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Abstract
We correct a mistake in Section 2.4 of the said paper.

In [1, Section 2.4], we wrote: “The category Z Span is isomorphic to the full sub-
category of Cor consisting of smooth k-schemes of dimension 0.” Tom Bachmann
kindly pointed out to us that this statement is incorrect. Here we clarify the relation-
ship between the two categories and show that it does not affect any argument about
cohomological Mackey functors (the only Mackey functors appearing in [1]).

We retain the notation of [1].

1
Let Cor0 be the full subcategory of Cor given by 0-dimensional smooth schemes
(D étale k-schemes). If f W X ! Y is a surjective morphism of degree d of étale
k-schemes, then we have the formula in Cor0,

tf ı f D d: (1)

2
There is a canonical functor

" W Z Span!Cor0 (2)

which is the identity on objects and sends a span (2.1) from [1],

X
g

 ���� Z
f

����! Y; (3)

to f ı tg.
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LEMMA 1
In (3), assume that Z is irreducible, and let NZ be its image in X � Y , viewed as an
element of Cor0.X;Y /. Then ".f;g/D ŒZ W NZ� NZ.

Proof
This follows from the formula for the composition of finite correspondences.

PROPOSITION 2
Let M 2Mack be a Mackey functor, that is, an additive contravariant functor from
Z Span to Ab. ThenM is cohomological if and only if it factors through ". This yields
an equivalence,

Mackc 'Mod�Cor0 :

Proof
If M factors through ", it is cohomological thanks to (1). Conversely, if M is coho-
mological, consider a span (3) with Z irreducible, and let NZ be as in Lemma 1. So
we have a commutative diagram:

Z

g f

�X Y

NZ

Ng Nf

Then M �.f /DM �.�/M �. Nf /, M�.g/DM�. Ng/M�.�/, and thus

M.f;g/DM�.g/M
�.f /

DM�. Ng/M�.�/M
�.�/M �. Nf /

D deg.�/M�. Ng/M
�. Nf /

D deg.�/M. Nf ; Ng/

DM
�
".f;g/

�

by Lemma 1.
(Alternatively, Proposition 2 follows from combining [4, Theorem 4.3] and a

version of [3, Proposition 3.4.1].)
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3
Proposition 2 justifies and corrects [1, Section 2.4]: the inclusion functor
Cor0 ,!Cor induces an exact functor

� W PST!Mackc :

(In [1, Section 2.4], it is not necessary to restrict � to HI to get into Mackc .)

4
To obtain [1, (2.9)], it remains to show that "� W Mackc ! Mack is symmetric
monoidal with respect to the tensor structures induced by those of Z Span and Cor0.
(Recall these tensor structures: on objects they are given by the product of étale k-
schemes; the tensor product of two spans .f;g/ and .f 0; g0/ is .f � f 0; g � g0/, and
the tensor product of finite correspondences is the usual one.) This is obvious if k is
algebraically closed, because " is then a˝-isomorphism of˝-categories. The general
case follows from the next proposition.

PROPOSITION 3
Let " W A! B be a full ˝-functor between rigid symmetric monoidal categories,
which is the identity on objects. Then the natural morphism

"�M ˝A "
�N ! "�.M ˝B N/ (4)

is an isomorphism for any M;N 2Mod�B.

Before starting the proof, let us clarify the somewhat improper use of “dummy”
in [1, last part of the proof of Proposition A.14].

LEMMA 4
Let A be an additive category, and let M 2 Mod�A. Then there is a canonical
isomorphism

� W

Z B2A

M.B/˝A.A;B/
�
�!M.A/

for any A 2A.

Proof
The “evaluation” morphisms M.B/˝A.A;B/!M.A/ mapping m˝ f to f �m
are linked by commutative diagrams like diagram (3) of [2, p. 219]: this provides
the map � . Let us show that the map � WM.A/!

R B2A
M.B/ ˝ A.A;B/ given

by �.m/D (the class of) m˝ 1A 2M.A/˝A.A;A/ is inverse to � . It is obvious
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that �� is the identity. To check �� D id, take B 2A;m 2M.B/, and g 2A.A;B/.
Then we have ��.m ˝ g/ D g�.m/ ˝ 1A D m ˝ g, where the last equality holds
because m˝ 1A 2M.B/˝A.A;A/ is mapped to m˝ g 2M.B/˝A.A;B/ (resp.,
to g�.m/˝ 1A 2M.A/˝A.A;A/) by 1˝ g� (resp., by g�˝ 1).

We also have the following lemma.

LEMMA 5
Let " WA!B be a functor, and let T WBop�B! Set be a bifunctor. Then there is a
canonical morphism

R A2A
T ."A; "A/!

R B2B
T .B;B/. If " is surjective on objects,

then this is a surjection; if " is moreover full and bijective on objects, then this is a
bijection.

Proof
We may interpret coends as colimits by the dual of [2, Proposition 1, p. 224]. The first
statement is then obvious (cf. formula (1) in [2, p. 217]), and the second one follows
by inspection. (The surjectivity of " on objects gives surjectivity on generators, its
bijectivity gives bijectivity on generators, and its fullness gives surjectivity on rela-
tions.) Alternatively, this can also be shown by using the final functor theorem of [2,
Theorem 1, p. 217]; the details are left to the interested readers.

5
We can now prove Proposition 3. As recalled in [1, Section A.3], "� has a right adjoint,
and hence commutes with arbitrary colimits. The two tensor products "�M˝A—and
M˝B—also commute with arbitrary colimits, as seen from [1, Section A.10]. Thus
we are reduced to the case where N is representable, say, N D yB.C / for C 2 B

(where yB WB!Mod�B is the additive Yoneda embedding). For any P 2Mod�B

and any A 2A, we have, by definition,

"�P.A/D P."A/D P.A/

since " is the identity on objects. Using [1, (A.4)], this first yields

"�
�
M ˝B yB.C /

�
.A/DM.A˝B C

�/;

where C � is the dual of C . Using now [1, (A.3)], we compute

�
"�M ˝A "

�yB.C /
�
.A/

D

Z B2A

M."B/˝ yB.C /
�
".A˝A B

�/
�
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D

Z B2A

M."B/˝ yB.C /
�
"A˝B ."B/

�
�

(monoidality of ")

D

Z B2A

M.B/˝B.A˝B B
�;C /

D

Z B2A

M.B/˝B.A˝B C
�;B/

�
rigidity, compare [1, bottom p. 2791]

�

D

Z B2B

M.B/˝B.A˝B C
�;B/ (Lemma 5)

DM.A˝B C
�/ (Lemma 4).

With these identifications, it is clear that (4) becomes the identity map.

6
To summarize this discussion: cohomological Mackey functors are exactly modules
over Cor0; the relations on the tensor product coming from the full transfer structure
of Mackey functors are redundant as long as we work with cohomological Mackey
functors.

7
Here are more minor errata:
� In the second diagram of Section 2.1, the arrows f � and f 0� should point in

the opposite direction.
� In the diagram in Section A.8, the left (resp., right) vertical map should read �

(resp., �Š ı�).
� Throughout the Appendix, the citation [2, Example 1] should read [2,

Exposé 1].

References

[1] B. KAHN and T. YAMAZAKI, Voevodsky’s motives and Weil reciprocity, Duke Math. J.
162 (2013), 2751–2796. MR 3127813. DOI 10.1215/00127094-2381379. (2093,
2095, 2096, 2097)

[2] S. MAC LANE, Categories for the Working Mathematician, 2nd ed., Springer, New
York, 1998. MR 1712872. (2095, 2096)

[3] V. VOEVODSKY, “Triangulated categories of motives over a field” in Cycles, Transfers,
and Motivic Cohomology Theories, Ann. of Math. Stud. 143, Princeton Univ.
Press, 2000, 188–238. MR 1764202. (2094)

[4] T. YOSHIDA, On G-functors (II): Hecke operators and G-functors, J. Math. Soc. Japan
35 (1983), 179–190. MR 0679083. DOI 10.2969/jmsj/03510179. (2094)

http://www.ams.org/mathscinet-getitem?mr=3127813
http://dx.doi.org/10.1215/00127094-2381379
http://www.ams.org/mathscinet-getitem?mr=1712872
http://www.ams.org/mathscinet-getitem?mr=1764202
http://www.ams.org/mathscinet-getitem?mr=0679083
http://dx.doi.org/10.2969/jmsj/03510179


2098 KAHN and YAMAZAKI

Kahn

CNRS, Institut de Mathématiques de Jussieu–Paris Rive Gauche, UMR 7586, Sorbonne

Universités, UPMC Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, Paris,

France; bruno.kahn@imj-prg.fr

Yamazaki

Institute of Mathematics, Tohoku University, Aoba, Sendai, Japan; ytakao@math.tohoku.ac.jp

mailto:bruno.kahn@imj-prg.fr
mailto:ytakao@math.tohoku.ac.jp

	
	
	
	
	
	
	
	References
	Author's addresses

