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Motives with modulus, III: The categories of motives
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We construct and study a triangulated category of motives with modulus MDMeff
gm

over a field k that extends Voevodsky’s category DMeff
gm in such a way as to

encompass nonhomotopy invariant phenomena. In a similar way as DMeff
gm is

constructed out of smooth k-varieties, MDMeff
gm is constructed out of proper

modulus pairs, introduced in Part I of this work. To such a modulus pair we
associate its motive in MDMeff

gm. In some cases, the Hom group in MDMeff
gm

between the motives of two modulus pairs can be described in terms of Bloch’s
higher Chow groups.
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Introduction

In this paper, we construct triangulated categories of “motives with modulus” over a
field k, in parallel with Voevodsky’s construction [2000b] of triangulated categories
of motives. Our motivation comes from the reciprocity sheaves studied in [Kahn
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et al. 2016]; the link between the present theory and [Kahn et al. 2016] is established
in [Kahn et al. 2019].

Let Sm be the category of smooth separated k-schemes of finite type. Voevodsky’s
construction starts from an additive category Cor, whose objects are those of Sm
and morphisms are finite correspondences. The category of effective geometric
motives DMeff

gm is then defined to be the pseudoabelian envelope of the localisation of
the homotopy category K b(Cor) of bounded complexes by two types of “relations”:

(HI): [X ×A1
] → [X ] for X ∈ Cor,

(MV): [U ∩ V ] → [U ]⊕ [V ] → [X ] for X, U, V ∈ Cor,

where, in the latter, U ⊔ V → X ranges over all open covers of X . This makes
DMeff

gm a tensor triangulated category. We denote by MV the canonical functor
Sm→ DMeff

gm. The following fundamental result computes some Hom groups in
concrete terms:

Theorem 1 [Beilinson and Vologodsky 2008, 6.7.3; Voevodsky 2002, Corollary 2].
Assume that k is perfect. For X, Y ∈ Sm, with X proper of dimension d and j ∈ Z,
there is a canonical isomorphism

HomDMeff
gm

(MV (Y )[ j], MV (X))≃ CHd(Y × X, j),

where the right-hand side is Bloch’s higher Chow group. In particular, this group
is 0 for j < 0 and isomorphic to CHd(Y × X) for j = 0.

In the present work, we construct a tensor triangulated category MDMeff
gm in a

parallel way. The category Cor is replaced by a category MCor whose objects
are modulus pairs, which only played an auxiliary rôle in [Kahn et al. 2016]. This
category has been studied in [Kahn et al. 2021a]. A modulus pair M = (M, M∞)

consists of a proper k-variety M and an effective Cartier divisor M∞ such that
M − |M∞| ∈ Sm. A morphism from (M, M∞) to (N , N∞) is a finite correspon-
dence from M − |M∞| to N − |N∞| which satisfies a certain inequality on Cartier
divisors (Definition-Proposition 1.1.2).

The category MCor enjoys a symmetric monoidal structure (Definition 2.1.1).
The right object replacing A1 in this context turns out to be its minimal compactifi-
cation

□= (P1,∞),

the compactification of A1
≃ P1

− {∞} with reduced divisor at infinity. This
provides an analogue of (HI):

(CI): [M ⊗□] → [M] for M ∈MCor.

To introduce an analogue1 of (MV), we use the cd-structure on MCor which
was introduced in [Miyazaki 2020] and developed in [Kahn et al. 2021b]. This

1This is not quite accurate: see Section 3.1.
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yields a Mayer–Vietoris condition in K b(MCor) (Section 3.1). We may then
define a tensor triangulated category MDMeff

gm in a similar fashion to Voevodsky
(Definition 3.1.1), with a “motive” functor M :MCor→MDMeff

gm. We can also
compute the Hom-groups of MDMeff

gm:

Theorem 2 (see Theorem 5.2.6). For any X ,Y ∈MCor and i ∈ Z, we have an
isomorphism

HomMDMeff
gm

(M(X ), M(Y)[i])≃ lim
−−→

X ′∈6fin↓X
Hi

Nis(X
′, RC□

∗
(Y)X ′).

Here 6fin
↓ X denotes a certain category of morphisms X ′ → X which (in

particular) induce isomorphisms on the interiors (see Theorem 1.2.4), RC□
∗
(Y)

is the derived Suslin complex of the modulus pair Y (see Definition 5.2.5), and
RC□
∗
(Y)X ′ denotes its restriction to X ′Nis (see Definition 4.2.5). Briefly, RC□

∗
(Y) is

defined like the Suslin complex, with three differences:

(a) we use □ instead of A1;

(b) we use a cubical version instead of Suslin–Voevodsky’s simplicial version (see
Remarks 5.2.7 and B.2.6 for an important comment on this point);

(c) we use derived internal Homs instead of classical internal Homs.

Recall that a key technical tool of Voevodsky for proving Theorem 1 is to embed
DMeff

gm into a larger triangulated category DMeff of motivic complexes. The situation
is similar here: MDMeff

gm is embedded into a category MDMeff. This is how the
derived Suslin complex RC□

∗
(Y) arises.

On the other hand, there is a canonical “forgetful” functor ω :MCor→ Cor
sending (X , X∞) to X − |X∞|, whence a comparison between our theory and
Voevodsky’s. This is summarised in the following diagram, assuming k perfect:

MCor M
//

ω
��

MDMeff
gm

ι
//

ωeff,gm
��

MDMeff

ωeff
��

Cor MV
// DMeff

gm
ι
// DMeff

in which the functors denoted ι are fully faithful. Thomason–Neeman’s yoga of
compactly generated categories [Neeman 1992] shows that ωeff has a right adjoint
ωeff
: DMeff

→MDMeff, and we have:

Theorem 3 (see Theorem 6.3.1 and Corollary 6.3.4). (a) Let X be a smooth proper
k-variety. Then ωeff MV (X)= M(X,∅).

(b) If p is the exponential characteristic of k, then

ωeff(DMeff
gm[1/p])⊂MDMeff

gm[1/p].

The functor ωeff is symmetric monoidal.
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Note that ωeff is fully faithful (Propositions 6.1.4 and 6.1.7). As a corollary, we
get the following partial analogue of Theorem 1:

Theorem 4 (see Corollary 6.3.8). Suppose k is perfect. Let X be a smooth proper
k-variety of dimension d. We have a canonical isomorphism

HomMDMeff
gm

(M(Y)[ j], M(X,∅))≃ CHd((Y − |Y∞|)× X, j)

for any modulus pair Y = (Y,Y∞) and j ∈ Z.

Though we consider proper modulus pairs in the above, we can also construct a
theory of motives with modulus for pairs (X , X∞) with X not necessarily proper.
They come with a reasonable topology (see [Kahn et al. 2021a]). By a similar con-
struction to the one above, this leads to triangulated categories MDMeff

gm, MDMeff

of motives with modulus for nonproper modulus pairs. Even though MDMeff seems
to be the central object of interest (e.g., it is the sheaf theory on proper modulus
pairs, which has a relationship with reciprocity sheaves in [Kahn et al. 2019]),
it is impossible to avoid developing MDMeff at the same time. This leads to a
regrettably heavy exposition, for which we apologise to the reader. Besides, the
nonproper version is used in [Saito 2020] as an important technical tool.

Relationship with previous work. This work completes the revision of [Kahn et al.
2015], which was started in [Kahn et al. 2021a; 2021b]. For the readers aware of
this first version, the categories MDMeff

gm and MDMeff are the same as in [Kahn
et al. 2015], as well as their nonproper versions. (The constructions given here are
different and simpler.) The only difference with the results of [Kahn et al. 2015] is
in Theorem 2, where the formula for the Hom group given in [Kahn et al. 2015]
missed the direct limit.

Perspectives. The story of motives with modulus does not stop here: there are
many further things to explore, some being explored now. We quote a few:

• Extend more of Voevodsky’s results to this modulus context. See already
Section 7 (and the references therein), and [Saito 2020]. In particular, extend
Voevodsky’s theorem on strict A1-invariance [Voevodsky 2000a, Theorem 5.6]
to the □-invariant context. See Example B.7.9, as well as [Kahn et al. 2021a,
Question 1], and [Saito 2020, Theorem 0.6] for a partial result.

• A comparison with the category of log-motives of Binda–Park–Østvær [Binda
et al. 2020]; see already [Saito 2021].

• Versions for other topologies, notably topologies related to the étale topology on
schemes. The theory developed here is intrinsically restricted to the Nisnevich
topology, via the theory of cd-structures. One may think of the model-theoretic
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techniques of [Binda et al. 2020] — as soon as one has guessed the right
definition of topologies on modulus pairs!

• A □-homotopy theory of modulus pairs similar to that of [Morel and Voevodsky
1999]. It should be easy to develop from the material here.

• Contrary to DMgm, there is evidence that the category MDMgm obtained by
⊗-inverting the Tate object is not rigid (see Proposition 6.5.7). Another fact
is that many cohomology theories, starting with higher Chow groups with
modulus, satisfy, not the modulus condition, but its opposite. This suggests that
one should construct an even larger category based on “modulus triples” (two
Cartier divisors at infinity with opposite modulus conditions). Work in this
direction has been done by Binda [2020] in the context of □-homotopy theory
(as above), and by Ivorra and Yamazaki [2018; 2022] in the additive context.

• Of course, develop the various theories over a base.

Organisation of this paper. In Section 1, we review part of our previous work on
modulus pairs which will be used here. (More reminders are inserted in the sequel at
appropriate places.) In Section 2, we introduce a new ingredient: the tensor structure.
In Section 3, we give an elementary construction of the triangulated categories of
motives with modulus in the spirit of [Kahn and Sujatha 2017, §4.2], and prove their
basic properties in Theorem 3.3.1. In Section 4, we describe MDMeff and MDMeff

in terms of sheaves with transfers; this yields in particular a first computation of
Hom groups in terms of Nisnevich cohomology (Corollary 4.2.6). In Section 5,
we use the theory of intervals from Appendix B to reformulate this computation
in more concrete terms (Theorem 5.2.6). We also prove that the natural functor
MDMeff

→MDMeff is fully faithful (Theorem 5.2.3). In Section 6, we compare
our categories with Voevodsky’s categories, as well as with the category of Chow
motives. The most important result there is Theorem 6.3.1. In Section 7, we prove
various results on MDMeff and MDMeff similar to those of [Voevodsky 2000b],
and include for the reader’s convenience some which were proven by other authors.

There are two appendices. Appendix A gathers new technical categorical results.
Appendix B is central to the results of Section 5: it generalises Voevodsky’s theory
of intervals (in a cubical version) to the case of symmetric monoidal categories.
Its most important results are Theorems B.4.5 and B.7.5 (the latter is used in the
proofs of Theorems 5.2.3 and 6.3.1).

Notation and terminology. Throughout this paper, we fix a base field k. We denote
by Sch the category of separated schemes of finite type over k, and by Sm the full
subcategory of Sch consisting of those objects which are smooth over k. For any
Cartier divisor D on a scheme X , the support of D is denoted by |D|. We write
Cor for Voevodsky’s category of finite correspondences [2000b].
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Let Sq be the square of the category {0→ 1}, depicted as

00 //

��

01

��

10 // 11

For any category C, denote by CSq the category of functors from Sq to C. A functor
f : C→ C′ induces a functor f Sq

: CSq
→ C′Sq.

A ⊗-category is a unital symmetric monoidal category; a ⊗-functor F between
⊗-categories is a strong unital symmetric monoidal functor (this means that the
maps F(A)⊗ F(B)→ F(A⊗ B) are all isomorphisms).

1. Review of modulus pairs

1.1. The categories MCor, MCor, MSm and MSm.

Definition 1.1.1. A modulus pair is a pair M = (M, M∞) such that M ∈ Sch,
M∞ is an effective Cartier divisor on M , and Mo

:= M − |M∞| ∈ Sm. We call
M , M∞ and Mo the ambient space, modulus and interior of M , respectively. A
modulus pair M is called proper if its ambient space M is proper over k.

The ambient space M is reduced for any modulus pair M [Kahn et al. 2021a,
Remark 1.1.2(3)].

As in Voevodsky’s theory [2000b], we define two types of categories with the
same objects out of modulus pairs. One, analogous to Sm, is used as a support for
Grothendieck topologies. The other, analogous to Cor, is used to define a transfer
structure on (pre)sheaves. We start with the latter:

Definition-Proposition 1.1.2. Let M and N be modulus pairs. An elementary
modulus correspondence α :M→N is an elementary correspondence αo

:Mo
→N o

between the interiors which satisfies the following properties:

Properness condition: Let α be the scheme-theoretic closure of αo in M × N.
Then α is proper over M. (This is automatic if N is a proper modulus pair.)

Modulus condition: Let ν :αN
→M×N be the composition of the normalisation

αN
→α with the inclusion α ↪→M×N. Then we have the inequality of Cartier

divisors ν∗(M∞×N )≥ ν∗(M×N∞). We say α is admissible if this condition
is satisfied.

A modulus correspondence α : M → N is a formal Z-linear sum of elementary
modulus correspondences. By [Kahn et al. 2021a, Definition 1.3.1], the composition
of modulus correspondences (regarded as finite correspondences [Voevodsky 2000b,
§2.1]) is again a modulus correspondence. Therefore, modulus pairs and modu-
lus correspondences define the category of modulus correspondences, denoted
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by MCor. The full subcategory of MCor consisting of proper modulus pairs is
denoted by MCor.

Definition 1.1.3. Denote by MSm the category whose objects are modulus pairs
and in which a morphism f :M→ N is a morphism f o

∈Sm(Mo, N o) whose graph
defines an elementary modulus correspondence as in Definition-Proposition 1.1.2;
we write MSm for the full subcategory of MSm consisting of proper modulus pairs.

There is a commutative diagram of natural functors

MSm
ωs

##

τs

��

c
// MCor

τ

��

ω

zz

Sm cV
// Cor

MSm
ωs

;;

c
// MCor

ω

cc
(1.1.4)

Here, the vertical functors τ and τs are the full embeddings mentioned above,
and the horizontal functors c and c are graph functors similar to Voevodsky’s graph
functor cV ; the diagonal functors are all induced by M 7→ Mo (retain the interior).
By [Kahn et al. 2021a, Lemma 1.5.1, Theorem 1.5.2 and Proposition 1.10.4] (see
also [Miyazaki 2020, Corollary 2.2.5]), we have the following important results:

Theorem 1.1.5. The functors ω, ω and τ have pro-left adjoints ω!, λ and τ !, given
respectively by

ω!X = “ lim
←−−

”M∈6↓X M, λX = (X,∅), τ !M = “ lim
←−−

”N∈Comp(M) N

(λ is an honest left adjoint), where 6 = {u | ω(u) is an isomorphism} (it admits a
calculus of right fractions), and Comp(M) is the category whose objects are pairs
(N , j) consisting of a modulus pair N = (N , N∞) ∈MSm equipped with a dense
open immersion j : M ↪→ N such that N∞ = M∞N +C for some effective Cartier
divisors M∞N , C on N satisfying N−|C | = j (M) and j∗N∞=M∞.

The same formulas hold for ωs , ωs and τs .

Theorem 1.1.6. Let f1 : M1→ N and f2 : M2→ N be two morphisms in MSm
(resp. MSm), and assume that Mo

1 ×N o Mo
2 belongs to Sm. Then the fibre product

M1×N M2 exists in MSm (resp. in MSm). (In other terms, ωs and ωs reflect fibre
products.) Moreover, MSm and MSm have the final object 1 := (Spec k,∅). In
particular, finite products exist in these categories.

1.2. The category MSmfin. There is another category, which plays a technically
important rôle:
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Definition 1.2.1. We write MSmfin for the subcategory of MSm with the same
objects and such that f ∈MSm(M, N ) belongs to MSmfin(M, N ) if and only if
the rational map M→ N defined by f o is a morphism. We say that f is ambient.
We write bs :MSmfin

→MSm for the inclusion functor.

Note that, for an ambient morphism f , the properness condition is trivial and
the modulus condition simplifies to

ν∗M∞ ≥ ν∗ f̄ ∗N∞, (1.2.2)

where ν : M N
→ M is the normalisation.

Definition 1.2.3. We say that f is minimal if there is equality in (1.2.2).

The next theorem follows from [Kahn et al. 2021a, Proposition 1.9.2].

Theorem 1.2.4. Let 6fin be the class of minimal morphisms f : M→ N in MSmfin

such that f o
: Mo
→ N o is an isomorphism in Sm and f̄ : M→ N is proper. Then

6fin admits a calculus of right fractions, any morphism in 6fin becomes invertible
in MSm and the induced functor (6fin)−1 MSmfin

→MSm is an equivalence of
categories.

Remark 1.2.5. Contrary to Theorem 1.1.6, fibre products (or even cartesian prod-
ucts) are not representable in MSmfin in general.

1.3. Topologies on modulus pairs. The categories MSm and MSm have Grothen-
dieck topologies which are derived from the Nisnevich topology on Sm. We recall
their definitions from [Kahn et al. 2021a] and [Miyazaki 2020].

First, we consider the “naive” topology on MSmfin.

Definition 1.3.1. An MVfin-cover is an ambient morphism f :U → M in MSmfin

which is minimal and such that the underlying morphism f̄ :U → M in Sch is a
Nisnevich cover. The Grothendieck topology on MVfin generated by MVfin-covers
is called the MVfin topology.

There is another characterisation of this topology from the “cd-structure” point
of view (see [Voevodsky 2010b] for the definitions and properties of cd-structures).

Definition 1.3.2. Let PMVfin be the cd-structure on MSmfin consisting of commuta-
tive squares in MSmfin

W //

��

V

��

U // M
such that all arrows are minimal and the underlying square of schemes

W //

��

V
��

U // M
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is a distinguished Nisnevich square. (We always take U → M to be an open
immersion.) An element of PMVfin is called an MVfin-square.

By “transport of structure” of the Nisnevich cd-structure, which is complete,
regular and bounded in the sense of [Voevodsky 2010b], we obtain:

Proposition 1.3.3. The MVfin topology coincides with the topology associated with
the cd-structure PMVfin . Moreover, the latter is complete, regular and bounded.

Next, we introduce topologies on MSm and MSm. The former is easily defined
as follows.

Definition 1.3.4. Let PMV be the “smallest” cd-structure on MSm which contains
the images of all squares in PMVfin under the functor bs : MSmfin

→ MSm of
Theorem 1.2.4. In other words, a commutative square in MSm belongs to PMV if
and only if it is isomorphic in MSmSq to the image of an MVfin-square (see the
note on notation and terminology in the introduction for the definition of Sq). An
element of PMV is called an MV-square.

The Grothendieck topology on MSm associated with the cd-structure PMV is
called the MV topology.

Remark 1.3.5. For any MVfin-square or MV-square S, the square So in Smo is a
distinguished Nisnevich square.

By [Kahn et al. 2021a, Proposition 3.2.2], we have:

Theorem 1.3.6. The cd-structure PMV is complete and regular.

The definition of the topology on MSm is a bit tricky. It is designed to satisfy
completeness and regularity, and to be compatible with the MV topology. First we
need to recall the “off-diagonal functor” from [Miyazaki 2020].

Definition 1.3.7. Let MEt be the category whose objects are morphisms f :U→M
in MSm such that f o is étale, a morphism from f :U → M to g :U ′→ M ′ being
given by a pair of morphisms s :U→U ′, t :M→M ′ which are compatible with f
and g and such that so and to are open immersions. Let MEt be the full subcategory
of MEt consisting of those f : M→ N with M, N ∈MSm.

By [Miyazaki 2020, Theorem 3.1.3], we have:

Proposition 1.3.8. There exists a functor OD : MEt → MSm together with a
natural isomorphism

U ⊔OD( f ) ∼−→U ×M U,

for each ( f :U → M) ∈MEt, where ⊔ denotes coproduct and the right-hand side
denotes the fibre product in MSm. This functor restricts to a functor MEt→MSm.
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Definition 1.3.9. Let PMV be the cd-structure on MSm consisting of those commu-
tative squares T of the form

T (00) //

q
��

T (01)

p
��

T (10) // T (11)

(1.3.10)

which satisfy the following properties:

(1) T is cartesian in MSm.

(2) There exists an MV-square S and a morphism ι : S→ T in MSmSq such that
ι(11) : S(11)→T (11) is an isomorphism in MSm, and ι(i j)o

: S(i j)o
→T (i j)o

is an isomorphism in Sm for any (i j) ∈ Sq. In particular, the square So ∼= T o

in SmSq is a distinguished Nisnevich square.

(3) The morphism OD(q)→OD(p), which is induced by the functoriality of OD,
is an isomorphism.

An element of PMV is called an MV-square. The topology associated with the
cd-structure PMV is called the MV topology.

Example 1.3.11. Let X be proper and let D, D1, D2, D′ be effective Cartier divisors
on X such that

X−D is smooth, D≤Di ≤D′, |D1−D|∩|D2−D|=∅, D′−D2=D1−D.

Then

T =

(X, D′) //

��

(X, D1)

��

(X, D2) // (X, D)

is an MV-square. Indeed, (1) holds by [Kahn et al. 2021a, Lemma 1.10.1 and Propo-
sition 1.10.4]. Let S(01)= X−|D1−D|, S(10)= X−|D2−D|, S(00)= X−|D′−D|
and S(i j)∞ = j (i j)∗T (i j)∞, where j (i j) is the inclusion S(i j) ↪→ X . This yields
a square S as in (2), and (3) is trivial since T o is a Zariski square.

By [Miyazaki 2020, Theorems 4.3.1 and 4.4.1], we have:

Theorem 1.3.12. The cd-structure PMV is complete and regular.

(Condition (3) in Definition 1.3.9 is crucial for the proof of regularity.)
We now recall the main result of [Kahn and Miyazaki 2021], its Theorem 1.5.6.

It will be used in the proof of Theorem 4.1.1 (see (iv) in Section 4.5). Recall
from [Kahn and Miyazaki 2021, Definition 1.5.3] that the category Comp(M) of
Theorem 1.1.5 can be extended to squares of modulus pairs.
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Theorem 1.3.13. Let S ∈MSmSq, and let CompMV(S) denote the full subcategory
of Comp(S) consisting of those T which are MV-squares. Then CompMV(S) is
cofinal in Comp(S).

We shall need the following lemma in the proof of Theorem 3.3.1(4) below.

Lemma 1.3.14. Let T ∈MSmSq, verifying conditions (1) and (3) of Definition 1.3.9.
Assume that p has a section sp. Then q has a section sq , one can write

T (00)= sq(T (10))⊔ T ′(00), T (01)= sp(T (11))⊔ T ′(11),

and the morphism T (00)→ T (01) induces an isomorphism u : T ′(00) ∼−→ T ′(01).

Proof. The section sq is obtained from sp because T is cartesian (property (1)). The
decompositions exist because po and qo are étale (see [Miyazaki 2020, proof of
Theorem 3.1.3]). The morphism u exists by construction; it remains to see that it is
an isomorphism. But an easy computation provides decompositions

OD(q)≃ T ′(00)⊔ T ′(00)⊔OD(T ′(00)→ T (10)),

OD(p)≃ T ′(01)⊔ T ′(01)⊔OD(T ′(01)→ T (11)),

respected by the isomorphism OD(q) ∼−→ OD(p) (property (3)). This yields the
conclusion. □

2. The tensor structure on modulus pairs

2.1. Definition. Recall that the tensor structure on Voevodsky’s category DMeff
gm

comes from the product of smooth varieties. However, it turns out that the product
of Theorem 1.1.6 cannot be used to construct categories MDMeff

gm and MDMeff

with good properties. The basic reason is that the product morphism A1
×A1

→A1

used by Voevodsky to define an interval structure on A1 does not define a morphism
□×□→□, where □= (P1,∞) (see Remark 5.1.2). This and other considerations
lead us to introduce another tensor structure:

Definition 2.1.1. For two modulus pairs M and N , we define their tensor product
M ⊗ N to be

M ⊗ N := (M × N , M∞× N +M × N∞).

Remark 2.1.2. If we pull back the modulus of Definition 2.1.1 by the projection
p :BlM∞×N∞(M×N )→M×N , we get an isomorphic modulus pair with modulus
p∗(M∞ × N + M × N∞) = p#(M∞ × N + M × N∞)+ 2E , where p# denotes
proper transform and E is the exceptional divisor. By contrast, the cartesian product
M×N is represented by (BlM∞×N∞(M×N ), p#(M∞×N +M×N∞)+ E): this
is a special case of [Kahn et al. 2021a, Proposition 1.10.4(3)] and its proof. See
also Remark 2.1.4 below.
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Definition 2.1.1 provides the categories MSm, MSm, MCor, MCor and MSmfin

of Definitions 1.1.2, 1.1.3 and 1.2.1 with symmetric monoidal structures with unit
1= (Spec k,∅), for which the various functors between them are ⊗-functors. To
see this, we have to check the following:

Lemma 2.1.3. Let f ∈ MCor(M1, N1) and g ∈ MCor(M2, N2). Consider the
tensor product correspondence f ⊗ g ∈ Cor(Mo

1 ×Mo
2 , N o

1 × N o
2 ). Then

f ⊗ g ∈MCor(M1⊗M2, N1⊗ N2).

Proof. We may assume that f and g are given by integral cycles Z ⊂ Mo
1 × N o

1 and
T ⊂Mo

2 × N o
2 . Then f ⊗g is given by the product cycle Z×T . Let Z N

→ Z be the
normalisations of the closures Z of Z , and similarly for T N

→ T . By hypothesis,
we have

(pZ
1 )∗M∞1 ≥ (pZ

2 )∗N∞1 , (pT
1 )∗M∞2 ≥ (pT

2 )∗N∞2 ,

where pZ
1 is the composition Z N

→ Z ⊂ M1 × N 1 → M1, and likewise for
pZ

2 , pT
1 , pT

2 . Hence,

(pZ
1 × pT

1 )∗(M∞1 ×M2+M1×M∞2 )= (pZ
1 )∗M∞1 × T N

+ Z N
× (pT

1 )∗M∞2
≥ (pZ

2 )∗N∞1 × T N
+ Z N

× (pT
2 )∗N∞2 = (pZ

2 × pT
2 )∗(N∞1 × N 2+ N 1× N∞2 ).

We conclude that Z × T is admissible, because the projection (Z × T )N
→ Z × T

factors through Z N
× T N . Finally, Z × T is obviously proper over M1×M2. □

To conclude checking that we have indeed defined symmetric monoidal structures,
we need to verify identities of the form f ⊗(g◦h)= ( f ⊗g)◦( f ⊗h), and to define
associativity, commutativity and unit constraints. The first point holds because
it holds in Cor and Sm; for the second one, we leave to the reader the pleasure
of checking that the constraints of the symmetric monoidal structure on Cor are
proper and admissible, and hence induce similar ones on MCor, etc., which enjoy
the correct identities. The (symmetric) monoidality of the various functors is
tautological.

Remark 2.1.4 (see also Remark 2.1.2). Given two modulus pairs M, N , the canon-
ical morphisms M→ 1, N → 1 give morphisms

M ⊗ N → M ⊗ 1= M, M ⊗ N → 1⊗ N = N .

The universal property of the product then yields a natural transformation

M ⊗ N → M × N . (2.1.5)

Take M= N . The right-hand side comes with a diagonal morphism M→M×M ,
corresponding to the diagonal morphism 1 : Mo

→ Mo
×Mo (indeed, products

commute with ωs and ωs since they have pro-left adjoints). If (2.1.5) were an
isomorphism, 1 would define a morphism M→ M ⊗M ; but Definition 2.1.1 and
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the modulus condition show that this happens if and only if M∞ = 0. Conversely,
it can easily be shown that (2.1.5) is an isomorphism if M∞ = 0 or N∞ = 0.

Proposition 2.1.6. All functors in diagram (1.1.4) are symmetric monoidal. This
also applies to the functors of Theorem 1.1.5, and to bs in Definition 1.2.1.

Proof. For diagram (1.1.4) and bs , it is easily deduced from the construction of the
functors. For the functors ω! and ω!s , recall from [Kahn et al. 2021a, Definition 1.4.1]
the functors ( – )(n) given by M (n)

= (M, nM∞). Clearly, ( – )(n) is monoidal. On
the other hand, by [Kahn et al. 2021a, Lemma 1.7.4(b)], an inverse system defining
ω!X for X ∈ Sm is given by (M (n))n≥1 for any M such that ω(M)= X ; this proves
the claim in this case, and similarly for ω!s .

We now show the monoidality of τ !, arguing as in the case of ω! (although we
cannot quite use the functors ( – )(n) here). Let M ∈MCor. We use the category
Comp(M) of Theorem 1.1.5. Take N ∈ Comp(M) and write N∞ = M∞N + C
as in Theorem 1.1.5. Define Comp(N , M) as the full subcategory of Comp(M)

consisting of those P such that P = N (compatibly with the open immersions
M ↪→ N , M ↪→ P) and P∞ = M∞N + nC for some n > 0. (Strictly speaking,
Comp(N , M) depends on the choice of the decomposition N∞ = M∞N +C .) The
proof of [Kahn et al. 2021a, Claim 1.8.4] shows that Comp(N , M) is cofinal
in Comp(M). If M ′ ∈ MCor is another object and N ′ ∈ Comp(M ′) with a
decomposition N ′∞ = M ′∞N ′ +C ′, then N ⊗ N ′ ∈ Comp(M ⊗M ′) as

(N ⊗ N ′)∞ = (M∞N × N ′+ N ×M ′∞N ′)+ (C × N ′+ N ×C ′),

and it is easy to see that the obvious functor

Comp(N , M)×Comp(N ′, M ′)→ Comp(N ⊗ N ′, M ⊗M ′)

is cofinal. The same proof applies to τ !s . □

2.2. Tensor product and cd-structures. The following lemma will be used later to
define tensor structures for motives with modulus (see Theorem 3.3.1(3)).

Lemma 2.2.1. (1) If S ∈MSmSq is cartesian, so is S⊗M for any M ∈MSm.

(2) If T ∈MSmSq is cartesian, so is S⊗M for any M ∈MSm.

(3) If S is an MVfin-square, then so is S⊗M for any M ∈MSmfin.

(4) If S is an MV-square, then so is S⊗M for any M ∈MSm.

(5) If T is an MV-square, then so is T ⊗M for any M ∈MSm.
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Proof. (1) By the construction of fibre products in [Miyazaki 2020, §2.2], we may
assume that the square S is of the form

S :

L
p2
//

p1
��

M2

f2
��

M1 f1

// N

where all arrows are ambient, E := p̄∗1 M∞1 ×L p̄∗2 M∞2 is an effective Cartier divisor
on L , and L∞ = p̄∗1 M∞1 + p̄∗2 M∞2 − E .

Set S′ := S⊗M and write

S′ :

L ′
p′2
//

p′1
��

M ′2
f ′2
��

M ′1 f ′1

// N ′

where the arrows are obviously ambient, and there is a natural morphism S′→ S in
(MSmfin)Sq. In particular, we have an ambient morphism π : L ′→ L .

Set E ′ := p̄′∗1 M ′∞1 ×L ′ p̄′∗2 M ′∞2 . Then E ′ is an effective Cartier divisor on L ′.
Indeed, we have the following:

Claim 2.2.2. E ′ = π∗E + L ′×M∞.

Proof. Let I1, I2, I be the ideals of definition of p̄′∗1 (M∞1 ×M), p̄′∗2 (M1×M∞),
L ′×M∞, respectively. Then the ideal of definition of E ′ is given by I · I1+ I · I2=

I · (I1 + I2). Since E = p̄∗1 M∞1 ×L p̄∗2 M∞2 by definition, I1 + I2 is the ideal of
definition of π∗E , hence the claim. □

This also shows the following: By definition we have L ′∞= L∞×M+L ′×M∞.
Thus we obtain

L ′∞ = L∞×M + L ′×M∞

= ( p̄∗1 M∞1 + p̄∗2 M∞2 − E)×M + L ′×M∞

= p̄′∗1 M ′∞1 + p̄′∗2 M ′∞2 −π∗E − L ′×M∞

= p̄′∗1 M ′∞1 + p̄′∗2 M ′∞2 − E ′,

which implies that S′ is cartesian.

(2) This is a direct consequence of (1).

(3) This is obvious by the definition of MVfin-squares.

(4) Let S be an MV-square. By definition, there exists an MVfin-square S′ which
is isomorphic to S in MSmSq. Then we have M ⊗ S ∼= M ⊗ S′ in MSmSq, and
M ⊗ S′ is an MVfin-square by (3).
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(5) Since T is an MV-square, it is cartesian, there exist an MV-square S and a
morphism S→ T in MSmSq such that S(11)= T (11) and, finally, OD(q)∼=OD(p)

(see (1.3.10) for the notation). Set S′ := S ⊗ M and T ′ := T ⊗ M . Then T ′ is
cartesian by (1), S′ is an MV-square by (4), and S′(11)= T ′(11).

It remains to show that OD(q ′) ∼= OD(p′), where p′ := p⊗ M , q ′ := q ⊗ M .
For this, it suffices to show that for any ( f :U → N ) ∈MEt, we have

OD( f )⊗M ∼= OD( f ⊗M).

We use a similar argument to the one in the proof of [Miyazaki 2020, Proposi-
tion 3.1.4]. Set f ′ := f ⊗M, U ′ :=U ⊗M, N ′ := N × N . By construction of OD,
we have canonical isomorphisms

U ′ ⊔OD( f ′)∼=U ′×N ′ U ′,

U ⊔OD( f )∼=U ×N U.

Therefore, we obtain

U ′ ⊔ (OD( f )⊗M)∼= (U ×N U )⊗M ∼=† U ′×N ′ U ′ ∼=U ′ ⊔OD( f ′),

where ∼=† follows from (1). It is easy to see that this isomorphism restricts to each
component (indeed, it is the identity on the interiors). Therefore, we conclude
OD( f )⊗M ∼= OD( f ′)= OD( f ⊗M), finishing the proof. □

3. Motives with modulus

In this section, we construct the categories of motives with modulus MDMeff
gm and

MDMeff
gm and their sheaf-theoretic versions MDMeff and MDMeff, and prove their

fundamental properties.
In the sequel, we write K b(A) (resp. K (A)) for the bounded (resp. unbounded)

category of complexes on an additive category A, and D(A) for its unbounded
derived category when A is abelian. We also write ( – )♮ for pseudoabelianisation.
We also write ( – )/( – ) for the (Verdier) localisation of a triangulated category.
If X is a subset of a triangulated category T , we write ⟨X⟩ (resp. ⟨⟨X⟩⟩) for the
thick (resp. localising) subcategory generated by X , i.e., the smallest triangulated
subcategory of T containing X and closed under direct summands (resp. direct
summands and infinite direct sums).

3.1. Geometric motives. Recall that Voevodsky’s category DMeff
gm is defined as

DMeff
gm =

[
K b(Cor)
⟨HIV, MVV⟩

]♮

,

where HIV and MVV are the objects of the form
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(HIV): [X ×A1
]

1X×p
−−−→ [X ],

(MVV): [U ∩ V ] → [U ]⊕ [V ] → [X ],

where U ⊔ V → X runs over all elementary Zariski covers of all X ∈ Sm.
The category which compares naturally with our constructions is a variant of

DMeff
gm,Nis =

[
K b(Cor)
⟨HIV, MVV

Nis⟩

]♮

(see [Kahn and Sujatha 2017, Definition 4.3.3]), where

(MVV
Nis) : [U ×X V ] → [U ]⊕ [V ] → [X ], X ∈ Sm,

in which U ⊔ V → X runs over all elementary Nisnevich covers of X , i.e., covers
associated with distinguished Nisnevich squares.

That the obvious functor DMeff
gm→ DMeff

gm,Nis is an equivalence of categories
when k is perfect is a highly nontrivial theorem of Voevodsky; we shall not explore
the corresponding issue for modulus pairs in this paper.

Our definitions of MDMeff
gm and MDMeff

gm faithfully mimic that of DMeff
gm,Nis:

Definition 3.1.1. We define

MDMeff
gm =

[
K b(MCor)
⟨CI, MV⟩

]♮

, MDMeff
gm =

[
K b(MCor)
⟨CI, MV⟩

]♮

,

where CI, MV, CI, MV are the objects of the form

(CI): [X ⊗□]
1X⊗p
−−−→ [X ],

(MV): [U ×X V ] → [U ]⊕ [V ] → [X ],

in which U ⊔ V → X runs over all elementary MV-covers of all X ∈MSm, i.e.,
those covers associated with MV-squares as in Definition 1.3.4, and

(CI): [X ⊗□]
1X⊗p
−−−→ [X ],

(MV): [U ×X V ] → [U ]⊕ [V ] → [X ],

in which U ⊔ V → X runs over all elementary MV-covers of all X ∈ MSm,
i.e., those covers associated with MV-squares as in Definition 1.3.9. We write
Mgm :MCor→MDMeff

gm, Mgm :MCor→MDMeff
gm for the corresponding canonical

functors. Moreover, if f : X → Y is a morphism in MCor, we write Mgm[ f ] for
the image in MDMeff

gm of the complex [ f ] = [X ] f
−→ [Y] ∈ K b(MCor) with [Y]

placed in degree 0, so that we have a distinguished triangle

Mgm(X )
f∗
−→ Mgm(Y)→ Mgm[ f ]

+1
−→ .

(This notation will only be used in the proof of Theorem 7.3.2.)
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3.2. Sheaf-theoretic motives. The sheaf-theoretic category of motives DMeff (un-
bounded version) is defined to be

DMeff
=

D(NST)

⟨⟨ZV
tr (HIV)⟩⟩

,

where NST is the category of Nisnevich sheaves with transfers and ZV
tr is the additive

Yoneda functor.
In the following, we replace NST with the categories of modulus sheaves with

transfers, which were studied in [Kahn et al. 2021a; 2021b]. Let us recall them:

(1) MPST (resp. MPST) is the category of left modules (additive contravariant
functors) on MCor (resp. MCor).

(2) MNST (resp. MNST) is the full subcategory of MPST (resp. MPST) of
functors whose restriction to MSm (resp. MSm) via the graph functor is a
sheaf for the MV (resp. MV) topology.

All these categories are abelian Grothendieck: in (1) as categories of left mod-
ules [Kahn et al. 2021a, Theorem A.10.2], and in (2) by [Kahn et al. 2021a,
Theorem 4.5.5; 2021b, Theorem 4.2.4].

Recall from [Kahn et al. 2021a] the following notion:

Definition 3.2.1. A functor between additive categories is strongly additive if it
preserves all direct sums.

By [Kahn et al. 2021a, Proposition 2.4.1 and Theorem 4.5.5; 2021b, Lemma-
Definition 4.2.1, Theorem 4.2.4 and Theorem 5.1.1] (see also [Kahn et al. 2021a,
Proposition A.4.1(b)]), we have:

Proposition 3.2.2. (1) The inclusion functors

iNis :MNST ↪→MPST and iNis :MNST ↪→MPST

have exact left adjoints aNis and aNis.

(2) The inclusion functor τ : MCor ↪→ MCor of (1.1.4) induces fully faithful,
exact, strongly additive functors

τ! :MPST→MPST, τNis :MNST→MNST

and we have an isomorphism τNisaNis ≃ aNisτ!. Moreover, τ! and τNis have
exact right adjoints τ ∗ and τNis.

The additive Yoneda functors

Ztr :MCor→MPST, Ztr :MCor→MPST

induce triangulated functors

K b(MCor)→ D(MPST), K b(MCor)→ D(MPST). (3.2.3)
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Lemma 3.2.4. The functors

D(τ!) : D(MPST)→ D(MPST) and D(τNis) : D(MNST)→ D(MNST)

are fully faithful.

Proof. This follows from Propositions 3.2.2 and A.4.2. □

We now slightly diverge from Voevodsky to define MDMeff and MDMeff. We
will get back to the analogues of his definition in Theorem 4.1.1 below.

Definition 3.2.5. We define

MDMeff
=

D(MPST)

⟨⟨CI, MV⟩⟩
and MDMeff

=
D(MPST)

⟨⟨CI, MV⟩⟩
,

where ⟨⟨CI,MV⟩⟩ and ⟨⟨CI,MV⟩⟩ are the localising subcategories of D(MPST) and
D(MPST) generated by the images of ⟨CI,MV⟩ and ⟨CI,MV⟩ by the functors (3.2.3).

3.3. Full embeddings and tensor structures.

Theorem 3.3.1. (1) The functors (3.2.3) induce triangulated functors

ιeff :MDMeff
gm→MDMeff, ιeff :MDMeff

gm→MDMeff . (3.3.2)

We write M = ιeff ◦Mgm and M = ιeff ◦Mgm (see Definition 3.1.1).

(2) The functors ιeff and ιeff are fully faithful with dense images; their essential
images consist of the compact objects of the target categories. In particular,
MDMeff and MDMeff are compactly generated.

(3) The tensor structure on MCor induces corresponding tensor structures on
D(MPST), D(MPST) and all categories of (1). The functors of (3.3.2) are
⊗-triangulated.

(4) The functors τ and τ! of (1.1.4) and Proposition 3.2.2 induce ⊗-triangulated
functors

τeff,gm :MDMeff
gm→MDMeff

gm, τeff :MDMeff
→MDMeff .

(5) The functor τeff is strongly additive and has a right adjoint τ eff.

Proof. Item (1) is obvious by construction. For (2), apply Theorem A.3.9 and
Example A.3.6. Let us prove (3). To start with, Theorem A.4.1 provides tensor
structures on MPST, MPST, K b(MCor), K b(MCor), D(MPST) and D(MPST)

such that the functors of (3.2.3) are tensor functors. Then Lemma 2.2.1 implies that
⟨CI, MV⟩ and ⟨CI, MV⟩ are ⊗-ideals in K b(MCor) and K b(MCor), and thus so
are ⟨⟨CI, MV⟩⟩ and ⟨⟨CI, MV⟩⟩ in D(MPST) and D(MPST).

The most difficult point is (4). Since D(τ!) is strongly additive, it suffices to show
that K b(τ )(⟨CI⟩)⊆ ⟨CI⟩ and K b(τ )(⟨MV⟩)⊆ ⟨MV⟩. The first inclusion is obvious.
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The second one is a consequence of the continuity of τs [Kahn and Miyazaki 2021,
Theorem 1], but we provide a direct and concrete proof. Let T ∈ MSmSq be
an MV-square, and let S→ τs(T ) be an associated MV-square (property (2) of
Definition 1.3.9). Consider the Sq×Sq-object of MSm

X = S×τs(T (11)) τs(T ).

We can compute Tot(X) in K b(MSm) in two different ways (see [Verdier 1996,
I.2.2] for the totalisation of multicomplexes, and [loc. cit., (2.2.4.1)] for a “Fubini
theorem”); we drop τs to lighten the notation.

(i) For every (kl), S×T (11) T (kl) is an MV-square. Hence Tot(X) ∈ ⟨MV⟩.

(ii) For every (i j) ̸= (11), Ti j = S(i j)×T (11)T is a cartesian square in which the map
S(i j)→T (i j) over T (11) gives a section of the projection S(i j)×T (11)T (i j)→S(i j).
For (i j)= (10), this projection is an isomorphism on the open parts by property (2)
of Definition 1.3.9, so is a monomorphism, and hence an isomorphism. In other
words, T10(10)→ T10(11) is an isomorphism, and the same holds for its pull-back
T00. Hence Tot(T10) and Tot(T00) are contractible. For (i j) = (01), we apply
Lemma 1.3.14; the hypotheses of this lemma are satisfied. We check condition
(3): Suppose T is of the form (1.3.10). Since T is an MV-square by definition,
we have OD(q) ∼= OD(p). Moreover, by [Miyazaki 2020, Proposition 3.1.4],
the off-diagonal OD is stable under pullbacks. More precisely, if we set p′ :=
p×T (11) S(01) and q ′ := q ×T (11) S(01), we have OD(p′)= OD(p)×T (11) S(01)

and OD(q ′) = OD(q) ×T (11) S(01). Therefore, we have OD(q ′) ∼= OD(p′). It
follows that Tot(T01) is also contractible. Finally, Tot(Ti j ) is contractible except for
the square T11 = T .

This shows that Tot τs(T ) ∈ ⟨MV⟩ (more precisely, Tot τs(T ) belongs to the
triangulated ⊗-ideal generated by Tot(S)).

Finally, we prove (5). Let π :D(MPST)→MDMeff and π :D(MPST)→MDMeff

be the projection functors. By Corollary A.3.10, they have right adjoints i and i
which themselves have right adjoints. In particular, all these functors are strongly
additive. This and the strong additivity of D(τ!) easily imply that τeff is strongly
additive; the existence of τ eff then follows from (2) (compact generation of MDMeff),
Theorem A.3.8 and Lemma A.3.2. □

Remarks 3.3.3. (1) Similar to the proof of Theorem 3.3.1(2), Theorem A.3.9 and
Example A.3.6 imply that the canonical functor ιV

eff : DMeff
gm,Nis→ DMeff is

fully faithful over any k (compare [Kahn and Sujatha 2017, p. 6801]).

(2) We shall see in Theorem 5.2.3 that τeff and τeff,gm are fully faithful. This seems
to require the theory of intervals from Appendix B.
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4. Brown–Gersten property

4.1. Main result. The adjunctions of Proposition 3.2.2(1) induce adjunctions

D(aNis)= RaNis : D(MPST) ⇆ D(MNST) : RiNis,

D(aNis)= RaNis : D(MPST) ⇆ D(MNST) : RiNis,

and D(aNis), D(aNis) are localisations by Proposition A.4.2.

Theorem 4.1.1. (1) The kernel of the localisation functor

D(aNis) : D(MPST)→ D(MNST)

equals ⟨⟨MV⟩⟩.

(2) The kernel of the localisation functor

D(aNis) : D(MPST)→ D(MNST)

equals ⟨⟨MV⟩⟩.

(3) The localisation functor D(MPST)→ MDMeff induces an equivalence of
triangulated categories

D(MNST)

⟨⟨CI⟩⟩
∼=MDMeff .

(4) The localisation functor D(MPST)→ MDMeff induces an equivalence of
triangulated categories

D(MNST)

⟨⟨CI⟩⟩
∼=MDMeff .

(5) The categories D(MNST) and D(MNST) are compactly generated and in-
herit tensor structures from those of D(MPST) and D(MPST) obtained in
Theorem 3.3.1(3). The functor D(τNis) : D(MNST)→ D(MNST) is ⊗-trian-
gulated.

The proof is given in Section 4.5.

4.2. Corollaries.

Corollary 4.2.1 (cf. Hypothesis B.6.1(i)). Via aNis and aNis, the tensor structures
on MPST and MPST induce right exact tensor structures on MNST and MNST.

Proof. Let F, G ∈MNST. We define

F ⊗MNST G = H0(F[0]⊗D(MNST) G[0])

for the tensor structure of Theorem 4.1.1(5). For right exactness, one sees that
Hi (F[0] ⊗D(MNST) G[0]) = 0 for i < 0 by reducing to F = Ztr(M), G = Ztr(N ).
By Theorem 4.1.1(5), the functor D(aNis) is monoidal, so aNis F0⊗MNST aNisG0 =

aNis(F0⊗MPST G0) for F0, G0 ∈MPST. Same argument with MNST. □
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Remark 4.2.2. Proceeding as in [Ayoub 2007, proof of Proposition 4.1.22], it
can be shown that ⊗D(MNST) is actually the total left derived functor of ⊗MNST.
Similarly for MNST.

Corollary 4.2.3. The localisation functors

L□
: D(MNST)→MDMeff, L□

: D(MNST)→MDMeff

are strongly additive, symmetric monoidal and have right adjoints j□, j□, which
themselves have right adjoints. We have a natural isomorphism of functors

τeffL□
≃ L□D(τNis). (4.2.4)

Proof. Via Theorem 4.1.1, strong additivity and symmetric monoidality follow from
those of the localisation functors D(MPST)→MDMeff and D(MPST)→MDMeff.
The sequel then follows from Corollary A.3.10. The isomorphism (4.2.4) follows
from the construction of τeff in Theorem 3.3.1(4), and the fact that D(aNis) and
D(aNis) are localisations. □

For the next corollary, we recall an important notation from [Kahn et al. 2021a].

Definition 4.2.5. For F ∈MPST and for X ∈MSm, we write FX for the presheaf
on the small étale site of X given by

FX (U→ X ) := F(U,X∞×X U).

For F ∈MPST and X ∈MSm, we set

FX := (τ!F)X .

We extend this notation to complexes of (pre)sheaves in the obvious way.

Corollary 4.2.6. For any X ∈MCor and K ∈MDMeff, we have an isomorphism

MDMeff(M(X ), K )≃ lim
−−→

X ′∈6fin↓X
H0

Nis(X
′, ( j□K )X ′).

The same formula holds in MDMeff if X ∈MCor and K ∈MDMeff.

Proof. This is obvious by adjunction from Corollary 4.2.3 and [Kahn et al. 2021b,
Proposition 7.4.2 and Theorem 7.5.1]. □

As D(MNST) and MDMeff are compactly generated (Theorem 4.1.1), Brown’s
representability theorem applied to their tensor structures provides them with internal
Homs, and similarly for D(MNST) and MDMeff. The following is an application
of Lemma A.1.1:
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Proposition 4.2.7. Let K ∈ D(MNST) and L ∈MDMeff. Then we have a natural
isomorphism

j□ HomMDMeff(L□(K ), L)≃ HomD(MNST)(K , j□L).

Hence, for K ′, L ∈MDMeff, a natural isomorphism

j□ HomMDMeff(K ′, L)≃ HomD(MNST)( j□K ′, j□L).

The same formulas hold in D(MNST) and MDMeff, with L□ and j□.

4.3. Sheaves on MSmfin and MSm. To prove Theorem 4.1.1, we have to go back
to these categories. As in [Kahn et al. 2021a], we write MPSfin and MPS for the
categories of presheaves of abelian groups on MSmfin and MSm, and MNSfin and
MNS for the corresponding categories of sheaves (for the MVfin and MV topology,
respectively). For general reasons, the inclusion functors ifin

s,Nis :MNSfin ↪→MPSfin,
i s,Nis :MNS ↪→MPS have exact left adjoint sheafification functors afin

s,Nis, as,Nis.
Moreover, the adjoint functors

bs,! :MPSfin ⇆ MPS : b∗s

associated to the functor bs of Definition 1.2.1 are both exact, and they preserve
sheaves [Kahn et al. 2021a, Lemma 4.2.3 and Proposition 4.3.3]. For further
reference, we record the corresponding tautological identity for the right adjoints:

b∗s i s,Nis = ifin
s,Nisb

Nis
s . (4.3.1)

In the adjoint pair (bs,Nis, bNis
s ), bs,Nis is exact (but not bNis

s ).

Definition 4.3.2. Let Zp
:MSmfin

→MPSfin, Zp
:MSm→MPS denote the “free

presheaf” functors (see [Kahn et al. 2021a, Proposition 2.6.1]). That is, for M, N
in MSmfin (resp. MSm), the section Zp(M)(N ) is given by the free abelian group
Z HomMSmfin(N , M) (resp. Z HomMSm(N , M)). We write ⟨⟨MVfin

s ⟩⟩ (resp. ⟨⟨MVs⟩⟩)
for the localizing subcategory of D(MPSfin) (resp. D(MPS)) generated by the
objects of the form

Zp(U ×M V )→ Zp(U )⊕Zp(V )→ Zp(M),

where M ∈MSmfin (resp. M ∈MSm) and U ⊔ V → M runs over all elementary
MVfin-covers (resp. MV-covers). Note that ⟨⟨MVs⟩⟩ = D(bs,!)(⟨⟨MVfin

s ⟩⟩).

4.4. Technical results.

Proposition 4.4.1. (1) For any MV-square T ∈MSmSq, the sequence

0→ Ztr(T (00))→ Ztr(T (01))⊕Ztr(T (10))→ Ztr(T (11))→ 0

is exact in MNST.



MOTIVES WITH MODULUS, III: THE CATEGORIES OF MOTIVES 141

(2) For any MV-square T ∈MSmSq, the sequence

0→ Ztr(T (00))→ Ztr(T (01))⊕Ztr(T (10))→ Ztr(T (11))→ 0

is exact in MNST.

Proof. Item (1) is [Kahn et al. 2021a, Theorem 4.5.7]. For (2), by [Miyazaki
2020, Corollary 5.2.7] we have the desired exactness if we consider the terms as
sheaves on MSm; equivalently, the sequence becomes exact after applying τNis.
The conclusion then follows from Proposition 3.2.2(2). □

Proposition 4.4.2. We have a naturally commutative diagram

⟨⟨MV⟩⟩ //

��

K //

��

D(MPST)
D(aNis)

//

D(τ!)
��

D(MNST)

D(τNis)
��

⟨⟨MV⟩⟩ //

��

K //

��

D(MPST)
D(aNis)

//

D(c∗)
��

D(MNST)

D(cNis)
��

⟨⟨MVs⟩⟩ // Ks // D(MPS)
D(as,Nis)

// D(MNS)

⟨⟨MVfin
s ⟩⟩

//

OO

Kfin
s

//

OO

D(MPSfin)
D(afin

s,Nis)
//

D(bs,!)

OO

D(MNSfin)

D(bs,Nis)

OO

(4.4.3)

where K, K, Ks and Kfin
s are the kernels of D(aNis), D(aNis), D(as,Nis) and

D(afin
s,Nis), respectively.

Proof. Note that F 7→ D(F) is functorial in exact functors F by [Kahn et al. 2021b,
Lemma A.2.4]. The commutativity of the upper right square in the diagram follows
from Proposition 3.2.2(2); that of the middle right square, from as,Nisc∗ = cNisaNis,
which is proven in [Kahn et al. 2021a, Proposition 4.5.6]; and that of the lower right
square, from the isomorphism as,Nisbs,! ≃ bs,Nisafin

s,Nis which we obtain by taking
left adjoints of both sides of (4.3.1).

A fortiori, this provides the vertical functors in the second column.
We have the inclusions ⟨⟨MVs⟩⟩ ⊂Ks and ⟨⟨MVfin

s ⟩⟩ ⊂Kfin
s by [Voevodsky 2010b,

Lemma 2.18] and the regularity of the cd-structures PMV and PMVfin . We also have
⟨⟨MV⟩⟩ ⊂ K and ⟨⟨MV⟩⟩ ⊂ K by Proposition 4.4.1.

Finally, the arrows in the left column follow tautologically from the definitions
of ⟨⟨MV⟩⟩, ⟨⟨MVs⟩⟩ and ⟨⟨MVfin

s ⟩⟩, except for the top one which follows from the
proof of Theorem 3.3.1(4) (and will not be used in the proof of Theorem 4.1.1). □

Remark 4.4.4. It would be more natural to use D(b∗s ) and RbNis
s in (4.4.3). Unfor-

tunately, the commutation of the corresponding square would imply the exactness
of bNis

s , which is false. This forces us to use a more indirect argument for the proof
of (ii) in Section 4.5 below.
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Lemma 4.4.5. The functor D(c∗) : D(MPST)→ D(MPS) is conservative, and
⟨⟨MV⟩⟩ → ⟨⟨MVs⟩⟩ is essentially surjective.

Proof. Let C ∈ D(MPST) be such that D(c∗)C = 0. For any M ∈ MSm and
any i ∈ Z, we have c!Zp(M)= Ztr(M) by [Kahn et al. 2021a, Proposition 2.6.1],
where Zp is as in Definition 4.3.2. Moreover, the presheaf Zp(M) ∈ MPS is a
projective object, since HomMPS(Z

p(M), F) = F(M) by definition of Zp. This
implies Lc!Zp(M)= c!Zp(M). Therefore,

0= D(MPS)(Zp(M), D(c∗)C[i])= D(MPST)(Ztr(M), C[i])

by adjunction. This shows that C = 0. The second statement is trivial. □

Proposition 4.4.6. We have the following isomorphism of functors:

D(bs,!)Rifin
s,Nis D(afin

s,Nis)≃ Ri s,Nis D(as,Nis)D(bs,!).

Proof. In view of the commutativity of the right lower square in (4.4.3), it suffices
to show the isomorphisms

D(bs,!)R(ifin
s,Nis)

∼
←− R(bs,!ifin

s,Nis)≃ R(i s,Nisbs,Nis)
∼
−→ R(i s,Nis)D(bs,Nis).

Indeed, the first isomorphism follows from the exactness of bs,! by [Kahn et al.
2021b, Lemma A.2.4], and the second one is tautological.

For the third one, by [Kahn et al. 2021b, Lemma A.2.7], it suffices to show that
bs,Nis sends injectives to i s,Nis-acyclic sheaves, which holds by [Kahn et al. 2021a,
Lemma 4.4.3], and that D(bs,Nis), R(i s,Nis) and R(i s,Nisbs,Nis) are strongly additive.
Since bs,Nis is exact and strongly additive as a left adjoint, D(bs,Nis) is strongly
additive by [Kahn et al. 2021b, Proposition A.2.8(a)]. For R(i s,Nis), we invoke
[Kahn et al. 2021b, Proposition A.2.8(c)]: by [Kahn et al. 2021b, Proposition A.2.5],
Ri s,Nis has the left adjoint D(as,Nis), which sends Zp(M)[n] (M ∈MSm, n ∈ Z)
to Z(M)[n]. The first are compact generators of D(MPS) by Example A.3.6, and
the second are compact in D(MNSfin) by [Kahn et al. 2021b, Proposition 7.1.1].

Finally, we prove the strong additivity of R(i s,Nisbs,Nis)≃ R(bs,!ifin
s,Nis). For this,

we use [Kahn et al. 2021b, Proposition A.2.8(b)]. We must check that

• R p(bs,!ifin
s,Nis) is strongly additive for all p ≥ 0;

• there is a set E of compact projective generators of MPS and integers cd(E)

for E ∈ E such that MPS(E, R p(bs,!ifin
s,Nis)(A)) = 0 for any p > cd(E) and

for any A ∈MNSfin.

Noting that R p(bs,!ifin
s,Nis)≃ bs,!R pifin

s,Nis, the first point follows from the commu-
tation of Nisnevich cohomology with filtering direct limits. For the second, we take
for E the collection of Zp(M) for M ∈MSm, and claim that cd(Zp(M))= dim Mo
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works. Indeed,

MPS(Zp(M), R p(bs,! ifin
s,Nis)(A))=MPS(Zp(M), bs,!R pifin

s,Nis(A))

= lim
−−→

N∈6fin↓M
MPSfin(Zp(N ), R pifin

s,Nis(A))

= lim
−−→

N∈6fin↓M
H p

Nis(N , AN )= 0 for p > dim Mo,

where we used [Kahn et al. 2021a, (2.5.1)] for the second equality. We are done. □

4.5. Proof of Theorem 4.1.1. Assertions (3) and (4) follow from (1) and (2).
Assertion (5) is a consequence of Theorem A.3.9 and the fact that D(MPST) and
D(MPST) are compactly generated (see Example A.3.6). The assertion on tensor
structures holds since ⟨⟨MV⟩⟩ and ⟨⟨MV⟩⟩ are ⊗-ideals by Lemma 2.2.1 (cf. the
proof of Theorem 3.3.1(3)).

It remains to prove (1) and (2). Let ⟨⟨MV⟩⟩⊥ (resp. ⟨⟨MV⟩⟩⊥) denote the right
orthogonal of ⟨⟨MV⟩⟩ in K (resp. of ⟨⟨MV⟩⟩ in K), and define ⟨⟨MVs⟩⟩

⊥, ⟨⟨MVfin
s ⟩⟩
⊥

similarly. By Theorem A.3.7, we have ⟨⟨MV⟩⟩ = K if and only if ⟨⟨MV⟩⟩⊥ = 0, etc.
We shall play with these equivalences. More precisely, the layout is

(i) ⟨⟨MVfin
s ⟩⟩
⊥
= 0,

(ii) ⟨⟨MVs⟩⟩ = Ks ,

(iii) ⟨⟨MV⟩⟩⊥ = 0 (i.e., (1)),

(iv) ⟨⟨MV⟩⟩⊥ = 0 (i.e., (2)).

Proof of (i). It follows from [Voevodsky 2010b, Theorem 3.2], since the cd-structure
MVfin is complete and bounded (Proposition 1.3.3). □

Proof of (ii). Let x ∈ Ks . Since bs,! is exact, the functor Rb∗s is right adjoint to
D(bs,!) by Proposition A.4.2. Consider the distinguished triangle

Rb∗s x f
−→ Rifin

s,Nis D(afin
s,Nis)Rb∗s x→ z +1

−→ (4.5.1)

in D(MPSfin), where f is the unit of the adjunction (D(afin
s,Nis), R(ifin

s,Nis)) and z is
a cone of f . Applying D(bs,!) to (4.5.1), we obtain the distinguished triangle

D(bs,!)Rb∗s x f
−→ D(bs,!)Rifin

s,Nis D(afin
s,Nis)Rb∗s x→ D(bs,!)z

+1
−→ (4.5.2)

in D(MPS).
The second term of (4.5.2) is isomorphic to Ri s,Nis D(as,Nis)D(bs,!)Rb∗s x by

Proposition 4.4.6, and we have D(bs,!)Rb∗s = Id by Proposition A.4.2 and by the
full faithfulness of b∗s [Kahn et al. 2021a, Proposition 2.5.1]. Hence, the first term is
isomorphic to x , and the second term is 0 by x ∈ Ks . We thus get an isomorphism
x ≃ D(bs,!)z[−1]. Moreover, z ∈Kfin

s , as one sees by applying D(afin
s,Nis) to (4.5.1).

By (i) and Proposition 4.4.2, this implies that x ∈ ⟨⟨MVs⟩⟩ as requested. □
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Proof of (iii). Let x ∈ ⟨⟨MV⟩⟩⊥; we must prove that x = 0. Since D(c∗) is
conservative by Lemma 4.4.5, it suffices to show D(c∗)x = 0. Since ⟨⟨MVs⟩⟩

⊥
= 0

by (ii), it is enough to prove that D(c∗)x ∈ ⟨⟨MVs⟩⟩
⊥. By Definition 4.3.2, ⟨⟨MVs⟩⟩

is generated by complexes of the form Tot Zp(S) for MV-squares S. Therefore, it
suffices to prove that

HomD(MPS)(Tot Zp(S), D(c∗)x)= 0

for any such S. We compute

HomD(MPS)(Tot Zp(S), D(c∗)x)∼= HomD(MPST)(L(c!) Tot Zp(S), x)

= HomD(MPST)(Tot Ztr(S), x)= 0,

where the first isomorphism follows from Lemma A.4.3, since the left derived
functor L(c!) is defined at the bounded complex Tot Zp(S) of projective objects.2

The second equality follows from the equality L(c!)Zp(M) = Ztr(M) for any
modulus pair M (this was already used in the proof of Lemma 4.4.5), and the third
equality follows from Tot Ztr(S) ∈ ⟨⟨MV⟩⟩. This finishes the proof. □

Proof of (iv). Since D(τ!) is fully faithful by Lemma 3.2.4, we are reduced by (iii)
to proving

D(τ!)(⟨⟨MV⟩⟩⊥)⊂ ⟨⟨MV⟩⟩⊥. (4.5.3)

Take any x ∈ ⟨⟨MV⟩⟩⊥. It suffices to prove that the abelian group

K(Tot Ztr(S), D(τ!)(x)[i])= D(MPST)(Tot Ztr(S), D(τ!)(x)[i])

is 0 for any MVfin-square S and any i ∈ Z, where Tot denotes totalisation. For each
(i j)∈Sq, set SN (i j) := (S(i j)N , π∗i j S(i j)∞), where πi j : S(i j)N

→ S(i j) is normal-
isation. Then the edges S(i j)→ S(i ′ j ′) in S uniquely lift to SN (i j)→ SN (i ′ j ′), and
we obtain a new square SN . The maps πi j induce a morphism SN

→ S in MSmSq,
which is an isomorphism since normalisation is proper. Moreover, the étaleness of
the edges in S implies that SN (i j)= S(i j)×S(11) SN (11), and therefore that SN is
again an MVfin-square. In the following, replacing S with SN , we may assume that
the ambient space S(i j) is normal for all (i j) ∈ Sq.

Now, we compute for i ∈ Z:

D(MPST)(Tot Ztr(S), D(τ!)(x)[i])∼=1 K (MPST)(Tot Ztr(S), τ!(x)[i])

= H 0 Hom•Ch(MPST)(Tot Ztr(S), τ!(x)[i])

∼=
2 lim
−−→

T∈Comp(S)

H 0 Hom•Ch(MPST)(Tot Ztr(T ), x[i])

= lim
−−→

T∈Comp(S)

K (MPST)(Tot Ztr(T ), x[i])

2In fact, Lc! is everywhere defined by [Kashiwara and Schapira 2006, Theorem 14.4.3].
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∼=
3 lim
−−→

T∈Comp(S)

D(MPST)(Tot Ztr(T ), x[i])

∼=
4 lim

−−→

T∈CompMV(S)

D(MPST)(Tot Ztr(T ), x[i])

=
5 0,

where Ch(– ) denotes the category of chain complexes, and Hom• denotes the Hom
complex. Here Comp(S) and CompMV(S) are as in Theorem 1.3.13.

The isomorphisms∼=1 and∼=3 hold because each component of Ztr(S) and Ztr(T )

is projective, and ∼=2 follows from the formula in Theorem 1.1.5 for the pro-left
adjoint of τ ! of τ!. Moreover, ∼=4 follows from Theorem 1.3.13. Finally, the
assumptions x ∈ ⟨⟨MV⟩⟩⊥ and Tot Ztr(T ) ∈ ⟨⟨MV⟩⟩ imply =5. □

This completes the proof of Theorem 4.1.1.

Remark 4.5.4. This proof rests fundamentally on the fact that the cd-structure
PMVfin on MSmfin is bounded; an easier but similar proof shows that the kernel of the
localisation functor D(aV

Nis) : D(PST)→ D(NST) equals ⟨⟨MVNis⟩⟩ (see [Beilinson
and Vologodsky 2008, Proposition in §4.2.1]). The main reason why the bound-
edness of PMVfin is sufficient here seems to be that sheaves in MNST and MNST
also have cohomological dimensions bounded by the dimension of the total space
of a modulus pair [Kahn et al. 2021b, Corollaries 2.2.10 and 5.1.4].

We do not know whether the cd-structures PMV and PMV are themselves bounded.

5. The derived Suslin complex

5.1. □-invariance.

Lemma 5.1.1. Let □= (P1,∞) ∈MSm. The interval structure of A1
≃ P1

−{∞}

in Sm from [Voevodsky 1996] induces an interval structure on □ for the⊗-structure
of Definition 2.1.1.

Proof. We need to check that the structure maps p, i0, i1, µ are morphisms in MCor.
The unit object is (Spec k,∅), so i0, i1 and p are clearly admissible. As for µ,
its points of indeterminacy in P1

× P1 are (0,∞) and (∞, 0); the closure 0 of
its graph in P1

×P1
×P1 is isomorphic to Bl(0,∞),(∞,0)(P

1
×P1), where the two

exceptional divisors are given by 0×∞×P1 and∞× 0×P1. In particular, 0 is
smooth. Then

p∗2∞= P1
×∞×∞+∞×P1

×∞

while

p∗1(P
1
×∞+∞×P1)=P1

×∞×∞+0×∞×P1
+∞×P1

×∞+∞×0×P1,

which completes the proof. □
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Remark 5.1.2. Lemma 5.1.1 is false if we replace the⊗-structure of Definition 2.1.1
by the cartesian product structure: indeed, µ does not factor through the morphism
□⊗□→ □×□ of (2.1.5). Conversely, the diagonal A1

→ A1
×A1 obviously

yields a diagonal morphism □→ □×□, but the latter does not factor through
(2.1.5) either.

The following definition will not be used in the sequel, except in Theorem 6.4.1,
but is key to [Kahn et al. 2019].

Definition 5.1.3. We say F ∈ MPST (resp. F ∈ MPST) is □-invariant if the
projection map p : M⊗□→ M induces an isomorphism p∗ : F(M) ∼−→ F(M⊗□)

for any M ∈MSm (resp. M ∈MSm). Equivalently, F ∼
−→ Hom(Ztr(□), F).

5.2. The derived Suslin complex.

Proposition 5.2.1. Consider the tensor structures on D(MNST) and D(MNST)

given by Theorem 4.1.1(5). The interval structure on □ ∈MSm from Lemma 5.1.1
yields categories with interval (D(MNST), Ztr(□)), (D(MNST), Ztr(□)) which
verify Hypotheses B.4.1 and B.6.1.

Proof. We do the proof for D(MNST), the case of D(MNST) being identical.
Since ⊗D(MPST) is the total derived functor of ⊗MPST by Theorem A.4.1(d),

there is a canonical natural transformation

λPC ⊗D(MPST) λP D⇒ λP(C ⊗K (MPST) D)

for (C, D) ∈ K (MPST)× K (MPST), where λP : K (MPST)→ D(MPST) is the
localisation functor. Applying D(aNis) to it, we get a natural transformation

λN K (aNis)C ⊗D(MNST) λN K (aNis)D ≃ D(aNis)λPC ⊗D(MNST) D(aNis)λP D

≃ D(aNis)(λPC ⊗D(MPST) λP D)

⇒ D(aNis)λP(C ⊗K (MPST) D)≃ λN K (aNis)(C ⊗K (MPST) D)

≃ λN (K (aNis)C ⊗K (MNST) K (aNis)D),

where λN : K (MNST)→ D(MNST) is the localisation functor. Since K (aNis) is
a localisation, this yields by [Kahn et al. 2021a, Lemma A.3.3] the desired natural
transformation

λN C ′⊗D(MNST) λN D′⇒ λN (C ′⊗K (MNST) D′) (5.2.2)

for (C ′, D′) ∈ K (MNST)× K (MNST).
It remains to check properties (iii) and (iv) of Hypothesis B.6.1: (iii) is obvious

by construction, and (iv) is true because it is already true in D(MPST) by the
representability of Ztr(□), and aNis is exact. □

In the next theorem, we use the functors L□, L□ from Corollary 4.2.3.
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Theorem 5.2.3. The base change morphism

L□
◦ D(τNis)⇒ τ effL□ (5.2.4)

as in (B.7.3) is an isomorphism; the functors τeff,gm and τeff of Theorem 3.3.1(4) are
fully faithful.

Proof. The first claim follows from Theorem B.7.5. By Lemma 3.2.4, D(τNis) is
fully faithful, and hence3 the unit map

Id⇒ D(τNis)D(τNis)

is an isomorphism. Applying L□, we obtain a natural isomorphism

L□ ∼
−→ L□D(τNis)D(τNis).

On the other hand, (4.2.4) and (5.2.4) yield natural isomorphisms

L□D(τNis)D(τNis)
∼
−→ τ effL□D(τNis)

∼
−→ τ effτeffL□

and one checks that their composition L□
⇒ τ effτeffL□ is induced by the unit of

the adjunction (τeff, τ
eff). Since L□ is a localisation, we conclude that this unit is

an isomorphism. This implies the full faithfulness of τeff, which in turn implies that
of τeff,gm by Theorem 3.3.1(2). □

Definition 5.2.5 (cf. Definition B.6.2). For any K ∈ D(MNST), we set

RC□
∗
(K )= Hom(Ztr(□

•

ν), K ) ∈ D(MNST);

this is the derived Suslin complex of K . Similarly for K ∈ D(MNST). For
X ∈MCor or MCor, we abbreviate RC□

∗
(Ztr(X )[0]) to RC□

∗
(X ).

Recall from Corollary 4.2.3 that L□ and L□ have right adjoints j□ and j□. As
a consequence of Theorem B.6.3, we have:

Theorem 5.2.6. For any K ∈ D(MNST), we have an isomorphism

j□L□(K )≃ RC□
∗
(K ).

Similarly, we have an isomorphism for any K ∈ D(MNST)

j□L□(K )≃ RC□
∗
(K ).

3This is actually part of the proof; see Proposition A.4.2.
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In particular, the isomorphisms of Corollary 4.2.6 translate as

MDMeff(M(X ), L□K )≃ lim
−−→

X ′∈6fin↓X
H0

Nis(X
′, (RC□

∗
(K ))X ′),

MDMeff(M(X ), L□K )≃ lim
−−→

X ′∈6fin↓X
H0

Nis(X
′, (RC□

∗
(K ))X ′)

for (X , K ) ∈MCor×D(MNST) and (X , K ) ∈MCor×D(MNST), respectively.

Remark 5.2.7. Theorem B.6.3 also yields a version of Voevodsky’s results for
DMeff and D(NST) [Voevodsky 2000b; Mazza et al. 2006], where he uses simplicial
objects rather than cubical objects. Comparing the two, we get an a posteriori proof
that for any K ∈ D(NST) the two “Suslin” complexes RCA1

∗
(K ) based on simplicial

or cubical sets are quasi-isomorphic. Hopefully this can be proven by an explicit
chain computation.

On the other hand, the theory of intervals does not yield a simplicial theory in
the case of MCor and MCor; see Remark B.2.6.

6. Comparisons

6.1. Relationship with Voevodsky’s categories. We start by comparing MDMeff

with DMeff. As usual, the functor ω : MCor → Cor from (1.1.4) defines an
adjunction

ω! :MPST ⇆ PST : ω∗. (6.1.1)

Thus ω! is right exact and strongly additive; it is even exact, as the right adjoint
of λ! (see Theorem 1.1.5 for λ).

Since λ is fully faithful, so is ω∗ = λ∗ [Kahn et al. 2021a, Proposition 2.3.1].
Recall the category DMeff

gm,Nis from Section 3.1. Since ω obviously sends (CI) to
(HIV) and (MV) to (MVV

Nis), we get functors ωeff,gm, ωeff in the following commu-
tative diagrams:

K b(MCor)

��

K b(ω)
// K b(Cor)

��

MDMeff
gm

ωeff,gm
// DMeff

gm,Nis

D(MPST)
D(ω!)

//

��

D(PST)

��

MDMeff ωeff
// DMeff

(6.1.2)

where the vertical arrows are localisation functors.
As in the proof of Theorem 3.3.1(5), we deduce from the strong additivity of ω!

that ωeff is strongly additive and has a right adjoint ωeff. Recall from [Kahn et al.
2021b, Proposition 6.2.1(d)] that the adjunction (6.1.1) induces an adjunction

ωNis :MNST ⇆ NST : ωNis, (6.1.3)
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where ωNis, ω
Nis are both exact and ωNis is fully faithful. The same picture holds for

ωNis=ωNis ◦τNis and its right adjoint ωNis [Kahn et al. 2021b, Proposition 6.2.1(c)].

Proposition 6.1.4. The functors ωeff and ωeff fit in commutative diagrams

D(MNST)
D(ωNis)

//

L□

��

D(NST)

LA1

��

D(MNST) D(NST)
D(ωNis)
oo

MDMeff
ωeff

// DMeff MDMeff

j□

OO

DMeff
ωeff

oo

jA1

OO

(6.1.5)

Moreover, ωeff is strongly additive and fully faithful, while ωeff is a localisation and
is symmetric monoidal.

Proof. The second diagram of (6.1.2) factors through the first diagram of (6.1.5),
thanks to Theorem 4.1.1 and its analogue for NST (Remark 4.5.4). This yields
the second diagram of (6.1.5) by adjunction. By Proposition A.4.2, the adjunction
(6.1.3) implies that D(ωNis) is right adjoint to D(ωNis), and fully faithful. Hence
ωeff is fully faithful, so that its left adjoint ωeff is a localisation. Since ωNis is
strongly additive [Kahn et al. 2021b, Proposition 6.2.1(d)], so is D(ωNis), hence
ωeff by the diagram.

The symmetric monoidality of ωeff will follow from that of the three other functors
in the diagram. This is already known for the vertical ones (see Corollary 4.2.3
for L□), so we are left to show the monoidality of D(ωNis). By the same trick, the
latter is reduced to the monoidality of D(ω!), which in turn follows from that of ω

(Proposition 2.1.6). □

Using Corollary 4.2.3 and the exactness of τNis (Proposition 3.2.2(2)), we now
get commutative diagrams

D(MNST)
D(ωNis)

//

L□
��

D(NST)

LA1

��

D(MNST) D(NST)
D(ωNis)
oo

MDMeff
ωeff

// DMeff MDMeff

j□

OO

DMeff
ωeff

oo

jA1

OO

(6.1.6)

where ωeff is right adjoint to ωeff and ωeff is symmetric monoidal.

Proposition 6.1.7. The functor ωeff is strongly additive and fully faithful, and hence
ωeff is a localisation.

Proof. This is the same as for Proposition 6.1.4, using the full faithfulness and
strong additivity of ωNis [Kahn et al. 2021b, Proposition 6.2.1(c)]. □
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We finally have the commutative diagram

MDMeff
gm

ιeff
//

τeff,gm

��

MDMeff

τeff

��

MDMeff
gm

ιeff
//

ωeff,gm

��

MDMeff

ωeff

��

DMeff
gm,Nis

ιV
eff
// DMeff

(6.1.8)

in which ιeff and ιeff are the functors from (3.3.2), and ιV
eff is given in the same way

(see Remarks 3.3.3(1)). All rows are fully faithful by Theorem 3.3.1(2) and [Kahn
and Sujatha 2017, (4.5)].

6.2. Relationship with Chow motives. Voevodsky [2000b] constructed a⊗-functor
Choweff

→ DMeff
gm, where Choweff is the category of effective (covariant) Chow

motives. (We refer to [Scholl 1994] or [André 2004] for Chow motives.) This
functor sends the Chow motive h(X) of a smooth projective variety X to MV (X),
where MV

:Cor→DMeff
gm is the canonical functor, and is shown to be fully faithful

when k is perfect in [Beilinson and Vologodsky 2008, 6.7.3]; see also [Kahn and
Sujatha 2017, Theorem 4.4.1(3)].

In fact, Voevodsky’s construction lifts to a ⊗-functor

8eff
V : Choweff

→ DMeff
gm,Nis . (6.2.1)

Indeed, this construction is as follows: Let H(Cor) be the homotopy category
of Cor; its Hom groups are h(X, Y ) = Coker(Cor(X × A1, Y )→ Cor(X, Y )).
Obviously, the natural functor Cor→ DMeff

gm,Nis factors through H(Cor). There is
also a map

h(X, Y )→ CHdim X (X × Y ) (6.2.2)

which sends a finite correspondence to the corresponding cycle class. This map is
an isomorphism when X and Y are projective [Friedlander and Voevodsky 2000,
Theorem 7.1], hence the functor (6.2.1).

Theorem 6.2.3. Write ωeff,gm = ωeff,gm ◦ τeff,gm (see (6.1.8)). There is a unique
functor 8eff

: Choweff
→MDMeff

gm sending h(X) to M(X,∅), whose composition
with ωeff,gm is (6.2.1). It is symmetric monoidal.

(We shall see in Corollary 6.3.9 that 8eff is fully faithful when k is perfect.)
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Proof. For X, Y as above, the inclusions

MCor((X,∅), (Y,∅))⊆ Cor(X, Y ),

MCor((X,∅)⊗□, (Y,∅))⊆ Cor(X ×A1, Y )

are equalities since the modulus conditions become empty (by the definition of the
left-hand sides in Definition-Proposition 1.1.2). Hence we get the refined functor
from the definition of MDMeff in Definition 3.1.1. Any other such functor agrees
with 8eff on objects, but also on morphisms by (6.2.2), hence the uniqueness. Its
symmetric monoidality is obvious. □

6.3. Empty modulus.

Theorem 6.3.1. Let X be a smooth proper k-variety. Then we have natural isomor-
phisms

M(X,∅) ∼−→ ωeff MV (X), M(X,∅) ∼−→ ωeff MV (X),

where ωeff and ωeff are the functors from (6.1.5) and (6.1.6).

Proof. For any M ∈MCor, the inclusion

MCor(M, (X,∅))⊆ Cor(Mo, X)

is an equality by Definition-Proposition 1.1.2. Equivalently, ωNisZV
tr (X)=Ztr(X,∅)

and ωNisZV
tr (X)= Ztr(X,∅). The result now follows from Theorem B.7.5, which

yields natural isomorphisms

L□
◦ D(ωNis) ∼−→ ωeff

◦ LA1
, L□

◦ D(ωNis) ∼−→ ωeff
◦ LA1

that we apply to ZV
tr (X)[0] (recall from Section 6.1 that ωNis and ωNis are exact). □

Definition 6.3.2. We let DMeff
gm,prop (resp. DMeff

prop) be the thick (resp. localising)
subcategory of DMeff

gm,Nis (resp. DMeff) generated by the M(X), where X runs
through the smooth proper k-varieties: it is closed under tensor product.

The following facts are well-known:

Lemma 6.3.3. Suppose k is perfect. Then DMeff
gm,Nis

∼
−→DMeff

gm. Under resolution of
singularities, we have DMeff

gm,prop = DMeff
gm. In general, we have DMeff

gm,prop[1/p] =
DMeff

gm[1/p], where p is the exponential characteristic of k.

Proof. The first fact was recalled in Section 3.1 (see [Voevodsky 2000a, The-
orem 5.7]). The second one follows from the Gysin distinguished triangles of
[Voevodsky 2000b, Proposition 3.5.4]. The last one is proven similarly, by resolution
of singularities à la de Jong–Gabber plus a transfer argument which refines the one
in [Huber and Kahn 2006, beginning of Appendix B]. □
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Corollary 6.3.4. The restriction of ωeff to DMeff
prop is symmetric monoidal and

induces a fully faithful symmetric monoidal functor

ωeff,gm
: DMeff

gm,prop→MDMeff
gm

which is “right adjoint” to the functor ωeff,gm : MDMeff
gm → DMeff

gm of (6.1.8):
namely, this right adjoint is defined on DMeff

gm,prop, with value ωeff,gm. The same
holds when we replace MDMeff

gm by MDMeff
gm and ωeff by ωeff, yielding

ωeff,gm
: DMeff

gm,prop→MDMeff
gm .

In particular, if k is perfect we have adjoint pairs

ωeff,gm :MDMeff
gm[1/p]⇆ DMeff

gm[1/p] : ωeff,gm, (6.3.5)

ωeff,gm :MDMeff
gm[1/p]⇆ DMeff

gm[1/p] : ωeff,gm, (6.3.6)

where p is the exponential characteristic of k, and the same without inverting p
under Hironaka resolution of singularities (in particular, if char k = 0).

Proof. Everything follows from Theorem 6.3.1 and Lemma 6.3.3, except for the
full faithfulness of ωeff,gm, ωeff,gm and the monoidality assertions. The first follow
from Propositions 6.1.4, 6.1.7 and the full embedding DMeff

gm,Nis ↪→ DMeff of
Remarks 3.3.3(1). Next, the monoidality of ωeff yields a natural transformation
on DMeff

ωeff M ⊗ωeff N → ωeff(M ⊗ N ),

and similarly for ωeff. By Theorem 6.3.1, this is an isomorphism when M and N
are of the form M(X) and M(Y ) for X, Y smooth proper, hence in general by the
strong additivity of ωeff and ωeff (Propositions 6.1.4 and 6.1.7 again). □

Definition 6.3.7. Let Z(1) := 8eff(L)[−2], where L ∈ Choweff is the Lefschetz
motive. For i ≥ 0 and M ∈MDMeff

gm, we put Z(i)= Z(1)⊗i and M(i)= M ⊗Z(i).

Corollary 6.3.8. Assume k is perfect. Let X be a smooth proper k-variety of
dimension d , Y ∈MCor a modulus pair, and i, j integers with i ≥ 0. Then we have
a canonical isomorphism

HomMDMeff
gm

(Mgm(Y), Mgm(X,∅)(i)[ j])≃ H 2d+ j (Yo
× X, Z(d + i)),

where the right-hand side is Voevodsky’s motivic cohomology. In particular, this
group is isomorphic to the higher Chow group CHd+i (Yo

× X, 2i− j) and vanishes
if j > 2i , by [Voevodsky 2002, Corollary 2].

The same formula holds in MDMeff
gm if Y ∈MCor (with Mgm instead of Mgm).

Proof. By Theorem 3.3.1(2), we may compute the Hom on the left-hand side
using MDMeff instead of MDMeff

gm. By monoidality (Corollary 6.3.4), ωeff sends
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Z(i) ∈ DMeff
gm to Z(i) ∈MDMeff

gm. By adjunction and Theorem 6.3.1, we then have
an isomorphism

HomMDMeff(M(Y), M(X,∅)(i)[ j])≃ HomDMeff(MV (Yo), MV (X)(i)[ j]).

The result now follows from Poincaré duality for X [Beilinson and Vologodsky
2008, Proposition 6.7.1]. The case of MDMeff

gm is identical. □

Corollary 6.3.9. Assume k is perfect. The functor 8eff
:Choweff

→MDMeff
gm from

Theorem 6.2.3 is fully faithful.

6.4. π0-invariance. For any modulus pair Y ∈MCor, write π0(Y) := (π0(Yo),∅),
where π0(Yo) (“scheme of constants”) is the universal étale k-scheme such that
the projection Yo

→ Spec k factors through π0(Yo). This factorisation induces a
morphism pY : Y→ π0(Y). In contrast to Theorem 6.3.1, we have the following:

Theorem 6.4.1. Let X be smooth and quasi-affine. Then Ztr(X,∅) is □-invariant
(Definition 5.1.3) and, more strongly, “properly π0-invariant”: for any proper
modulus pair Y ∈MCor, we have an isomorphism in MNST

Hom(Ztr(π0(Y)), Ztr(X,∅)) ∼−→ Hom(Ztr(Y), Ztr(X,∅))

induced by pY .

Proof. We may reduce to the case that Yo is connected and (up to extending k) even
geometrically connected. Take Z ∈MCor. It suffices to show that the map

p∗Y :MCor(Z, (X,∅))→MCor(Z ⊗Y, (X,∅)) (6.4.2)

induced by pY is an isomorphism. For any closed point y ∈ Yo, we find that
MCor(Z, (X,∅)) → MCor(Z ⊗ (y,∅), (X,∅)) is injective, hence (6.4.2) is
injective as well.

To show its surjectivity, let us take an elementary modulus correspondence
V ∈MCor(Z ⊗Y, (X,∅)). Let V be the closure of V in Z ×Y × X . We claim
that the image V ′ of V in Z × X is closed and finite surjective over Z. To prove
this claim, consider the commutative diagram

V �
� i

//

π ′

��

π

$$

Z ×Y × X a
//

b
��

Z ×Y

c
��

V ′ �
�

i ′
// Z × X

d
// Z

Since V ∈ MCor(Z ⊗ Y, (X,∅)), ai is proper and surjective. Since the same
is true of c, we find that cai = dπ is proper surjective. This implies that V ′ is
closed and, combined with the surjectivity of π ′, that di ′ is proper [EGA II 1961,
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Corollary 5.4.3]. But di ′ is also quasi-affine (since so is d), hence finite. This
proves the claim.

Now V ′ := V ′ ∩ (Zo
× X) is an element of MCor(Z, (X,∅)). We clearly have

V ⊂ V ′×Yo, and V ′×Yo is irreducible because Y is geometrically irreducible. By
comparing dimensions, we get V = V ′×Yo

= p∗Y (V ′). This proves the surjectivity
of (6.4.2). □

6.5. Inverting the Tate object. In this subsection, we abundantly use the multi-
plicative localisations introduced by Grothendieck for pure motives (inverting the
Lefschetz motive); one may refer to [Kahn 2020, Sections A.2.4 and A.2.5] for a
detailed discussion; see also Section A.2.

Definition 6.5.1. We write MDMgm (resp. MDMgm) for the category obtained from
MDMeff

gm (resp. MDMeff
gm) by⊗-inverting Z(1) (resp. τeffZ(1)) (see Definition 6.3.7),

and similarly for DMgm and DMgm,prop from DMeff
gm and DMeff

gm,prop.

The ⊗-functor 8eff of Theorem 6.2.3 extends canonically to a ⊗-functor

8 : Chow→MDMgm, (6.5.2)

where Chow is the category of (all) Chow motives.

Proposition 6.5.3. (1) The categories MDMgm and MDMgm are Karoubian ⊗-
triangulated categories.

(2) The functor τgm :MDMgm→MDMgm induced by τeff,gm is ⊗-triangulated
and fully faithful.

(3) The functor 8 is symmetric monoidal, and fully faithful if k is perfect. For
any smooth projective variety X , the motive M(X,∅) is strongly dualisable in
MDMgm and in MDMgm.

Proof. For (1), we use Voevodsky’s sufficient condition [Kahn 2020, Proposi-
tion A.31] that the switch endomorphism of Z(1)⊗2 is the identity in MDMeff

gm
and MDMeff

gm, which holds because this is true for the Lefschetz motive L in
Choweff. The Karoubian assertion follows from Lemma A.2.2(1). For (2), we apply
Lemma A.2.2(2) together with Theorem 5.2.3. We proceed similarly for (3), with
Corollary 6.3.9; the strong dualisability statement holds because Chow is rigid. □

Proposition 6.5.4. The ⊗-functors ωeff,gm, ωeff,gm, ωeff,gm and ωeff,gm considered
in Corollary 6.3.4 induce ⊗-functors

MDMgm
ωgm
−−→ DMgm, MDMgm

ωgm
−−→ DMgm,

DMgm,prop
ωgm

−−→MDMgm, DMgm,prop
ωgm
−−→MDMgm .



MOTIVES WITH MODULUS, III: THE CATEGORIES OF MOTIVES 155

The functors ωgm and ωgm are fully faithful; when k is perfect, the adjoint pairs
(6.3.5) and (6.3.6) of Corollary 6.3.4 induce adjoint pairs

ωgm :MDMgm[1/p]⇆ DMgm : ω
gm
[1/p], (6.5.5)

ωgm :MDMgm[1/p]⇆ DMgm : ω
gm
[1/p]. (6.5.6)

Under resolution of singularities in characteristic p, we can drop the affixes [1/p].

Proof. The functors of Corollary 6.3.4 induce the said functors because of their
monoidality, which also implies the monoidality of these functors. The full faithful-
ness of ωgm and ωgm is shown as in the previous proof. The adjunction identities of
(6.3.5) and (6.3.6) are preserved by ⊗-inverting Z(1), which yields corresponding
adjunction identities for (6.5.5) and (6.5.6). □

As is well-known, the ⊗-category DMgm[1/p] (more generally, the category
DMgm,prop) is rigid. By contrast, there is evidence that this does not hold for
MDMgm. Unfortunately, we have to make two assumptions: one is the analogue of
Voevodsky’s cancellation theorem [2010a] and the other is that “the derived Suslin
complex is quasi-isomorphic to the naïve Suslin complex”.

Proposition 6.5.7. If the functor MDMeff
gm→MDMgm is fully faithful and if the

base change morphism (B.7.4) is an isomorphism as in the end of Example B.7.9,
the ⊗-category MDMgm is not rigid. More precisely, M(□(2)) is not dualisable,
with □(2)

= (P1, 2∞).

Proof. Let M ∈MDMgm, having a dual M∗. Suppose that ωgm(M) = 0. By the
monoidality of ωgm, we also have ωgm(M∗)≃ ωgm(M)∗ = 0. Equivalently,

MDMgm(M∗, ωgm N )= 0 for all N ∈ DMgm .

Suppose that N also has a dual N ∗. Applying the above to N ∗ instead of N , and
using this time the monoidality of ωgm, we find

0=MDMgm(M∗, (ωgm N )∗)=MDMgm(ωgm N , M).

Take in particular N = Z; by the assumption of full faithfulness and by Theo-
rems 5.2.6 and 6.3.1, we get

H0
Nis(k, RC□

∗
(M)k)= 0.

Take for example M = fibre(M(□(2))→ Z): clearly, ωgm(M) = 0. Under the
assumption on the base change morphism (B.7.4), we can replace RC□

∗
(M) by the

naïve Suslin complex C□
∗

(M) used in [Rülling and Yamazaki 2016]. Applying its
Theorem 1.1 with S = Spec k, C = P1, D = 2∞, we find

H0
Nis(k, RC□

∗
(□(2))k)= H0

Nis(k, C□
∗

(□(2))k)

= H S
0 (P1/k, 2∞)= Pic(P1, 2∞)= Z⊕ k,
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where the last term is the relative Picard group. Thus we get an isomorphism
H0

Nis(k, RC□
∗
(M)k)≃ k, a contradiction. (Note that the morphism □(2)

→ 1 is split
by the 0-section 1→□(2).) □

7. Some computations

For simplicity, we write M and M for Mgm and Mgm in this section.

7.1. The tautological isomorphisms and distinguished triangles. These are those
which come from the definitions of MDMeff

gm and MDMeff:

Mayer–Vietoris: one has a distinguished triangle in MDMeff
gm (resp. MDMeff

gm):

M(T (00))→ M(T (01))⊕M(T (10))→ M(T (11))
+1
−→

for any MV-square (resp. MV-square) T .

Tensor product: one has canonical isomorphisms M(X ⊗Y)≃ M(X )⊗M(Y)

for any X ,Y in MCor (resp. MCor).

□-invariance: the morphism M(□)
M(p)
−−→Z=:M(1) is invertible, where p :□→1

is the structural map.

7.2. An elementary computation. As a special case, in the situation described in
Example 1.3.11, one has a distinguished triangle in MDMeff

gm

M(X, D′)→ M(X, D1)⊕M(X, D2)→ M(X, D)
+1
−→ . (7.2.1)

Let us use this example to reduce the computation of the motive of (P1, D) to
its essential parts, where D is an effective divisor. Generally, for a modulus pair
X ∈MCor, let us write Z̃tr(X )= Ker(Ztr(X )→ Ztr(1)= Z); in the presence of a
0-cycle of degree 1 on X o, this is a direct summand of Ztr(X ). We define M̃(X ) as
the class of Z̃tr(X ) in MDMeff

gm, so that we have a distinguished triangle

M̃(X )→ M(X )→ Z
+1
−→

split in the presence of a 0-cycle of degree 1.
If X = (P1, D), write M̃(X )=:m(D) for simplicity. Then m(∅)= Z(1)[2] and

m(∞)= 0. Let D1, D2 have disjoint supports. Choose a 0-cycle of degree 1 on X o.
(We can take a rational point unless k is finite.) It splits off a distinguished triangle

m(D1+ D2)→ m(D1)⊕m(D2)→ Z(1)[2] +1
−→

from the distinguished triangle (7.2.1) with D=∅. But the morphism m(Di )→m(∅)

is 0 if k is perfect by Corollary 6.3.8 (if Di contains a rational point p, an elementary
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proof is that it factors through m(p) ≃ m(∞) = 0). Thus this triangle splits and
yields a noncanonical isomorphism

m(D1+ D2)≃ m(D1)⊕m(D2)⊕Z(1)[1].

Suppose k is algebraically closed, for simplicity. If D =
∑r

i=1 ni pi with the pi

distinct points, we get inductively an isomorphism

m(D)≃

r⊕
i=1

m(ni∞)⊕ (r − 1)Z(1)[1].

7.3. Motives of vector bundles and projective bundles. Let Y ∈MCor be a modu-
lus pair, and let E be a vector bundle of rank n > 0 on Y , with associated projective
bundle P(E). We define modulus pairs E and P with total spaces E and P(E) by
pulling back Y∞; the resulting morphisms E→Y , P→Y are minimal in the sense
of Definition 1.2.3.

(There may be more general notions of vector and projective bundles, but we do
not consider them here.)

Remark 7.3.1. Applying Corollary 6.3.8 with X = Spec(k) and j = 2i , we get
CHi(Yo)≃HomMDMeff

gm
(M(Y),Z(i)[2i]). In particular, if P(t1, . . . , tn)∈Z[t1, . . . , tn]

is a homogeneous polynomial of weight i (the weight of ts being s), then the Chern
classes of E yield a morphism in MDMeff

gm

P(c1(E), . . . , cn(E)) : M(Y)→ Z(i)[2i].

Theorem 7.3.2. Assume k is perfect, and suppose Y is smooth. The projection
p̄ : P→ Y yields a canonical isomorphism in MDMeff

gm

ρY : M(P) ∼−→

n−1⊕
i=0

M(Y)(i)[2i]. (7.3.3)

The same holds in MDMeff
gm if Y ∈MCor (with M instead of M).

Remark 7.3.4. If char k = 0 or dimY ≤ 3, the assumption on Y is harmless in view
of resolution of singularities.

Proof. We follow the method of Voevodsky [2000b, proof of Proposition 3.5.1],
with a simplification and a complication. The complication is that Voevodsky’s
construction of the corresponding morphism in DMeff

gm uses diagonal maps, which
cause a problem here (see Remark 2.1.4). We bypass this problem by using the
morphism

1̃ : P→ P ⊗ (P(E),∅) (7.3.5)

induced by the diagonal inclusion

Po ↪→ Po
×P(E). (7.3.6)
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Here, the modulus condition is obviously verified. Using the morphisms

M(P(E),∅)→ Z(i)[2i]

induced by the powers of c1(OP(E)(1)) (see Remark 7.3.1), we get morphisms

ρi
Y : M(P)

M(1̃)
−−−→ M(P)⊗M(P(E),∅)→ M(Y)⊗Z(i)[2i], (7.3.7)

whence ρY . To prove that it is an isomorphism, we first consider the case where
the vector bundle E is trivial. We then have an isomorphism of modulus pairs

P ≃ Y ⊗ (Pn−1,∅),

and hence a corresponding isomorphism of motives. By using either Theorem 6.3.1
or, more directly, the functor 8eff of Theorem 6.2.3 and the computation of the
Chow motive of Pn−1, one has a canonical isomorphism

θ :

n−1⊕
i=0

Z(i)[2i] ∼−→ M(Pn−1,∅).

Tensoring it with M(Y) and composing with ρY , we get a morphism

n−1⊕
i=0

M(Y)(i)[2i] →
n−1⊕
i=0

M(Y)(i)[2i],

which is seen to be the identity by definition of θ and ρY .
In general, we argue by induction on the number m of terms of an open cover

of Y trivialising E . For notational simplicity, write 4(Y) for the right-hand side
of (7.3.3). Write Y = Y ′ ∪U , where E is trivial over U and Y ′ has an (m−1)-
fold trivialising open cover. Provide Y ′, U and Y ′ ∩U with the induced modulus
structures Y ′, U , Y ′ ∩U , and pull P back similarly. We claim that the diagram of
distinguished triangles (with obvious notation)

M(P|Y ′∩U ) //

��

M(P|Y ′)⊕M(P|U ) //

��

M(P) //

��

M(P|Y ′∩U )[1]

��

4(Y ′ ∩U ) // 4(Y ′)⊕4(U ) // 4(Y) // 4(Y ′ ∩U )[1]

(7.3.8)

commutes, which will conclude the proof. The commutations of the left and
middle square follow from the naturality of ρ. For the right one,4 consider the
morphisms f :Y ′∩U→Y ′⊕U and fP :P|Y ′∩U→P|Y ′⊕P|U and their associated
motives M[ f ], M[ fP ] (see Definition 3.1.1). We also have an obviously defined

4We thank one of the referees for stressing this issue.
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motive 4[ f ], which is a canonical cone of the left bottom map. Observe now that
(7.3.6) induces morphisms

Po
|Y ′ ↪→ Po

|Y ′ ×P(E), Po
|U ↪→ Po

|U ×P(E), Po
|Y ′∩U ↪→ Po

|Y ′∩U ×P(E),

which in turn induce morphisms analogous to (7.3.5), a morphism in K b(MCor)

[ fP ] → [ f ]⊗ [(P(E),∅)]

compatible with (7.3.5), and finally a morphism ρ f : M[ fP ] → 4[ f ] analogous
to ρY (see (7.3.7)). The Mayer–Vietoris property says that there are canonical
horizontal isomorphisms in the diagram

M[ fP ]
∼
//

ρ f

��

M(P)

ρY

��

4[ f ] ∼
// 4(Y)

Since the Chern class c1(OP(E)(1)) restricts to those of c1(OP(E |V )(1)) for
V = Y ′, U,Y ′ ∩ U , this diagram commutes. Therefore we may replace M(P)

and 4(Y) by M[ fP ] and 4( f ) in (7.3.8). But then the commutation is obvious. □

Question 7.3.9. When E is trivial, the isomorphism E ≃ Y ⊗ (An,∅) yields an
isomorphism M(E) ∼−→ M(Y)⊗M(An,∅). Can one extend this isomorphism to
the general case?

7.4. Further results. In this subsection, we present results which were obtained
(in anticipation of the release of this paper!) in different works.

Proposition 7.4.1 (toric invariance [Kelly and Saito 2019, Lemma 10]). For any
positive integer n ≥ 1, consider the standard closed embedding Pn−1

→ Pn

(setting P0
:= {∗}), and the proper modulus pair (Pn, Pn−1). Then the projection

M(Pn, Pn−1)→ Z is an isomorphism in MDMeff
gm.

Kelly and Saito [2019] also provide a very concise proof of a modulus version
of [Voevodsky 2000b, Proposition 3.5.2]. Recall from [Saito 2020] the following
definition:

Definition 7.4.2. A modulus pair (X ,X∞) is said to be log smooth (in short: ls) if
X is smooth and |X∞| is a simple normal crossing divisor.

Theorem 7.4.3 (smooth blowup triangle with modulus). Let X ∈MCor be an ls
modulus pair. Let i : Z → X be an ambient minimal morphism with ı̄ : Z → X a
closed immersion such that Z is smooth. Assume moreover that i is transversal
(see [Kelly and Saito 2019, Definition 7] for the definition of transversality). Let
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π :BlZ (X)→ X be the blowup of X along Z , and ı̄ ′ : E→BlZ (X) the exceptional
divisor. Set

BlZ (X) := (BlZ (X), π∗X∞), E := (E, ı̄ ′∗BlZ (X)∞).

Note that the resulting morphisms π : BlZ (X) → X , i ′ : E → BlZ (X) and
π |E : E → Z are minimal, where π |E is the restriction of the natural morphism
E→ X.

Then there exists a distinguished triangle in MDMeff (hence in MDMeff
gm) of the

form
M(E)

i ′⊕−π |E
−−−−−→ M(BlZ (X))⊕M(Z)

π⊕i
−−→ M(X)

+1
−→ .

Matsumoto [2018] established the following interesting distinguished triangle
in MDMeff, which lifts the classical Gysin triangle when the closed subset is of
codimension 1 (see Remark 7.4.6).

Theorem 7.4.4. Let (X , X∞) be an ls modulus pair, and let Z ⊂ X be an effective
Cartier divisor which is integral and smooth. Assume that Z is not contained in X∞,
and that the support of the divisor X∞+ Z is a strict normal crossing divisor on X.
Set Z∞ := X∞×X Z.

Then one has the following distinguished triangle in MDMeff:

M(X , X∞+ Z)→ M(X , X∞)→ M(Z , Z∞)(1)[2] +1
−→, (7.4.5)

where [ – ](1) denotes the Tate twist from Definition 6.3.7.

Remark 7.4.6. Applying the triangulated functor ωeff to the distinguished triangle
(7.4.5), we recover the Gysin triangle in DMeff:

MV (Xo
− |Zo

|)→ MV (Xo)→ MV (Zo)(1)[2] +1
−→ . (7.4.7)

Remark 7.4.8. In [Matsumoto 2018], under the same assumption as Theorem 7.4.4,
a second lifting of (7.4.7) is constructed in MDMeff:

M(X − |Z∞|)→ M(X)→ Th(NZ X, op)
+1
−→,

where Th(NZ X, op) is a suitable “Thom space” in the modulus setting, whose
definition we do not recall here.

Appendix A: Categorical toolbox, III

A.1. Monoidal categories. See also [MacLane 1998, VII.1]. Recall that a monoidal
category (C,⊗) is closed if ⊗ has a right adjoint Hom. We shall use the following
lemma several times:
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Lemma A.1.1. Let C and D be two closed monoidal categories, and let u : C→ D
be a lax ⊗-functor; this means that we have a natural transformation

u X ⊗ uY → u(X ⊗ Y ). (A.1.2)

Assume that u has a right adjoint v. Then for any (X, Y ) ∈ C × D, there is a
canonical morphism

HomC(X, vY )→ v HomD(u X, Y )

bivariant in (X, Y ), which is an isomorphism if (A.1.2) is a natural isomorphism.

Proof. Applying u to the evaluation morphism HomC(X, vY )⊗ X→ vY and using
the counit of the adjunction, we get a composite morphism

u HomC(X, vY )⊗ u X→ uvY → Y,

hence a morphism
u HomC(X, vY )→ HomD(u X, Y )

and finally a morphism

HomC(X, vY )→ v HomD(u X, Y ),

which by Yoneda’s lemma is an isomorphism when (A.1.2) is. □

A.2. Categories with suspension. See also [Kashiwara and Schapira 2006, Exer-
cise 11.1; Kahn 2020, Section A.2.4]. A category A provided with an endofunctor
L of A is called a category with suspension. They form a 2-category as in [Kahn
2020, Definition A.25]: a 1-morphism is a functor with a natural isomorphism of
commutation with the suspensions, and a 2-morphism is the “obvious” notion (it
will not be used in this paper). We say that L is invertible if it is a self-equivalence.
By [Kahn 2020, Lemma A.26], the full embedding of the 2-category of categories
with invertible suspension into that of all categories with suspension has a 2-left
adjoint, which sends (A, L) to (A[L−1

], L̃), where A[L−1
] has objects (A, n) for

A ∈A, n ∈ Z, morphisms

A[L−1
]((A, m), (B, n))= lim

−−→
k+m≥0, k+n≥0

A(Lk+m A, Lk+n B) (A.2.1)

and L̃(A; n)= (A, n+ 1). This yields:

Lemma A.2.2. Let (A, L), (A′, L ′) be two categories with suspension.

(1) If A is Karoubian, so is A[L−1
].

(2) Let F : (A, L)→ (A′, L ′) be a 1-morphism of categories with suspension. If F
is full (resp. faithful), so is the induced 1-morphism F̃ :A[L−1

] →A′[L ′−1
].
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Proof. In view of formula (A.2.1), (2) is obvious. For (1), let e = e2 be an
endomorphism of (A, n) ∈A[L−1

]. By (A.2.1) again, there exists k≫ 0 such that
n+ k ≥ 0 and some ek = e2

k ∈ End(Ln+k A) mapping to e via the canonical functor
ρ :A→A[L−1

]. Let B = Im ek ; then (B,−k) is an image of e. □

A.3. Brown representability and compact generation. Recall the following defini-
tions and results of Neeman:

Definition A.3.1. A triangulated category T has the Brown representability property
if

(1) it is cocomplete,

(2) any homological functor H : T op
→ Ab which converts infinite direct sums

into products is representable.

Lemma A.3.2 [Kashiwara and Schapira 2006, Corollary 10.5.3]. If T has the
Brown representability property, it is complete; a triangulated functor F : T → T ′

has a right adjoint G if and only if it is strongly additive (Definition 3.2.1), and G
is triangulated. □

Example A.3.3. Suppose T is cocomplete and let R⊂T be a localising subcategory:
R is triangulated and closed under direct sums. Then the inclusion functor R ↪→ T
and the localisation functor T → T /R are strongly additive [Bökstedt and Neeman
1993, Lemma 1.5].

Definition A.3.4. Let T be a triangulated category.

(a) An object X ∈ T is compact if the functor Y 7→ T (X, Y ) is strongly additive.
We write T c for the thick subcategory of T consisting of compact objects.

(b) A subset X of Ob(T ) generates T if its right orthogonal is 0.

(c) T is compactly generated if it is cocomplete and generated by a (small) set of
compact objects.

(d) Given a subset X of Ob(T ), the thick hull of X in T is the smallest triangulated
subcategory of T which contains X and is closed under direct summands.

Remark A.3.5. Suppose that T is cocomplete. Then a set X ⊂ Ob(T ) of compact
objects generates T in the sense of Definition A.3.4(b) if and only if the smallest
localising subcategory of T containing X is equal to T [Schwede and Shipley 2003,
Lemma 2.2.1].

Example A.3.6. Let A be an essentially small additive category and B =Mod –A.
Then T = D(B) is compactly generated and K b(A) ∼−→ T c [Kahn and Sujatha 2017,
Proposition A.4.1].

We have the following very useful result of Beilinson and Vologodsky [2008,
Proposition in §1.4.2] (see also their §1.2):
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Theorem A.3.7. Let T be a cocomplete triangulated category and let S ⊆ T be a
localising subcategory which is generated by a set of compact objects of T . Then
the localisation functor T → T /S has a right adjoint whose essential image is the
right orthogonal S⊥ of S. In particular, S = T if and only if S⊥ = 0.

The two main results on compactly generated triangulated categories are as
follows:

Theorem A.3.8 [Neeman 1996, Theorem 4.1]. Any compactly generated trian-
gulated category has the Brown representability property. In particular, this is
the case for the unbounded derived category of a Grothendieck abelian category
[Kashiwara and Schapira 2006, Theorem 14.3.1].

Theorem A.3.9 [Neeman 1992, Theorem 2.1]. Let T be a compactly generated
triangulated category. Let S ⊂ T be a localising subcategory generated by a set of
compact objects of T . Then T /S is compactly generated and compact objects of T
remain compact in T /S; the induced functor T c/Sc

→ (T /S)c is fully faithful and
(T /S)c is the thick hull of T c/Sc in T /S.

Corollary A.3.10 [Kahn and Sujatha 2017, Theorem A.2.6]. In the situation of
Theorem A.3.9, the localisation functor T → T /S has a right adjoint, which also
has a right adjoint.

We shall also use the following lemma of Neeman, a special case of [Kahn and
Sujatha 2017, Lemma 4.4.5]:

Lemma A.3.11. Let T be a cocomplete triangulated category and let X ⊂Ob(T ) be
a set of compact objects. If X generates T (see Definition A.3.4 and Remark A.3.5),
then the thick hull of X is T c.

A.4. Unbounded derived categories: complements.

Theorem A.4.1. Let A be an additive category.

(a) Mod –A is a Grothendieck category with a set of projective generators.

(b) If A is monoidal, its tensor structure canonically extends to Mod –A through
the additive Yoneda functor, and provides Mod –A with the structure of a
closed additive monoidal category.

(c) The ⊗-structure of A extends uniquely to a ⊗-triangulated structure on the
homotopy category K b(A).

(d) The ⊗-structure of Mod –A has a total left derived functor, which is strongly
additive and provides D(Mod –A) with a closed ⊗-triangulated structure.

(e) If u :A→ B is a monoidal functor, u! :Mod –A→Mod –B is monoidal, and
so are the functors

K b(u) : K b(A)→ K b(B) and Lu! : D(Mod –A)→ D(Mod –B).
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Proof. (a) See, e.g., [André and Kahn 2002, Proposition 1.3.6] for the first statement;
the projective generators are given by E = {y(A) | A ∈A}.

(b) See [Mazza et al. 2006, Definition 8.2] or [Kahn and Yamazaki 2013, A.8].

(c) This is easy (define ⊗ termwise).

(d) This applies to any right exact covariant bifunctor T :Mod –A×Mod –A→ C,
where C is abelian and cocomplete: by (a) and [Kashiwara and Schapira 2006,
Theorem 14.4.3], K (Mod –A) has enough homotopically projective objects (K-
projective in the sense of Spaltenstein [1988]), which means that the localisation
functor λ : K (Mod –A)→ D(Mod –A) has a left adjoint γ . Then the formula

LT (C, D) := λT (γ C, γ D)

provides the desired total left derived functor. By Example A.3.3, λ and γ are
strongly additive; thus if T is strongly additive, so is LT . Similarly, a left exact
contravariant/covariant bifunctor S has a total right derived functor RS given by
the formula

RS(C, D)= λS(γ C, ρD),

where ρ is right adjoint to λ (apply (a) and [Kahn et al. 2021b, Theorem A.2.1(b)]).
In the case T =⊗Mod –A, S = HomMod –A, these formulas immediately imply that
LT is left adjoint to RS, which gives a second justification of the strong biadditivity
of ⊗Mod –A.

(e) This is [Kahn and Yamazaki 2013, A.12] for the first statement; the second one
is easy and the third follows from the universal property of left derived functors as
Kan extensions. □

Proposition A.4.2. Let G : A ⇆ B : F be a pair of adjoint functors between
Grothendieck abelian categories, with G exact. Then RF is right adjoint to
RG = D(G). If moreover F is fully faithful, then so is RF , and D(G) is a
localisation. If , on the other hand, G is fully faithful and F is exact, then D(G) is
fully faithful.

Proof. The first statement is a special case of [Kashiwara and Schapira 2006,
Theorem 14.4.5]. By [Kahn et al. 2021a, Lemma A.3.1], the next ones are equivalent
to saying that the counit morphism D(G)RF ⇒ IdA is an isomorphism, which
follows from [Kahn et al. 2021b, Lemma A.2.4]. In the last case, the full faithfulness
of D(G) is proven dually since D(FG)⇒ D(F)D(G) is an isomorphism, again
by [Kahn et al. 2021b, Lemma A.2.4]. □

We shall also need the following elementary lemma, which we borrow from the
Stacks project:
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Lemma A.4.3 [Stacks 2005–, Lemma 13.30.2]. Let F :A→ B and G : B→A be
functors of abelian categories such that F is a right adjoint to G. Let K ∈ D(A)

and let M ∈ D(B). If RF is defined at K and LG is defined at M , then there is a
canonical isomorphism

D(B)(M, RF(K ))≃ D(A)(LG(M), K ).

Appendix B: Cubical objects and intervals

B.1. Cubical objects and associated complexes. We follow [Levine 2009] but we
omit the use of permutations and involutions. Let Cube be the subcategory of Sets
which has as objects n = {0, 1}n for n ∈ Z≥0 (with 0 = ∗ the terminal object of
Sets) and whose morphisms are generated by

pn
i : n→ n− 1 (n ∈ Z>0, i ∈ {1, . . . , n}),

δn
i,ε : n→ n+ 1 (n ∈ Z≥0, i ∈ {1, . . . , n+ 1}, ε ∈ {0, 1}),

where pn
i omits the i-th component and δn

i,ε inserts ε at the i-th component.

Definition B.1.1. Let A be a category. A covariant (resp. contravariant) functor
A : Cube→A is called a cocubical (resp. cubical) object in A.

Remark B.1.2. The definition of Cube in [Levine 2009] is different from ours.
(It also contains other morphisms called permutations and involutions.) However,
concerning the following lemma, the same proof as in [loc. cit.] works in our more
basic setting.

Lemma B.1.3. Let A : Cubeop
→A be a cubical object in a pseudoabelian cate-

gory A. Put An := A(n).

(1) We have well-defined objects

Adeg
n := Im

(
⊕pn∗

i :

n⊕
i=1

An−1→ An

)
∼
−→ Im

(
⊕δ

(n−1)∗
i,1 : An→

n⊕
i=1

An−1

)
,

Aν
n:= Ker

(
⊕δ

(n−1)∗
i,1 : An→

n⊕
i=1

An−1

)
∼
−→ Coker

(
⊕pn∗

i :

n⊕
i=1

An−1→ An

)

in A, and Aν
n ⊕ Adeg

n
∼
−→ An holds.

(2) Let dn :=
∑n+1

i=1 (−1)i (δn∗
i,1− δn∗

i,0) : An+1→ An . This makes A• a complex, of
which Aν

•
and Adeg

• are subcomplexes. The two complexes A•/Adeg
• and Aν

•
are

isomorphic.

Proof. See [Levine 2009, Lemmas 1.3 and 1.6]. □
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Remark B.1.4. We have obvious dual statements of Lemma B.1.3 for cocubical
objects. We state them here for later use. Let A : Cube→A be a cocubical object
in a pseudoabelian category A. Put An

:= A(n).

(1) We have well-defined objects

An
deg := Im

(
⊕δ

(n−1)
i,1∗ :

n⊕
i=1

An−1
→ An

)
∼
−→ Im

(
⊕pn

i∗ : An
→

n⊕
i=1

An−1
)

,

An
ν := Ker

(
⊕pn

i∗ : An
→

n⊕
i=1

An−1
)
∼
−→ Coker

(
⊕δ

(n−1)
i,1∗ :

n⊕
i=1

An−1
→ An

)
,

in A, and An ∼
−→ An

ν ⊕ An
deg holds.

(2) Let dn
:=

∑n+1
i=1 (−1)i (δn

i,1∗− δn
i,0∗) : An

→ An+1. This makes A• a complex,
of which A•ν and A•deg are subcomplexes. The two complexes A•/A•deg and A•ν
are isomorphic.

Remark B.1.5. Let A be pseudoabelian and provided with an additive unital
symmetric monoidal structure ⊗. Let A : Cube→ A be a cocubical object, and
suppose that A is strict monoidal (i.e., A(m× n)= A(m)⊗ A(n)).

(1) A0
= A0

ν = 1 is the unit object of A, and A0
deg = 0. For n > 0, combining

A1
= A1

ν ⊕ A1
deg and An

= A1
⊗ · · ·⊗ A1, we get a decomposition

An
ν = A1

ν ⊗ · · ·⊗ A1
ν, An

deg =
⊕
σ ̸≡ν

A1
σ(1)⊗ · · ·⊗ A1

σ(n),

where σ ranges over all maps {1, . . . , n} → {ν, deg} except for the constant
map with value ν.

(2) A• has a canonical comonoid structure where the counit and comultiplication
are respectively given by

π• : A•→ A0
[0] = 1, πn

= 0 (n > 0) and π0
= IdA0, (B.1.6)

1• : A•→ Tot(A•⊗ A•), (B.1.7)

where 1n
=

∑
p+q=n 1p,q with 1p,q

: Ap+q =
−→ Ap

⊗ Aq . In view of (1), we
see that A•ν inherits the same structure:

π•ν : A•ν→ 1, 1•ν : A•ν→ Tot(A•ν ⊗ A•ν).

B.2. Interval structure. Let A be a unital symmetric monoidal category. Recall
from Voevodsky [Voevodsky 1996] the notion of interval:

Definition B.2.1. Let 1 be the unit object of A. An interval in A is a quintuple
(I, p, i0, i1, µ), with I ∈A, p : I → 1, i0, i1 : 1→ I , µ : I ⊗ I → I , verifying the
following identities:
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pi0 = pi1 = 11,

µ ◦ (1I ⊗ i0)= µ ◦ (i0⊗ 1I )= i0 p,

µ ◦ (1I ⊗ i1)= µ ◦ (i1⊗ 1I )= 1I .

Definition B.2.2. Given an interval (I, p, i0, i1, µ) in A, we define a strict monoidal
cocubical object A : Cube→A by

An
= I⊗n, pn

i∗ = 1⊗(i−1)
I ⊗ p⊗ 1⊗(n−i)

I , δn
iε∗ = 1⊗(i−1)

I ⊗ iε⊗ 1⊗(n−i)
I

(this does not use the morphism µ). When A is pseudoabelian, we write I •, I •ν , I •deg
for the associated complexes introduced in Remark B.1.4.

By definition and Remark B.1.5, we have

I n
ν = Iν ⊗ · · ·⊗ Iν with Iν = Ker(I p

−→ 1).

Remark B.2.3. Conversely, Levine [2009] introduced a notion of extended cocu-
bical object A : ECube→ A, where ECube is the smallest symmetric monoidal
subcategory of Sets that contains Cube and the morphism

µ̃ : 2→ 1, (a, b) 7→ ab.

Given such a (strict monoidal) extended cocubical object A, we may define an
interval (I, p, i0, i1, µ) in A by

I = A(1), p = p1
1∗, i0 = δ0

1,0∗, i1 = δ0
1,1∗, µ= µ̃∗.

Such intervals are not arbitrary, as µ makes I a commutative monoid (because
so does µ̃ with 1). However, all intervals encountered in practice are commutative
monoids, including in [Voevodsky 1996; 2000b] and here (Lemma 5.1.1).

Definition B.2.4. (a) An object X ∈ A is I -local at Y ∈ A5 if p induces an
isomorphism A(Y, X) ∼−→ A(Y ⊗ I, X); X is I -local if it is I -local at Y for
any Y ∈A. If A is closed, it is equivalent to ask for the morphism

X p∗
−→ Hom(I, X)

to be an isomorphism.

(b) A morphism f :Y→ Z in A is called an I -equivalence if A(Z , X)
f ∗
−→A(Y, X)

is an isomorphism for any I -local X .

Lemma B.2.5. Let X, Y ∈A.

(1) If X is I -local at Y , the maps 1Y ⊗ i∗0 , 1Y ⊗ i∗1 :A(Y ⊗ I, X)→A(Y, X) are
equal.

5This notion is useful in [Saito 2020].
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(2) If the maps 1Y⊗I ⊗ i∗0 , 1Y⊗I ⊗ i∗1 :A(Y ⊗ I ⊗ I, X)→A(Y ⊗ I, X) are equal,
then X is I -local at Y .

(3) X is I -local if and only if the maps i∗0 , i∗1 : A(Y ⊗ I, X) → A(Y, X) are
equal for all Y ∈ A (equivalently when A is closed: if and only if the maps
i∗0 , i∗1 : Hom(I, X)→ X are equal).

Proof. For (2), the last two identities of Definition B.2.1 imply that

p∗i∗0 :A(Y ⊗ I, X)→A(Y ⊗ I, X)

is the identity, hence the claim since i∗0 p∗ is also the identity. Now (3) follows from
(1) and (2). □

Remark B.2.6. Actually, Definition B.2.1 is more general than the definition
in [Voevodsky 1996, Section 2.2] or [Morel and Voevodsky 1999, Section 2.3,
Definition 3.1]. There, the ⊗-category A is a site with products (in [Voevodsky
1996]) or the category of sheaves on a site (in [Morel and Voevodsky 1999]), and
the tensor structure is the one given by products of objects or of sheaves. Voevodsky
[1996, Section 2.2] constructs a universal cosimplicial object, whose general term is
I n . Unfortunately, Voevodsky’s formulas implicitly use diagonal morphisms which
are not available in general ⊗-categories, in particular in the ones we use here (see
Remark 2.1.4). So, while one can develop a cubical theory out of Definition B.2.1,
we do not know if this definition is sufficient to develop a simplicial theory.

B.3. Homotopy equivalences.

Proposition B.3.1. Let A be a pseudoabelian ⊗-category, provided with an inter-
val I . Let I • be as in Definition B.2.2. Then the morphisms

1⊗ p1
1∗ : I

•
⊗ I 1
[0] → I •, (B.3.2)

1⊗ p1
1∗ : I

•

ν ⊗ I 1
[0] → I •ν , (B.3.3)

1•ν : I
•

ν → Tot(I •ν ⊗ I •ν ) (B.3.4)

are homotopy equivalences.

Proof. For (B.3.2), since p1
1δ

0
1,0 = 10, the composition (1⊗ p1

1∗)(1⊗ δ0
1,0∗) : I

•
→ I •

is the identity. Let sn
: I n+1 ∼

−→ I n
⊗I 1 be the tautological isomorphism. The identities

snδn
j,ε∗ =

{
(δn−1

j,ε∗ ⊗ 1)sn−1 if j < n+ 1,
1I n ⊗ iε if j = n+ 1

yield
sndn
− (dn−1

⊗ 1)sn−1
= 1⊗ i1− 1⊗ i0.

Then the composition

σ n+1
: I n+1

⊗ I 1 sn
⊗1
−−−→ I n

⊗ I 1
⊗ I 1 1⊗µ
−−→ I n

⊗ I 1
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yields a chain homotopy from 1⊗ (δ0
1,0∗ p1

1∗) to 1⊗ 1, which concludes the proof.
Now (B.3.3) is also a homotopy equivalence as a direct summand of (B.3.2).

Consider (B.3.4). By induction and the homotopy equivalence (B.3.2), we find
that for any q > 0,

Id⊗ (p1
1 p2

1 · · · p
q
1 )∗ : I •⊗ I q

[0] → I • (B.3.5)

is a homotopy equivalence. Since I q
ν is a direct summand of I q contained in

Ker((p1
1 p2

1 · · · p
q
1 )∗) by Remark B.1.4, we find that I •⊗ I q

ν [0] is contractible for
q > 0. The same is true of I •ν ⊗ I q

ν [0] because it is a direct summand of I •⊗ I q
ν [0].

Lemma B.3.6(2) below then shows that Tot(1 ⊗ π•) : Tot(I •ν ⊗ I •ν ) → I •ν is a
homotopy equivalence, where π• is as in (B.1.6). Since Tot(1⊗π•) is left inverse
to 1•ν , this shows that 1•ν is a homotopy equivalence. □

Lemma B.3.6. Let A be an additive category. Let us call a double complex S•,• in
A locally finite if {p ∈ Z | S p,n−p

̸= 0} is a finite set for each n ∈ Z.

(1) Let S•,• be a locally finite double complex in A. Suppose that the single
complex S•,q is contractible for each q ∈ Z. Then Tot(S•,•) is contractible.

(2) Let f •,• : S•,•→ T •,• be a morphism of locally finite double complexes in A. If
f •,q is a homotopy equivalence for each q∈Z, then so is Tot( f •,•) :S•,•→T •,•.

Proof. (1)6 Let us write d S
1 : S

•,•
→ S•+1,•, d S

2 : S
•,•
→ S•,•+1 for the differentials

of S•,•, and set d S
= d S

1 + d S
2 . By assumption we have a map s : S•,• → S•,•

of bidegree (−1, 0) such that d S
1 s + sd S

1 = IdS•,• . Thus d Ss + sd S
− IdS•,• is an

endomorphism of S•,• of bidegree (−1, 1), which defines an endomorphism u
of Tot(S•,•) of degree 0. By assumption, u restricted to each degree is nilpotent.
Hence Id+ u is an isomorphism, which implies that Tot(S) is contractible.

(2) We use the following fact:

A morphism g of (simple) complexes is a homotopy equivalence if and
only if Cone(g) is contractible.

(∗)

Let U •,• be a cone of f , that is, U p,q
= T p,q

⊕ S p+1,q equipped with

dU
1 =

(
dT

1 f
0 d S

1

)
:U p,q

→U p+1,q and dU
2 =

(
dT

2 0
0 d S

2

)
:U p,q

→U p,q+1.

For each q ∈ Z, we have U •,q =Cone( f •,q), as (single) complexes. By assumption
and (∗), they are contractible. Then (1) shows that Tot(U ) is contractible. Since we
have Cone(Tot( f ))= Tot(U ) by definition, this implies that Tot( f ) is contractible
by (*). □

6We learned this proof from J. Oesterlé. We thank him.
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B.4. An adjunction. Let T be a tensor triangulated category, compactly generated
(Definition A.3.4) and equipped with an interval (I, p, i0, i1, µ). We assume the
following:

Hypothesis B.4.1. The tensor structure of T is strongly biadditive (i.e., –⊗ – is
strongly additive in each entry), and −⊗ I preserves the full subcategory T c of
compact objects.

By Theorem A.3.8, T has the Brown representability property of Definition A.3.1.
By Lemma A.3.2, ⊗ therefore has a right adjoint Hom.

Definition B.4.2. Let RI ⊂ T be the localising subcategory generated by objects of
the form Cone(X⊗ I 1⊗p

−−→ X) for X ∈T . We write TI for the Verdier quotient T /RI .

Proposition B.4.3. (1) The functor HomT (I, – ) is strongly additive.

(2) The category TI is compactly generated, hence has the Brown representability
property.

(3) The localisation functor L I
: T → TI has a (fully faithful) right adjoint j I ,

which also has a right adjoint R I .

(4) The essential image of j I consists of the I -local objects (Definition B.2.4(a)).

(5) The tensor structure on T induces a tensor structure on TI .

Proof. For (X j ) j∈J a family of objects of T , the invertibility of the map⊕
HomT (I, X j )→ HomT

(
I,

⊕
X j

)
can be tested on a set of compact generators; it then follows from Hypothesis B.4.1.
This also implies that RI is generated by a set of compact objects of T , hence
(2) follows from Theorem A.3.9. Then (3) follows from Corollary A.3.10, (4) is
obvious by adjunction and (5) follows from the fact that if A ∈RI and B ∈ T , then
A⊗ B ∈RI . □

Remark B.4.4. The functor j I R I can be described by a double adjunction: for
X, Y ∈ T , we have

T (X, j I R I Y )= T (L I X, R I Y )= T ( j I L I X, Y ).

Our main result in this appendix, Theorem B.4.5, is a computation of the lo-
calisation functor j I L I in terms of I •ν (see Definition B.2.2). Ideally it should be
expressed in the above framework. Unfortunately, we do not know how to totalise
I •ν into an object of T in general (compare [Bökstedt and Neeman 1993, §3]). A
nice setup would be to assume that T is provided with a t-structure with heart A
for which ⊗ is t-exact and such that I ∈ A; unfortunately, the inclusion A ↪→ T
does not extend to D(A) (or even K (A)) in this generality. So, for simplicity, we
take refuge in the situation where T is of the form D(A) (and where I ∈A).
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The proof of the following theorem will occupy the next two subsections (see
Theorem B.6.3).

Theorem B.4.5. Under suitable additional hypotheses (Hypothesis B.6.1 below),
there is a canonical isomorphism

j I L I (K )∼= HomD(A)(I •ν , K )

for any K ∈ D(A).

B.5. Monadic intermezzo. Let C be a category and (C, η, µ) a monad in C in the
sense of [MacLane 1998, Chapter VI]. Recall what this means:

• C is an endofunctor of C.

• η : Id→ C is a natural transformation (unit).

• µ : C2
→ C is a natural transformation (multiplication).

• For any X ∈ C, we have the identities

µX ◦C(µX )= µX ◦µC(X), (B.5.1)

µX ◦C(ηX )= µX ◦ ηC(X) = 1C(X). (B.5.2)

We shall not use (B.5.1) in the sequel.
Let C(C) be the strictly full subcategory of C generated by the image of C : an

object of C is in C(C) if and only if it is isomorphic to C(X) for some X ∈ C; the
morphisms of C(C) are the morphisms of C.

Proposition B.5.3. (a) If µ is a natural isomorphism, then the full embedding
j : C(C) ↪→ C has the left adjoint C.

(b) Let C∗ be a second monad in C. Assume that the condition of (a) holds for C
and C∗, and that
(i) C∗(C)⊆ C(C),

(ii) for any X ∈ C(C), the unit map X→ C∗(X) is an isomorphism.
Then there is a natural isomorphism C ∼= C∗.

Proof. For (a), let Y ∈C(C) and choose an isomorphism u : Y ∼
−→C(X) with X ∈ C.

By assumption, ηY : Y → C(Y ) is an isomorphism, and thus the second equality of
(B.5.2) and the naturality of η imply that the composite

εY : C(Y )
C(u)
−−→ C2(X)

µX
−−→ C(X)

u−1

−−→ Y

is the inverse of ηY , hence does not depend on the choice of u, X . One then easily
checks that εY for Y ∈ C(C) defines a natural transformation ε : C j→ Id and that
(η, ε) provides the unit and counit of the desired adjunction.

In (b), (i) implies that for any X ∈ C, the unit X → C∗(X) factors through the
unit X → C(X) (use (a)). On the other hand, (ii) implies that C(C) ⊆ C∗(C), so
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the same reasoning shows that, conversely, the unit X→ C(X) factors through the
unit X→ C∗(X). □

Remark B.5.4. The converse of (a) is certainly false in general. The point is that a
given endofunctor C on C might have two completely different monad structures.
However, if (η, µ) yields an adjunction between j and C , then µ must be a natural
isomorphism because j is fully faithful. In particular, if we start from an adjunction
( j, C) with j fully faithful, then the multiplication of the monad jC is a natural
isomorphism.

B.6. A formula for j I L I . Let T be as in Section B.4. We use the notation
introduced in Definition B.4.2. We assume here that T is of the form D(A)

for some Grothendieck abelian category A, whence a canonical t-structure. To
Hypothesis B.4.1, we add:

Hypothesis B.6.1. (i) The tensor structure ⊗D(A) is right t-exact, hence induces
a right exact tensor structure on A denoted by ⊗A [Beilinson et al. 1982,
Proposition 1.3.17(i)]. (That is, A⊗A B := H0(A[0]⊗D(A) B[0]).)

(ii) Let ⊗K (A) be the canonical extension of ⊗A to K (A). Then the localisa-
tion functor λ : K (A)→ D(A) is lax monoidal, i.e., there is a collection of
morphisms

λC ⊗D(A) λD→ λ(C ⊗K (A) D)

binatural in (C, D) ∈ K (A)×K (A) and commuting with the associativity and
commutativity constraints.

(iii) 1D(A), I ∈A (hence I = λI [0]).

(iv) The map (λI [0])⊗D(A)n→ λ(I⊗An
[0]) induced by (ii) is an isomorphism for

all n ≥ 0.

By adjunction, the composed functor j I L I has a canonical monad structure.
Note that its multiplication is an isomorphism because j I is fully faithful (compare
Remark B.5.4).

Definition B.6.2. For K ∈ D(A), we let

RC I
∗
(K )= HomD(A)(I •ν , K ) ∈ D(A).

Here we view the complex I •ν as an object of D(A). We call RC I
∗
(K ) the derived

cubical Suslin complex of K (relative to I ).

The comonoidal structure on I •ν

π• : I •ν → 1, 1• : I •ν → Tot(I •ν ⊗ I •ν )
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given by (B.1.6), (B.1.7) induces a monad structure on RC I
∗
. For example the

multiplication is given by

RC I
∗
(RC I

∗
(K ))= HomD(A)(I •ν , HomD(A)(I •ν , K ))∼= HomD(A)(I •ν ⊗ I •ν , K )

(1•)∗
−−−→ HomD(A)(I •ν , K )= RC I

∗
(K ).

Note that the last map is an isomorphism by Proposition B.3.1. The following
theorem completes the proof of Theorem B.4.5.

Theorem B.6.3. The two monads j I L I and RC I
∗

are naturally isomorphic.

For any K ∈ D(A), the monad structure on RC I
∗

provides us with a natural
morphism in D(A):

ηK : K → RC I
∗
(K ). (B.6.4)

We prove the following result together with Theorem B.6.3.

Theorem B.6.5. Let K ∈ D(A).

(a) The complex RC I
∗
(K ) is I -local (Definition B.2.4(a)).

(b) The morphism (B.6.4) is an isomorphism if and only if K is I -local.

(c) The morphism (B.6.4) is an I -equivalence (Definition B.2.4(b)).

Proof of Theorems B.6.3 and B.6.5. (Compare the proofs of [Voevodsky 2000b,
Lemma 3.2.2] or [Mazza et al. 2006, Lemma 9.14].) We first prove Theorem B.6.5(a)
and (b). In view of Definition B.2.4 and Hypothesis B.6.1(iv), (a) follows from
Proposition B.3.1 by adjunction. In (b), if K is I -local, we have Hom(Iν, K )= 0
and hence

HomD(A)(I n
ν , K )∼= HomD(A)(I n−1

ν ⊗ Iν, K )

∼= HomD(A)(I n−1
ν , HomD(A)(Iν, K ))= 0 for n > 0,

which implies that (B.6.4) is an isomorphism. Conversely, if (B.6.4) is an isomor-
phism, then K is I -local by (a).

Next we prove Theorem B.6.3. As mentioned before Definition B.6.2, the
multiplication of the monad j I L I is an isomorphism, and the same is true for RC I

∗

as proven above. Theorem B.6.3 now follows from Theorem B.6.5(a), (b) and
Proposition B.5.3(b).

Finally, Theorem B.6.5(c) follows from Theorem B.6.3. □

Corollary B.6.6. (a) For any K ∈RI , RC I
∗
(K )= 0 in D(A).

(b) The functor RC I
∗

is strongly additive.
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(c) The localising subcategory RI ⊂ D(A) is generated by the cones of the maps
X→ RC I

∗
(X) for X ∈ D(A). In particular, K ∈ D(A) is I -local if and only if the

natural map

HomD(A)(RC I
∗
(X), K [i])→ HomD(A)(X, K [i])

is an isomorphism for any X ∈ D(A) and any i ∈ Z.

Proof. (a) This is obvious from Theorem B.6.3 since RI ∩ j I D(A)I = 0, the two
categories being mutually orthogonal.

(b) This follows from Theorem B.6.3 and the strong additivity of j I and L I

(Example A.3.3).

(c) By Theorem B.6.5(c), for any X ∈ D(A) the cone of X→ RC I
∗
(X) vanishes

in D(A)I , hence it is in RI . Conversely, let R′I ⊂D(A) be the localising subcategory
generated by these cones. In the commutative diagram

I [0]⊗D(A) X
p

//

��

X

��

RC I
∗
(I [0]⊗D(A) X)

p′
// RC I

∗
(X)

p′ is an isomorphism by (a), hence the cone of p belongs to R′I . The last statement
follows. □

B.7. Comparison of intervals. Let (A, I ), (A′, I ′) be as in Section B.6. We give
ourselves a right exact cocontinuous monoidal functor T : A→ A′ sending I to
I ′ and respecting the constants of structure of I and I ′. By [Kahn et al. 2021a,
Theorem A.10.1(b)], T has a right adjoint S. We assume that T has a total left
derived functor LT : D(A)→ D(A′), which is strongly additive, a monoidal functor
and sends I [0] to I ′[0] (this is automatic if T is exact). By Brown representabil-
ity (Lemma A.3.2 and [Kahn et al. 2021b, Theorem A.2.1(a)]), LT has a right
adjoint RS, which is the total right derived functor of S. Then LT induces a
triangulated monoidal functor LT : D(A)I → D(A′)I ′ via L I and L I ′ .

The following lemma is obvious:

Lemma B.7.1. Let j I and j I ′ be the right adjoints of the localisation functors
L I
: D(A)→ D(A)I and L I ′

: D(A′)→ D(A′)I ′ . Then RS sends j I ′D(A′)I ′ into
j I D(A)I , and the induced functor RS : D(A′)I ′→ D(A)I is right adjoint to LT .

By construction, we have a natural isomorphism

RSj I ′
≃ j I RS (B.7.2)

from which we deduce two “base change morphisms”:



MOTIVES WITH MODULUS, III: THE CATEGORIES OF MOTIVES 175

L I
◦ RS⇒ RS ◦ L I ′, (B.7.3)

LT ◦ j I
⇒ j I ′

◦ LT . (B.7.4)

Theorem B.7.5. The natural transformation (B.7.3) is an isomorphism.

Proof. The monoidality of LT yields the identity

HomD(A)(X, RSK )∼= RS HomD(A′)(LT X, K ) (B.7.6)

for (X, K ) ∈ D(A)× D(A′) (Lemma A.1.1).
Applying (B.7.6) to X = I •ν , we get an isomorphism

RC I
∗
(RSK )∼= RSRC′

∗
(K ).

In view of Theorem B.6.3, this converts to an isomorphism

j I L I RS(K )∼= RSj I ′L I ′(K ),

and hence to an isomorphism L I RS(K ) ∼= RSL I ′(K ) in view of (B.7.2) and the
full faithfulness of j I . One checks that this isomorphism coincides with (B.7.3). □

Definition B.7.7. We say that T verifies Condition (V) if (B.7.4) is an isomorphism.

Lemma B.7.8. T verifies Condition (V) if and only if LT ( j I D(A)I )⊆ j I ′D(A′)I ′ .

Proof. “Only if” is obvious. Conversely, let X∈D(A)I be such that LT j I (X)∼= j I ′Y
for some Y ∈ D(A′)I ′ . Applying L I ′ , we get

Y ∼= L I ′ j I ′Y ∼= L I ′LT j I (X)∼= LT L I j I (X)∼= LT (X).

Applying j I ′ gives an isomorphism

LT j I (X)∼= j I ′Y ∼= j I ′LT (X)

and one checks that this is induced by (B.7.4). □

Example B.7.9 (see also [Beilinson and Vologodsky 2008, Remark (c) in 4.4]).
Applying L I to the right of (B.7.4) and using Theorem B.6.3, one gets a natural
transformation

LT ◦RC I
∗
⇒ RC I ′

∗
◦ LT . (B.7.10)

Take A= PST, A′ = NST, T = aV
Nis, I = I ′ = ZV

tr (A
1). Then the condition of

Lemma A.3.11 translates as follows: the sheafification of an A1-invariant complex
of presheaves with transfers is A1-invariant. When k is perfect, this is [Voevodsky
2000a, Theorem 5.6], which can then be used to prove the equivalence of categories
mentioned in Section 3.1. Moreover, RC I

∗
yields the naïve Suslin complex, because

ZV
tr ((A

1)n) is projective in PST for any n ≥ 0. Thus, the invertibility of (B.7.10)
means in this case that the derived Suslin complex is quasi-isomorphic to the
sheafification of the naïve Suslin complex.
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So, while the invertibility of (B.7.3) is a formal and general fact, this is far
from being the case for (B.7.4). If we take A =MPST, A′ =MNST, T = aNis

and I = I ′ = Ztr(□), results in this direction have been obtained in [Saito 2020,
Theorems 0.4 and 0.6].
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