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M : {fields} → Cat pseudo-functor. Recall:

• k field 7→ M(k) category.

• f : k → K field extension 7→ M(f ) = f∗M = f∗ :M(k)→M(K).

• k
f
−→ K

g
−→ L successive extensions: natural isomorphism

cf,g : g∗ ◦ f∗ ⇒ (g ◦ f )∗

with 2-cocycle relation between the cf,g (for 3 successive extensions).

We call this a motivic theory.



M,N motivic theories: morphism of motivic theories ϕ :M→N :

• ∀k ϕk :M(k)→ N (k).

• f : k → K extension: natural isomorphism

v
ϕ
f

= vf : ϕKf
∗
M
∼
−→ f∗Nϕk

with 1-cocycle relation w.r.t. cM
f,g

and cN
f,g

(for f, g composable).



Two questions:

Q1.M motivic theory, f : k → K: when does f∗ have a (left or right)

adjoint? (Notation: usually f# for left adjoint, f∗ for right adjoint.)

Q2. ϕ : M→ N morphism of motivic theories, f : k → K. Assume that

f∗M, f∗N have (say) left adjoints fM
#

, fN
#

. Get base change morphism

(1) w
ϕ
f

: fN
#
ϕK → ϕkf

M
#

.

When is (1) an isomorphism?



In this talk:

Q1. Very often yes (but disparate proofs). Also some counterexamples.

Q2. Sometimes yes, but no in interesting cases.

Applications:

• To Bloch-Rovinsky-Beilinson’s “correspondences at the generic point”.

• (in progress:) to L-functions.



1. Examples of adjoints

1.1. K/k finite separable. basically all theories one can think of (left

and right adjoints):

Examples 1. a) M(k) = Sm(k): f# = näıve restriction of scalars, f∗=

Weil restriction of scalars.

b)M(k) = étale sheaves of abelian groups: f∗
∼
−→ f# (via trace). Yields

examples like categories of commutative group schemes. . .

c) Categories of pure motives (f∗
∼
−→ f#).

d) Voevodsky’s triangulated categories of motives (ditto).

Etc. (Not the most exciting.)



1.2. Categories of pure motives. (A,∼) adequate pair: A commu-

tative ring, ∼ adequate equivalence relation on algebraic cycles with coeffi-

cients in A.

Morphisms of motivic theories:

Smproj(k)→ Cor∼(k,A)→ Moteff∼ (k,A)→ Mot∼(k,A)

(last 2 fully faithful.)



Theorem 2. a) If A = Q and ∼= num, ∃f∗
∼
−→ f# for any f :

k → K primary, for M = Cornum,Moteff
num,Motnum, and base change

morphisms are isomorphisms.

b) If A = Q, ∼= rat, M = Moteff
rat

, k = k̄, K = k(C) with g(C) > 0,

∃f#1 ⇒ k is the algebraic closure of a finite field. (1 unit motive.)

c) In b), “⇐” if the (Tate-)Beilinson conjecture rat = num over k holds.

d) In b), if k = F̄q, ∃C such that 6 ∃f#L (L Lefschetz motive).



Idea of proofs: For a): By Jannsen, Motnum(k,Q) is abelian semi-simple.

Lemma 3. T : M → N Q-linear functor between Q-linear abelian

semi-simple categories. If T is fully faithful, it has isomorphic left and

right adjoints.

If K/k is primary, Motnum(k,Q) → Motnum(K,Q) is fully faithful basi-

cally because cycles modulo numerical eq. are invariant under algebraically

closed extensions.



For b), main point: k = k̄, A abelian variety over k. Then A(k) ⊗Q = 0

⇐⇒ k is the algebraic closure of a finite field.

For c), uses birational motives (see below).

For d), uses example of Srinivas: if X/F̄q, smooth cubic hypersurface of di-

mension 3 and C smooth hyperplane section of the Fano surface parametris-

ing the lines of X , then CH1(XK)⊗Q 6= Anum
1

(XK,Q) for K = F̄q(C).



Properties of adjoints in case of numerical motives:

• Commute with twist (follows from projection formula).

•Respect weights.

In particular, Ab(k) category of abelian k-varieties: fully faithful morphism

of motivic theories

h1 : Ab⊗Q→ Motnum .

This implies:

f∗h1(A) = h1(TrK/k A), f#h1(A) = h1(ImK/k A)

(K/k-trace and image).



1.3. 1-motives. (under construction).

Future theorem 4.M(k) = Deligne’s 1-motives, f : k → K primary:

∃f# and f∗, with

f#[0→ A] = [0→ ImK/k A]

f∗[0→ A] = [0→ TrK/k A].



Bonus : K/k finitely generated ⇒

• f# has a first left derived functor.

• f∗ has a first right derived functor.

R1f∗[0→ A] = [LN(A,K/k)→ 0]

LN(A,K/k) = A(Kk̄)/(TrK/k A)(k̄) the Lang-Néron group of A viewed

as Gk-module (finitely generated by Lang-Néron).



Idea of proofs: glueing (start from lattices, dualise to tori, treat semi-abelian

varieties, etc.)



1.4. Birational categories. M motivic theory, ϕ : Smproj →M or

ϕ : Sm→M morphism.

∀k Sb(k) ⊂ Smproj(k) or Sm(k), set of birational morphisms

7→ ϕ(Sb(k) ⊂M(k).

Yields naturally commutative diagram of motivic theories

Sm∗
ϕ
−→ My y

S−1
b

Sm∗
ϕ̄
−→ S−1

b
M

∗ = ∅ or proj

S−1
b

Sm: the birational theory associated to (M, ϕ).



Theorem 5. f : k → K such that K = k(U) for U ∈ Sm(k). Then f#

exists for M = S−1
b

Sm.



Sketch. Two proofs:

1) Sm(U) category of smooth U -schemes: pair of adjoint functors

Sm(k) � Sm(U)

(extension and restriction of scalars). They preserve birational morphisms,

hence induce other pair of adjoint functors:

S−1
b

Sm(k) � S−1
b

Sm(U).

Finally, the “generic fibre” functor Sm(U)→ Sm(K) induces an equivalence

of categories

S−1
b

Sm(U)
∼
−→ S−1

b
Sm(K)

(techniques developed with Sujatha).



2) (In characteristic 0): Two results obtained with Sujatha:

S−1
b

Smproj ∼−→ S−1
b

Sm

X, Y ∈ S−1
b

Smproj : Hom(X, Y ) = Y (k(X))/R

R = R-equivalence.

X ∈ S−1
b

Smproj(K): is the functor

S−1
b

Smproj(k) 3 Y 7→ Hom(X, YK) = YK(K(X))/R

corepresentable?

Yes, because YK(K(X))/R = Y (k(X ))/R for X ∈ Smproj(k) such that

k(X ) = K(X) (so, it is corepresented by X ).

Resolution of singularities used 3 times in this second proof!



Theorem 6. f : k → K finitely generated: ∃f# for M = Moto
rat

:=

(S−1
b

Moteff
rat

)\ (birational motives). (\ = pseudo-abelian envelope.)

Coefficients Z if char k = 0, Q if char k > 0.

Proof. Use that, for X, Y ∈ Smproj(k), in Moto
rat

(k,A)

Hom(ho(X), ho(Y )) = CH0(Yk(X))⊗ A

(proven with Sujatha).

In char. 0, same proof as second proof of previous theorem. In char. p, use

de Jong (more intricate). �



Examples 7.K = k(C), C curve:

1) f#1 = ho(C) = h0(C)⊕ h1(C)⊕ h2(C) = 1⊕ h1(C).

(Note: h2(C) = L = 0 in S−1
b

Moteff
rat

(k,A).)

2) Γ/K curve; S/k surface such that k(S) = K(Γ). Then

f#h1(Γ) = h1(ImK/k J)⊕ t2(S)

J Jacobian of Γ, t2(S) transcendental part of h2(S) (orthogonal complement

of the Néron-Severi part).

Empirically: f#(w) ∈ {w,w + 1}.

⇒ base change for Moto
rat
→ Motonum not isomorphism!



2. Applications

2.1. Motives at the generic point.

Definition 8. n ≥ 0:

a) d≤nMoto
rat

(k,A) thick subcategory generated by ho(X), dimX ≤ n.

b) dnMoto
rat

(k,A) = (d≤nMoto
rat

(k,A)/In)\, In ideal of morphisms fac-

toring through an object of d≤n−1 Moto
rat

(k,A).



Fact: X, Y ∈ Smproj(k) of dimension n. In dnMoto
rat

(k,A), have

Hom(h̄o(X), h̄o(Y )) = CHn(X × Y )⊗ A/ ≡

≡ subgroup generated by classes of irreducible cycles not dominant on either

X or Y : these are the correspondences at the generic point.

Conjecture 9 (Bloch, Rovinsky, Beilinson). ∀k, n, dnMoto
rat

(k,Q) is

abelian semi-simple (in particular, dimQ Hom <∞).



Examples 10. a) n = 0: Artin motives.

b) n = 1: Ab(k)⊗Q.

In both cases the conjecture is true.



f : k → K finitely generated extension of transcendence degree d:

f#d≤nMoto
rat

(K,Q) ⊆ d≤n+dMoto
rat

(K,Q).

⇒ f# induces functors

fn
#

: dnMotorat(K,Q)→ dn+dMotorat(k,Q).



Theorem 11. Let A = Z if char k = 0 and A = Q if char k = p > 0.

Let X, Y ∈ Smproj(K) of dimension n. Suppose K/k has a smooth

projective model S and that X, Y spread to projective S-schemes X ,Y,

smooth over k.

Then exact sequence

dnMotorat(K,A)(h̄o(X), h̄o(Y ))

fn#
−→ dn+dMotorat(k,A)(fn

#
h̄o(X), fn

#
h̄o(Y ))

→ CHn+d(X ×k Y − X ×S Y)⊗ A/≡ → 0

≡ image of ≡⊂ CHn+d(X ×k Y)⊗ A.



2.2. L-functions. Situation: k = k̄,

Γ −→ S

f ′
y f

y
SpecK

j
−→ C

p
y

Spec k

C curve, S surface, f projective flat generically smooth with geometrically

connected fibres, Γ generic fibre of f , K = k(C).



Theorem 12. J Jacobian of C, l prime 6= char k. Isomorphisms

H0(C, j∗R1f ′∗Ql(1)) ' Vl(TrK/k J)

H2(C, j∗R1f ′∗Ql(1)) ' Vl(TrK/k J)(−1)

and exact sequence

0→ LN(J,K/k)⊗Ql → H1(C, j∗R1f ′∗Ql(1))→ H2
tr(S,Ql(1))→ 0

H2
tr

(S,Ql(1)) := H2(S,Ql(1))/NS(S)⊗Ql.



Now assume k = k̄0; G := Gal(k/k0.

Kl Grothendieck group of (continuous, finite-dimensional) Ql-

representations of G. Consider in Kl:

(1)Al = [H∗(S)], alternating sum of cohomology groups of S;

(2)Bl = [R∗p∗j∗R∗f ′∗Ql] (9 terms).

These classes lift to classes A,B ∈ K, K Grothendieck group of Chow

motives (by Murre for Al and by Theorem 12 for Bl).



Consider the complex

0→ Z = NS(C)
f∗
−→ NS(S)→ NS(Γ) = Z.

Its homology D at NS(S) controls multiple fibres of f : may view D as

Gk-lattice, hence D ⊗Q as Artin motive.

Theorem 13.A−B = [D ⊗Q(1)].



2.3. Case of a finite field. Suppose k0 finite.

Corollary to Theorem 12 (motivic expression of L(K,H1(Γ), s)):

Corollary 14.

L(K,H1(Γ), s) =
ζ(h1(TrK/k J), s)ζ(h1(TrK/k J), s− 1)

ζ(t2(S), s)ζ(LN(J,K/k), s− 1)
. �

This formula involves terms appearing in the various adjoints above. . .

Corollary to Theorem 13:

Corollary 15.

ζ(S, s)

L(K,H∗(Γ), s)
= ζ(D(1), s) = ζ(D, s− 1).
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