CORRECTION TO "VOEVODSKY'S MOTIVES AND WEIL RECIPROCITY," DUKE MATH. J. 162 (2013), 2751-2796

BRUNO KAHN and TAKAO YAMAZAKI

Abstract

We correct a mistake in Section 2.4 of the said paper.

In [1, Section 2.4], we wrote: "The category ZSpan is isomorphic to the full subcategory of Cor consisting of smooth k-schemes of dimension 0 ." Tom Bachmann kindly pointed out to us that this statement is incorrect. Here we clarify the relationship between the two categories and show that it does not affect any argument about cohomological Mackey functors (the only Mackey functors appearing in [1]).

We retain the notation of [1].

1

Let Cor $_{0}$ be the full subcategory of Cor given by 0-dimensional smooth schemes (= étale k-schemes). If $f: X \rightarrow Y$ is a surjective morphism of degree d of étale k-schemes, then we have the formula in $\mathbf{C o r}_{0}$,

$$
\begin{equation*}
{ }^{t} f \circ f=d . \tag{1}
\end{equation*}
$$

2

There is a canonical functor

$$
\begin{equation*}
\varepsilon: \mathbf{Z S p a n} \rightarrow \text { Cor }_{0} \tag{2}
\end{equation*}
$$

which is the identity on objects and sends a span (2.1) from [1],

$$
\begin{equation*}
X \stackrel{g}{\longleftrightarrow} Z \xrightarrow{f} Y, \tag{3}
\end{equation*}
$$

to $f \circ{ }^{t} g$.

LEMMA 1

In (3), assume that Z is irreducible, and let \bar{Z} be its image in $X \times Y$, viewed as an element of $\operatorname{Cor}_{0}(X, Y)$. Then $\varepsilon(f, g)=[Z: \bar{Z}] \bar{Z}$.

Proof
This follows from the formula for the composition of finite correspondences.

PROPOSITION 2

Let $M \in$ Mack be a Mackey functor, that is, an additive contravariant functor from ZSpan to Ab. Then M is cohomological if and only if it factors through ε. This yields an equivalence,

$$
\mathbf{M a c k}_{c} \simeq \operatorname{Mod}-\operatorname{Cor}_{0}
$$

Proof
If M factors through ε, it is cohomological thanks to (1). Conversely, if M is cohomological, consider a span (3) with Z irreducible, and let \bar{Z} be as in Lemma 1. So we have a commutative diagram:

Then $M^{*}(f)=M^{*}(\pi) M^{*}(\bar{f}), M_{*}(g)=M_{*}(\bar{g}) M_{*}(\pi)$, and thus

$$
\begin{aligned}
M(f, g) & =M_{*}(g) M^{*}(f) \\
& =M_{*}(\bar{g}) M_{*}(\pi) M^{*}(\pi) M^{*}(\bar{f}) \\
& =\operatorname{deg}(\pi) M_{*}(\bar{g}) M^{*}(\bar{f}) \\
& =\operatorname{deg}(\pi) M(\bar{f}, \bar{g}) \\
& =M(\varepsilon(f, g))
\end{aligned}
$$

by Lemma 1.
(Alternatively, Proposition 2 follows from combining [4, Theorem 4.3] and a version of [3, Proposition 3.4.1].)

3

Proposition 2 justifies and corrects [1, Section 2.4]: the inclusion functor $\mathbf{C o r}_{0} \hookrightarrow \mathbf{C o r}$ induces an exact functor

$$
\rho: \text { PST } \rightarrow \text { Mack }_{c} .
$$

(In [1, Section 2.4], it is not necessary to restrict ρ to $\mathbf{H I}$ to get into Mack $_{c}$.)

4

To obtain [1, (2.9)], it remains to show that $\varepsilon^{*}:$ Mack $_{c} \rightarrow$ Mack is symmetric monoidal with respect to the tensor structures induced by those of \mathbf{Z} Span and $\mathbf{C o r}_{0}$. (Recall these tensor structures: on objects they are given by the product of étale k schemes; the tensor product of two spans (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ is $\left(f \times f^{\prime}, g \times g^{\prime}\right)$, and the tensor product of finite correspondences is the usual one.) This is obvious if k is algebraically closed, because ε is then a \otimes-isomorphism of \otimes-categories. The general case follows from the next proposition.

PROPOSITION 3

Let $\varepsilon: \mathcal{A} \rightarrow \mathcal{B}$ be a full \otimes-functor between rigid symmetric monoidal categories, which is the identity on objects. Then the natural morphism

$$
\begin{equation*}
\varepsilon^{*} M \otimes_{\mathscr{A}} \varepsilon^{*} N \rightarrow \varepsilon^{*}\left(M \otimes_{\mathcal{B}} N\right) \tag{4}
\end{equation*}
$$

is an isomorphism for any $M, N \in \operatorname{Mod}-\mathcal{B}$.
Before starting the proof, let us clarify the somewhat improper use of "dummy" in [1, last part of the proof of Proposition A.14].

LEMMA 4
Let \mathcal{A} be an additive category, and let $M \in \operatorname{Mod}-\mathcal{A}$. Then there is a canonical isomorphism

$$
\theta: \int^{B \in \mathscr{A}} M(B) \otimes \mathcal{A}(A, B) \xrightarrow{\sim} M(A)
$$

for any $A \in \mathcal{A}$.

Proof

The "evaluation" morphisms $M(B) \otimes \mathcal{A}(A, B) \rightarrow M(A)$ mapping $m \otimes f$ to $f^{*} m$ are linked by commutative diagrams like diagram (3) of [2, p. 219]: this provides the map θ. Let us show that the map $\lambda: M(A) \rightarrow \int^{B \in \mathscr{A}} M(B) \otimes \mathcal{A}(A, B)$ given by $\lambda(m)=$ (the class of) $m \otimes 1_{A} \in M(A) \otimes \mathscr{A}(A, A)$ is inverse to θ. It is obvious
that $\theta \lambda$ is the identity. To check $\lambda \theta=\mathrm{id}$, take $B \in \mathcal{A}, m \in M(B)$, and $g \in \mathcal{A}(A, B)$. Then we have $\lambda \theta(m \otimes g)=g^{*}(m) \otimes 1_{A}=m \otimes g$, where the last equality holds because $m \otimes 1_{A} \in M(B) \otimes \mathcal{A}(A, A)$ is mapped to $m \otimes g \in M(B) \otimes \mathcal{A}(A, B)$ (resp., to $\left.g^{*}(m) \otimes 1_{A} \in M(A) \otimes \mathcal{A}(A, A)\right)$ by $1 \otimes g_{*}$ (resp., by $g^{*} \otimes 1$).

We also have the following lemma.

Lemma 5

Let $\varepsilon: \mathcal{A} \rightarrow \mathcal{B}$ be a functor, and let $T: \mathscr{B}^{\mathrm{op}} \times \mathscr{B} \rightarrow$ Set be a bifunctor. Then there is a canonical morphism $\int^{A \in \mathscr{A}} T(\varepsilon A, \varepsilon A) \rightarrow \int^{B \in \mathcal{B}} T(B, B)$. If ε is surjective on objects, then this is a surjection; if ε is moreover full and bijective on objects, then this is a bijection.

Proof

We may interpret coends as colimits by the dual of [2, Proposition 1, p. 224]. The first statement is then obvious (cf. formula (1) in [2, p. 217]), and the second one follows by inspection. (The surjectivity of ε on objects gives surjectivity on generators, its bijectivity gives bijectivity on generators, and its fullness gives surjectivity on relations.) Alternatively, this can also be shown by using the final functor theorem of [2, Theorem 1, p. 217]; the details are left to the interested readers.

5

We can now prove Proposition 3. As recalled in [1, Section A.3], ε^{*} has a right adjoint, and hence commutes with arbitrary colimits. The two tensor products $\varepsilon^{*} M \otimes_{\mathcal{A}}$-and $M \otimes_{\mathcal{B}}$-also commute with arbitrary colimits, as seen from [1, Section A.10]. Thus we are reduced to the case where N is representable, say, $N=y_{\mathcal{B}}(C)$ for $C \in \mathscr{B}$ (where $y_{\mathcal{B}}: \mathscr{B} \rightarrow \operatorname{Mod}-\mathcal{B}$ is the additive Yoneda embedding). For any $P \in \operatorname{Mod}-\mathcal{B}$ and any $A \in \mathscr{A}$, we have, by definition,

$$
\varepsilon^{*} P(A)=P(\varepsilon A)=P(A)
$$

since ε is the identity on objects. Using [1, (A.4)], this first yields

$$
\varepsilon^{*}\left(M \otimes_{\mathcal{B}} y_{\mathcal{B}}(C)\right)(A)=M\left(A \otimes_{\mathcal{B}} C^{*}\right),
$$

where C^{*} is the dual of C. Using now [1, (A.3)], we compute

$$
\begin{aligned}
& \left(\varepsilon^{*} M \otimes_{\mathcal{A}} \varepsilon^{*} y_{\mathcal{B}}(C)\right)(A) \\
& \quad=\int^{B \in \mathcal{A}} M(\varepsilon B) \otimes y_{\mathcal{B}}(C)\left(\varepsilon\left(A \otimes_{\mathcal{A}} B^{*}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int^{B \in \mathscr{A}} M(\varepsilon B) \otimes y_{\mathcal{B}}(C)\left(\varepsilon A \otimes_{\mathcal{B}}(\varepsilon B)^{*}\right) \quad \text { (monoidality of } \varepsilon \text {) } \\
& =\int^{B \in \mathscr{A}} M(B) \otimes \mathscr{B}\left(A \otimes_{\mathfrak{B}} B^{*}, C\right) \\
& =\int^{B \in \mathscr{A}} M(B) \otimes \mathscr{B}\left(A \otimes_{\mathfrak{B}} C^{*}, B\right) \quad \text { (rigidity, compare [1, bottom p. 2791]) } \\
& =\int^{B \in \mathcal{B}} M(B) \otimes \mathscr{B}\left(A \otimes_{\mathcal{B}} C^{*}, B\right) \quad \text { (Lemma 5) } \\
& =M\left(A \otimes_{\mathcal{B}} C^{*}\right) \quad(\text { Lemma } 4) .
\end{aligned}
$$

With these identifications, it is clear that (4) becomes the identity map.

6

To summarize this discussion: cohomological Mackey functors are exactly modules over $\mathbf{C o r}_{0}$; the relations on the tensor product coming from the full transfer structure of Mackey functors are redundant as long as we work with cohomological Mackey functors.

7

Here are more minor errata:

- In the second diagram of Section 2.1, the arrows f^{*} and $f^{\prime *}$ should point in the opposite direction.
- In the diagram in Section A.8, the left (resp., right) vertical map should read • (resp., •! ○ \boxtimes).
- Throughout the Appendix, the citation [2, Example 1] should read [2, Exposé 1].

References

[1] B. KAHN and T. YAMAZAKI, Voevodsky's motives and Weil reciprocity, Duke Math. J. 162 (2013), 2751-2796. MR 3127813. DOI 10.1215/00127094-2381379. (2093, 2095, 2096, 2097)
[2] S. MAC LANE, Categories for the Working Mathematician, 2nd ed., Springer, New York, 1998. MR 1712872. (2095, 2096)
[3] V. VOEVODSKY, "Triangulated categories of motives over a field" in Cycles, Transfers, and Motivic Cohomology Theories, Ann. of Math. Stud. 143, Princeton Univ. Press, 2000, 188-238. MR 1764202. (2094)
T. YOSHIDA, On G-functors (II): Hecke operators and G-functors, J. Math. Soc. Japan 35 (1983), 179-190. MR 0679083. DOI $10.2969 / j \mathrm{msj} / 03510179$. (2094)

Kahn
CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, Sorbonne
Universités, UPMC Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; bruno.kahn@imj-prg.fr

Yamazaki

Institute of Mathematics, Tohoku University, Aoba, Sendai, Japan; ytakao@math.tohoku.ac.jp

