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Abstract – We construct a new Weil cohomology for smooth projective varieties over a field,
universal among Weil cohomologies with values in rigid additive tensor categories. A sim-
ilar universal problem for Weil cohomologies with values in rigid abelian tensor categories
also has a solution. We give a variant for Weil cohomologies satisfying more axioms, like
Weak and Hard Lefschetz. As a consequence, we get a different construction of André’s cat-
egory of motives for motivated correspondences and show that it has a universal property.

This theory extends over suitable bases.
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1. Introduction

The main result of this article is:

Theorem 1. Over any field : , there exists a universal Weil cohomology.

We wish the story were so simple; actually we have a commutative square of
universal Weil cohomologies:

(1.1)

(W,,) −−−−−→ (Wab,,ab)y y
(W+,,+) −−−−−→ (W+

ab,,
+
ab)

(see §§1.1 and 1.2 below for the notation). Here, the top left is universal for Weil
cohomologies verifying a standard list of axioms, with values in rigid Q-linear sym-
metric monoidal categories; same for the top right, but replacing additive by abelian.
The bottom row is similar, except that we impose extra axioms, the most important
being a weak and a strong Lefschetz property.

To muddy the water a little more, but to add flexibility to our construction, we
work as in [1] with respect to a given class of smooth projective varieties verifying
certain stability conditions: this class was not displayed in (1.1) for simplicity.

The history of this line of investigation is well-known: it goes back to Grothen-
dieck and is excellently summarised by Serre in [51]. His survey shows two things:
firstly, how the issue of the relationships between the Weil cohomologies known at
the time is the genesis of Grothendieck’s theory of motives. Secondly, that he was
not so much interested in the universal problem we solve here as in the Tannakian
aspect, yielding motivic Galois groups (see [48, VI.A.4.2] and the two quotations
from Récoltes et Semailles in [51]). As Serre writes, Grothendieck did expect the
category Mnum(:) of motives modulo numerical equivalence to be abelian, semi-
simple and initial with respect to all (vector space-valued) Weil cohomologies, and he
knew that this would follow from the standard conjectures he formulated in [24] (see
[36], [48, VI, Appendix]). The semi-simplicity ofMnum(:) has now been proven by
Jannsen [26] independently of the standard conjectures, but its initiality in the above
sense remains dependent on them (and essentially equivalent to them).
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One might therefore expect that the categories of (1.1) resolve this issue by map-
ping naturally toMnum(:). Surprisingly, we shall see that it is not the case unless. . .
one assumes some conjectures!

Let us now describe the contents of the article.

1.1 – Construction

In Section 4, we lay the ground to formulate Theorem 1. Starting from an admiss-
ible classV of smooth projective :-varieties (Definition 4.1.1), we give in Definition
4.2.1 our axioms for a Weil cohomology � onV with values in a Q-linear symmetric
monoidal category C. Shorthand notation: (C, �) (see Notation 4.2.2). There are two
reformulations: one in terms of Chowmotives (Proposition 4.4.1), and one in terms of
Chow correspondences (Proposition 4.5.1). It is the latter which is used to construct
the pair (W,,) of (1.1) in Theorem 5.2.1, by generators and relations. For generat-
ors, the main input is the construction of Theorem 3.1.1 due to Levine. We apply it to
the ⊗-category Corr×N, where Corr is the category of Chow correspondences: this
is the key new idea in this work. Then we get to (W, ,) step by step. To pass from
W toWab, we just apply the 2-functor ) from [10] (Corollary 5.2.2).

Proposition 1.
a) (Proposition 4.6.1) IfV contains all curves then, factors through algebraic equi-
valence.
b) (Remark 4.6.2) Without any condition on V, ,ab factors through Voevodsky’s
smash-nilpotence equivalence.

Assuming that V is stable under taking hyperplane sections, we introduce in
Definition 8.3.4 the extra properties of Weil cohomologies we alluded to above, and
prove the analogue of Theorem 5.2.1 and Corollary 5.2.2 (the bottom row of (1.1))
in Theorem 8.4.1. Besides the Lefschetz properties (Definition 8.3.1), we incorporate
two others: normalised character (Definition 4.3.4) and Albanese invariance (Defini-
tion 8.2.1). The latter is explicitly considered in Kleiman’s first article on the standard
conjectures [36] and not much elsewhere; the former seems to have been overlooked
in the literature (except in [29, Def. 3.41]), while it is natural and necessary. All are
verified by the classical Weil cohomologies of Definition 4.3.2. For want of a better
terminology, we call the Weil cohomologies having these properties tight.

1.2 – Varying the Weil cohomology

Given (C, �), we can “push-forward” � through any additive ⊗-functor � : C →
D, getting another Weil cohomology (D, �∗�) (see (5.2)). The inverse process is
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more familiar when � is faithful, and is usually called “enrichment” (think of Hodge
versus Betti cohomology, ℓ-adic representations versus ℓ-adic cohomology as such).
We show in Theorem 6.1.7 that any � admits an initial enrichmentW� , which is a
quotient ofW; if � is abelian-valued, it has similarly an “ab-initial” enrichmentWab

�

which is a localisation ofWab (ibid.). The same holds in the tight context (Theorem
8.4.5).

The situation is especially interesting when � is classical (Definition 4.3.2). We
then have a picture analogous to (1.1) (see also (9.5)):

(1.2)

(W� )♮
]♮−−−−−→ Wab

�

Y♮
y Yaby

(W+
�
)♮ ]+,♮−−−−−→ Wab,+

�

d
y
M�

�

where ( )♮ means pseudo-abelian completion andM�
�
is André’s category of motives

for motivated cycles attached to � [1, 2].

Theorem 2 (Theorems 6.5.1, 8.4.5, 9.3.2, 9.3.3). The ⊗-functors Yab and d are
⊗-equivalences, and ]+,♮ is a ⊗-equivalence if and only ifM�

�
is abelian. This holds

in characteristic 0, and thenWab
�

is semi-simple.

That d is an equivalence gives a completely different construction of M�
�
, and

provides it with a universal property. The statement in characteristic 0 is true because
of [1, Th. 0.4].

Note that Wab
�

has the same universal property as the one in [25, Th. 1.7.13]
and [9, Th. 2.20], so we recover that construction in a different way. In particular,
Theorem 2 provides an extension of [25, Prop. 10.2.1] from characteristic 0 to any
characteristic.

1.3 – Conjectures on algebraic cycles

We now enter the realm of the standard, and less standard, conjectures. How do
they interact with the present constructions? Since we allow ourselves to vary the class
V and since some of these conjectures are true in certain cases, and as in [36, beg.
§2], we adopt here the terminology “conditions” instead.

The first and most obvious condition to study is Condition C, algebraicity of the
Künneth projectors. Another one is Condition D: that homological equivalence (for
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the Weil cohomology under study) agrees with numerical equivalence.1 For classical
Weil cohomologies, it is known that D implies C; the proof is really � ⇒ � ⇒ �,
where � is a standard conjecture “of Lefschetz type”.

We don’t know any proof of the implication �⇒� for a general Weil cohomology.
To get it, we didn’t see another way than to pass through a generalisation of the stand-
ard conjecture B. (Anyone who knows a direct proof should contact us immediately.)
In order to express this “standard condition”, we need a Hard Lefschetz property:
besides Theorem 2, this is the main reason to introduce and study tight Weil cohomo-
logies.

The “yoga” of the standard conjectures, i.e. the interplay between conjectures B,
C and D (and a conjecture A), as well as the “Hodge positivity” conjecture, is studied
in detail by Kleiman in [36] and [37] for a Weil cohomology with values in vector
spaces over a field (“traditional” in the sense of Definition 4.3.2). The good news is
that most of this formalism goes through in our generalised context, basically without
change. This is done in §§8.5 and 8.6; the only places where we cannot use Kleiman’s
arguments is where he employs the Cayley-Hamilton theorem, for the proofs of D⇒
B and of the independence of B from the choice of a polarisation. In the first case
(Theorem 8.6.3 (2)) we replace it by an argument due to Smirnov [52], but in the
second case (Theorem 8.6.3 (3)) we have to restrict to enrichments of traditional Weil
cohomologies. For the Hodge positivity, see §8.7. In §8.8 we also study “fullness
conditions”, generalising the Hodge and Tate conjectures in the style of [3, Ch. 7],
and their interplay with the standard conditions.

The reader may feel uncomfortable with the idea of playing with all these conjec-
tures for Weil cohomologies which are more general than those considered tradition-
ally; at least for abelian-valued Weil cohomologies, this is justified by Voevodsky’s
conjecture [55, Conj. 4.2] in view of Proposition 1 b). These conjectures clarify the
rather complex picture of this paper: we urge the reader to look at §9.1 for details.

1.4 – Abelian varieties

This is a case where many conjectures are known and where, therefore, results
from the previous subsection apply partially. We develop this in §9.2. In particular,
the categoryW in this case is (up to idempotent completion) of the formM∼ for a
very explicit adequate equivalence ∼ (Theorem 9.2.10).

(1) This “standard conjecture” is sometimes attributed to Grothendieck. In fact, it is not
mentioned in [24] and goes back at least to Tate in [53, p. 97], for ℓ-adic cohomology.
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1.5 – Variation over a base

This theory extends to smooth projective schemes over suitable bases without
change: this is briefly explained in §10. This gives it a flexibility which may be useful
in future applications.

1.6 – Graded Weil cohomologies

In the appendix, we show that Theorem 1 implies a similar statement for a suitable
version of Saavedra’s Z-graded cohomology theories from [48, VI.A.1.1].

1.7 –What is not done here

We list here some lines of investigation that we haven’t attempted to follow in this
paper.

1.7.1. Links with the Tannakian picture.

1.7.2. Relationship with the new cohomology theory proposed by Ayoub in [7], and
with Scholze’s conjecture [50] on the existence of a generalised Weil cohomology
over the algebraic closure of a finite field with values in the semisimple Q-linear
tensor category of representations of Kottwitz gerbes “that practically behaves like a
universal cohomology theory”.

1.7.3. A triangulated or ∞-theoretical version covering the mixed Weil cohomo-
logies of Cisinski-Déglise [14], see also [8]. This would allow in particular to use
integral coefficients, which would be artificial in the present paper since a Künneth
isomorphism for cohomology groups holds only up to torsion.

2. Reminders on ⊗-categories

2.1 – Terminology

Here we adopt the terminology of [42, VII, §1 and XI, §§1,2], with some minor
modifications.

For categories, we say ⊗-category for unital symmetric monoidal category, and
monoidal (resp. ⊗-)category without unit for a monoidal (resp. symmetric monoidal)
category in which no unit structure is provided.

A ⊗-functor (�, `,[) : (C,⊗C ,1C) → (D,⊗D ,1D) between ⊗-categories is given
by a functor � : C → D, a natural transformation

`-,. : � (-) ⊗D � (. ) → � (- ⊗C . )
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compatible with the associativity constraints and the symmetry isomorphisms, and a
morphism [ : 1D → � (1C) satisfying the unitality condition. A ⊗-functor is strong
if ` and [ are isomorphisms and strict if ` and [ are equalities.

In this paper, we shall use the three types of ⊗-functors: to avoid ambiguities, we
write lax ⊗-functor instead ⊗-functor.

A ⊗-natural transformation between ⊗-functors is a natural transformation which
it is compatible with the `’s and the units.

An additive ⊗-category is a ⊗-category which is additive and such that the tensor
product is biadditive. An additive ⊗-functor between additive ⊗-categories is a (lax,
strong, strict) ⊗-functor which is additive. This tensor structure carries over canonic-
ally to the pseudo-abelian completion.

2.2 – Notation

Let Cat⊗ be the 2-category of ⊗-categories, lax ⊗-functors and ⊗-natural iso-
morphisms. Let Add⊗ be the 2-category of additive ⊗-categories, strong additive
⊗-functors and ⊗-natural isomorphisms. Let Ex⊗ be the 2-category of abelian ⊗-
categories, exact strong ⊗-functors and ⊗-natural isomorphisms. Let Addrig (resp.
Exrig) be the 2-full, 1-full subcategory of Add⊗ (resp. Ex⊗) given by rigid categor-
ies.

Recall that for C ∈ Add⊗, / (C) := EndC (1) is a commutative ring [48, I.1.3.3.1],
and that the category C is / (C)-linear.

Definition 2.2.1. Let A ∈ Exrig. We say that A is connected if / (A) is a field.

2.3 – Useful tools

The following results, which were already used in [10], will be used here several
times so we recall them for quotation purposes.

Lemma 2.3.1. Let A,B ∈ Exrig with A connected (Definition 2.2.1).
a) [19, Prop. 1.19] Any exact ⊗-functor � : A → B is faithful. In particular, if � is a
localisation it is an equivalence.
b) [15, Th. 2.4.1 and Rk. 2.4.2] The converse is true if B is also connected.
c) [10, Prop. 3.5 b)] A and B are reduced: for any morphism 5 and any # > 0,
5 ⊗# = 0⇒ 5 = 0.
d) [31, Prop. 4.2 and Th. 4.18]. / (B) is absolutely flat; there is a 1 − 1 correspond-
ence between the Serre ⊗-ideals of B (i.e. Serre subcategories closed under external
tensor product) and the ideals of / (B).
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In the next lemma, C ∈ Addrig; recall the ⊗-idealN ⊂ C of negligible morphisms,
cf. [4, 7.1].

Lemma 2.3.2 ([6, Th. 1 a)]). Let C ∈ Addrig and assume that  = / (C) is a field.
Suppose that there exists a finite extension !/ and a  -linear ⊗-functor � : C →A
to a !-linear rigid ⊗-category A ∈ Exrig in which Homs are finite !-dimensional.
Then C/N is semi-simple and the only ⊗-ideal I de C such that C/I is semi-simple
is I = N .

We shall use the following results repeatedly.

Lemma 2.3.3 ([10, Th. 6.1 and Cor. 6.2]). Let C ∈ Addrig. Then the 2-functor

A ↦→ Addrig(C,A)

from Exrig to Cat is 2-representable by a category) (C). If C is abelian, the canonical
⊗-functor

_C : C → ) (C)
is faithful; if C is further semi-simple, _C is an equivalence of categories.

Remark 2.3.4. The assumption semi-simple can be weakened to split [10, Def.
5.2].

Lemma 2.3.5 ([31, Th. 6.3]). Let C ∈ Addrig and let I be a ⊗-ideal of C. Then we
have a ⊗-equivalence ) (C)/I ∼−→ ) (C/I), where I is the Serre ⊗-ideal generated by
the Im_C ( 5 ) for 5 ∈ I and the left hand side is the corresponding Serre localisation.

Lemma 2.3.6 ([39, Prop. 2.2.8]). Let C ⊆ C′ be Serre subcategories of an abelian
category A. Then A/C′ is a Serre localisation of A/C, with kernel C′/C.

For the last lemma, we use the following definition:

Definition 2.3.7. An additive functor ] : C′→ C between additive categories is
dense (or essentially surjective up to idempotents) if any object of C is isomorphic to
a direct summand of an object of ](C′).

Lemma 2.3.8. Let � : C →D be a fully faithful additive functor between additive
categories, with C pseudo-abelian. If there exists a full subcategory C′ ⊆ C such that
�|C′ is dense, then � is essentially surjective.

Proof. Let � ∈ D. By hypothesis, there exists � ′ ∈ C′ such that � is isomorphic
to a direct summand of � (� ′). Let 4 = 42 ∈ EndD (� (� ′)) be an idempotent such that
Im 4 is isomorphic to �. Then 4 = � (4′) where 4′ is an idempotent of EndC (� ′); if
� ′ = Im 4′, then � (� ′) = Im 4. 2
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3. Künneth formula

3.1 – A universal construction

The following theorem is one of our main tools in this paper.

Theorem 3.1.1. Let (C,×, 1) be a ⊗-category. Then there exists a lax ⊗-functor
(8,�, h) : C → C^ such that for any other lax ⊗-functor (�, `, [) : C → D there is a
unique strict ⊗-functor �^

�
: C^ →D such that �^

�
8 = �, �^

�
(�) = ` and �^

�
(h) = [.

Sketch of proof. The version without units of this theorem is proven in [41,
Part II I.2.4.3], see also [41, Part I I.1.4.3]: it is obtained from the free ⊗-category
without unit (C̄, ⊗) on C together with freely adjoined morphisms �-,. : - ⊗ . →
- ×. for -,. ∈ C, modulo relations providing naturality, associativity and commut-
ativity. The same construction certainly works with units, mutatis mutandis; anyway,
as Ross Street pointed out, this is a special case of a much more general theorem
[11, Th. 3.5] (see loc. cit. , 6.1 for the link with ⊗-categories). 2

3.2 – Künneth structures

In [41, Part II Chap. I Def. 2.4.1], Levine says external product instead of lax
⊗-functor, by analogy with external products in cohomology. This reflects in the ter-
minology of this subsection.

Definition 3.2.1. a) Let (C,×), (D,⊗) be two monoidal categories without unit,
and let (", +) be a commutative semi-group. Let � = {�8}8∈" be a family of func-
tors �8 : C → D. An "-graded external product on � is a family ^ = {^8, 9 }8, 9∈" of
natural transformations, as shown in the variables -,. ∈ C

^
8, 9

- ,.
: �8 (-) ⊗ � 9 (. ) → �8+ 9 (- × . )

which are compatible with the associativity constraints. If C and D are (pre)additive
say that (�, ^) is additive if all �8’s are additive.

b) We say that (�, ^) is strong if, for any -, . ∈ C and : ∈ " , the coproduct∐
8+ 9=: �

8 (-) ⊗ � 9 (. ) exists in D and the corresponding morphism∐
8+ 9=:

�8 (-) ⊗ � 9 (. ) → �: (- × . )

is an isomorphism.
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c) Let (C,×,1) be monoidal, (D,⊗,1) be additive monoidal, and let (",+,0) be a
commutative monoid. A unital "-graded external product (�, ^, h) is an "-graded
external product (�, ^) such that �8 (1) = 0 if 8 ≠ 0, provided with an additional
isomorphism h0 : 1

∼−→ �0(1) such that the diagram

1 ⊗ �8 (-) ∼−−−−−→ �8 (-)

oy oy
�0(1) ⊗ �8 (-) ∼−−−−−→ �8 (1 × -)

and the symmetric diagram commute for all -, 8.

Remark 3.2.2. Consider " as a discrete category. Then we have two ways to
convert the family � = {�8}8∈" into a single functor:

(1) �∗ : C → D" , �∗(-) (8) = �8 (-),
(2) �̃ : C × " → D, �̃ (-, 8) = �8 (-).

In (1), assume first that coproducts indexed by " exist in D; then D" inherits a
monoidal structure without unit by the rule

(3.1) (� ⊗ �): =
∐
8+ 9=:

�8 ⊗ � 9

where we identify an object � ∈ D" with a family of objects �8 ∈ D for 8 ∈ " .
Note that (D" ,⊗) automatically inherits an associativity constraint and (�∗, ^) is an
external product

�∗(-) ⊗ �∗(. ) → �∗(- × . ).

The conditions to be strong and unital in b) and c) of Definition 3.2.1 amount to say
that �∗ is a strong (unital) monoidal functor in the usual sense, see §2.1. Note that
the object of D" with value 1 for 8 = 0 and 0 otherwise is a unit object. Thus � is
unital if and only if �∗ is strongly compatible with units.

If D does not admit all coproducts indexed by " , (3.1) still makes sense if

• either at least one of �, �, say �, has finite support (i.e. the set of 8’s such that
�8 ≠ 0 is finite);

• or " = N.

The first condition is of course verified if �∗ takes values in D (" ) = {� ∈ D" |
�8 = 0 for all but finitely many 8’s}.

In (2), provide C × " with the monoidal structure (-, 8) × (., 9) = (- ×., 8 + 9).
If 1 is a unit for (C,×) and if (",+,0) is a monoid, then (1,0) is a unit for (C ×",×).
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If C is preadditive, then C × " is made preadditive by setting the group of morph-
isms between (�, 8) and (� ′, 9) if 8 ≠ 9 to be zero. If (�, ^) is additive, �̃ extends
canonically to an additive functor on C × " with its natural additive monoidal struc-
ture. We can then translate a): an (additive) "-graded external product on � is an
(additive) lax ⊗-stucture on �̃. Unitality of � in the sense of c) is equivalent to the
strong unitality of �̃, i.e. 1

∼−→ �̃ (1, 0), and �̃ (1, 8) = 0 for 8 ≠ 0.
Suppose that D is additive. Then �̃ factors through the additive hull of C × " ,

which is nothing else than C (" ) (send (-,8) ∈ C ×" to - [8] ∈ C (" ) where - [8] 9 = -
if 8 = 9 and 0 otherwise). Thus, in this case, an "-graded external product from C to
D is the same as a lax monoidal functor C (" ) → D.

Definition 3.2.3. Let (C,×, 1) ∈ Cat⊗, (D, ⊗, 1) ∈ Add⊗ and " = Z. A Kün-
neth product is a unital Z-graded external product (�, ^, h) satisfying the following
condition: for any -,. ∈ C and any 8, 9 ∈ Z, the diagram

�8 (-) ⊗ � 9 (. ) ^8, 9−−−−−→ �8+ 9 (- × . )

(−1)8 92
y � 8+ 9 (2)

y
� 9 (. ) ⊗ �8 (-) ^ 9,8−−−−−→ �8+ 9 (. × -)

commutes, where 2 denotes both commutativity constraints. We say that (�, ^, h)
satisfies the Künneth formula if it is strong in the sense of Definition 3.2.1 b).

Remark 3.2.4. As a sequel to Remark 3.2.2, in (1) Definition 3.2.3 amounts to
requiring that �∗ is symmetric monoidal for the symmetric monoidal structure on
DZ given by the symmetry 2�,� : � ⊗ � ∼−→ � ⊗ � such that

(2�,�) |�8⊗� 9 = (−1)8 92�8 ,� 9 .

(One can check that this rule does define a symmetric monoidal structure on DZ.)
See also Remark 3.2.2 for the case where D does not have enough coproducts. We
call this the Koszul constraint.

In (2), if C is preadditive, we provide C × Z with the commutativity constraint

2 (-,8) , (. , 9) = (−1)8 92-,. : (-, 8) × (., 9) → (., 9) × (-, 8)

where 2 is the commutativity constraint of C.
IfD is additive, this amounts as in Remark 3.2.2 to a lax ⊗-functor C (Z) →D for

the above Koszul commutativity constraint in C (Z) , this functor being strong if and
only if � verifies the Künneth formula.
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Remark 3.2.5. If C ∈ Add⊗, then C (Z) , provided with the unital monoidal struc-
ture of Remark 3.2.2, has two symmetric structures: the Koszul constraint of Remark
3.2.4 and the naïve commutativity constraint which does not include the signs of the
Koszul rule. The latter will not be used in this text. If C ∈ Addrig then C (Z) is an
object of Addrig, and of Exrig if C ∈ Exrig.

The “direct sum” functor⊕
: C (Z) → C; (�8) ↦→

⊕
�8

is strong monoidal and unital, but it is not symmetric for the Koszul constraint. The
next subsection deals with this issue.

3.3 – Gradings

Definition 3.3.1. a) Let � : C → D be an additive functor between additive cat-
egories, and let " be a set. An "-grading of � (with finite support) is a factorisation
of � into

C � ∗−−→ D (" )
⊕
−−→ D

where
⊕

is the direct sum functor. In particular, an "-grading of the identity functor
of C is a section of the direct sum functor; we call it a weight grading of C and say
that � ∈ C is of weight < if �=� = 0 for = ≠ <.
b) Suppose C,D ∈ Add⊗, � ∈ Add⊗ (C,D), and " = Z. A Z-⊗-grading of � is a Z-
grading of � in which �∗ is a strong ⊗-functor for the naïve commutativity constraint
of Remark 3.2.5. If � is the identity functor of C =D, we call this a weight ⊗-grading.

Remarks 3.3.2. a) In Definition 3.3.1 a), if C,D are abelian and � is exact,
then �∗ is automatically exact: indeed, all �< for < ∈ " are exact because a direct
summand of an exact sequence is an exact sequence.
b) One can use a weight ⊗-grading on C ∈ Add⊗ as in Definition 3.3.1 b) to change its
commutativity constraint by introducing the Koszul rule, i.e. multiplying the original
commutativity constraint between an object of weight 8 and and object of weight 9 by
(−1)8 9 . This notation is involutive.

Notation 3.3.3. We write
·

C for the ⊗-category deduced from C as in Remark
3.3.2 b).

Lemma 3.3.4. a) In Definition 3.3.1 a), suppose that

D(�<(�), �= (� ′)) = 0 for �,� ′ ∈ C and < ≠ =.
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If � is dense in the sense of Definition 2.3.7, then �∗ extends to a unique "-grading
of D, which is a weight ⊗-grading in the situation of Definition 3.3.1 b).
b) In Definition 3.3.1 a), suppose � faithful. For � ∈ C and < ∈ " , write c<

�
for the

projector of EndD (� (�)) with image �<(�). Then the full subcategory of C

C′ = {� ∈ C | c<� ∈ EndC (�) ∀ < ∈ "}

is additive, stable under direct summands, and C′ ∈ Add⊗ in the situation of Defin-
ition 3.3.1 b). If C′ is pseudo-abelian (e.g. if C is), �∗|C′ factors uniquely through a
weight grading C′→ (C′) (" ) , which is a weight ⊗-grading in the situation of Defin-
ition 3.3.1 b).

Proof. a) Let D ′ be the full subcategory of D given by the �<(�)’s. The hypo-
thesis implies that �∗ extends to a unique functor D ′ → D (" ) , which then extends
to D by density.

In b), the stability properties of C′ are obvious except perhaps the stability under
direct summands: this holds because the c<

�
’s are central idempotents in

EndD (" ) (�∗(�)) ⊆ EndD (� (�)).

The grading is then defined by sending � to (Im c<
�
)<∈" . 2

Lemma 3.3.5. Let C ∈ Add⊗, let Ĉ = Mod–C be its additive dual provided with
its canonical ⊗-structure (“Day convolution”), and let HC : C → Ĉ be the additive
Yoneda functor: it is a strong ⊗-functor. Then any dualisable object - of Ĉ is a direct
summand of an object of the form HC (�).

Proof. Since - is dualisable, it is compact, because 1Ĉ is compact (as the Yoneda
image of 1C) and ⊗Ĉ commutes with arbitrary colimits as a left adjoint of the internal
Hom. The conclusion now follows from [4, Prop. 1.3.6 f)]. 2

Let C ∈ Add⊗. Then C (Z) ∈ Add⊗ by Remark 3.2.5. Observe that Ĉ (Z) is canon-
ically ⊗-equivalent to ĈZ. Applying Lemma 3.3.5, we get Part a) of the following
lemma.

Lemma 3.3.6. a) Any dualisable object - of ĈZ is a direct summand of an object
of the form HC (�) for � ∈ C (Z) .
b) If � ∈ C and 8 ∈ Z, write �[8] for the object (� 9) 9∈N of CZ such that �8 = � and
� 9 = 0 for 9 ≠ 8. Then � =

⊕
8∈Z �8 [8] for any � ∈ C (Z) . Moreover, � is dualisable

⇐⇒ �8 [8] is dualisable for all 8 ⇐⇒ �8 is dualisable in C for all 8.
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Proof of b). The first claim is obvious, so is the first equivalence and the second
is easily checked: the unit and counit do not change. 2

3.4 – Relative additive completion

Let � : C →D be a functor between two categories, with C preadditive. Consider
the category �D whose objects are functors� :D→E such that E is preadditive and
� ◦ � additive, and morphisms (E, �) → (E ′, � ′) are additive functors � : E → E ′
such that � ′ = � ◦ �.

Proposition 3.4.1. The category �D has an initial object Add(�).

Proof. Let ZD be the free preadditive category onD, and let E0 be the category
with same objects as ZD (or D) quotiented by the congruence [42, p. 52] generated
by the relations [� ( 5 + 6)] − [� ( 5 )] − [� (6)] for 5 , 6 parallel morphisms of C. Let
�0 :D→E0 be the induced functor. The initiality of Add(�) = (E0,�0) is immediate.
2

Corollary 3.4.2. Proposition 3.4.1 remains true when replacing preadditive by
additive in the condition on E.

Proof. In Proposition 3.4.1, replace Add(�) by its additive hull. 2

Here is a symmetric monoidal variant. Let � : C → D belong to Cat⊗, with C
preadditive, and �D⊗ be the category whose objects are strong ⊗-functors� :D→E
such that E is preadditive and � ◦ � additive, and morphisms (E, �) → (E ′, � ′) are
additive strong ⊗-functors � : E → E ′ such that � ′ = � ◦ �.

Proposition 3.4.3. The category �D⊗ has an initial object �0 :D → Add⊗ (�)
which is the identity on objects. This remains true when replacing preadditive by
additive in the condition on E.

Proof. The free preadditive category ZD onD inherits fromD an additive sym-
metric monoidal structure. Let E⊗0 be the category with same objects, quotiented by
the congruence ⊗-generated by the relations [� ( 5 + 6)] − [� ( 5 )] − [� (6)] for 5 , 6
parallel morphisms of C. Let �0 : D → E⊗0 be the induced functor. The initiality of
Add⊗ (�) = (E⊗0 , �0) is immediate. The argument for “additive” is as before. 2
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3.5 – Inverting morphisms in additive and ⊗-categories

Let C be an essentially small additive category, and let ( be a set of morphisms
of C. Write (⊕ for the smallest set of morphisms closed under finite direct sums and
containing ( and all identities.

Lemma 3.5.1. The Gabriel-Zisman localisation C[(−1
⊕ ] is additive and the local-

isation functor C→C[(−1
⊕ ] is additive; it is universal for additive functors � : C→D

to other additive categories D such that � (B) is invertible for all B ∈ (.

Proof. The first claim is [32, Th. A.3.4]; the second is obvious, since the hypo-
thesis on � implies that � (B) is invertible also for all B ∈ (⊕. 2

Replace “additive category” by ⊗-category in the above, and (⊕ by (⊗, in whose
definition “finite direct sums” is replaced by “tensor product’s’. Similarly, we get

Lemma 3.5.2. The Gabriel-Zisman localisation C[(−1
⊗ ] is symmetric monoidal

and the localisation functor C → C[(−1
⊗ ] is a strong ⊗-functor; it is universal for

strong ⊗-functors � : C → D to other ⊗-categories D such that � (B) is invertible
for all B ∈ (.

The proof is the same, replacing [32, Th. A.3.4] by [32, Prop. A.1.2].

Finally, we can mix the two constructions when starting from an additive and ⊗-
category, according with the notation adopted in §2.2: let C ∈ Add⊗ and let ( be a
set of morphisms of C. Write (⊕,⊗ for the smallest set of morphisms which is stable
under finite direct sums and tensor products, containing all identities.

Proposition 3.5.3. The Gabriel-Zisman localisation C[(−1
⊕,⊗] is in Add⊗, i.e. is

additive and symmetric monoidal, and the localisation functor C → C[(−1
⊕,⊗] is a

strong additive ⊗-functor; it is universal for strong additive ⊗-functors � : C → D to
other additive ⊗-categories D such that � (B) is invertible for all B ∈ (. 2

4. Generalised Weil cohomologies

4.1 – The set-up

We work over a field : . Let Smproj(:) be the category of smooth projective :-
varieties and :-morphisms.

Note that to give a subclass of objects of a category is equivalent to give a full
subcategory. We are going to use this for Smproj(:) without further mention. The
following definition is in the spirit of [1, 2.1].
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Definition 4.1.1. A class V ⊂ Smproj(:) of smooth projective :-varieties is
admissible if Spec : ∈ V, -

∐
., - × . ∈ V for -, . ∈ V and V is stable under

taking connected components. It is strongly admissible if, moreover

• P1 ∈ V;

• - ∈ V ⇒ c0(-) ∈ V, where c0(-) is the scheme of constants of - .

Given any class ( ⊂ Smproj(:) we write (adm for the smallest strongly admissible class
containing (.

The following are useful examples:

Examples 4.1.2. a)V = Smproj(:).
b)V = {- ∈ Smproj(:) | dim - = 0}adm.
c)V = {coproducts of abelian :-varieties}.
d) V = {�8}adm where �8 runs through the class of abelian schemes over étale :-
schemes.
e) V = {�8}adm where �8 runs through the class of smooth projective geometrically
connected :-curves.
f)V = {-}adm, where - is a fixed smooth projective :-variety.

For an admissible classV ⊂ Smproj(:), we define motives modelled onV as in [1,
(4.2)]: let Corr(:,V) be the category of Chow correspondences (with Q coefficients),
such that Corr(:,V)(-,. ) = ��<(- ×. )Q for -,. ∈ V if - is of pure dimension
<, the general case being obtained by direct sums.

Definition 4.1.3. Denote byMrat(:,V) the category of Chow motives over :
[49] modelled on V, with Q coefficients: objects " = (-, ?, =) ∈ Mrat(:,V) are
given by - ∈ V, ?2 = ? ∈ Corr(:,V)(-, -) an idempotent, and = a continous (=
locally constant) function - → Z.2

By sending a morphism to its graph we obtain a functor

ℎ : V>? →Mrat(:,V)

which on objects is ℎ(-) = (-, id,0) where id ∈ Corr(:,V)(-, -) is the diagonal. We
writeMeff

rat (:,V) ⊂ Mrat(:,V) for the strictly full subcategory of effective motives
" = (-, ?,0): the functor ℎ takes values inMeff

rat (:,V). These categories are additive

(2) In Jannsen’s original description of pure motives, = is an integer; with André’s trick
[1, (4.2)]Mrat (:,V) is immediately seen to be additive and rigid.
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and Q-linear, and the product of varieties gives them a symmetric monoidal structure
with unit 1 = (Spec :, id, 0). We also write L = (Spec :, id,−1),T = (Spec :, id, 1) ∈
Mrat(:,V): these are the Lefschetz and the Tate motive. We have L ⊗ T = 1; the
categoryMrat(:,V) is rigid, the dual of (-, ?,=) being (-, ?, 3 − =) where 3 : -→N
is the dimension function.

If V = Smproj(:), we simply write Corr(:),Meff
rat (:) and Mrat(:); in general,

Corr(:,V),Meff
rat (:,V) andMrat(:,V) are full subcategories of those.

Lemma 4.1.4. If P1 ∈ V (e.g. ifV is strongly admissible), then L ∈ Meff
rat (:,V).

Proof. Indeed, ℎ(P1) = 1 ⊕ L [49, 1.13]. 2

Given an admissible classV, we can define its “saturation”

Vsat := {- ∈ Smproj(:) | ℎ(-) ∈ Mrat(:,V)};

these are the varieties ofV type (for rational equivalence). We say thatV is saturated
ifV = Vsat. Clearly,Vsat is saturated.

Lemma 4.1.5. We haveMrat(:,V) =Mrat(:,Vsat), andVsat is strongly admiss-
ible.

Proof. The first statement is obvious. Then P1 ∈ Vsat because ℎ(P1) = 1 ⊕ L.
Finally, ℎ(c0(-)) is a direct summand of ℎ(-) for any - ∈ Vsat [49, 1.13], which
concludes the proof. 2

In the sequel, we fix an admissibleV ⊆ Smproj(:).

4.2 – The axioms

Let C be an additive Q-linear ⊗-category, together with a distinguished invertible
object which we denote by !C . For any � ∈ C and any 8 ∈ Z, we write � (8) := � ⊗
!⊗−8C .

Definition 4.2.1. A Weil cohomology onV with values in (C, !C) is given by

(a) a Z-indexed family � = {�8}8∈Z : V>? → C of functors;

(b) a Künneth product

^
8, 9

- ,.
: �8 (-) ⊗ � 9 (. ) → �8+ 9 (- × . ),

for every -,. ∈ V, and 8, 9 ∈ Z;
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(c) a trace morphism
Tr- : �2= (-) (=) → 1

for - ∈ V of pure dimension =, and

(d) a cycle class map given by a Q-linear homomorphism

2ℓ8- : ��8 (-)Q → C(1, �28 (-) (8))

for every - ∈ V and for every 8 ≥ 0.

The data (�, ^,Tr, 2ℓ) are subject to the following axioms:

(i) �0(Spec :) ∼−→ 1 induced by (c) for - = Spec : .

(ii) If dim - = =, �8 (-) = 0 for 8 ∉ [0, 2=].

(iii) �1(P1) = 0 and the trace morphism of (c) for - = P1 induces an isomorphism
�2(P1) ∼−→ !C .

(iv) Künneth formula: ^8, 9
- ,.

yields a graded isomorphism

^-,. : �∗(-) ⊗ �∗(. ) ∼−→ �∗(- × . )

which is natural in -,. ∈ V and verifies the conditions of associativity, unity
and graded commutativity.

(v) Trace and Poincaré duality: the trace map Tr is such that Tr-×. = Tr- ⊗ Tr.
modulo the Künneth formula, it is an isomorphism if - is geometrically con-
nected, and the “Poincaré pairing”

(4.1) �8 (-) ⊗ �2=−8 (-)
^-,-−−−−→ �2= (- × -)

Δ∗
-−−→ �2= (-) Tr-−−−→ 1(−=)

makes �2=−8 (-) (=) the dual of �8 (-).

(vi) Cycle classes: For all - ∈ V and all 8 ≥ 0, the Q-linear homomorphism 2ℓ8- is
contravariant in - and compatible with the Künneth formula and the intersec-
tion product. Furthermore, if dim - = =, the diagram

��= (-)Q
2ℓ=
-−−−−−→ C(1, �2= (-) (=))

degy (Tr- )∗
y

Q −−−−−→ / (C)

commutes.
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Notation 4.2.2. We write (C, �) for a Weil cohomology (�, ^,Tr, 2ℓ) with val-
ues in (C, !C) as in Definition 4.2.1, and simply talk of � as a Weil cohomology with
values in C; if necessary, we shall specify the other implicit data, e.g. additionally, C
will sometimes be assumed to be pseudo-abelian or abelian.

Remarks 4.2.3. a) Let (V,×, 1) with 1 = Spec : be the natural symmetric mono-
idal structure. Axioms (i), (ii) and (iv) imply that (�, ^) satisfies the Künneth formula
in the sense of Definition 3.2.3. Moreover, �∗ : V>? → CZ takes values in C (Z) and
is a strong ⊗-functor for C (Z) provided with the ⊗-structure given by Remarks 3.2.2 -
3.2.4 (1), as already noted in general.
b) The precise meaning of (v) is the following. The morphism

�8 (-) ⊗ �2=−8 (-) (=) Y−→ 1

deduced from (4.1) induces a morphism

�2=−8 (-) (=)
[⊗1
−−−→ �8 (-)∨ ⊗ �8 (-) ⊗ �2=−8 (-) (=) 1⊗Y−−−→ �8 (-)∨

where [ is the unit map 1 → �8 (-)∨ ⊗ �8 (-); this morphism is an isomorphism.
In particular, this requires the existence of �8 (-)∨ a priori; see however Proposition
4.5.4 below.

Lemma 4.2.4. a) For -,. ∈ V, the canonical morphism

�∗(-
∐

. ) → �∗(-) ⊕ �∗(. )

is an isomorphism.
b) If - is geometrically connected, then the morphism 1 → �0(-) induced by the
projection - → Spec : is an isomorphism.
c) The distinguished oject !C is even, i.e. the symmetry that interchanges the two
factors !C in !C ⊗ !C is the identity.

Proof. a) The axioms imply that Chow correspondences Corr act on �∗ (see
proof of Proposition 4.4.1 a) below): in the groups Corr(-∐

., -) ' Corr(-, -) ⊕
Corr(., -) and Corr(-∐

.,. ) ' Corr(-,. ) ⊕ Corr(.,. ), the graphs of the inclu-
sions - ↩→ -

∐
. and . ↩→ -

∐
. have obvious retractions. It is clear that these

retractions make �∗(- ∐
. ) a biproduct of �∗(-) and �∗(. ) in the sense of the

definition in [42, VIII.2].
b) follows from Axiom (v).
c) follows from Axiom (iii), since L is well-known to be even. 2



20 L. Barbieri-Viale – B. Kahn

Lemma 4.2.5. Let (C, �) be a Weil cohomology, and let -,. ∈ V, with - of pure
dimension =. Then we have a canonical isomorphism

C (Z) (�∗(-), �∗(. )) ' C(1, �2= (- × . ) (=)).

Proof. “As usual”: the proof of [29, 3.45] appliesmutatis mutandis, using axioms
(iv) and (v). 2

4.3 – Some definitions

Definition 4.3.1. A Weil cohomology (C, �) is abelian-valued if C ∈ Exrig.

Definition 4.3.2. AWeil cohomology (C, �) is traditional if C =Vec , the cat-
egory of finite dimensional vector spaces over a field  , with !C a fixed 1-dimensional
 -vector space. We say that � is classical if it is traditional and belongs to the fol-
lowing list:

• ℓ-adic cohomology in any characteristic ≠ ℓ ( = Qℓ),

• Betti or de Rham cohomology in characteristic 0 ( = Q, resp.  = :),

• crystalline cohomology if : is perfect of characteristic > 0 ( = &(, (:)), where
, (:) is the ring of Witt vectors over :).

Obviously, / (C) =  if � is traditional.

Remark 4.3.3. When � is traditional, we recover the usual notion of a Weil
cohomology as in [3, 3.1.1.1]. Condition�1(P1) = 0 in Definition 4.2.1 (iii) is skipped
for the latter because it follows from the axioms: by the Lefschetz trace formula, we
have

dim�0(P1) − dim�1(P1) + dim�2(P1) = j(P1) = 2

and dim �0(P1) = dim �2(P1) = 1 (by (iii) without this condition, and (v)), hence
dim �1(P1) = 0. In general this argument would only give jC (�1(P1)) = 0 if C is
rigid, where jC is the Euler characteristic of C.

Definition 4.3.4. We say that � is normalised if, for any - ∈ V with scheme
of constants c0(-), the canonical map �0(c0(-)) → �0(-) is an isomorphism.

(Lemma 4.2.4 b) says that this condition is automatic if - is geometrically con-
nected.)

Classical Weil cohomologies are normalised.
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Definition 4.3.5 (cf. [46]). A Weil cohomology (C, �) with C ∈ Addrig is
pseudo-tannakian if there exists a faithful ⊗-functor from C to a category of Z/2-
graded finite-dimensional vector spaces over a field.

Definition 4.3.6. A Weil cohomology (C, �) has weights if, for any -,. ∈ V,
we have

C(�8 (-), � 9 (. )) = 0 for 8 ≠ 9 .

(This is the condition of Lemma 3.3.4 a).)

Examples 4.3.7. a) Let : be a subfield of C. Consider the additive ⊗-category
H of pure, polarisable Q-Hodge structures provided with !H := Q(−1). The Hodge
enrichment of Betti cohomology (H , �) is a Weil cohomology and it has weights.
b) If : is finitely generated, char : = ? > 0 and ℓ ≠ ? is a prime number, let Rℓ
be the category of Qℓ-adic representations of �0; (:B/:), where :B is a separable
closure. We get a Weil cohomology (Rℓ , �ℓ) given by ℓ-adic cohomology: this Weil
cohomology has weights thanks to Deligne [17].

4.4 –Weil cohomologies as functors on Chow motives

Proposition 4.4.1. Suppose C pseudo-abelian.
a) Any Weil cohomology (�, ^,Tr, 2ℓ) with values in (C, !C) lifts to a strong additive
⊗-functor

�∗ :Mrat(:,V) → C (Z)

together with a morphism Tr : �2(L) → !C such that

(1) �∗(L) is concentrated in degree 2 and Tr is an isomorphism;

(2) �∗(Meff
rat (:,V)) ⊂ CN;

(3) if - is geometrically connected, then 1 = �0(ℎ(Spec :)) → �0(ℎ(-)) is an iso-
morphism.

b) Conversely, if �∗ :Mrat(:,V)→C (Z) is a strong additive ⊗-functor plus a morph-
ism Tr, which verifiy Conditions (1) – (3) of a), then

�∗ = �∗ ◦ ℎ : V>? → C (Z)

yields a Weil cohomology.

Proof. a) Using Lemma 4.2.5, the cycle class 2ℓ<-×. yields a homomorphism

��<(- × . )Q = Corr(:,V)(-,. ) → C (Z) (�∗(-), �∗(. )).
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One checks as usual that it respects composition of correspondences. Since C is
pseudo-abelian, via 2ℓ the functor �∗ : V>? → C (Z) extends to a Q-linear functor

Meff
rat (:,V) → C (Z)

which is symmetric monoidal by Axiom (iv) of Definition 4.2.1. Conditions (1), (2)
and (3) of Proposition 4.4.1 follow from Axioms (iii) and (ii) of Definition 4.2.1 plus
Lemma 4.2.4 b). Since, still by Axiom (iii) of Definition 4.2.1, �2(L) is invertible, the
above functor extends toMrat(:,V) as a ⊗-functor �∗ (on objects " = (-, ?, =) ∈
Mrat(:,V) we have �8 (") = ?∗�8+= (-)). Moreover, we get the isomorphism Tr
from (c) and (iii).

b) We need to provide the data and check the axioms of Definition 4.2.1. The
Künneth structure (b) and Axiom (iv) are obtained from the strong monoidality of �∗

and the equalities ℎ(-) ⊗ ℎ(. ) = ℎ(- × . ). Axiom (i) follows from the unitality of
�∗. The lower bound in Axiom (ii) follows from (2).

For the sequel, we recall the isomorphism

(4.2) ℎ(-)∨ ' ℎ(-) ⊗ T=

for any - ∈ V of dimension =; the unit and counit of this duality are induced by the
morphisms

(4.3) L= → ℎ(-) ⊗ ℎ(-), ℎ(-) ⊗ ℎ(-) → L=

both given by the class of the diagonal in ��= (- × -).
Since �∗ is symmetric monoidal, we have an isomorphism

(4.4) (�∗(ℎ(-))∨ ' �∗(ℎ(-)∨)

for any - of dimension =, where ∨ denotes duals in both categoriesMrat(:,V) and
C (Z) . This isomorphism is obtained by applying �∗ to (4.3).

For Axiom (v), note that

�∗(ℎ(-) ⊗ T=) ' �∗(ℎ(-)) ⊗ �∗(T)⊗=,

hence
�2= (ℎ(-)) (=) ' �∗(ℎ(-) ⊗ T=)0

by (1); Tr- is then defined by the morphism ℎ(-) ⊗ T= → 1 dual by (4.2) of the
“structural” morphism 1→ ℎ(-). The identity Tr- ⊗ Tr. = Tr-×. follows. Axiom
(iii) also follows from (1). Using (3), we get the isomorphism of (v) when - is geo-
metrically connected.
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More generally, we get from (4.2) and (4.4)

�8 (-)∨ = �−8 (ℎ(-)∨) ' �−8 (ℎ(-) ⊗ T=) = �2=−8 (-) (=)

which yields the last part of (v), and in particular the upper bound in (ii) by (2).
In (vi), 2ℓ8- is induced by the functoriality of �∗, which sends ��8 (-) ⊗ Q =

Mrat(:,V)(1, ℎ(-) ⊗ T8) to C(1, �28 (-) (8)); the commutativity of the square also
follows from this functoriality and the definition of Tr- . 2

4.5 – An intermediate version: Chow correspondences

Proposition 4.5.1. Let us still assume C pseudo-abelian. Then a Weil cohomo-
logy (�, ^,Tr, 2ℓ) with values in (C, !C) is equivalent to a strong additive ⊗-functor
�∗ : Corr(:,V) → CN together with a map Tr : �2(P1) → !C , satisfying the follow-
ing conditions:

(1) �1(P1) = 0 and Tr is an isomorphism;

(2) if - is geometrically connected, then 1→ �0(-) is an isomorphism.

Proof. Let �∗ verify the conditions of Proposition 4.4.1 a). Then its composition
with Corr(:,V) →Mrat(:,V) obviously verifies the conditions of Proposition 4.5.1.

Conversely, let � be as in Proposition 4.5.1. Since C is pseudo-abelian, � extends
canonically to Meff

rat (:,V), and then to a strong ⊗-functor Mrat(:,V) → C bZc by
Condition (1), where C bZc denotes the ⊗-category of Z-indexed objects of C with
bounded below support. The resulting functor clearly verifies the conditions of Pro-
position 4.4.1 a), except perhaps for the fact that �∗ takes values in C (Z) . This is
granted by Lemma 3.3.6 a). 2

In the sequel, we shall use the following categories several times.

Definition 4.5.2. Let Corr(:,V)[L] (resp. Corr(:,V)[L, L−1]) denote the
strictly full subcategory ofMrat(:,V) whose objects are the direct sums of ℎ(-) ⊗
L= for - ∈ V and = ∈ N (resp. = ∈ Z).

We observe:

Lemma 4.5.3. Corr(:,V)[L] and Corr(:,V)[L,L−1] are strict ⊗-subcategories
ofMrat(:,V), and Corr(:,V)[L,L−1] is rigid. 2

In contrast to the previous conditions, those of Proposition 4.5.1 continue to make
sense when C is not pseudo-abelian (this hypothesis was inserted to connect with
Proposition 4.4.1). Moreover this case reduces to the rigid one as follows:
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Proposition 4.5.4. Proposition 4.5.1 remains valid for any additive ⊗-category
C. Moreover,
a) For any - ∈ V and any 8 ∈ N, �8 (-) is dualisable in C.
b) The smallest strictly full additive ⊗-subcategory D of C containing the �8 (-) is
rigid and contains !C .

Proof. For the first claim, start from (C, !C) and � verifying the hypotheses of
Proposition 4.5.1. They remain true when replacing C by its pseudo-abelian hull C♮.
Applying Proposition 4.5.1, this yields a Weil cohomology as in Definition 4.2.1 with
values in C♮, which in fact takes values in C. Same process in the other direction. In
a), �∗(-) is dualisable by Lemma 4.5.3, hence the claim follows from Lemma 3.3.6
b). Finally b) follows from a). 2

4.6 – Adequate equivalences

Proposition 4.6.1. Let (C, �) be a normalised Weil cohomology (Definition
4.3.4) and assume thatV contains all curves. Then �∗ : Corr→C (N) factors through
algebraic equivalence. Hence so does the induced functor �∗ :Mrat → (C♮) (Z) .

Proof. Let - ∈ V and U ∈ ��8 (-)Q =Mrat(:) (L8 , ℎ(-)) be algebraically equi-
valent to 0: we must show that �∗(U) = 0. By the Weil-Bloch trick (cf. [12, proof
of Lemma 7.10]), U is the image of some V ∈ Pic0(�)Q for some curve � under an
algebraic correspondence from � to -: this reduces us to 8 = 1, - = �. Choose a non
constant morphism 5 : � → P1, whence a morphism 6 : � → P1 × c0(�); we have a
commutative diagram:

Pic(�)Q
6∗−−−−−→ Pic(P1 × c0(�))Q

2ℓ1
,

y 2ℓ1
,

y
Hom(1, �2(�) (1))

6∗−−−−−→ Hom(1, �2(P1 × c0(�)) (1))
where 6∗ is the action of the transpose of the graph of 6 viewed as a correspondence
as in Propositions 4.4.1 and 4.5.1 — the commutation of the diagram follows from
this construction, and the bottom horizontal arrow is an isomorphism by Axioms (v)
and (vi) of a Weil cohomology plus the property of being normalised. The result thus
follows from the vanishing of Pic0(P1 × c0(�)). 2

Remark 4.6.2. More is true if � is abelian-valued (Definition 4.3.1): by Lemma
2.3.1 c), �∗ even factors through Voevodsky’s smash-nilpotence equivalence (which
is coarser than algebraic equivalence by [55]). Here we don’t need V to contain all
curves.
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5. The main theorem

5.1 – The 2-functor of Weil cohomologies

We still fix an admissible categoryV of smooth projective varieties, as in Defini-
tion 4.1.1.

Definition 5.1.1. Let Add⊗∗ be the 2-category whose

• objects are pairs (C, !C) where C ∈ Add⊗ and !C is an invertible object of C;
• 1-morphisms (C, !C) → (D, !D) are pairs (�, D) where � ∈ Add⊗ (C,D) and

D is an isomorphism � (!C)
∼−→ !D (composition: (�, {) ◦ (�, D) = (� ◦ �, { ◦

� (D))).
• 2-morphisms \ : (�, D) ⇒ (� ′, D′) are 2-morphisms \ : � ⇒ � ′ in Add⊗ such

that D = D′ ◦ \!C .
We define Addrig

∗ and Exrig
∗ similarly, replacing Add⊗ by Addrig or Exrig.

This is the same as the Tate Q-pretensor categories of [45, p. 4].

Definition 5.1.2. Let (C, !C) ∈ Add⊗∗ . We denote by Weil(:,V; C, !C) the
category whose objects (�∗, Tr) are as in Proposition 4.5.1 (see also Proposition
4.5.4), i.e. �∗ : Corr(:,V) → C (N) .

A morphism i : (�∗, Tr) → (� ′∗, Tr′) in Weil(:,V; C, !C) is a graded natural
transformation i : �∗ ⇒ � ′∗ such that Tr = Tr′ ◦iP1 .

Lemma 5.1.3. The category Weil(:,V;C, !C) is a groupoid.

Proof. This amounts to saying that any morphism i : (�∗, Tr) → (� ′∗, Tr′) as
above is invertible. By Propositions 4.5.1 and 4.5.4, �∗ and � ′∗ correspond to strong
additive ⊗-functors Corr(:,V)[L,L−1] → C (Z) , where Corr(:,V)[L,L−1] is as in
Definition 4.5.2. Since it is rigid (Lemma 4.5.3), the statement follows from [48, Prop.
I.5.2.3].3 2

Construction 5.1.4. Definition 5.1.2 provides a strict 2-functor

(5.1) Weil(:,V;−) : Add⊗∗ → Cat .

(3) Since the image of a dualisable object by a ⊗-functor is dualisable, the hypothesis in loc.
cit. that the target category be rigid is not needed.
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Detailed definition. 1) The 2-functor is given on objects by Definition 5.1.2.
2) Let (�, D) : (C, !C) → (D, !D) ∈ Add⊗∗ be a 1-morphism. We define a “push-

forward” functor

(5.2) (�, D)∗ : Weil(:,V;C, !C) →Weil(:,V;D, !D)

as follows:

• On objects: (�, D)∗(�∗,Tr) = (� (N) ◦ �∗, D ◦ � (Tr)).
• On morphisms: for i : (�∗,Tr) → (� ′∗,Tr′), (�, D)∗i = � ∗ i.

By definition, we have (�, {)∗ ◦ (�, D)∗ = ((�, {) ◦ (�, D))∗. (This is the meaning
of “strict”).

In the sequel, we shall use this construction repeatedly; we abbreviate it to � ′ =
�∗� and simply say that � ′ is the push-forward of � by �.

3) Let \ : (�, D) ⇒ (� ′, D′) be a 2-morphism. For (�∗,Tr) ∈ Weil(:,V;C, !C),
the natural transformation \ ∗ �∗ defines a morphism

\∗ : (�, D)∗(�∗,Tr) → (� ′, D′)∗(�∗,Tr)

(immediate verification).
Checking the axioms of a 2-functor is trivial. 2

Examples 5.1.5. a) Extension of scalars. Let (C, !C) ∈ Add⊗∗ , ' = / (C) and
5 : ' → ( be a homomorphism to a commutative ring (. Then (( ⊗' C, !C) is an
object ofAdd⊗∗ and extension of scalars � defines a 1-morphism (�,1!C ) : (C, !C) →
(( ⊗' C, !C).
b)Comparison isomorphisms. Let : be a subfield ofC; here,V = Smproj(:). Consider
the categoryH of pure, polarisable Q-Hodge structures provided with !H := Q(−1).
Then (H , !H) ∈Add⊗∗ and we have aWeil cohomology (�∗

�
,Tr�) ∈Weil(:;H , !H)

given by Betti cohomology. We also have a forgetful functor ]H : H → VecQ forget-
ting the Hodge structure. On the other hand, let ℓ be a prime number, and let Rℓ
be the category of Qℓ-adic representations of �0; ( :̄/:), where :̄ is the algebraic
closure of : into C: if !Rℓ := Qℓ (−1), ℓ-adic cohomology gives a Weil cohomology
(�∗

ℓ
,Trℓ) ∈Weil(:;Rℓ , !Rℓ ). We also have a forgetful functor ]ℓ : Rℓ→VecQℓ . Then

Artin’s comparison theorem gives an isomorphism

(]ℓ)∗(�∗ℓ ,Trℓ) ' Qℓ ⊗Q (]H)∗(�∗�,Tr�)

in Weil(:; VecQℓ , ]ℓ (!Rℓ )), thanks to the isomorphism

]ℓ (Qℓ (−1)) ' Qℓ ⊗Q ]H (Q(−1))
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given by the exponential.
We leave it to the reader to refomulate the de Rham-Betti isomorphism in the same

fashion, using the compatibility of 3 and 3 log via the exponential.

Remark 5.1.6. We may reformulate Construction 5.1.4 by defining a 2-category
Weil(:,V) whose objects are those of Weil(:,V; C, !C) for varying (C, !C), and
provided with a 2-functor Weil(:,V) → Add⊗∗ which is “2-cofibred” in a sense gen-
eralising [23, §6]; the push-forward functors of Construction 5.1.4 play the rôle of
cocartesian morphisms. Details are left to the reader.

5.2 – The representability theorem

Theorem 5.2.1. The 2-functor Weil(:,V, −) is strictly 2-representable. A rep-
resenting object is called a universal Weil cohomology (relative toV) and is denoted
by

,∗V : Corr(:,V) →W(:,V) (N) , Tr, : ,2
V (P

1) ∼−→ L,

(where (W(:,V),L, ) ∈ Add⊗∗ ).

Let us specify the meaning of strictly 2-representable here: ,∗V induces an iso-
morphism of categories

(5.3) Add⊗∗ ((W(:,V),L, ), (C, !C))
∼−→Weil(:,V;C, !C).

Explicitly, for (C, !C) ∈ Add⊗∗ and (�∗, Tr) ∈ Weil(:,V; C, !C), there exists a
unique 1-morphism (�� , D� ) : (W(:,V), L, ) → (C, !C) of Add⊗∗ such that the
induced diagram

(5.4)
Corr(:,V)

, ∗V //

� ∗

��

W(:,V) (N)

�
(N)
�ww

C (N)

strictly commutes. Moreover, if �, � ′ ∈ Add⊗∗ ((W(:,V), L, ), (C, !C)) and � =

�∗,V , � ′ = � ′∗,V as in (5.2), any morphism i : � ⇒ � ′ as in Definition 5.1.2
extends uniquely to a morphism � ⇒ � ′.

Corollary 5.2.2. Theorem 5.2.1 remains true if we compose Weil(:, −) with
the inclusions Addrig

∗ ⊂ Add⊗∗ and Exrig
∗ ⊂ Addrig

∗ . In particular, (W(:,V),L, ) ∈
Addrig

∗ . A representing object for the second universal problem is called a universal
abelian Weil cohomology (relative toV) and is denoted by

,∗V ,ab : Corr(:,V) →Wab(:,V) (N) , Tr, ,ab : ,2
V ,ab(P

1) ∼−→ L, ,ab
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(where (Wab(:,V),L, ,ab) ∈ Exrig
∗ ). We haveWab(:,V) = ) (W(:,V)).

Proof. Let D ⊆ W(:,V) be as in Proposition 4.5.4 b) (where we take C =
W(:,V)): note that !D := L, ∈ D. Since ,∗V takes its values in DN, by the 2-
universal property ofW(:,V) there exists a functor (�, D) : (W(:,V), L, ) →
(D, !D) in Add⊗∗ such that � (N) ◦,∗V ' �

∗, whose composition with the inclusion
(D, !D) ⊆ (W(:,V),L, ) is isomorphic to Id(W(:,V) ,L, ) . Since D ⊆ W(:,V)
is strictly full, this implies that D =W(:,V). SoW(:,V) ∈ Addrig.

Let ,V ,ab be the push-forward of ,V , in the sense of (5.2), along the functor
_W(:,V) of Lemma 2.3.3: it is clear that () (W(:,V)),,V ,ab) has the desired uni-
versal property. 2

Proof of Theorem 5.2.1. To construct a universalWeil cohomology, we use ver-
sion (2) in Remarks 3.2.2 and 3.2.4: namely, we start from the ⊗-category

Corr(:,V) × N

that we modify step by step until we obtain a ⊗-categoryW(:,V) and a ⊗-functor

Corr(:,V) × N→W(:,V)

with the correct properties.
For simplicity, we abbreviate Corr(:,V) to Corr andW(:,V) toW in this proof.

By Theorem 3.1.1 applied to Corr×N, we first obtain

(,♭,�, h) : Corr×N→ (Corr×N)^

where (Corr×N)^ is the universal ⊗-category together with

�8, 9
- ,.

: ,♭ (-, 8) ⊗,♭ (., 9) → ,♭ (- × ., 8 + 9)

the induced N-graded unital external product for -,. ∈ Corr, 8, 9 ∈ N, and

h : l→ ,♭ (1, 0)

where l is the unit of (Corr×N)^ . Let (Corr×N)^,add := Add⊗ (,♭), see Proposition
3.4.3; thus the functor (Corr ×N)^ → (Corr ×N)^,add is a strong ⊗-functor and its
composition,add with,♭ is additive. Whence morphisms

X =
∑
�8, 9
- ,.

:
⊕
8+ 9=:

,add(-, 8) ⊗,add(., 9) → ,add(- × ., :)

in (Corr×N)^,add, for 8, 9 , : ∈ N.
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Now we need to impose the Künneth formula (Definition 3.2.3) and the conditions
of Proposition 4.5.1. Consider the set ( of morphisms of (Corr×N)^,add given by X, h
and,add(1, 8) → 0 for 8 > 0,,add(P1, 8) → 0 for 8 ≠ 0,2 and,add(1,0) →,add(-,0)
for - geometrically connected. Enlarging ( to (⊕⊗ as in Proposition 3.5.3, we get an
additive ⊗-category

Weff := (Corr×N)^,add [(−1
⊕⊗]

and a functor ,eff : Corr ×N →Weff, given by the composition of ,add with the
localisation functor. We finally ⊗-invert ,eff(P1, 2), hence a categoryW. We want
to show that it is still a ⊗-category. For this, let Corr[L] be as in Definition 4.5.2. Then
,eff canonically factors through Corr[L] ×N, sending (L,2) to,eff(P1,2). Since the
permutation involution 2L,L on L ⊗ L is the identity in Corr[L] and,eff(L ⊗ L, 4) =
,eff(P1, 2) ⊗ ,eff(P1, 2) hence we have that 2, eff (P1 ,2) ,, eff (P1 ,2) is the identity in
Weff. Therefore Voevodsky’s condition [56, Th. 4.3] is verified and the claim holds.

Write, for the composition of,eff with the functorWeff →W. Define L, as
, (P1, 2). We thus have finally constructed a strong additive ⊗-functor

,∗ : Corr→WN

with a tautological isomorphism Tr : , (P1, 2) ∼−→ L, . We then apply Propositions
4.5.1 and 4.5.4.

For (C, !C) ∈ Add⊗∗ and (�∗, Tr) ∈ Weil(:; C, !C), consider the induced unital
N-graded external product

(�, ^, [) : Corr×N→ C

given by Remark 3.2.2. It extends successively to (Corr ×N)∗ by Theorem 3.1.1,
(Corr ×N)^,add by Proposition 3.4.3, Weff by Proposition 3.5.3 and W since we
have that �2(P1) � !C is invertible in C. We then obtain a 1-morphism (�� , D� ) :
(W, L, ) → (C, !C) of Add⊗∗ where �� :W → C is the induced additive strong
⊗-functor such that �� (, 8 (-)) = �8 (-), D� = Tr : �� (L, ) = �2(P1) ∼−→ !C and
the push-forward (�� , D� )∗(,,Tr) = (�,Tr). Therefore Diagram (5.4) strictly com-
mutes; moreover, �� is obviously unique.

The full faithfulness of (5.3) is now proven step by step: indeed, each step of the
above construction is the solution of a 2-universal problem. 2

Remark 5.2.3. Of course, the categoryW(:,V) depends on the choice of V.
GivenV ⊆ V ′, restricting,∗V′ toV yields by the universal property a canonical ⊗-
functor W(:,V) → W(:,V ′). Here is a computation in the minimal case V =

{Spec :}adm: the category C = Mrat(:,V) consists of (pure) Tate motives; since
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C(L<,L=) = 0 for < ≠ =, the functor ℎ : V → C induces a canonical Weil cohomo-
logy ℎ∗ : Corr(:,V)→C (N) which is obviously initial. Therefore, (W(:,V),L, ) =
(Mrat(:,V),L).

Remark 5.2.4. A similar technique would prove the existence of a universal nor-
malised Weil cohomology (see Definition 4.3.4). However, there are further natural
properties enjoyed by usual Weil cohomologies, that we shall study in Section 8; this
is where we shall prove refined representability theorems.

5.3 – Extension to other adequate equivalences

Let ∼ be an adequate equivalence relation on algebraic cycles on V: it corres-
ponds to a ⊗-ideal ofM(:,V) by [3, Lemma 4.4.1.1]. We write Corr∼(:,V) and
M∼(:,V) for the corresponding categories of correspondences and motives.

Definition 5.3.1. A Weil cohomology � is compatible with ∼ if �∗ factors
through ∼ in Proposition 4.5.1, i.e. induces a functor Corr∼(:,V) → C (Z) .

For (C, !C) ∈ Add⊗∗ , let Weil∼(:,V; C, !C) be the full subcategory of the cat-
egory Weil(:,V; C, !C) consisting of the (�∗, Tr) compatible with ∼. This defines
a strict 2-functor Weil∼(:,V;−) as in Construction 5.1.4.

Theorem 5.3.2. The analogues of Theorem 5.2.1 and Corollary 5.2.2 hold for
Weil∼(:,V;−), yielding universal Weil cohomologies ,V ,∼ and ,ab

V ,∼ with values
inW∼(:,V) andW∼,ab(:,V) = ) (W∼(:,V)).

Proof. One checks that the proofs of Theorem 5.2.1 and Corollary 5.2.2 go
through without change. 2

Let ∼≥∼′ be two comparable adequate equivalence relations. The universal prop-
erties of,∼ and,∼,ab yield canonical strong ⊗-functors

(5.5) W∼(:,V) →W∼′ (:,V), W∼,ab(:,V) →W∼′,ab(:,V)

the second being exact. For simplicity, let us drop (:,V) from the notation in the
following proposition.

Proposition 5.3.3. In (5.5), the first functor is full and essentially surjective, and
the second is a localisation. The kernel (resp. Serre kernel) of the first (resp. second)
one is generated by,∗∼(Ker(Corr∼ → Corr∼′) (resp. by the images of the morphisms
in,∗∼,ab(Ker(Corr∼ → Corr∼′)).
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Proof. LetW∼′ (:,V) ′ be the quotient ofW∼(:,V) by the said ⊗-ideal. The
functor (5.5) clearly factors throughW∼′ (:,V) ′. But pushing forward,∼ to the cat-
egoryW∼′ (:,V) ′ by the projection functor in the style of (5.2) provides the latter cat-
egory with a Weil cohomology which factors through Corr∼′; henceW∼′ (:,V) ′ →
W∼′ (:,V) is an equivalence of categories by universality. Same proof for ,∼′,ab,
mutatis mutandis. 2

Remark 5.3.4. As Proposition 4.6.1 and Remark 4.6.2 show, it may well happen
that (5.5) is an equivalence even if ∼≠∼′, either in the abelian case or in both cases.
Note also thatWnum ≠ 0 by [5] if : is a finite field.

6. Initiality

In the sequel, most ⊗-functors we shall encounter will be strong; therefore we drop
the adjective ‘strong’ to lighten the exposition, and add ‘lax’ if our ⊗-functor turns
out not to be strong.

We drop the mention of (:,V) for lightness of notation, except when it may create
an ambiguity, e.g. when a statement depends on this pair.

6.1 – Initial and final Weil cohomologies

AnyWeil cohomology �∗ : Corr→C (N) defines an adequate equivalence relation
onV. Specifically, extend �∗ to �∗ :Mrat→ (C♮) (Z) by Proposition 4.5.1. Then the
kernel of �∗ is a ⊗-ideal. We set (cf. [1, 3.3.4 & 4.4.1]):

Definition 6.1.1. Denote ∼� the adequate equivalence relation corresponding
to Ker�∗ and let

M� :=M∼� (= (Mrat/Ker�∗)♮)

be the category of �-homological motives. Composing the induced functor

�∗ :M� → (C♮) (Z)

with the direct sum functor, we get a faithful “realisation functor”

� :M� → C♮ " ;
⊕
8

�8 (")

which is monoidal but not symmetric (see Remark 3.2.4). (Note that �8 (") = �8 (-)
if " = ℎ(-) for - ∈ V.) In the universal case, we abbreviate

Mhun :=M,ab
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and get a faithful functor

(6.1) | :Mhun →Wab = ) (W).

Lemma 6.1.2. Let (�, D) : (C, !C) → (C′, ! ′D) ∈ Add⊗∗ be a 1-morphism. Let
� ′ = �∗� be the push-forward of � by � as (5.2) in Construction 5.1.4. We have an
induced ⊗-functor

M� →M� ′

which is the identity if � is faithful.

Proof. In fact, � ′∗ = � (N)�∗, thus Ker�∗ ⊆ Ker� ′∗ and the equality holds if �
is faithful. 2

Definition 6.1.3. In the situation of Lemma 6.1.2, we say that

• � is an enrichment of � ′ if � is faithful. We say that � ′ is initial if any such � is
an equivalence of categories.

• � ′ is a specialisation of � if � is full. We say that � is final if any specialisation
of � is an isomorphism of categories.

We have an analogous definition for the abelian case:

Definition 6.1.4. In the situation of Lemma 6.1.2. Suppose that

(�, D) : (C, !C) → (C′, ! ′D) ∈ Exrig
∗ .

We say that

• � is an abelian enrichment of � ′ if � is faithful. We say that � ′ is ab-initial if
any such � is an equivalence of categories.

• � ′ is a ab-specialisation of � if � is localisation. We say that � is ab-final if any
ab-specialisation of � is an isomorphism of categories.

The following is obvious:

Lemma 6.1.5. If � has weights (see Definition 4.3.6), any enrichment and any
specialisation of � has weights. 2

Remarks 6.1.6. a) Lemma 6.1.5 is also true for ab-specialisations, but nontrivi-
ally: any ⊗-localisation of a rigid abelian ⊗-category is full [31, Th. 4.21].
b) Note that any traditional Weil cohomology is final (and even ab-final). In Proposi-
tion 6.1.9, we shall characterise those Weil cohomologies which are initial and final.
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Note that∼�=∼� ′ andM� =M� ′ for all enrichments �∗ of � ′∗. Also, if (C, !C)
happens to be in Exrig

∗ , we have two different universal problems: to distinguish them
we shall refer to Definitions 6.1.3-6.1.4.

Theorem 6.1.7. a) Any Weil cohomology (C, �) has an initial enrichment

(W� ,,� )

and an ab-initial enrichment
(Wab

� ,,
ab
� )

if C ∈ Exrig. In this case, there is a canonical faithful ⊗-functor ]� :W� →Wab
�

such that,ab
�
= (]� )∗,� .

b) There is a 1 − 1 correspondence between initial Weil cohomologies and ⊗-ideals
ofW (resp. Serre ⊗-ideals ofWab).

Moreover, the target of any initial or ab-initial Weil cohomology is rigid.
c) The categoryW� is a ⊗-quotient ofW, the categoryWab

�
is a ⊗-Serre localisa-

tion ofWab = ) (W), and ]� induces a ⊗-localisation ) (W� ) →→Wab
�
.

Proof. a) Let (C, �) be a Weil cohomology, and let

(�� , D� ) : (W,L) → (C, !C)

be the classifying additive ⊗-functor. Set

W� :=W/Ker ��

and �̄� :W� → C for the induced faithful additive ⊗-functor. The push-forward of
the universal Weil cohomology , along the projectionW →W� yields ,� such
that (�̄� )∗,� = (�� )∗, = �. If �∗� ′ = � then �∗(�� ′)∗, = � and � ◦ �� ′ = ��
by unicity in the universal property. Since � is faithful we have that Ker�� =Ker�� ′
and �� ′ factors throughW� providing �̄� ′ :W� → C′ such that (�̄� ′)∗,� = � ′

as claimed. Moreover,W� is rigid as a ⊗-quotient ofW.
Similarly, for (C, !C) ∈ Exrig

∗ the ⊗-functor

(�� , D� ) : () (W),L) → (C, !C)

is exact and factors through the Serre localisationWab
�

of ) (W) by the (Serre) kernel
of �� , andWab

�
∈ Exrig by [10, Prop. 4.5], yielding a Weil cohomology with values

in Wab
�
. Moreover the induced exact functor Wab

�
→ C is injective on objects by

construction, hence faithful.
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b) Any (initial) Weil cohomology defines a ⊗-ideal ofW. Conversely, any such ⊗-
ideal I defines an initial Weil cohomology by push-forward of, alongW→W/I.
Same reasoning in the abelian case, mutatis mutandis.

c) The first two statements follow from the proof of a), the third then follows from
Lemmas 2.3.5 and 2.3.6. 2

Example 6.1.8. For � = , we get W, =W (as follows from the proof of
Theorem 6.1.7 a)). For � = ,ab, we getWab

,ab
= ) (W) andW,ab =W/ker _W ,

where _W :W→) (W) is the canonical functor of Lemma 4.3.4; the faithful functor
],ab of Theorem 6.1.7 a) is identified with the induced functor.

Proposition 6.1.9. Let �, �, � ′ be as in Lemma 6.1.2. Then � induces a full
functorW� →W� ′ . If C, C′ ∈ Exrig and � is exact, then it induces a localisation
Wab

�
→Wab

� ′ . These functors are the identity if � is faithful.
There is a 1 − 1 correspondence between maximal ⊗-ideals ofW and Weil cohomo-
logies which are both initial and final. Similarly, there is a 1 − 1 correspondence
between maximal Serre ⊗-ideals ofWab and Weil cohomologies with target in Exrig

∗
which are both initial and ab-final.

Proof. The additive case is obvious from Theorem 6.1.7 c). For the abelian case,
by Lemmas 2.3.6 and 2.3.1 d) we have to show that the localisation functor ) (W) →
Wab

� ′ factors through a ⊗-localisationWab
�
→Wab

� ′ . This follows from the inclusion
Ker �� ⊆ Ker �� ′ . 2

Remark 6.1.10. By [31, Th. 4.18], the maximal Serre ⊗-ideals of ) (W) are in
1 − 1-correspondence with the maximal ideals of its centre (which is an absolutely
flat ring by Lemma 2.3.1 d)). Similarly, maximal ⊗-ideals ofW contain the ideal N
of negligible morphisms (ibid., Cor. 5.14).

Moreover:

Lemma 6.1.11. IfW♮

�
is abelian, and

(i) eitherW♮

�
andWab

�
are both connected (Definition 2.2.1)

(ii) orW♮

�
is semisimple

then ]♮
�

:W♮

�

∼−→Wab
�

is an equivalence.

Proof. Assuming (i), we get from Lemma 2.3.1 b) that the faithful functor ]♮
�
is

exact. Assuming (ii), ]♮
�
factors as a composition

W♮

�

∼−→ ) (W♮

�
) →Wab

�
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in which the first functor is an equivalence by Lemma 2.3.3 and the second is exact.
The conclusion follows from Theorem 6.1.7 a) in both cases. 2

6.2 –When two worlds meet

Proposition 6.2.1. Let ∼ be an adequate equivalence. Then, with the notation of
Theorem 5.3.2, (W∼,,∼) is initial and (W∼,ab,,∼,ab) is ab-initial.

Proof. By Proposition 5.3.3,W∼ is a quotient ofW andW∼,ab is a localisation
ofWab. Therefore the claim follows from Theorem 6.1.7 b) and c). 2

Recall from Definition 6.1.1 that any Weil cohomology � defines an adequate
equivalence ∼� (homological equivalence with respect to �). Let Ad be the poset of
adequate equivalences, Wl the poset of (isomorphism classes of) initial Weil cohomo-
logies and Wlab the poset of (isomorphism classes of) ab-initial Weil cohomologies:
by Proposition 6.2.1, we get nondecreasing maps

(6.2) , : Ad�Wl :∼, ,ab : Ad�Wlab :∼

Theorem 6.2.2. Consider the objects in (6.2) as categories and functors. Then
(,, ∼) and (,ab, ∼) are two pairs of adjoint functors where ∼ is the right adjoint.
In particular, ∼ , ∼=∼, ∼ ,ab ∼=∼, , ∼ , = , and ,ab ∼ ,ab = ,ab (“Galois
correspondence”).

Proof. Given � and ∼, � is compatible with ∼ in the sense of Definition 5.3.1 if
and only if ∼≥∼� . If � is initial (resp. ab-initial), this is also equivalent to,∼ ≥ �
(resp. ,∼,ab ≥ �), hence the adjunction claims. The Galois correspondences then
follow from the adjunction identities. 2

To be more explicit, for any Weil cohomology � one has a commutative diagram
of ⊗-categories:

(6.3)

M∼� −−−−−→ W∼� −−−−−→ ) (W∼� )
∼−−−−−→ Wab

∼�

| |y 0
y 1

y 2
y

M� −−−−−→ W� −−−−−→ ) (W� )
3−−−−−→ Wab

�

where 0 is full surjective and 1, 2, 3 are Serre localisations. It is unclear when 0 and
3 are equivalences in practice.
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6.3 – The case of traditional Weil cohomologies

Let (C, �) be a Weil cohomology, with (C, !C) ∈ Exrig
∗ and C connected (Defini-

tion 2.2.1). Then / (W� ) ⊆ / (Wab
�
) ⊆ / (C) are domains; but / (Wab

�
) is absolutely

flat (Lemma 2.3.1 d)), soWab
�

is also connected. LetW&

�
be the extension of scalars

ofW� to the field of fractions & of its centre; then the functor ]� :W� →Wab
�

extends to a faithful ⊗-functorW&

�
→Wab

�
(note that the centres may a priori differ).

If Hom groups in C are finite dimensional over its centre, we can apply Lemma
2.3.2. We thus get a commutative diagram of rigid ⊗-categories

(6.4)

M�

,� //

�

''

��

(W� )♮ // (W&

�
)♮ //

��

Wab
�

// C

M�,N //

��

(W&

�
/N)♮

Mnum

in which the horizontal functors are faithful, the vertical functors are full, and the cat-
egories Mnum, (W&

�
/N)♮ are abelian semi-simple. The (pseudo-abelian) category

M�,N is defined by the diagram. All functors are symmetric monoidal, except the
horizontal ones starting fromM� andM�,N which are only monoidal (see Defini-
fion 6.1.1).

This applies in particular to any traditional Weil cohomology.

Remark 6.3.1. One could further decorate Diagram (6.4) by adding Diagram
(6.3). We shall refrain from this and leave it to the pleasure of enthusiastic readers.

6.4 – The case of classical Weil cohomologies

As an instance of Examples 4.3.7 - 5.1.5, let : be a subfield of C and V =

Smproj(:). Hodge cohomology in Weil(:,V;H , !H), for H the category of pure
polarisable Hodge structures and !H :=Q(−1), is an enrichment of the classical Betti
cohomology � = ��, with � = ]H :H → VecQ the forgetful functor. Other examples
are the de Rham-Betti enrichement of Betti cohomology, and the Ogus enrichment of
de Rham cohomology as in [3, Ch. 7]. These examples are all superseded by Deligne’s
(abelian semi-simple) categoryM� of motives for absolute cycles [19, §6]

In any characteristic, we also have the Galois enrichment of ℓ-adic cohomology.
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Warning 6.4.1. Here, as in [19], we need to modify the commutativity con-
straint in order that the enrichment functors become symmetric monoidal. Recalling

Notation 3.3.3, we write as in [3, 6.1.2]
·

M� for the categoryM� where the latter

constraint has been motified so that the functors
·

M� ��−−→ VecQ, etc., are symmetric,
while the natural functorM� →M� is symmetric. (This is the opposite notation to
[19, §6],) The same applies to André’s category below.

6.5 – André’s category

The previous examples are further enriched by André’s category of motivated
motives M�

�
(:,V) =M�

�
([1, 4.2] and [2, §2]) which is associated to a classical

Weil cohomology � (same comment for the commutativity constraint). Theorem
6.1.7 gives a universal enrichment of all these cases:

(6.5) M�

|−→ (W� )♮ →M�
�

where all functors are faithful. We distinguish two cases:

6.5.1. Characteristic 0, : embeddable in C. Then none of the categories in (6.5)
depends on the choice of �: we drop it from the notationM�

�
and replace it by hom

for the others this is the usual homological equivalence). Moreover, M� is abelian
semi-simple by [1, Th. 0.4]. We thus get the following refinement of (6.5) still into
faithful functors, with the last two exact:

(6.6) Mhom
|−→ (Whom)♮

]
♮

hom−−−→Wab
hom

\−→M�→M� →H .

Here all centres are equal to Q (hence passing fromWhom toW&

hom is not neces-
sary). By Lemma 6.1.5, all Weil cohomologies appearing in (6.6) have weights since
H has.

Theorem 6.5.1. In (6.6), \ is an equivalence of categories; henceWab
hom is semi-

simple.

Proof. Recall thatM� has been constructed by adjoining to algebraic cycles the
inverses Λ=−8 of the Lefschetz isomorphisms !=−8 : �8 (-) ∼−→ �2=−8 (-) (= − 8) asso-
ciated to a polarised - ∈ V of dimension = (see §8.5 below for details on these
operators). Being exact and faithful, \ is conservative; therefore Λ=−8 ∈ Im \ and
\ is full. Its essential surjectivity now follows from Lemma 2.3.8 since the functor
Mhom →M� is dense (see Definition 2.3.7 for “dense”). 2
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6.5.2. : is finitely generated of characteristic > 0. Taking for � in (6.4) the ℓ-adic
cohomology �ℓ where ℓ is a prime number different from char : and for C = Rℓ
ℓ-adic representations, except that we now have inclusions

Q ⊆ / (W�ℓ ) ⊆ / (W
&

�ℓ
) ⊆ / (Wab

�ℓ
) ⊆ / (Rℓ) = Qℓ

Here again all Weil cohomologies have weights since Rℓ has [18]. SinceM�
�ℓ

is
not known to be abelian, we have another set of inclusions

/ (W�ℓ ) ⊆ / (M�
�ℓ
) ⊆ Qℓ .

Finally, it is not known whether ℓ-adic homological equivalence is independent of
ℓ, so this picture a priori varies with ℓ. We shall refine it in §9.3.

6.6 – Comparison of Weil cohomologies

We may introduce the following relations.

Definition 6.6.1. a) TwoWeil cohomologies (C, �) and (C′, � ′) are equivalent
ifW� =W� ′ . For C,C′ ∈ Exrig we say that are ab-equivalent ifWab

�
=Wab

� ′ . Clearly,
these are equivalence relations.

b) Two Weil cohomologies (C, �) and (C′, � ′) are comparable if there exists a
third pointed category (C′′, !C′′) ∈Add⊗∗ , two faithful morphisms (�,D) : (C, !C) →
(C′′, !C′′) and (� ′, D′) : (C′, !C′) → (C′′, !C′′) and a comparison isomorphism of
Weil cohomologies �∗�

∼−→ � ′∗�
′ in Weil(:,V; C′′, !C′′). If C, C′ ∈ Exrig we addi-

tionally require that C′′ ∈ Exrig, and �, � ′ should be exact.

Lemma 6.6.2. If (C, �) and (C′, � ′) are comparable, they are equivalent.

Proof. If (C, �) and (C′, � ′) are comparable, then (C, �) and (C′, � ′) are both
enrichments of � ′′ := �∗�

∼−→ � ′∗�
′, and thenW� =W� ′′ =W� ′ by Proposition

6.1.9. Same argument in the abelian case. 2

Let S = {(C, �) | C ∈ Exrig} be a class of Weil cohomologies; write

IS =
⋂
� ∈S

Ker ��

and let
AS := ) (W)/IS

be the abelian rigid ⊗-category given by the Serre quotient. Let A� : AS → C be the
induced exact ⊗-functor for each (C, �) ∈ S.
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Theorem 6.6.3. For AS as above, consider the conditions

(i) AS is connected

(ii) every A� is faithful

(iii) all � ∈ S are equivalent

(iv) AS is Tannakian.

Then (i)⇒ (ii)⇒ (iii) and (iv)⇒ (i); if S contains a traditional Weil cohomology,
then (iii) ⇒ (iv) and all conditions are equivalent. Moreover, A( is semi-simple if
char : = 0 and S contains a classical Weil cohomology.

Proof. If AS is connected then all A� are faithful by Lemma 2.3.1 a), which in
turn impliesWab

�
=Wab

� ′ since Ker �� = Ker �� ′ for �, � ′ ∈ S. This shows (i)⇒
(ii)⇒ (iii), and (iv)⇒ (i) is obvious. If � ∈ S is traditional, A� is a fiber functor and
AS is then Tannakian under (iii) and all conditions are equivalent. Finally, the last
statement follows from Theorem 6.5.1. 2

7. Künneth decompositions and numerical equivalence

7.1 – Condition C

Let (C, �) be a Weil cohomology with C pseudo-abelian, and consider the corres-
ponding categoryM� (:,V) =M� of �-homological motives of Definition 6.1.1.

Definition 7.1.1. We say that - ∈ V verifies Condition C relatively to � if, for
any 8 ≥ 0, the Künneth projector EndC♮ (� (-)) 3 c8- : � (-) →→ �8 (-) ↩→ � (-) is
in the image of �. We say that � verifies Condition C if all - ∈ V do.

(If � is a traditional Weil cohomology and V = Smproj
:

, we recover the standard
conjecture C of [24, p. 195].)

Examples 7.1.2. Here are examples where Condition C holds:

• 0-dimensional varieties and P1;

• V =Ab, complete intersections, etc., � anyWeil cohomology, see Theorem 9.2.6
below, and

• over a finite field : ,V = Smproj(:) [34], � classical.
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Lemma 7.1.3. Let �, � ′ and � be as in Lemma 6.1.2. If � verifies Condition
C, so does � ′, and conversely if � is faithful (i.e. if � is an enrichment of � ′ as in
Definition 6.1.3).

Proof. We have the factorisation

M�

� //

��

C♮

� ♮

��
M� ′

� ′ // C′♮ .

If the projector c8
-
∈ EndC♮ (� (-)) is in the image of � the projector c′8

-
=

�♮ (c8
-
) ∈ EndC′♮ (� ′(-)) is in the image of � ′. If � is faithful then �♮ is faithful,

M� =M� ′ and the converse is true. 2

The following is a special case of Lemma 3.3.4 b):

Lemma 7.1.4. a) If -,. verify Condition C, so do -
∐
. and - × . .

b) If - verifies Condition � and ℎ� (. ) is isomorphic to a direct summand of ℎ� (-),
then . also verifies Condition C. 2

(Here we write ℎ� instead of ℎ, to stress that the statement concerns motives in
M� .)

Suppose that � verifies Condition C. Still by Lemma 3.3.4 b), M� acquires a
weight grading | in the sense of Definition 3.3.1 b) and we get the twisted category
·

M� as in Notation 3.3.3.
For - ∈ Corr, keep the notation c8

-
for the element of

EndM�
(ℎ(-)) = End ·

M�

(ℎ(-))

mapping to c8
-
via �. This is a set of orthogonal idempotents with sum 1ℎ (- ) , which

yields a decomposition
ℎ(-) =

⊕
8≥0

ℎ8 (-)

such that � (ℎ8 (-)) = �8 (-). This defines a Weil cohomology ℎ� with values in
·

M� , which has weights and such that (C, �) is the push-forward of (
·

M� , ℎ� ) by
�.

Remark 7.1.5. Even if, additionally,
·

M� and C are abelian the faithful ⊗-functor
� is not granted to be exact, in general. However, this is the case if C is connected by
Lemma 2.3.1 b).
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Theorem 7.1.6. a) Let (C, �) be a Weil cohomology and let (W� ,,� ) be as in
Theorem 6.1.7. The following conditions are equivalent:

(i) � verifies Condition C;

(ii) the functorM� →W♮

�
induced by,� is an equivalence of categories.

If this is true, then / (W� ) = Q.
b) Moreover, if C ∈ Exrig let (Wab

�
,,ab

�
) also be as in Theorem 6.1.7. The follow-

ing conditions are equivalent:

(iii) � verifies Condition C,M� is abelian and � is exact;

(iv) � verifies Condition C,W♮

�
is abelian and ]♮

�
:W♮

�
→Wab

�
is exact;

(v) the functorsM� →W♮

�
and ]♮

�
:W♮

�
→Wab

�
are equivalences;

(vi) the functor |� :M� →Wab
�

induced by,ab
�

is an equivalence of categories.

If this is true, then / (Wab
�
) = Q.

Proof. (i)⇒ (ii) is obvious by definition of (W� , ,� ), and (ii)⇒ (i) is more
obvious. If C ∈ Exrig, from Theorem 6.1.7 we get the following factorisation

M�

�

$$//

|� !!

W♮

�

]
♮

�

��

U // C

Wab
�

V

??

where all functors are faithful and V is exact by construction. Using the equivalence
(i) ⇐⇒ (ii) and the initiality ofWab

�
, we get (iv) ⇒ (v), and (v) ⇒ (vi) ⇒ (iii)

are obvious. Finally, under (iii) U is identified with the functor �, and (iv) follows
because U exact⇒ ]

♮

�
exact.

The statements regarding the centres are obvious, since / (M� ) = Q. 2

In the universal case, this gives:

Corollary 7.1.7. If the conditions of Theorem 7.1.6 a) hold for � = , , then
M,

∼−→W♮ and every Weil cohomology verifies Condition C.
If the conditions of Theorem 7.1.6 b) hold for � =,ab, then (6.1) is an equivalence

of categories and every Weil cohomology with abelian target verifies Condition C.
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We also have the following significant fact. Let �, �, � ′ be as in Lemma 6.1.2,
with (�, D) : (C, !C) → (C′, ! ′D) ∈ Exrig

∗ . Applying Proposition 6.1.9, get the follow-
ing commutative square

(7.1)

M�

|� //

��

Wab
�

i

��
M� ′

|�′ //Wab
� ′

where i is a localisation.

Lemma 7.1.8. In (7.1), assume thatM� =M� ′ is abelian, � ′ verifies Condition
C and � ′ is exact. Then
a) |� ′ is an equivalence of categories,
b) the following are equivalent:

(i) � verifies Condition C and � is exact

(ii) / (Wab
�
) = Q

(iii) Wab
�

is connected

(iv) i is an equivalence in (7.1).

Proof. Note that the hypothesis of Lemma 7.1.8 is the same as condition (iii) of
Theorem 7.1.6 b) for � ′. This gives a), by the implication (iii)⇒ (vi) in this theorem.
This also gives (i) ⇒ (ii). (ii) ⇒ (iii) is obvious, and (iii) ⇒ (iv) since i is then
faithful by Lemma 2.3.1 a). Finally, (iv) implies by a) that all functors in (7.1) are
equivalences, which in turn readily implies (i). 2

7.2 – Conditions D and V

For any Weil cohomology (C, �), recall that we get �-homological equivalence
∼� (Definition 6.1.1). Moreover, denote ∼tnil Voevodsky’s smash-nilpotence equival-
ence and ∼num numerical equivalence: as any other adequate equivalence relation ∼tnil
and ∼� are both finer than ∼num.

Definition 7.2.1. We say that (:,V) verifies Condition V ifMtnil →Mnum is
an equivalence.

(Of course, V stands for Voevodsky!)
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Definition 7.2.2. Let (C, �) be a Weil cohomology. We say that � verifies
Condition D if the functorM� →Mnum is an equivalence.

(If � is a traditional Weil cohomology andV = Smproj
:

, a) is conjecture D in [37, p.
17].)

Proposition 7.2.3. Condition V implies Condition D if � is abelian-valued.

(This does not a priori extend to general Weil cohomologies.)

Proof. By Remark 4.6.2, we have a factorisation

(7.2) Mtnil →M� →Mnum.

2

Suppose that � is abelian-valued; consider the following diagram

(7.3)

M�

_

��

c

zz

|�

$$
Mnum ) (M� )

c̄
oo

|̄�

//Wab
�

where |� is as in Theorem 7.1.6 (vi) and |̄� is the exact functor induced by the uni-
versal property of ) (M� ), asWab

�
is abelian; note that |̄� is obtained via ) (M� )

from the ⊗-functorM� → (Wab
�
) (Z) by composition with tha canonical exact func-

tor (Wab
�
) (Z) →Wab

�
. Similarly, c̄ exists becauseMnum is also abelian semisimple

by [26]. Moreover, we have:

Lemma 7.2.4. In (7.3) the functors c and c̄ are full, c̄ is a localisation, and _ is
faithful.

Proof. The fullness of c is obvious. Applying [31, Ex. 6.4] to it, we get that ) (c)
is a full localisation. ButMnum is abelian semi-simple, henceMnum

∼−→ ) (Mnum) by
Lemma 2.3.3. This identifies c̄ with ) (c). Finally, _ is faithful because |� is faithful.
2

Theorem 7.2.5. Let (C, �) be an abelian-valued Weil cohomology. Then
a) The following conditions are equivalent:

(i) � verifies Condition D (i.e. c is an equivalence of categories).
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(ii) c̄ and/or _ is an equivalence of categories.

(iii) ) (M� ) is connected.

(iv) / () (M� )) = Q.

These conditions imply that |̄� is faithful and � is exact.
b) Suppose that � verifies Condition C. Then the following are equivalent:

(v) � verifies Condition D.

(vi) M� is abelian, � is exact and |̄� is faithful.

(vii) The functors |� , |̄� are equivalences.

(viii) The functors |� , |̄� and _ are equivalences.

(ix) All functors in (7.3) are equivalences.

Proof. a) (ii)⇒ (iv)⇒ (iii) are trivial. It remains to prove (i)⇒ (ii) and (iii)⇒
(i). If � verifies Condition D, thenM� is semisimple hence _ is an equivalence by
Lemma 2.3.3, therefore so is also c̄. If ) (M� ) is connected, c̄ is faithful being exact
(Lemma 2.3.1 a)), and so is c as a composition of two faithful functors. Moreover,
|̄� is faithful, and � is exact becauseM� is semi-simple.
b) (v)⇒ (vi) has been seen in a) (without assuming Condition C). (vi)⇒ (vii): for |�
it follows from Theorem 7.1.6 b), (iii)⇒ (v), and for |̄� we use the same argument.
(vii) ⇒ (viii) is obvious. (viii) ⇒ (ix) ⇒ (v) now follows from a) (equivalence (i)
⇐⇒ (ii)). 2

Example 7.2.6. Suppose that � is an enrichment of a classical Weil cohomology
� ′. If Condition D holds for �, it obviously holds for � ′ (see Lemma 6.1.2). Then
� ′ verifies Condition C by [1, 5.4.2.1] (see Example 8.3.5 and Theorem 8.6.3 below),
hence also � by Lemma 7.1.3, and we are in the situation of Theorem 7.2.5 b).

However, we don’t know any proof of the implication D ⇒ C in this generality.
The situation will change in Section 8 when we introduce abstractions of the weak
and hard Lefschetz theorems; Theorem 7.2.5 will be upgraded to Theorem 8.6.10.

Now consider the universal case of ,ab-homological motives. If � = ,ab then
Wab

�
= ) (W) in (7.3). We simplify its notation to |� = | and |̄� = |̄. To say that

,ab verifies Condition D means that ∼hun=∼num and, equivalently, that / () (Mhun)) =
Q, by Theorem 7.2.5 a).

Theorem 7.2.7. Assume that,ab verifies Condition D. Then,ab verifies Condi-
tion C ⇐⇒ ) (W) is connected ⇐⇒ / () (W)) = Q.
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Proof. If Condition D holds for,ab it holds for any Weil cohomology with val-
ues in an abelian category. In particular, pick any classical Weil cohomology �; then
� verifies Conditions C and D (as in Example 7.2.6). We then apply Lemma 7.1.8. 2

As a special case of (v)⇒ (ix) in Theorem 7.2.5, we get:

Corollary 7.2.8. Under Conditions C and D for ,ab, all functors in (7.3) are
equivalences and these equivalences identify,ab with ℎ :Mrat →Mnum. 2

(See also Corollary 8.6.11 below.)

7.3 – Chow-Künneth decompositions

Let (C, �) be a Weil cohomology. Let us start with a definition:

Definition 7.3.1. Let - ∈ V. We say that - admits a Chow-Künneth decompos-
ition relatively to � if

• - verifies Condition C relatively to � (Definition 7.1.1);

• the Künneth projectors c8
-

lift to a set of orthogonal idempotents in the ring
EndMrat (ℎ(-)).

A Chow-Künneth decomposition relative to � is such a lift.

Here are some elementary observations on this definition.

Remarks 7.3.2.

(1) A Chow-Künneth decomposition relative to � is also a Chow-Künneth decompos-
ition relative to any Weil cohomology � ′ which is a push-forward of � as in (5.2)
of Construction 5.1.4, cf. Lemmas 6.1.2 - 7.1.3.

(2) A Chow-Künneth decomposition, if it exists, is not unique, because one can con-
jugate it by any invertible self-correspondence of - which is ≡ 1 (mod ∼� ).
Moreover, it has a priori no reason to be unique up to such conjugation. This
will hold, however, if Ker(EndMrat (ℎ(-)) → EndMnum (ℎ(-))) is nilpotent, for
example if - is an abelian variety [38].

(3) Given �, if - and . admit a Chow-Künneth decomposition, so do -
∐
. and

- × . as in Lemma 7.1.4 a). However, the analogue of Lemma 7.1.4 b) (stability
under direct summands) is not clear a priori; see nevertheless Proposition 7.3.4.

(4) There may be partial Chow-Künneth decompositions, as we shall see now. (The
same is true for Künneth decompositions.)
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In [43], Murre constructed a partial Chow-Künneth decomposition of the form

(7.4) ℎ(-) = ℎ0(-) ⊕ ℎ1(-) ⊕ ℎ [2,2=−2] (-) ⊕ ℎ2=−1(-) ⊕ ℎ2= (-)

and isomorphisms

(7.5) ℎ(c0(-))
∼−→ ℎ0(-), ℎ0(-) ⊗ L=

∼−→ ℎ2= (-), ℎ1(-) ⊗ L=−1 ∼−→ ℎ2=−1(-)

for any - ∈ Smproj(:) of pure dimension =, where c0(-) is the scheme of constants
of - . This was refined by Scholl in [49, §1 and §4] to a self-dual decomposition:

(7.6) ℎ 9 (-)∨ ' ℎ2=− 9 (-) (=).

By [43, 3.7], we have

(7.7) �8 (ℎ 9 (-)) =
{

0 if 8 ≠ 9

�8 (-) if 8 = 9

for 9 ∈ {0, 1, 2= − 1, 2=} if � is ℓ-adic cohomology, hence for � classical in the sense
of Definition 4.3.2 if we are in characteristic 0. The basic reason (see Example 8.2.2
below) is that (7.4) and (7.5) lift the partial Künneth decomposition and isomorph-
isms established by Kleiman in [36] to rational equivalence. We now examine what
happens for a general Weil cohomology �: obviously, if (7.7) holds then - verifies
Condition C relatively to � in the sense of Definition 7.1.1.

Proposition 7.3.3. a) The first isomorphism of (7.5) yields a decomposition

�0(-) ' �0(c0(-)) ⊕ (

where ( = 0 (for all -) ⇐⇒ (7.7) holds for 8 = 0 (for all -) ⇐⇒ � is normalised
in the sense of Definition 4.3.4.
b) Suppose that � is normalised. If the saturation of V contains all curves, we have
�8 (ℎ 9 (-)) = 0 for 8 ≠ 9 for any - ∈ V of pure dimension = and 9 ∈ {0, 1, 2= − 1, 2=}.

Proof. a) is tautologically true. b) is obvious for 9 = 0 since ℎ0(-) is an Artin
motive [3, 4.1.6.1]. For 9 = 1, suppose first = = 1. For any 8, we have

�8 (-) = �8 (ℎ0(-)) ⊕ �8 (ℎ1(-)) ⊕ �8 (ℎ2(-))

so the statement is true for 8 ∉ [0, 2]; it also holds for 8 = 0 by the normalised hypo-
thesis, and finally for 8 = 2 by Axiom (v) of Definition 4.2.1, and (7.6).

If = > 1, we use the fact that ℎ1(-) is a direct summand of ℎ1(�) for an ample
curve � (which follows from [49, 4.3]). The cases 9 = 2= − 1 and 9 = 2= then follow
again by Poincaré duality. 2
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Proposition 7.3.4. Suppose that � is normalised and the saturation of V con-
tains all curves.
a) (7.7) holds for 8 = 1 ⇐⇒ �1(ℎ [2,2=−2] (-)) = 0 ⇐⇒ �1(ℎ [2,2=] (-)) = 0; in
particular it holds for curves.
b) The condition of a) is stable under coproducts, products and direct summands as
in Lemma 7.1.4.

Proof. The first statements of a) follow from Proposition 7.3.3 b), and the case
of curves is then obvious. The first statement of b) follows from the Künneth formula
for �∗ and for the partial Chow-Künneth decompositions, while the second one is
immediate from a). For the last, using [30, Prop. 2.2] we observe that any morphism
5 : ℎ(. ) → ℎ(-) induces a compatible morphism 5 2 : ℎ [2,2=. ] (. ) → ℎ [2,2=- ] (-)
if =. = dim. , =- = dim - , and that any retraction of 5 induces a corresponding
retraction of 5 2, so the claim follows from a) again. 2

Let )- be the canonical torsor under the Albanese variety Alb(-) of - , and let
0- : - → )- be the canonical Albanese map.

Proposition 7.3.5. Suppose that � is normalised and the saturation of V con-
tains all curves. Then, the map 0∗

-
: �1()- ) → �1(-) is split injective. Moreover,

the condition of Proposition 7.3.4 a) holds if and only if 0∗
-
is an isomorphism.

Proof. The map 0- induces an isomorphism

(7.8) ℎ1()- )
∼−→ ℎ1(-)

cf. [29, Ex. 6.38]. Using this and Proposition 7.3.3 b), we get a commutative diagram

�1()- ) −−−−−→ �1(-)

o
x x

�1(ℎ1()- ))
∼−−−−−→ �1(ℎ1(-))

in which the left vertical map and the bottom horizontal map are isomorphisms. This
gives the split injectivity. By [35, Th. 6.1], we have ℎ()- ) ' ℎ(Alb(-)); therefore,
)- is in the saturation ofV and the last claim follows. 2

8. Lefschetz operators

In this section, we generalise to arbitrary Weil cohomologies important properties
satisfied by the classical ones: Normalised (Definition 4.3.4), Albanese-invariance
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(Definition 8.2.1), Weak and Strong Lefschetz (Definition 8.3.1). By the same tech-
nique as before, we then get a universal Weil cohomology enjoying these extra prop-
erties. Moreover, as in the classical case, Lefschetz theory provides a natural context
for the yoga of the standard conjectures, as in Definition 8.6.1.

8.1 –More formalism of Weil cohomologies

Let � be a Weil cohomology. If - ∈ V, we write ∪- for the “cup-product”

�∗(-) ⊗ �∗(-)
^
∗,∗
-,-−−−−→ �∗(- × -)

Δ∗
-−−→ �∗(-)

where the first map is given by the Künneth product and Δ- is the diagonal of - .
If 5 : . → - is a morphism inV, we write 5 ∗ for its (contravariant) action on �∗,

and 5∗ for the action of the transpose of the graph of 5 , viewed as a correspondence
(see proof of Proposition 4.4.1 a)).

Lemma 8.1.1 (Projection formula). The diagram

�∗(-) ⊗ �∗(. ) 1⊗ 5∗ //

5 ∗⊗1
��

�∗(-) ⊗ �∗(-) ∪- // �∗(-)

�∗(. ) ⊗ �∗(. ) ∪. // �∗(. )
5 ∗

77

commutes.

Proof. Passing through ^, we are reduced to the following identity:

5∗ ◦ Δ∗. ◦ (1 × 5 )∗ = Δ∗- ◦ (1 × 5 )∗

which follows from the same identity in the category of graded correspondences,
which in turn follows by Manin’s identity principle from the projection formula for
Chow groups [21, Prop. 8.3 (c)]. 2

Let 8 : . ⊂ - be a closed immersion of codimension 1 inV.

Definition 8.1.2. The class 2ℓ1
- (. ) : 1→ �2(-) (1) induces

!. : �: (-)
1⊗2ℓ1

-
(. )

−−−−−−−−→ �: (-) ⊗ �2(-) (1) ∪-−−→ �:+2(-) (1)

which we call a Lefschetz operator.
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Lemma 8.1.3. The operator !. may be factored as

�: (-) 8
∗
−→ �: (. ) 8∗−→ �:+2(-) (1).

Proof. Indeed, the projection formula for Chow groups plus Manin’s identity
principle [49, §2] show that the following diagram commutes inM(:,V):

ℎ(-)
1⊗[. ]
−−−−−→ ℎ(-) ⊗ ℎ(-) (1)

8∗
y Δ∗

-

y
ℎ(. ) 8∗−−−−−→ ℎ(-) (1)

where Δ- is the diagonal and [. ] ∈ ��1(-) is viewed as a morphism 1→ ℎ(-) (1),
and we apply the ⊗-functor �∗. 2

Remark 8.1.4. Lets : - ↩→P# be a polarisation and 8 =. ↩→ - be a correspond-
ing smooth hyperplane section. Then 2ℓ1

- (. ) only depends on s in Definition 8.1.2:
indeed, the class of . in ��1(-) is s∗O(1) where O(1) is the canonical generator
of ��1(P# ) ' Z.

8.2 – Albanese-invariant cohomologies

Definition 8.2.1. We say that � is Albanese-invariant if (7.7) holds for 8 = 1 for
any - ∈ V or, equivalently, if the condition of Proposition 7.3.5 holds for any - ∈ V,
i.e. 0∗

-
is an isomomorphism.

Example 8.2.2. Any classical Weil cohomology is Albanese-invariant. To see
this, we can reduce to the condition in Proposition 7.3.5. For ℓ-adic cohomology, see
[36, Th. 2A9 6.]. In characteristic 0, we get the other classical Weil cohomologies
by the comparison theorems. Over a finite field, we get crystalline cohomology by
applying [34, Th. 1]. Over a general field : of characteristic > 0, we then reduce to a
finite field by reducing first to : finitely generated and then using smooth and proper
base change.

8.3 –Weak and Strong Lefschetz

Assume thatV is closed under taking smooth hyperplane sections.

Definition 8.3.1. Let (C, �) be a Weil cohomology with (C, !C) ∈ Add⊗∗ . We
say that
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• � verifies Weak Lefschetz if, for any connected - ∈ V of dimension = and any
smooth hyperplane section 8 : . ↩→ - , connected with the same field of constants
as - , the map 8∗ : �; (-) → �; (. ) is an isomorphism for ; ≤ = − 2.

• � verifies Strong Lefschetz if, for (-,. ) as above and 9 ≤ =, the morphism

! 9 : �=− 9 (-) −→ �=+ 9 (-) ( 9),

induced by the Lefschetz operator ! := !. (Definition 8.1.2), is an isomorphism.

Remark 8.3.2. This induces isomorphisms

!=−28 : C(1, �28 (-) (8)) ∼−→ C(1, �2(=−8) (-) (= − 8)).

Remark 8.3.3. The Weak Lefschetz property is usually stated with the additional
condition: 8∗ is injective for ; = = − 1. This is automatic in the presence of Strong
Lefschetz, by Lemma 8.1.3. This argument even gives split injectivity for all ; = = − 9 .

Definition 8.3.4. A Weil cohomology (C, �) is tight if it is normalised (Defin-
ition 4.3.4), Albanese-invariant (Definition 8.2.1), and verifies Weak and Strong Lef-
schetz (Definition 8.3.1).

(For V = Smproj
:

and (Vec , �) traditional we recover Kleiman’s axiomatisation
of a Weil cohomology in [37] plus Albanese-invariance.)

Example 8.3.5. (see also Example 8.2.2.) All classical Weil cohomologies (and
the abelian enrichments in Example 4.3.7) in the sense of Definition 4.3.2 are tight.

Lemma 8.3.6. If (C, �) is tight and (�, D) : (C, !C) → (C′, ! ′D) ∈ Add⊗∗ , the
push-forward � ′ = �∗� is also tight. Additionally, for (�, D) ∈ Exrig

∗ with � faithful
we have that � is tight if and only if � ′ is tight.

Proof. The first fact is true because the tightness properties are given by iso-
morphisms, which are preserved by �. In the second case, if � faithful and exact then
it is conservative. 2

8.4 – Another representability theorem

Theorem 8.4.1. Assume that V is closed under taking smooth hyperplane sec-
tions. For (C, !C) ∈ Add⊗∗ , let Weil+(:,V; C, !C) be the 1-full and 2-full sub-
2-category of Weil(:,V; C, !C) consisting of those � which are tight. Then the
2-functor Weil+(:,V;−) is strongly 2-representable, as well as its restriction to Exrig

∗ .
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Proof. We obtain a representing object by localisingW(:,V) with respect to
the morphisms 8∗, 0∗

-
and ! 9 given by any (-,. ) as in Definitions 8.3.1 - 8.2.1, in

the style of Proposition 3.5.3 (cf. the proof of Theorem 5.2.1). For its restriction to
Exrig
∗ , we compose with ) as in the proof of Corollary 5.2.2. 2

Notation 8.4.2. We shall denote by (W+,,+) and (W+
ab,,

+
ab) the representing

objects in Theorem 8.4.1; by its proof, we haveW+
ab = ) (W

+).

Remark 8.4.3. The abelian ⊗-categoryW+
ab is a ⊗-Serre localisation ofWab. In

fact, let I+ be the ⊗-Serre ideal ofWab generated by kernels and cokernels of the
morphisms in the proof of Theorem 8.4.1 under _W . ThenW+

ab 'Wab/I+. Thus, in
Theorem 6.6.3, for S the class of tight Weil cohomologies we get that IS = I+ and
A( =W+

ab.

Warning 8.4.4. By Lemma 4.1.5 and Proposition 4.4.1, we haveW(:,V)♮ =
W(:,Vsat)♮ where Vsat is the saturation of V. The same is not true (or at least not
clear) forW+, because it is not clear whether a Weil cohomology on Vsat whose
restriction toV is tight, is also tight onVsat. Note also thatW+(:,V) is not defined
if V is not closed under hyperplane sections, because one cannot formulate weak
Lefschetz.

For tight Weil cohomologies we set the same framework of Definitions 6.1.3 and
6.1.4. The analogue of Theorem 6.1.7 is the following:

Theorem 8.4.5. a) Any tight Weil cohomology (C, �) has an initial tight enrich-
ment (W+

�
, ,+

�
) such that ,+

�
= (Y� )∗,� is the push-forward along a faithful

⊗-functor Y� :W� →W+
�
. If � is abelian-valued, then the ab-initial enrichment

(Wab
�
,,ab

�
) is tight; in this case, there is a canonical faithful ⊗-functor ]+

�
fitting in

the following commutative diagram

(8.1)

W�

]� //

Y�

��

Wab
�

W+
�

]+
�

<<

and,ab
�
= (]+

�
)∗,+� .

b) There is a 1 − 1 correspondence between initial tight Weil cohomologies and the
⊗-ideals ofW+ (resp. Serre ⊗-ideals of ) (W+)).

Moreover, the target of any initial or ab-initial tight Weil cohomology is rigid.
c) The category W+

�
is a ⊗-quotient of W+, and the category Wab

�
is a ⊗-Serre

localisation ofW+
ab.



52 L. Barbieri-Viale – B. Kahn

Proof. The proof of Theorem 6.1.7 applies verbatim toW+ andW+
ab appealing

to Theorem 8.4.1 and observing that (Wab
�
,,ab

�
) is tight by Lemma 8.3.6. 2

Example 8.4.6. By Example 8.3.5, the Theorem 8.4.5 applies to classical Weil
cohomologies.

Remark 8.4.7. Let (C♮, �) be tight and assume Condition C. Let

MΘ
� := (

·

M� [Θ−1
⊕,⊗])♮

be the pseudo-abelian completion of the localisation of
·

M� at the set Θ := {!=−8 :
ℎ8
�
(-) → ℎ2=−8

�
(-) (=− 8) for all - ∈V and 8 ≤ = = dim(-)} (as in Proposition 3.5.3).

We have thatMΘ
�

∼−→ (W+
�
)♮. Actually, the push-forward of ℎ� toMΘ

�
defines a tight

enrichment of � which is universal by construction.

8.5 – Some Lefschetz algebra

Here we verify that the operators and identities of [36] and [37] continue to make
sense and hold for any Weil cohomology verifying Strong Lefschetz.

Let (C, �) be tight. For - ∈ V and dim(-) = =, provided with a polarisation as
in Remark 8.1.4, define the operator Λ as usual [36, 1.4.2.1], [37, §4] on �8 (-) with
8 ≤ = by the following commutative diagram

(8.2)

�8 (-) !=−8

∼
//

Λ

��

�2=−8 (-) (= − 8)

!

��
�8−2(-) (−1) !

=−8+2

∼
// �2=−8+2(-) (= − 8 + 1)

and on �2=−8+2(-) by the following one

(8.3)

�8 (-) (8 − = − 1) !=−8

∼
// �2=−8 (-) (−1)

�8−2(-) (8 − = − 2)

!

OO

!=−8+2

∼
// �2=−8+2(-)

Λ

OO

so that Λ! = 1 in (8.2) and !Λ = 1 in (8.3).
The primitive decomposition of � (-) then carries over in C♮. Namely, for 8 ≤ =

we define %8 (-, !) as the image of 1 − !Λ in �8 (-) (primitive classes) and ?8 as
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the projector of � (-) with image %8 (-, !); the decomposition �8 (-) ' %8 (-, !) ⊕
�8−2(-) (−1) yields inductively a decomposition

(8.4) �8 (-) '
[8/2]⊕
9=0

%8−2 9 (-, !) (− 9).

For 8 ≥ =, the isomorphism !8−= of (8.3) yields a similar decomposition

(8.5) �8 (-) '
[ (8−=)/2]⊕
9=8−=

%8−2 9 (-, !) (− 9)

and we define ?8 as the projector of � (-) onto %2=−8 (-, !) (= − 8). For (8.4) (resp.
(8.5)) and modulo twists, ! acts like inclusion (resp. projection) and Λ acts like pro-
jection (resp. inclusion).

We then get the additional operators ℎ (of degree 0) and 2Λ, where ℎ =
∑2=
8=0(8 −

=)c8 and, according to (8.4) and (8.5), 2Λ is multiplication by 9 (= − 8 + 9 + 1) on
%8−2 9 (-, !) (− 9). We also get the Lefeschetz and Hodge involutions ★! and ★� as
in [1, 1.1], exchanging the decompositions (8.4) for �8 (-) and (8.5) for �2=−8 (-)
with signs and multiplicities; then [1, 1.2] holds verbatim, i.e. one has the sl2-triple
identities

(8.6) [ℎ, 2Λ] = 2 2Λ, [ℎ, !] = −2!, [!, 2Λ] = ℎ

which define a representation of sl2 on � (-) sending
( 0 −1

1 0
)
to★� , up to signs. Also,

Λ = ★!!★! = ★� !★� is easy to check (see [36, Prop. 1.4.3 and Lemma 1.4.6] or
[37, pp. 13-14]).

In order to avoid the “heresy” of neglecting the Tate twists, we propose the follow-
ing formalism (see also [16, Rem. 1.10]): in the ind-category ind C = ind C♮, consider
within End(

⊕
8, 9 �

8 (-) ( 9)) the sub-graded algebra ' generated by the homogeneous
operators of bidegrees (28, 8) and whose components are Tate twists of one another.
Then ' is finite-dimensional if C = Vec for some field  , and all above operators
belong to ' in general.

Proposition 8.5.1. Let ( be the (graded) subalgebra of ' generated by ! and Λ.
Then ( contains the operators 2Λ, ★! , ★� , c8 , and is also generated by ! and 2Λ.
Moreover, 2Λ is the only operator of degree (−2, −1) verifying the third identity of
(8.6).

Proof. If � is traditional, this follows from [36, Prop. 1.4.3 and 1.4.4]; but the
proofs of loc. cit. work in general. Indeed, Kleiman works with elements but, for
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example, the identities of his lemma 1.4.5 are readily checked in our case by restrict-
ing them to the direct summands of (8.4). The last claim is shown as in the proof of
[36, Prop. 1.4.6 (i)] (see also [13, §11, lemme 1]). 2

Remark 8.5.2. For the sake of exposition, let us give two explicit proofs that (
contains the c8’s. The first is by the following identity of [36, Lemma 2.4]:

Λ=−8 (1 −
∑
9>2=−8

c 9)!=−8 (1 −
∑
9<8

c 9) = c8 .

To check this formula in C, it suffices to show that the two sides agree after com-
posing with c; on the right for every ;. For ; ≤ 8 − 1 this is clear because (1 − c0 +
. . . + c8−1)c; = 0. For ; ≥ 8 we have (1 − c0 + . . . + c8−1)c; = c; and !=−8 carries �;
into �2=−28+; , so the left hand side becomes 0 if ; ≠ 8 since 2= − 28 + ; > 2= − 8, while
for ; = 8 this boils down to the identity Λ=−8!=−8 = 1 on �8 .

For the second argument, formula (8.6) implies that ℎ ∈ (. Since

ℎ; =

2=∑
8=0
(8 − =);c8

for all ; > 0, the Vandermonde theorem then implies that all c8’s belong to ( for 8 ≠ =;
finally, c= = 1 −∑

8≠= c
8 .

The uniqueness of 2Λ in Proposition 8.5.1 implies the identity

(8.7) 2Λ-×/ =
2Λ- ⊗ 1 + 1 ⊗ 2ΛI

as in the proof of [36, Prop. 1.4.6 (ii)], where the Lefschetz operator of the product
- × / comes from the Segre embedding associated to the respective polarisations of
- and / . We also note the identity

(8.8) Λ. = 8
∗Λ2

- 8∗

of [36, proof of Prop. 2.12] for a smooth hyperplane section 8 : . ↩→ - , where Λ.
is relative to the same polarisation as for -; it can be checked using (8.2), (8.3) and
Lemma 8.1.3.

8.6 – Lefschetz type conditions

Keep the previous notation. Denote by

(8.9) �8� (-) ⊆ C(1, �28 (-) (8))

the image of cycle class map or, equivalently: it is isomorphic to ��8 (-)Q/Ker 2ℓ8� .
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Definition 8.6.1. Let (C, �) be tight. We say that (�, -, !) with dim(-) = =
1) verifies Condition A if the restriction

!=−28 : �8� (-) → �=−8� (-)

is an isomorphism for all 8 ≥ 0;
2) verifies Condition B if the operator Λ is in the image of �, e.g. for 8 ≤ = is the class
of a correspondence (of degree −1) in �=−1

�
(- × -).

The choice of � being implicit, we abbreviate to �(-, !), �(-, !) as usual.

Remark 8.6.2. In [36, Th. 2A9 4.], Kleiman shows that (Vec , �), traditional
and assumed to verify Strong Lefschetz as in Definition 8.3.1, is Albanese-invariant
(Definition 8.2.1) if it satisfies Condition B of Definition 8.6.1 2).

Theorem 8.6.3. For a tight Weil cohomology � and any polarised - ∈ V, we
have:

(1) �(-, !) ⇒ �(-, !), �(-, !) ⇒ � (-) and �(- × -, ! ⊗ 1 + 1 ⊗ !) ⇒ �(-, !).
(2) � (- × -) ⇒ �(-, !),
(3) Suppose that � is an enrichment of a traditional tight Weil cohomology � ′. Then

�(-, !) ⇐⇒ �(-, ! ′) for any ! ′ coming from another polarisation.

Proof. Replacing C by C♮, we may assume C pseudo-abelian and therefore have
the primitive decompositions.

In (1), the first implication is trivial, the second follows from Proposition 8.5.1 and
the third is proven exactly as in [37, proof of Theorem 4.1 (1)].

For (2), we cannot reason as in [36] or [37] where Kleiman uses the Cayley-
Hamilton theorem, which is not available for a general Weil cohomology. Instead,
we use Smirnov’s argument in [52]: by Proposition 8.5.1, it suffices to show that 2Λ
is algebraic, which follows from [52, Th. 1] using Jannsen’s semi-simplicity theorem
[26].

For (3), we observe that �(-, !) for � is equivalent to �(-, !) for � ′; this reduces
the statement to [36, Cor. 2.11]. 2

As in [36] and [37], we deduce from (8.7), (8.8) and Proposition 8.5.1:

Proposition 8.6.4. Let - ∈ V be provided with a polarisation yielding a Lef-
schetz operator !- .
a) Let . ⊂ - be a smooth hyperplane section, !. be the induced Lefschetz operator.
Then �(-, !- ) ⇒ �(., !. ).
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b) Let (/, !/ ) be another polarised variety (with / ∈V). We then have that �(-, !- )
+ �(., !. ) ⇒ �(- × ., !- ⊗ 1 + 1 ⊗ !. ).

From Lemma 8.3.6 (and Theorem 8.6.3 (1)) we also get (cf. Theorems 7.1.6 b) -
8.6.10 a)):

Corollary 8.6.5. Let (C, �) be tight and abelian-valued. If the categoryM�

is abelian and � is exact, then Condition C ⇐⇒ Condition B for �.

Condition V of Definition 7.2.1 then implies all conditions (since it implies Con-
dition D).

Corollary 8.6.6. Under Condition V, all Conditions A, B, C and D hold true for
any tight Weil cohomology (C, �) with C ∈ Exrig.

Remarks 8.6.7. a) [36, Prop. 2.7] implies that the hypothesis of (3) holds if � is
an enrichment of a traditional Weil cohomology. It also holds under the conditions of
Corollary 8.6.5.
b) As a special case of Corollary 8.6.5 we recover the first part of [1, theorem p. 44].
(In loc. cit. the hypothesis that � be exact is missing, but fortunately it is granted by
Remark 7.1.5.)

The pattern of Theorem 7.1.6 a) is available under Condition B.

Lemma 8.6.8. If (C, �) is tight and verifies Condition B then ℎ� :Mrat →M�

defines a tight Weil cohomology.

Proof. Theorem 8.6.3 gives that � verifies Condition C hence ℎ� : Mrat →
M� defines a Weil cohomology (see discussion between Lemma 7.1.4 and Remark
7.1.5). Let ; ≤ =; the algebraic cycles giving Λ=−; are inverses of !=−; : ℎ;

�
(-) →

ℎ2=−;
�
(-) (= − 8). Also, 8∗ : ℎ;

�
(-) ↩→ ℎ;

�
(. ) is split injective for 8 : . ↩→ - a smooth

hyperplane section of - by Remark 8.3.3; since the functor � is additive and faithful
and 8∗ : �; (-) = � (ℎ;

�
(-)) ∼−→ �; (. ) = � (ℎ;

�
(. )) is an isomorphism for ; ≤ = − 2,

the complementary summand is 0 in this case and we get Weak Lefschetz for ℎ� as
well. For the normalised and Albanese properties, we use Propositions 7.3.3 and 7.3.5
similarly. 2

Theorem 8.6.9. Let (C, �) be tight and let (W+
�
, ,+

�
) be as in Theorem 8.4.5.

The following conditions are equivalent:

(i) � verifies Condition B;
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(ii) the functorM� →W♮

�
induced by,� and the functor Y♮

�
:W♮

�
→ (W+

�
)♮

induced by Y� in (8.1) are equivalences;

(iii) the compositionM� → (W+
�
)♮ of the two functors of (ii) is an equivalence of

categories.

If this is true, then / (W+
�
) = Q.

Proof. (i)⇒ (ii): the first functor is an equivalence by Theorem 7.1.6 a) because
B ⇒ C by Theorem 8.6.3 (1), and ℎ� defines a tight Weil cohomology by Lemma
8.6.8 whence Y♮

�
is an equivalence by the universal property of (W+

�
, ,+

�
). (ii)⇒

(iii) is trivial and (iii)⇒ (i) is clear. 2

For tight Weil cohomologies with abelian target we obtain the commutative dia-
gram (7.3) and the following analogue of Theorems 7.1.6 b), 7.2.5 and 7.2.7:

Theorem 8.6.10. Let (C, �) be tight, C ∈ Exrig and let (Wab
�
, ,ab

�
) be as in

Theorems 6.1.7 - 8.4.5.
a) The following are equivalent:

(i) � verifies Condition B, the categoryM� is abelian and � :M� → C is exact;

(ii) � verifies Condition B, the category (W+
�
)♮ is abelian and the functor ]+,♮

�
:

(W+
�
)♮ →Wab

�
is exact;

(iii) the functorsM� → (W+
�
)♮ and ]+,♮

�
: (W+

�
)♮ →Wab

�
are equivalences;

(iv) the (faithful) functor |� :M� →Wab
�

is an equivalence of categories.

These conditions imply / (Wab
�
) = Q.

b) The following are equivalent:

(v) � verifies Condition D;

(vi) the (faithful) functor |� :M� →Wab
�

is an equivalence andWab
�

is semi-
simple;

(vii) the (exact) functor |̄� : ) (M� ) →Wab
�

is faithful andWab
�

is connected;

(viii) all functors in (7.3) are equivalences.

Moreover these conditions imply those of a).
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Proof. a) (i)⇒ (ii): from Theorem 8.6.9 we get that (W+
�
)♮ is abelian; moreover,

this theorem says that Y♮
�

is an equivalence, so it suffices to show that ]♮
�

is exact,
where ]� is as in (8.1). But Condition C holds true by Theorem 8.6.3 (1), thus what
we want follows from (iii)⇒ (iv) in Theorem 7.1.6 b).

Now (ii) ⇒ (iii) follows from Theorem 8.6.9 and the universal property of the
Weil cohomology(Wab

�
,,ab

�
); (iii)⇒ (iv) is clear. Finally, (iv)⇒ (i) is trivial.

b) First, recall that D ⇒ B ⇒ C by Theorem 8.6.3, since � is tight. This being
said,

(v)⇒ (i) because, under D,M� is abelian semi-simple and, similarly, (v) + (iv)
⇒ (vi). Thus we get (v)⇒ (vi), and (vi)⇒ (vii) is clear since _ :M�

∼−→ ) (M� ) by
semisimplicity and Lemma 2.3.3. (vii)⇒ (viii): since / () (M� )) is an absolutely flat
domain (Lemma 2.3.1 d), it is a field which implies Condition D by the implication
(iii) ⇒ (i) of Theorem 7.2.5, hence (viii) by the implication (v)⇒ (ix) of the same
theorem. Finally, (viii)⇒ (v) is obvious. 2

In the universal case, this gives:

Corollary 8.6.11. Under Condition D for,+ab, all functors in (7.3) are equival-
ences and these equivalences identify,+ab with ℎ.

Proof. This follows from Theorem 8.6.10 b). 2

8.7 – Hodge type condition

Let � be tight, and let - ∈ V be of dimension =, provided with a polarisation,
with Lefschetz operator !. For 8 ≤ =/2, we define

�8� ,% (-) = C(1, %28 (-)) ∩ �8� (-) ⊆ C(1, �28 (-) (8))

where �8
�
(-) is the image of the cycle class map 2ℓ8

�
as in (8.9), using the decom-

position
�28 (-) (8) ' %28 (-) (8) ⊕ �28−2(-) (8 − 1).

By Axiom (vi) of Definition 4.2.1, the restriction of the cup-product pairing

(G, H) ↦→ (−1)8 < !2=−8G · H >

to �8
� ,%
(-) is Q-valued.

Definition 8.7.1. � satisfies Condition �36(-, !, 8) if this quadratic form is
positive definite.
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Lemma 8.7.2. Let (C, �) be tight, (�, D) : (C, !C) → (C′, ! ′D) ∈ Add⊗∗ be a 1-
morphism and � ′ = �∗� be the push-forward of � by � as usual (recall that � ′ is also
tight by Lemma 8.3.6). If � is faithful, the homomorphisms �8

� ,%
(-) → �8

� ′,% (-)
are bĳective, and � satisfies Condition �36(-, !, 8) if and only if � ′ does.

Proof. Clearly, �8
�
(-) → �8

� ′ (-) is bĳective, and the homomorphism of the
lemma is a direct summand of this one. 2

Theorem 8.7.3. Let (C, �) be tight, and let - ∈ V be polarised. Then �(-, !, 8)
& �36(-, !, 8) for all 8⇒ � (-).

Proof. Same as in the proof of [36, Prop 3.8]. 2

From this theorem and 8.6.3 (1) and (2), we get as usual:

Corollary 8.7.4. Assume that � is tight and verifies Condition �36. Then Con-
dition A ⇐⇒ Condition D. 2

In characteristic zero, Condition Hdg is known for Hodge cohomology, hence for
any classical cohomology, cf. [36, beg. of §5].

8.8 – Fullness conditions

Definition 8.8.1. Let (C, �) be a Weil cohomology, - ∈ V and 8 ≥ 0. We say
that - verifies Condition F in codimension 8 with respect to � (in short: � (-, 8)) if
the map

��8 (-) ⊗ / (C) → C(1, �28 (-) (8))

is surjective.

This definition encompasses all the fullness conjectures of [1, Ch. 7]. It is not very
useful per se, so we shall use it only in special cases.

Proposition 8.8.2. Assume that � is tight and that / (C) = Q. Let - ∈ V be
polarised of dimension =, with Lefschetz operator !, and 8 ≤ =/2. Then � (-, 8) ⇒
�(-, !, 8) + � (-, = − 8). If � satisfies � (-, 8) and �36(-, !, 8) for all 8, it satisfies
� (-).
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Proof. It is classical: in the commutative diagram

�8
�
(-) !=−28

−−−−−→ �=−8
�
(-)

2ℓ8
y 2ℓ=−8

y
C(1, �28 (-) (8))

2ℓ (!=−28)
−−−−−−−−→ C(1, �2(=−8) (-) (= − 8))

2ℓ(!=−28) is bĳective by Strong Lefschetz while 2ℓ8 and 2ℓ=−8 are injective, hence
!=−28 is injective. If 2ℓ8 is surjective, all maps in the diagram are bĳective. The last
statement follows from Theorem 8.7.3. 2

The next theorem mimicks Tate’s yoga in [54, §2], and generalises it. For - ∈ V
of dimension = and 8 ≤ =/2, consider the Poincaré pairing

(8.10) C(1, �28 (-) (8)) × C(1, �2(=−8) (-) (= − 8)) → C(1, 1) = / (C)

and the map

(8.11) �8� (-) ⊗ / (C) → C(1, �28 (-) (8))

induced by the cycle class map. Note that, by Poincaré duality, (8.10) amounts to the
composition pairing

(8.12) C(1, �28 (-) (8)) × C(�28 (-) (8), 1) → / (C).

Theorem 8.8.3. Assume that � is tight, that  = / (C) is a field and that Hom
groups in C are finite dimensional over  . Let ((-, 8) (resp. � (-, 8)) denote the con-
dition that (8.10) is non-degenerate (resp. (8.11) is injective). Then we have

� (-, 8) + � (-, 8) ⇒ � (-, = − 8) + ((-, 8) ⇒ � (-, 8) ⇒ � (-, 8).

Remark 8.8.4. In the case of the Tate conjecture (where � is ℓ-adic cohomology),
� (-, 8) is the same as � 8 (-) in [54, p. 72]. Then ((-, 8) is also the same as (8 (-) in
loc. cit. Indeed, with Tate’s notation C(1, �28 (-) (8)) identifies with + 8 (-)� , the
dual of C(�28 (-) (8), 1) identifies with + 8 (-)� , and Tate’s map + 8 (-)� → + 8 (-)�
coincides with the map induced by (8.12).

Proof. We copy the one of Lemma 2.5 and Proposition 2.6 in [54]. For this, we
first copy its diagram (2.3) (where we drop - as in loc. cit.):

(8.13)

 ⊗ �8
�

1−−−−−→ C(1, �28 (8)) 2−−−−−→ C(1, �2(=−8) (= − 8))∗

0
y 3

y
 ⊗ (�8

�
/#)

5
−−−−−→  ⊗ HomQ(�=−8�

,Q) 4−−−−−→ ( ⊗ �=−8
�
)∗.
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Here, (−)∗ means  -dual and # denotes numerically trivial cycles. This diagram
is commutative, and the arrows 4 and 5 are injective. We now have the same implica-
tions as in [54, (2.4)]:

• � (-, 8) ⇐⇒ 0 is injective;

• � (-, 8) ⇐⇒ 1 is surjective;

• � (-, 8) ⇐⇒ 1 is injective;

• ((-, 8) ⇐⇒ 2 is bĳective ⇐⇒ 2 is injective ⇐⇒ 2 is surjective;

• � (-, = − 8) ⇐⇒ 3 is injective.

This proves the implications of Theorem 8.8.3. 2

We also have the following result of André [3, Prop. 7.1.1.1]:

Theorem 8.8.5. Assume (C, �) tannakian. Under Condition �, the semi-simpli-
city of �8 (-) for all - ∈ V and all 8 ≥ 0 is equivalent to Condition � for �, plus the
fact that the image of � is stable under subquotients. 2

Note that, as in [54], ((-, 8) in Theorem 8.8.3 follows from the semi-simplicity
of �28 (-) (((8 (-) in [54]): more generally, if � ∈ C is semi-simple, the pairing
C(1, �) × C(�, 1) →  is non-degenerate as one sees by writing � ' A1 ⊕ � ′ with
C(1, � ′) = C(� ′, 1) = 0. As a by-product of this reformulation of the yoga in [54],
we get the following converse, which links Theorems 8.8.3 and 8.8.5 and generalises
[28, Th. 6] (case of ℓ-adic cohomology) from a finite field to any finitely generated
base field:

Theorem 8.8.6. Assume (C, �) pseudo-tannakian. Let - ∈ V be of pure dimen-
sion =. Then ((- × -, =) implies the semi-simplicity of all EndC (�8 (-))’s.

Proof. For �, � ∈ C, the restriction of the composition pairing

C(1, � ⊕ �) × C(� ⊕ �, 1) →  

to C(1, �) × C(�, 1) and C(1, �) × C(�, 1) is 0. By the Künneth formula, ((- ×
-, =) is therefore equivalent to the non-degeneracy of the composition pairing

C(1, �8 (-) ⊗ �2=−8 (-) (=)) × C(�8 (-) ⊗ �2=−8 (-) (=), 1) →  

for all 8. By Poincaré duality, this pairing is converted into

EndC (�8 (-)) × EndC (�8 (-)) →  
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which is checked to be
( 5 , 6) ↦→ tr(6 ◦ 5 )

where tr is the rigid trace. This means that the homomorphism

EndC (�8 (-)) → EndC/N (�8 (-))

is bĳective. But C/N is semi-simple by Lemma 2.3.2, which concludes the proof. 2

Remark 8.8.7. The referee pointed out that the semisimplicity of EndC (�8 (-))
does not a priori imply that of �8 (-); Jannsen proves this in [26, Lemma 2], but under
the assumption that the endomorphism algebras of all objects in his category are
semi-simple. An explicit counterexample is given here by Mariano Suárez-Álvarez,
namely the free group � with two generators acting on + =  2 via the matrices(
2 0
0 1

)
and

(
1 1
0 1

)
(we have End� (+) =  but + contains the �-invariant line gen-

erated by (1, 0)). On the other hand, if � is a free [profinite] group on one gener-
ator C, any indecomposable  -representation of � is of the form  [C, C−1]/(%A ) for
an irreducible Laurent polynomial % and some A ≥ 1. Its endomorphism algebra is
 [C, C−1]/(%A ), which is semi-simple only for A = 1. It follows that representations of
G with semi-simple endomorphism rings are semi-simple. This completes the proof
of [28, Th. 7].

9. Examples and consequences

9.1 – Summary

In Definition 6.1.1, we introduced the adequate equivalence relation ∼hun given
by ,ab-homological motives. Consider the similar adequate relation ∼hum given by
,+ab-homological motives (Notation 8.4.2); it is coarser than ∼hun and we have a com-
mutative diagram

(9.1)

Mhun
_hun //

��

) (Mhun)

��

|̄

$$
Mhum

_hum //

��

) (Mhum)
|̄+

$$yy

Wab

g

��
Mnum W+

ab

where |̄+ is induced by,+ab. Here are some implications between conjectures:

https://math.stackexchange.com/questions/542380/the-converse-of-schur-lemma/542543#542543
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• By Proposition 7.2.3, Condition V implies Condition D for,ab.

• Obviously, Condition D for,ab implies Condition D for,+ab.

• Condition D for,ab (resp. for,+ab) implies that _hun (resp. _hum) is an equivalence
(by Lemma 2.3.3).

• By Corollary 8.6.11, Condition D for ,+ab implies that |̄+ is also an equivalence,
and thatW+

ab is connected. By Corollary 7.2.8, the same holds for,ab, |̄ andWab
under the extra Condition C, which is not automatic in this case.

• IfWab (resp.W+
ab) is connected, all abelian-valued (resp. tight abelian-valued)

Weil cohomologies are ab-equivalent in the sense of Definition 6.6.1 a) by Lemma
2.3.1 a).

• Since g is a localisation (Remark 8.4.3),Wab connected ⇒ g is an equivalence
(same lemma).

So, under Condition V,Wab is the only category left in the diagram which may be
different fromMnum, and they are equivalent if and only ifWab is connected.

The hypothesis thatW+
ab is connected is a priori weaker than Condition V, and

has a rather striking consequence; it may be worth studying for itself.
Note that, in the absence of Condition D for ,+ab, (9.1) does not give any functor

fromW+
ab toMnum.

9.2 –Motives of abelian type

(Compare [36, §2A, esp. Th. 2A9]).
If - is an abelian variety of dimension 6, one has a (full) Chow-Künneth decom-

position

(9.2) ℎ(-) =
26⊕
8=0

ℎ8 (-)

with

(9.3) ℎ8 (-) ' (8 (ℎ1(-))

([20], [49, Th. 5.2])4. Also,

(4) Recall that the exterior powers appearing in [49, Th. 5.2 (ii)] should be replaced by
symmetric powers, to respect signs in the commutativity constraint ofMrat (:).
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Lemma 9.2.1 ([20]). Multiplication by = ∈ Z on - induces multiplication by =8

on ℎ8 (-).

We also have Künnemann’s isomorphisms [40]:

(9.4) ℎ8 (-) ∼−→ ℎ26−8 (-) (6 − 8)

induced by any polarisation given by a very ample symmetric divisor.
Therefore we seem to have obtained a tight Weil cohomology on abelian varieties,

with values in Chow motives. The catch is that (9.3) is natural for homomorphisms
of abelian varieties, but not for general correspondences. We shall now introduce the
coarsest adequate equivalence relation which corrects this problem, on a larger class
of varieties introduced in Notation 9.2.3 below.

Lemma 9.2.2. The classesV2 andV4 of Examples 4.1.2 c) and e) have the same
saturation.

Proof. First note thatMrat(:,V2) contains the Lefschetz motive L because L =
ℎ2(�) for any elliptic curve � .
a) Let � be a curve. Then ℎ0(�) and ℎ2(�) obviously belong toMrat(:,V2), and so
does ℎ1(�) by (7.8). ThereforeVsat

4 ⊆ Vsat
2 .

b) Let � be an abelian variety, and � ⊂ � be an ample curve passing through
0 (hence geometrically connected), cf. [33, Lemma 12] if : is infinite and [47, Th.
3.3] if : is finite. Then ℎ1(�) is a direct summand of ℎ1(�) [43, Lemma 2.3], hence
belongs toMrat(:,V4), and so do the other ℎ8 (�)’s by (9.3). ThereforeVsat

2 ⊆ Vsat
4 .

2

Notation 9.2.3. We write Ab for the common saturation of V2 and V4: these
are varieties of abelian type.

Proposition 9.2.4. If - is an abelian variety, (7.7) holds for all (8, 9) for any
Weil cohomology �.

Proof. By the symmetric monoidality of �∗ in Proposition 4.4.1 a), one has

�∗(ℎ8 (-)) ' (8 (�∗(ℎ1(-)))

and one applies Proposition 7.3.3. Indeed, the saturation of the category of abelian
varieties contains all curves by Lemma 9.2.2. 2

Corollary 9.2.5. For - an abelian variety, multiplication by = ∈ Z on - induces
multiplication by =8 on �8 (-).
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Proof. This follows from Proposition 9.2.4 and Lemma 9.2.1. 2

Theorem 9.2.6. The universal Weil cohomology, = ,Ab verifies Condition C;
hence, induces an equivalence of ⊗-categories

·

M, (:,Ab) ∼−→W(:,Ab)♮ .

Its restriction to the subclass of abelian varieties is normalised, Albanese-invariant,
and satisfies Hard Lefschetz (but Weak Lefschetz is not defined, see Warning 8.4.4). It
has weights in the sense of Definition 4.3.6.

Proof. By Proposition 9.2.4, abelian varieties verify Condition C, and so do other
members of V2 by Lemma 7.1.4. This proves the first statement, the second follows
from Theorem 7.1.6 and the third follows from (9.4) and Proposition 9.2.4.

For the statement about weights, consider for 8 ≠ 9 the bifunctor

(", #) ↦→ Hom(, 8 ("),, 9 (#))

onM, (:,Ab)op ×M, (:,Ab). It vanishes on abelian varieties, hence everywhere
thanks to the identity

, 8 (" ⊗ L) ' , 8−2(") ⊗,2(L) = , 8−2(") ⊗ L

cf. Proposition 4.4.1 a) (1). 2

We now want to compute the homological equivalence defined by, .

Definition 9.2.7. Let �, � be two abelian varieties and let W ∈ Corr(�, �) be a
correspondence. For any integer = ∈ Z, we write

[=, W] = =�W − W=�.

Lemma 9.2.8. a) if W is (the graph of) a homomorphism, then [=, W] = 0.
b) For any W and any =, [=, W] is homologically equivalent to 0 with respect to any
Weil cohomology.
c) We have identities

[<, [=, W]] = [=, [<, W]]
[=, WX] = [=, W]X + W [=, X], [=<, W] = < [=, W] + [<, W]=

[=, W ⊗ X] = [=, W] ⊗ [=, X] + [=, W] ⊗ X= + W= ⊗ [=, X]

for any W, X, <, =.
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Proof. a) is trivial, b) follows from Corollary 9.2.5. In c), the first identity follows
from the Jacobi identity since < and = commute with each other; the second are easy
and the third follows from the equality

=�×� = =� ⊗ 1� ◦ 1� ⊗ =� = 1� ⊗ =� ◦ =� ⊗ 1�

for two abelian varieties �, �. 2

Definition 9.2.9. Let mult be the coarsest adequate equivalence relation in the
categoryMrat(:,Ab) such that [=, W] ∼mult 0 for all �, �, =, W.

Theorem 9.2.10. a) ∼mult is also the adequate equivalence relation generated by
morphisms W : ℎ8 (�) → ℎ 9 (�) for 8 ≠ 9 inMrat(:,Ab).
b) The Chow-Künneth decomposition of Deninger-Murre defines a Weil cohomology

ℎ∗ : Corr(:,Ab) → Mmult(:,Ab) (N) .

This induces an equivalence of categoriesMmult(:,Ab) ∼−→W(:,Ab)♮.

Proof. Let W ∈ Corr(:,Ab) (�, �) and, for 8, 9 ≥ 0

W8, 9 : ℎ8 (�) ]−→ ℎ(�)
W∗−−→ ℎ(�) c−→ ℎ 9 (�)

where ] is the inclusion and c the projection. We have

W =
∑
8, 9

W8, 9

and
[=, W8, 9] = (= 9 − =8)W8, 9

by Lemma 9.2.1. This proves a). Therefore the action of correspondences respects
Chow-Künneth decompositions in Mmult(:,Ab). The induced functors on the cat-
egory of abelian varieties immediately extend to the categoryV2 of Example 4.1.2 c),
hence define a Weil cohomology,∗1 on V2 with values inMmult(:,Ab). Moreover,
any Weil cohomology �∗ with values in a pseudoabelian ⊗-category factors through
Mmult(:,Ab) by Lemma 9.2.8 b) (because mult is given by a ⊗-ideal and �∗ is a
⊗-functor). Thus ,∗1 is universal,M, (:,Ab) =Mmult(:,Ab) and Theorem 7.1.6
a) proves the last claim of b). 2

Corollary 9.2.11. For any polarised abelian variety - of dimension 6 and any
8 ≤ 6/2, the map

!6−28 : �8mult(-) → �
6−8
mult(-)
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is an isomorphism. 2

Remarks 9.2.12. a) In Theorem 9.2.10 a), we have W⊗(
26�
8 ) (26�9 )+1 = 0 if 8 − 9 is

odd by (9.3) and [4, Prop. 9.1.9], where 6� = dim �, 6� = dim� (note that j(ℎ1(�)) =
−26�). The smash-nilpotency of W for 8 − 9 even and ≠ 0 is a big open problem.
b) The adequate equivalence ∼mult is strictly coarser than algebraic equivalence (cf.
Proposition 4.6.1). Indeed, for any abelian 3-fold �, the groupMalg(C3(�),L) is iso-
morphic to the Griffiths group of � tensored with Q by [30, Th. 7.7], where C3(�)
is a certain direct summand of ℎ3(�)5. This group is nonzero for the generic abelian
3-fold by Nori [44].

9.3 – Back to André’s motivated cycles

We need:

Lemma 9.3.1. Let (Vec , �) be a classical Weil cohomology. The associated
Weil cohomology (M�

�
, ��) with values in André’s category from §6.5 is tight.

Proof. This is the same argument as for Lemma 8.6.8. To be clear, we reproduce
it. Let ; ≤ =; by the faithfulness of � :M�

�
→ Vec , where  is the coefficent field

of �, the morphism Λ=−; in M�
�

is inverse to !=−; : �;
�
(-) → �2=−;

�
(-) (= − 8),

which is therefore an isomorphism. Also, 8∗ : �;
�
(-) ↩→ �;

�
(. ) is split injective for

8 : . ↩→ - a smooth hyperplane section of - by Remark 8.3.3; since the functor
� is additive and faithful and 8∗ : �; (-) = � (�;

�
(-)) ∼−→ �; (. ) = � (�;

�
(. )) is an

isomorphism for ; ≤ = − 2, the complementary summand is 0 in this case and we get
Weak Lefschetz for �� as well. For the normalised and Albanese properties, we use
Propositions 7.3.3 and 7.3.5 similarly. 2

From Lemma 9.3.1 and Theorem 8.4.5 a), we get an induced faithful ⊗-functor
W+

�
↩→M�

�
refining (6.5).

Theorem 9.3.2. This functor is full and becomes essentially surjective after the
pseudo-abelian completion, hence a ⊗-equivalence d� : (W+

�
)♮ ∼−→M�

�
.

(5) In loc. cit. the covariant convention is used for motives, soMalg (C3 (�), L) corresponds
to what is writtenMalg (L, C3 (�)) there.
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Proof. First, W+
�
(, (-), , (. )) → M�

�
(��(-), ��(. )) is surjective for all

-, . ∈ V because the morphisms ofM�
�

are generated by the images of algebraic
correspondences and by inverses of the Lefschetz operators (see [1, p. 14, Def. 1]).
Finally, fullness implies essential surjectivity as in the proof of Theorem 6.5.1. 2

The diagram (8.1) yields the following commutative diagram of ⊗-functors

(9.5)
M�

//

""

|�

&&
W♮

�

]
♮

� //

Y
♮

�

��

Wab
�

(W+
�
)♮ d�

∼
//

]
+,♮
�

;;

M�
�

Write \� :M�
�
→Wab

�
for the composite functor ]+,♮

�
◦ d−1

�
and a� for the com-

posite functor d� Y♮� . We get a string of ⊗-functors

M� →W♮

�

a�−−→M�
�

\�−−→Wab
�

which are all faithful by Theorem 8.4.5 a).

Theorem 9.3.3. \� is an equivalence if and only ifM�
�
is abelian. In this case

we have / (W+
�
) = / (Wab

�
) = / (M�

�
).

(In characteristic 0, this gives another proof of Theorem 6.5.1.)

Proof. Since Wab
�

is abelian by construction, we are left to show that M�
�

abelian implies that \� is an equivalence. Since Wab
�

is ab-initial in the sense of
Definition 6.1.4, it suffices to show that \� is exact. But this follows from its faithful-
ness as in the proof of Lemma 6.1.11 (i), by using Lemma 2.3.1 b). 2

9.4 – Finite fields

Suppose : finite and � classical. Then [34] shows that � verifies condition C (see
Example 7.1.2), therefore ℎ� :Mrat →M� yields a Weil cohomology. Moreover,
ℎ� yields an equivalenceM�

∼−→W♮

�
(Theorem 7.1.6 a)) but we don’t know ifM�

�

is abelian.
We obtain a faithful ⊗-functor

]
♮

�
:

·

M� ' (W� )♮ →Wab
�
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which is an equivalence ifM� is abelian. If we push-forward ℎ� fromM� toMnum,
we obtain that the composition W → M� → Mnum factors canonically through
) (W).

Note that for any (-, 8), the Frobenius endomorphism �- of - induces an endo-
morphism, 8 (�- ) of, 8 (-). Whence a zeta function

/ (, 8 (�- ), C) = exp

(∑
=≥1

tr(, 8 (�- )=)
C=

=

)
∈ �[[C]]

where � is the Q-algebra / (W) = EndW (1) [27, Def. 3.1].
On the other hand, we have the decomposition of the zeta function of -

/ (-, C) =
2=∏
8=0

%8 (C) (−1)8+1

associated to theWeil cohomology given by ℓ-adic cohomology; by [17], %8 (C) ∈ Z[C]
for all 8. The following is a very weak independence of ℓ result:

Proposition 9.4.1. One has / (, 8 (�- ), C) ↦→ %8 (C) for all 8 under the homo-
morphism � → Qℓ induced by the symmetric monoidal functor given by the ℓ-adic
cohomology, for any ℓ ≠ ?. Similar statement with crystalline cohomology.

Proof. One may compute tr(, 8 (�- )=) after applying the said functor. 2

10. Theory over a base

10.1 – Deninger-Murre correspondences

Let ( be smooth quasiprojective over :; we then have Deninger-Murre’s category
of Chow correspondences between smooth projective (-schemes, and the correspond-
ing category of Chow motivesM((,V) modelled on an admissible category V ⊆
Smproj(() [20]. We note that these definitions still make sense if ( is only smooth over
a Dedekind domain, thanks to Fulton’s corresponding intersection theory [21, §20.2].

We keep the same axioms for (generalised) Weil cohomologies; the cohomology
theory developed above then extends to this situation without change. We thus get a
universal categoryW((,V) provided with an invertible object L, and a universal
Weil cohomology,V with values inW((,V). Similarly, we get a universal abelian
Weil cohomology,ab

V and their Lefschetz variants.
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10.2 – Base change

Let (,) be as in §10.1, and let 5 :)→ ( be a :-morphism: it yields a ⊗-functor 5 ∗ :
M((,V) → M(), 5 ∗V). Any Weil cohomology � over ) induces a Weil cohomo-
logy 5∗� = � ◦ 5 ∗ over (, with same target as �, whence a canonical ⊗-functor
5 ∗ :W((,V) →W(), 5 ∗V), and we have the following “trivial base change” the-
orem:

Theorem 10.2.1. The comparison morphism, 5 ∗V → ( 5 ∗)∗,V is an isomorph-
ism.

Proof. This follows from (the generalisation of) Lemma 5.1.3. 2

Examples 10.2.2. a) ) = Spec � for � an extension of : . Then Aut: (�) acts
onM(�,V� ); for - ∈ V, the objects , 8

V� (-� ) are invariant under this action by
Theorem 10.2.1 and Aut: (�) acts on them.
b) : algebraically closed. For clarity, suppose that V = Smproj((). For B ∈ ((:), we
have -B ∈ Smproj(:) for - ∈ V and B∗ :W(() → W(:). By Theorem 10.2.1, B∗

maps, 8 (-) to, 8 (-B) for any 8 ≥ 0. But we don’t have any smooth and proper base
change at this stage, of course.

A. Tate triples and gradings

A.1 – A complement on the 2-functor )

Let C ∈ Addrig. The canonical ⊗-functor _C : C → ) (C) yields a ⊗-functor

_
(Z)
C : C (Z) → ) (C) (Z) ,

hence by universality an exact ⊗-functor

(A.1) ) (C (Z) ) → ) (C) (Z) .

Proposition A.1.1. The functor (A.1) is an equivalence of categories.

Proof. LetA ∈ Exrig. A ⊗-functor � : C (Z) →A yields a functor �̃ : C → AZ

(see Remark 3.2.2 again), hence to ÂZ by composition with HZ
A . This composition is

a strong ⊗-functor, which carries any object � ∈ C to a dualisable object. By lemma
3.3.6 a), this object is a direct summand of an object of A (Z) , which shows that
�̃ takes values in A (Z) , and defines a strong ⊗-functor for the tensor structure of
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the latter. By the universality of ) , �̃ factors uniquely through an exact ⊗-functor
) (C) → A (Z) ; composing with the inclusion A (Z) ↩→ AZ we obtain an exact ⊗-
functor ) (C) (Z) → A whose restriction to C (Z) is �. The rest is history. 2

A.2 – Ungraded and graded Weil cohomologies

To express the next theorem, we introduce definitions generalising the notion of
cohomology theory from [48, V.3.1.1 and A1.1.5].

Definition A.2.1. a) An additive Tate triple is a triple (C, !C , |C) where the
pair (C, !C) ∈ Addrig

∗ and |C : C → C (Z) is a weight ⊗-grading of C as in Definition
3.3.1 b), such that !C is of weight 2. An additive Tate triple is pseudo-abelian (resp.
abelian) if so is C.
b) A graded Weil cohomology with values in (C, !C , |C) is a strong ⊗-functor � :
Corr[L, L−1] →

·

C provided with an isomorphism Tr : �2(P1) ∼−→ !C and such that
1→ �0(-) is an isomorphism if - is geometrically connected. (See Notation 3.3.3
for

·

C.)

Proposition A.2.2. Let (C, !C , |C) be an additive Tate triple. Then the weight
structure |C induces a weight structure |) (C) on ) (C) such that _C : C → ) (C)
induces a morphism of Tate triples (C, !C , |C) → () (C), ) (!C), |) (C) ).

Proof. The weight functor |C induces an exact ⊗-functor

) (|C) : ) (C) → ) (C (Z) );

composing with (A.1) yields |) (C) . By functoriality, its composition with ) (
⊕
) is

the identity; composition of |) (C) with the sum functor ) (C) (Z) → ) (C) is then the
identity by Proposition A.1.1. 2

The following definitions are parallel to Definitions 5.1.1 and 5.1.2.

Definition A.2.3. Let Add⊗∗,| be the 2-category whose

• objects are Tate triples;

• 1-morphisms (C, !C , |C) → (D, !D , |D) are given by those pairs (�, D) ∈
Add⊗∗ ((C, !C), (D, !D)) such that |D ◦ � = � (Z) ◦ |C .

• 2-morphisms \ : (�, D) ⇒ (� ′, D′) in Add⊗∗,| are 2-morphisms \ : (�, D) ⇒
(� ′, D′) in Add⊗∗ such that |D ∗ \ = \ (Z) ∗ |C .

We define Addrig
∗,| and Exrig

∗,| similarly.



72 L. Barbieri-Viale – B. Kahn

Definition A.2.4. Let (C, !C , |C) ∈ Add⊗∗,| .
We denote by Weilgr(:,V;C, !C , |C) the category whose objects are gradedWeil

cohomologies (�,Tr) with values in (C, !C , |C).
A morphism i : (�,Tr) → (� ′,Tr′) in Weilgr(:,V;C, !C , |C) is a natural trans-

formation i : � ⇒ � ′ such that Tr = Tr′ ◦iP1 .

PropositionA.2.5. The induced 2-functor) : Addrig
∗,|→Exrig

∗,| is a 2-left adjoint
to the forgetful 2-functor in the other direction.

Proof. Follows from Proposition A.2.2. 2

As in Lemma 5.1.3, we have

Lemma A.2.6. The category Weilgr(:,V;C, !C , |C) is a groupoid. 2

As in Construction 5.1.4, Definition A.2.4 provides a strict 2-functor

(A.2) Weilgr(:,V;−) : Add⊗∗,| → Cat .

Construction A.2.7. To a graded Weil cohomology � as in Definition A.2.1 b),
we associate the Weil cohomology �∗ with values in (C, !C) obtained by composing
with the twisted weight functor ·

|C :
·

C → C (Z) of Definition 3.3.1 a) (Koszul rule on
the range). This defines a functor

Weilgr(:,V;C, !C , |C) →Weil(:,V;C, !C)

which is 2-natural in (C, !C , |C).

A.3 – Gradings and weights

Note that in Construction A.2.7, �∗ has weights in the sense of Definition 4.3.6.
Conversely:

Proposition A.3.1. To a Weil cohomology � with weights and values in (C, !C)
is canonically associated a graded Weil cohomology with values in (D, !D , |D),
where D is a full ⊗-subcategory of C containing the image of � and !D = !C .

Proof. LetD be the (strictly full) thick subcategory of C additively generated by
the �8 (") for " ∈ Corr[L,L−1]. If ", # ∈ Corr[L,L−1] and 8, 9 ∈ Z, then �8 (") ⊗
� 9 (#) is isomorphic to a direct summand of �8+ 9 (" ⊗ #), hence D is stable under
⊗ and �∗ takes its values in D (Z) . Define a Z-⊗-grading

|D : D → D (Z)
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by sending �8 (") to �8 (") [8] and i ∈ D(�8 ("), �8 (#)) to i[8] (see Lemma 3.3.6
b) for the notation). Since � has weights, this does define a functorial section of the
direct sum functor, which is symmetric monoidal, and � =

⊕
�8 : Corr[L,L−1] →

·

D
is the desired graded Weil cohomology. 2

On the other hand,

Proposition A.3.2. Let (C, �) be a Weil cohomology. Then the category of func-
tors � : C → C′ in Add⊗ such that �∗� has weights is not empty and has a initial
object �| : C → C| . If � is tight (Definition 8.3.4), so is (�|)∗�.

Proof. Define C| as the additive quotient of C by the ⊗-ideal generated by
morphisms in C(�8 ("), � 9 (#)) for ", # ∈ Corr[L, L−1] and 8 ≠ 9 . The claim on
tightness is Lemma 8.3.6. 2

A.4 – An adjunction

Let Weilgr(:,V) be the 2-category associated to (A.2) in the same way as the
2-category Weil(:,V) is associated to (5.1) in Remark 5.1.6. Construction A.2.7
provides a “forgetful” 2-functor

* : Weilgr(:,V) →Weil(:,V).

Proposition A.4.1. This 2-functor has a 2-left adjoint gr.

Proof. Let (C, �) be a Weil cohomology. Define a graded Weil cohomology
(D, |D , �gr) by composing the constructions of Propositions A.3.2 and A.3.1.

Namely, the underlying category D is the full subcategory of the category C|
of Proposition A.3.2 described in the proof of Proposition A.3.1. If (C1, |C1 , �1)
is a graded Weil cohomology, a morphism � : (C, �∗) → * (C1, |C1 , �1) has an
underlying functor � : C → C1 which factors through C| by the weight property of
* (�1) and then restricts toD, and the construction of |D shows that the composition
D → C1

|C1−−−→ C (Z)1 factors uniquely through |D . 2

A.5 – Universal graded Weil cohomology

Theorem A.5.1. The 2-functor (A.2) is strongly 2-representable.
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Proof. By definition, (W, ,) is 2-initial in Weil(:,V), hence it is formal that
gr(W,,) is 2-initial in Weilgr(:,V). 2

Similarly to Corollary 5.2.2 we get an abelian variant of this theorem by making
use of Proposition A.2.5. Since the Propositions A.3.2 and A.3.1 preserve tightness
we also get the graded analougue of Theorem 8.4.1.
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