% m2(v,1) & HY(2,0)

equals ¢*: this follows from the definition of the purity isomorphism [10, 2.1].
b) Let kz be the field of constants of Z. We have a commutative diagram of
exact sequences

0 —— H°Z,,0)g —— HY(Z,0) —— HY(Z,,00¢ —— 0

(22) o “] o]

0 —— HU,,0)¢ —— HYU,0) —— HYU,,00¢ —— 0
where the left vertical arrow is multiplication by [kz : k| in Q;/Z;, hence surjec-
tive. By a), Im 9 D Im H°(Z,,0)q.

c) follows from Proposition 1.4. U

3. THREE APPROACHES

3.1. The first idea fails. It would be to use the fact that the Tate conjecture is
independent of [ [18, Prop. 4.3]. Unfortunately, [y is not (a priori) bounded inde-
pendently of Z in Proposition 2.1 c).

Remark 3.1. On the other hand, the corank of H?(U, 1) is independent of I, as is
more generally the characteristic polynomial of Frobenius acting on H?(Us, Q;).
By an Euler-Poincaré characteristic argument, it suffices to see the same thing for
H° and H'. This is trivial for H?; for H', by semi-purity we have an exact
sequence

0= H'(X,, Q) = H'(Ue Q) = P Q(-1) % H(X,, Q)
2eXM\U,
so it suffices to see the independence of [ for Ker(cl;). But cl; factors through
cl®Q;(—1), where clis the divisormap @  Z — NS(Xj).
meXél)\Us
If one replaces H2(Us, Q;) by H2(Us, Q), this computation shows by Poincaré

duality that the corresponding inverse characteristic polynomial has integer coeffi-
cients.

3.2. Second idea: from above. It is inspired by Gillet’s proof of Gersten’s con-
jecture for dvr’s for K-theory with finite coefficients [8], abstracted in [3, app. B].
I divide it in three parts: the first two work, but not the last.

3.2.1. First part. It is motivated by Gabber’s rigidity theorem [7]:

Theorem 3.2. (A, I) Henselian pair, Uy, = Spec(Ayp), Z = Spec(Ap/I), i :
Z — Uy, the closed immersion. Then for any torsion abelian étale sheaf I on Uy,

and for all ¢ > 0, H1(Uy, F") =, HY(Z, F) is bijective.
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Coming back to our pair (U, Z): recall that a Nisnevich neighbourhood of Z —
U is a Cartesian square

1% L U

3.1) pl ql

vV U

with ¢ étale and ¢! (Z) — Z. The henselisation (Uy,, Z) of (U, Z) is the filtering
colimit of such neighbourhoods.

Corollary 3.3. There exists (U1, q) such that H*(Uy,0) — H'(Z,0) is surjective.

Proof. By Theorem 3.2, the homomorphism H'((Uy)s,0)¢ — H'(Z,,0)% is bi-
jective. As the right hand side is finite (Proposition 1.4), there exists U; such that
H'((Uy)s,0)¢ — H'Y(Z,,0)% is surjective. Then H'(Uy,0) — H'(Z,0) is also
surjective, by the snake lemma applied to (the analog of) (2.2): use the surjectivity
of the left vertical map as in the proof of Proposition 2.1 b). U

By Proposition 2.1 a), Corollary 3.3 implies that &y : H2(V4,1) — H(Z,0) is
surjective. Unfortunately, this is not sufficient: how do we go down? There is no
push-forward for p.

3.2.2. Second part. To correct this problem, consider the normalisation Uy of U
in g, enriching (3.1) into a more complicated diagram

Vi n 0, <"z
g’ J" u
D . -/ q 7
(3.2) % J U, i 7
% /-
1% ! U< 7
vghere _j” is an open immersion, ¢ is finite (since ¢ is étale), Vi=V XU Ui,

Z = U, — V; and the other arrows follow. In particular, j' and u are also open
immersions, Z is closed and p, 7 are also finite.
Some observations on this diagram:

Finite = affine, hence U, V; are affine. All vertices of (3.2) are affine.

In particular, the closed immersion 47 is purely of codimension 1 [11, cor.
21.12.7].

e Since 7 is separated, the open immersion u is also closed, hence Z =
Z [T for some other closed subset 7" (of pure codimension 1).

Since U; and V; are normal surfaces, p and q are flat [15, Ex. 8.2.15].
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Since p, ¢ are finite and flat, trace maps are available in étale cohomology [4,
Th. 6.2.3] and we have a commutative diagram

_ N

H(V,1) = H*(11,1) H?(V1,1)

o o b

= J

(3.3) H(U,1) <2 H3(U1,1) @ H3(U1,1) — H3(UL, 1)

T T

HY(Z,0)

where 0 is surjective as seen above, and a is the isomorphism on the first summand
defined by excision (H3(U1,1) — Hj(Uy, 1)), and 0 on the second. The left
square commutes e.g. by proper (finite) base change. This implies:

Corollary 3.4. Tm 9 D Im(g. o 01). O

3.2.3. Third part. If we could show that Im 01 2 Im a, we would win. We would
like to use the surjectivity of 0j, but it is not sufficient. Analysing Gillet’s argu-
ments, things would work if

(1) the composition

i, HY(07,0) 25 HY(U,0) 25 HY(2,0)
is surjective, and
(2) 3 f1 € T'(U1,G,) such that Z is principal of equation f in Uy, and f; = 1
(mod T).
(2) looks very expensive (see 3.2.4 below), but maybe (1) can be achieved by
enlarging U;. Specifically, we may ask the following

Question 3.5. Let U}, be the normalisation of U in U, — U. Is the composition
(3.4) HY(U,,0) - HY(U,,0) = H(Z,0)
still surjective?

Note that this composition is injective by [9, lemme 3.6 and rem. 3.7], and that
surjectivity holds anyway for [ large enough, because it holds for i* by Proposition
2.1¢).

3.2.4. Some negative “evidence” in dimension 1. Instead of a surface, consider a
smooth affine k-curve U such that Pic(U) = 0, and let Z € U be a closed point.
There is a trivial way to make H'(U,0) — H'(Z,0) surjective: extend scalars
from k to k(Z) so that Uy acquires a rational point above Z, and shrink U in
order to throw away the extra points above Z.

The analogue to Condition (1) in 3.2.3 is obviously verified. However, even
though Pic(U) = 0, Pic(Uyz)) will not vanish in general because Pic(Uy,) is
infinite as soon as the smooth completion of U has positive genus. Thus Condition
(2) may well fail. There is probably an explicit example with U an affine elliptic
curve.
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3.3. Third idea: from below. This idea is inspired by Gabber’s geometric pre-
sentation lemma, used to prove Gersten’s conjecture ([6], [3, th. 3.1.1]).
Suppose that we can construct an “ante-Nisnevich neighbourhood” of i:

7. U

(3.5) \\&

Uy

where ¢ is a closed immersion, v is a Nisnevich neighbourhood of Z and U is
affine open in a smooth projective surface for which Tate’s conjecture is known.
Then (i1). = 0, hence i, = v*(i1). = 0 by functoriality of the Gysin maps.

In fact, “Nisnevich neighbourhood” is not necessary: by the functoriality of
Gysin morphisms, v may be any morphism such that
(3.6) Z=v"'v(2), Z->0(Z)
(scheme-theoretically). Moreover, v(Z) is constructible by Chevalley’s theorem,
but Z is a curve, hence v(Z) is open in its closure.

Gabber’s lemma achieves this with U; = A2, but up to an open subset. A version
over finite fields was given by Hogadi-Kulkarni [12, Lemma 2.4 and Rem. 1.3]:

Proposition 3.6. There exists a morphism v : U — A? and an open subset W C
A? such that

(1) vjp-1(w) is étale
Q) ZNnv Y (W) 5 W is a closed immersion.

But we cannot afford to “lose” a closed subset in U (of codimension 2, a la
rigueur...): we would start running into circles. Thus, let us look at v on the
whole of U. The second condition of (3.6) is achieved', but not the first: there can
be extra components — and there will be in general, because v has generic degree
> 1 unless it is birational. .. see 3.3.1 below for a definite counterexample in the
analogous dimension 1 case.

This problem is similar to the one encountered in the second idea!

3.3.1. Some negative “evidence” in dimension 1. Let (U, Z) be as in §3.2.4 and
let X be the smooth projective completion of U, assumed to be of genus > 0.

Proposition 3.7. Let N = |(X — U)(ks)|- If deg(Z) > N, there is no diagram
(3.5) verifying (3.6) with d = deg(v) > 1 (generic degree).

Proof. Suppose that such a diagram exists. Then v induces a ramified covering
v : X — X of degree d, where X is the smooth completion of U;. As in 3.2.4,
deploy the situation by extending scalars to k(Z): then Z is replaced by ¢ rational
points Z;, where § = deg(Z). By hypothesis, one has Z; = v~ (v(Z;)) for all 4.
But since d > 1, 5~ Y(v(Z;)) — {Z;} is non-empty and contained in (X — U)(ks).
When ¢ varies, these sets are disjoint. Contradiction. ([

1Essentially, because v(Z) might be singular; but this concerns only a finite set of closed points.
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On the other hand, if 7 is a rational point, the construction works by using the
vanishing of Pic(U): if f € k(U) is an equation of Z, it suffices to project U to
A}{ via f.

I cannot create counter-examples such as 3.2.4 and 3.3.1 in dimension 2...
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