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ABSTRACT. The purpose of this paper is twofold. Firstly we give an esifjon of Gab-
ber’s proof of the Bloch-Ogus theorem for étale cohomolofig smooth varietyX over

a fieldk, with torsion coefficients defined ovkr Secondly we discuss the axioms used in
that proof (étale excision and cohomology of the projeline), and apply them to other
cohomology theories. We give several extensions of therémenthe torsion hypothesis
is irrelevant, the basic exact sequences for semi-locgbriri X are universally exact in
the sense of Grayson, and they remain exact after multigl¥ifoy an arbitraryk-variety.
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INTRODUCTION

Stemming directly from Quillen’s proof of the Gersten canige in the geometric case
[43], the Bloch-Ogus theorem is a fundamental result of modégebraic geometry. Its
simplest consequence is that, for a local rith@f a smooth algebraic variety with func-
tion field K, h*(A) injects intoh*(K) for all “cohomology theoriesh* satisfying a list
of natural axioms (étale cohomology with coefficients intsof unity is such a theory).

The Bloch-Ogus theorem, briefly described, is as followse@a smooth algebraic va-
riety X and a cohomology theory* as above, filtration by codimension of support yields
Cousin complexewhich form theF; -terms of theconiveau spectral sequenamnverg-
ing to h*(X) (compare [24]). Restriction of the Cousin complexes to therosubsets
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of X defines complexes of flasque Zariski sheaves. The Bloch-@gasem says that
these complexes of sheaves aogclic except in degreé where their conomology is the
Zariski sheafH* associated t&/ — h*(U). This identifies theFs-term of the coniveau
spectral sequence 16*( X 7., H*). By a standard argument, the proof reduces to proving
an “effacement theorem” for the version/of with supports.

Bloch and Ogus’ proof of the effacement theorem [2] uses angdac presentation
lemma devised by Quillen for his proof of the analogous &ersbnjecture for algebraic
K-theory (a strengthening of Noether’'s normalization tleeoy, see [43, Lemma 7.5.12].
This step reduces the proof to a “split” case. However, @aill simpleK -theoretic ar-
gument in this split case has no counterpart in the cohomgadeting, and is replaced in
[2] by a much longer argument, involving a delicate diagrdrase ¢p. cit, section 5).

At the beginning of the eighties, Gabber provided a diffepgoof of the effacement
theorem for étale cohomology, which has now appeared im ps [14] (he considers
there a more general situation of vanishing cycles). Gabbes another, more powerful
variant of the Noether normalization theorem, which redum®e to a situation where the
ambiant space is the affine line over some base and the ret#waad subset is finite over
the base. In this special case, Gabber’s argument to priaceaient is different from that
of Bloch-Ogus. It essentially uses the section at infinitynotg from an embedding of
the affine line into the projective line, as well as a compatabf the cohomology of the
latter. A geometric presentation lemma very close to Gabhleas independently found
at about the same time by Ojanguren, who used it to prove &eliie properties of qua-
dratic forms [40]. Unlike Gabber, Ojanguren does not useptiogective line, but rather
the affine line and homotopy invariance proved for the Witgrby Karoubi; see remark
after Lemma 4.1.3. This kind of idea has been reemployed fargioer in that direction,
notably for non-abelian cohomology [8], [7]. See also thickes of Nashier [37] and
Dutta [11].

Gabber’s proof makes it clear that the Bloch-Ogus theordistor considerably more
general cohomology theories than those considered in @bty in cases where purity
or homotopy invariance does not hold. As an example, his otetlas then used by Gros
and Suwa to prove Gersten’s conjecture for logarithmic HeWddtt sheaves [22].

Somewhat later, Grayson, looking at Quillen’s proof agabserved that the argument
gives more: thek-theoretic Zariski sheaves of complexes analogous to teafgied
Cousin complexes have stalks which are not only exact, art @niversally exact” [19].
This means that they remain exact after applying any finpedgented additive (not nec-
essarily exact) functor to them. Gabber also states thathitbaves of Cousin complexes
for étale cohomology have universally exact stalks [16],Jbut he does not elaborate.
Finally, by unrelated methods, Gillet, using Suslin’s dity theorem for the algebraic
K-theory with coefficients of henselian discrete valuatiogs, obtained a proof of Ger-
sten’s conjecture for th& -theory with coefficients of an arbitrary discrete valuationg
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[16].

The scope of this paper is twofold. Firstly, we give a simpld detailed exposition of
the proof of the Bloch-Ogus theorem for étale cohomologhpiing Gabber's method:
this is done in Part I. In contrast with [2], &tale homologybt used. Secondly, we give
in Part Il an axiomatic treatment of Gabber’s argument. Waasthat it applies to any
“cohomology theory with supports” which satisfies two simpixioms: étale excision
and an axiom dubbed “key lemma”. The latter follows eithenfrhomotopy invariance
or from a good behaviour of the cohomologyef.

In section 1, we construct the Cousin complexes and the eaunigpectral sequence.
In section 2, we formulate the effacement theorem for torsioefficients defined over
the base field, and derive the Bloch-Ogus theorem from itetitien 3, we prove a geo-
metric presentation theorem which is a little stronger tebber’s. In section 4, we
prove Gabber’s effacement theorem in a special case, angteéin general thanks to
the geometric presentation theorem.

In section 5, we set up the axioms described above. In sefive formulate a “uni-
versally exact” version of the Bloch-Ogus theorem for cobtogy theories with sup-
ports which are defined by a “substratum” (see subsectidnsrid 5.2). In section 7,
we give several examples to which our framework applies.s€ital examples include
etale cohomology with finite coefficients, Betti conomaolpde Rham cohomology, alge-
braic K- andG-theory. Other examples include Hodge, de Rham-Witt, Hedfge and
logarithmic Hodge-Witt cohomology, Rost’s cycle cohongl@and Voevodsky’s motivic
cohomology. In section 8, we give a few corollaries whichtiply motivated this paper
(see table of contents): the one in subsection 8.1 was acedun [7], and those in sub-
sections 8.2 and 8.4 were used in [30].

There are 3 appendices. In Appendix A, we extend the effacetheorem to arbi-
trary (not necessarily torsion) complexes of sheaves cgrnom the small &tale site of
k. This includes a self-contained proof of Gabber's compamadf the &tale conomology
of the projective line [13], which was not given in sectionl4. Appendix B, we prove
a refined version of the Bloch-Ogus theorem over a semi-Dedekind domain, Gillet
style. Appendix C is technical: it exposes a homologicabthi®f unbounded complexes
of objects of an abelian category, which allows for a smoo#xg@osition in sections 5
and 6.

As the expert reader will already be aware after having raadimtroduction, we do
not claim much originality in many results and proofs givesmenh The main purpose of
writing this text was for us to make those easily accessiblthé general public. We
strongly encourage the reader to also have a look at V. Vakyeglpreprint [52], whose
methods and results are different yet closely related.
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We thank Ofer Gabber for a number of very useful comments,Faien Morel for
helpful discussions on the topic of Appendix B.

Part 1. Etale cohomology
1. THE CONIVEAU SPECTRAL SEQUENCE

Let X be a scheme and a sheaf of abelian groups on the small étale sit& ofln
this section, we recall the construction of the conivealcspesequence ovekX with
coefficients in4 in a leisurely way.

1.1. An exact couple.
First consider a chain of closed subsetsXof

ZI@CZdCZd_1C"'CZQZX.
Take the convention thef; = () fori > d andZ; = X fori < 0. For a pair(Z,,1 C
Z,), we have a long exact sequence of cohomology with supports:

pt+1l,q—1

_‘_>Hp+q (X,A)

Zp+1

HZM(X, A)

§Pa g kPa prq+l
S HZFZPH(X —Zpi1, A) — Hy' (X,A) — ...

We construct an exact coupt[éZ(D,E,z',j, k) [27, ch. VIII, §4], [35, ch. 2,5§2.3] by
settingD?¢ = H,™(X, A)andEPY = HY™ , (X — Z,41, A):

ip+1,9—1
prtla-1 . Dp4

kP4 N (0,41) e
Epa

This exact couple yields a spectral sequence of cohomabgipe, converging to
D% = H™(X, A) with respect to the filtration

FP = Im[H} (X, A) — H"(X, A)] = Ker[H"(X, A) — H"(X — Z,, A)]

The E,-terms of this spectral sequence d@g? = EP4, and the differentiall}’? :
EPY — EP*H9 s the composite

HE, (X = Zyi, A) 5 HEF (X, A) L HES, (X — Z,00, A).

Zpt1—=Zp+2

1.2. Passing to the limit.
We now assume that is equidimensional and noetherian of dimensicand that for
all p, codimx Z, > p. Order the set ofd + 1)-tuplesZ by Z < 7' if Z, C Z, for all p.
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The construction of the exact coupﬂ?ez» is covariant with respect to this ordering. Passing
to the limit now defines a new exact couglewith

Qp,q =1_ifglg Hg;rq(X, A) = Hﬁ’;(rf) (X,A)and
+q

BP0 =l HY (X~ Zy, A)

where X ) denotes the set of points of codimensjoin X. The following lemma de-
scribes the second direct limit more concretely:

Lemmal.2.1.a) If 11, ..., T, are pairwise disjoint closed subsets.®f then
P H;, (X, A) = Hyp (X, A).
b) We have

B~ [ HZ(X,A) (1.1)

zeX ()

where, forz € X®), HPT(X, A) := lim HY A(U, A).

Usz

Proof. a) By induction on- we may assume = 2. We have a commutative diagram
Hr (X, A)
| N
Hi, (X, A) —— Hp (X, A) ——  HL(X =T, A)
~ ]
Hp (X =T, A)

in which the row and column are exact and the two diagonal raepssomorphisms by

excision. The claim follows.

b) Note that, if the irreducible components of codimengiat Z, areY;, ..., Y, then
Zy\ Zp1 = [1(Y; \ Z,41) (disjoint union) as soon a8,,, contains th&’; N'Y; and the
higher codimensional components4f. The isomorphism now follows froma). O

The spectral sequence associated to the exact couglitl converges ta*( X, A). It
is called theconiveau spectral sequen@@mpare [2, remark 3.10], [15, p. 239]):

EP = T H?M(X,A)= H"(X, A). (1.2)

zeX(®)

The associated filtration

NpHn(Xv A) = Im(H;l((P) (Xv A) - Hn(Xv A))
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is called theconiveau filtratioror filtration by codimension of suppotts £;-terms yield
Cousin complexes

0,9 1,q
0— [ Hax,4) 2 T Bx,A) 25

zeX(0) rxeX )
g1 P+ (13)
S [ BRrUXA) 2

In the next section, we shall need:

Lemma 1.2.2. For all n, p, the presheaf
U ] H}UA)

zeU®)
is a sheaf for the Zariski topology &f. This sheaf is flasque and can be identified with

I1 @By (X, A)
wherei, is the immersion: — X and the abelian grougi} (X, A) is considered as a
(constant) sheaf om for the Zariski topology.

Proof. Forz € X, define a preshedf, on the category of Zariski open subsets of

X by
FL(U) = H (U, A) !f Uz
0 if U ¥ x.
By definition of H}'( X, A) (see Lemma 1.2.1 b)};,.(U) = F.(X) if U > x, henceF,
is the sheaf,.H (X, A), which is obviously flasque. O

Suppose now thaX is a smooth, irreducible variety over a field A is a locally
constant, constructible sheaf and the stalkd @rem-torsion, withm prime to the char-
acteristic ofk. We shall use cohomological purity to transform these cexgs into ones
which involve only étale cohomology without supports. Faer Z, we write

A(l) = A uZ
where 1, is the sheaf ofn-th roots of unity. LetZ be a smooth irreducible closed

subvariety of X of codimensionp. Cohomological purity ([36, ch. VI§§ 5 and 6],
[SGA4 1/2, p. 63, th. V.3.4]) then gives canonical isomospins:

Hg<X7 A) — Hnizp(Za A(_p))
Noting that, for an arbitrary irreducible closed subvarigtof X, the intersectioly "\U
is smooth for small enough open subdétdhence defines a smooth pain U C U, this

yields isomorphisms
HY™(X, A) = HTP(k(z), A(—p))!

1Strictly speaking, this argument is only valid when the grddield k is perfect. Otherwise a closed
point of X whose residue field is inseparable o¥ewill produce a counterexample to the statement just
before this equation. However, if is imperfect, the isomorphism will hold after passing toperfect
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for + € X (wherek(z) is the residue field of), so that the complex (1.3) takes the
following, perhaps more familiar form (compare [2, pro®]3.

0— HI(k(X),A) — [[ H'(k(z), A(-1)) — ...

1.4)
RN H Hq_p(k;(x),A(—p)) — ...

xeX(®)

Here,k(X) is the function field ofX. Note thatH? ?(k(z), A(—p)) is simply Galois
cohomology of the residue field af So theF,-terms of the coniveau spectral sequence
have taken an especially simple form. Note also that

EP? =0forp > q.

2. THE EFFACEMENT THEOREM AND THEBLOCH-OGUS THEOREM

2.1. Effaceable sheaves.
In this paper, we are interested in a special property of tleafsA:

Definition 2.1.1. Let X be a variety ovek. Lett,...,t, € X be a finite number of
points contained in some affine open subseXofAn étale sheafl over X is effaceable
atty,...,t, if the following condition is satisfied:

Givenp > 0, for any small enough affine open neighbourhd®dof ¢4, ...t and any
closed subset C W of codimensior> p+ 1, there exists a smaller open neighbourhood
ofty,...,t., U C W, and a closed subsgt C U containingZ N U such that

(1) codimy(Z') > p;

(2) the composité{ (W, A) — H}~, (U, A) — H}, (U, A) is 0 for all n > 0.

The sheafd is effaceabléf it is effaceable at., ..., ¢, forall ¢, ..., t, as above.
This condition looks very technical, but it has far-reachoonsequences:

Proposition 2.1.2. Let R = Ox ,,.+,) be the semi-local ring ok at (¢,,...,¢,) and
Y = Spec R. Suppose the shedf is effaceable at,,...,¢.. Then, in the exact couple
defining the coniveau spectral sequence (forA), the mapi?? is identically 0 for all

p > 0. In particular,

g HYY A) ifp=20
2 0 if p > 0.
The Cousin complefd.3)yields an exact sequence:
0,q 1,9
0— HI(Y.A) & [ BV, A) 2o [ H(vA) 2o

z€Y (0) zeYy ()

closure. Since étale cohomology is invariant under puredgparable extensions [36, Ch. Il, p. 77, remark
3.17], the isomorphism holds in general. Compare [2, reafk
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Proof. Consider the diagram
Hy(W,4) —— Hypy(UA) —— Hy (U A)

l l l

H’JVW)(W,A) - H[’}(M(U,A) - HU@)(U,A)

l |

(Y, A) —— Hy,) (Y, A)

vy ()

The composition of arrows in the first row is identicallyfor anyn. Therefore, the
compositionsiy(W, A) — Hy,.,, (Y, A) — Hy, (Y, A) are0. Passing to the limit over
Z, this gives that the compositiod];, .., (W, A) — H{ .., (Y, A) — Hy,, (Y, A) are

Y (p)
0. Passing to the limit ovell/, we get that the map
H}T;(Hl) (Y7 A) Y(P) (Y A)
is itself0. O

Corollary 2.1.3 (The Bloch-Ogus theorem)_et A be effaceable otX'. Then, theF,-
term of the coniveau spectral sequence(f&ir A) is

B3 = Hy, (X, H'(A))

Zar

whereH9(A) is the Zariski sheaf associated to the preshiéaf> H(U, A).

Hn

v (p+1)

ptln—p—1

Proof. Consider the complex of flasque Zariski sheaves assodiatéed Cousin com-
plexes (1.3) (compare Lemma 1.2.2):

0— H i HI(X, A) H b HITY(X,A) — - — H ip HPT9(X, A) —
zeX(© ) zeX®) (2 1)
Proposition 2.1.2 implies that (2.1) is a resolutiorHf{ A), with global sections (1.3).
The conclusion follows. O

2.2. The effacement theorem.
The main result of [14] is:

Theorem 2.2.1. (Gabber)ror X smooth ovek, any torsion sheaf (on the smalale site
of X) of the formp* A, is effaceable, wherg : X — Spec k is the structural morphism.

Specializing to twisted roots of unity and using sequencg)(ive get a more familiar
case:

Corollary 2.2.2. (Bloch-Ogus, [2])Let X be smooth, irreducible over, R andY as in
Proposition 2.1.2, and let: be an integer prime to the characteristic faf Then, for all
1 € Z andq > 0, we have an exact sequence:
0— HIY, u2) — HUk(Y), ) — [ H'(k(x), p200) — ..
xeY(l)

Remarks 2.2.3.
(1) In Appendix A we shall remove the hypothesis tAgtis torsion in Theorem 2.2.1.
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(2) Effaceable sheaves have the following trivial stapiitoperties:

e A sheafA is effaceable aty, ..., if and only if Ay is effaceable for a small
enough open neighbourhodd of ¢4, .. ., ¢, (effaceability is a local condition).

e Let A, B be two étale sheaves ov&r. ThenA @ B is effaceable if and only if
AandB are.

(3) Over a smootlt-variety X, it is not true that all étale sheaves are effaceable. As an
example, také = R and for X the affine lineAy;. Let f : X’ — X be the two-fold
covering given by the equatior? + y* = 0, wherex is the parameter oA %, and
let A = f.,Z/2. LetY be the localization oX at0 andY’ = X’ xx Y. Sincef is
finite, there is an isomorphism

(Y, A) = HY(Y',Z/2).

On the other hand, the structural morphisth— SpecR is split by the inclu-
sion of the closed point of’, henceH*(Y’,Z/2) containsH*(R,Z/2) # 0 as a
direct summand. However, the two generic poinitsy, of Y’ are isomorphic to
Spec C(z), hence the Kummer theory class-ef in H'(Y’,Z/2) goes td) in both
H'(n},Z/2) and H'(n}, Z/2). Correspondingly, if; denotes the generic point of
Y, the map

HYY,A) — H'(n, A)

is not injective. One can give a similar example with= A% and X’ defined by
the equation:? + y% + 22 = 0 (from H? onwards), etc. See also [9, p.173].

(4) One may however produce effaceable sheaves which aegeoeral than those of
Theorem 2.2.1:

Proposition 2.2.4. LetX L X be afinite map between schemes of pure dimenkiath
X smooth, and leB be anétale sheaf oveX. If B is effaceable aif ~'({t,...,t.}),
thenf, B is effaceable at;, . . . , t,.

Proof. LetT = {t,,...,t,}, Z be asin Definition 2.1.1" = f~'(T) andZ = f~'(Z).
Apply the effacement theorem (oX, T, Z, B) and get a paifU, Z’) such thatl’ c U
and the composition

HY(X,B) — H} (U, B) — H}

isOforalln > 0. Let
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sothatl’ c U, Z C Z, codimy Z' > pandf~*(U) C U, Z' C f~'(Z'). We then geta
commutative diagram

HE(X,fuB) —— H,(U.f.B) — Hy, (U.f.B)

|
ZJ/ H;-L—l(Z/)mf—l(U)(f_l(U)vB)

T

N 0 N
HY(X,B) —— H2 (U,B) —— HZ, _(U,B) —— HY oy 0B)

ZnU Z'n0

where the left vertical map and top right vertical map arensgphisms by Shapiro’s
lemma for étale cohomology (exactnessfoffor a finite morphism). Proposition 2.2.4
follows. O

Note that in the proof of Proposition 2.2.4, it is not necegsaassumeX smooth. So
it provides non-smooth cases in which the effacement thebi@ds.

Corollary 2.2.5 (Shapiro’s lemma for Zariski cohomologyl.et X’ 2. X be a finite flat
map between two smooth varieties okeand letF be a sheaf of abelian groups ov&f

for the Zariski topology. Suppose thatis of the formH?(A) for some effaceablétale
sheafA over X’. Then the natural homomorphism

Zar(X ff)_>Hp (X/7F)

Zar

is an isomorphism for any > 0.

Proof. Shapiro’s lemma for étale cohomology yields isomorplsissh cohomology
groups with supports, fof C X a closed subset and = f~1(Z):
HY(X, f.A) = HL (X', A).
Localizing, we get isomorphisms of thé -terms of the coniveau spectral sequences
for A (overX') andf,A (over X):
H HPY(X | f,A) H HPH(X', A).
zeX(®) zeX'(®)

This isomorphism of Cousin complexes induces an isomonplustheir homology
groups:
Hy, (X, HI(f.A)) = Hy, (X', HI(A))
by the Bloch-Ogus theorem over semi-local rings (note fhdtis effaceable by Propo-
sition 2.2.4). Finally, there is an isomorphism of Zaridhkeaves

H(f.A) = fHI(A)
which is merely Shapiro’s lemma for étale cohomology agpht the local rings ok .O

Remarks 2.2.6.
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(1) An alternative argument would be to show ti&dtf,. 7 = 0 for ¢ > 0. This is what
we shall do in subsection 8.4, removing the flatness hypisthes

(2) “Shapiro’s lemma for Zariski conomology” is false fob#rary Zariski sheaves! For
example, takeX = A} and X’ some2-fold covering ofX split at0 (e.g. X’ = A},
f(x) = 2* — 1if char k # 2). LetY be the localization of at0 andY’ = f~1(Y).
Let F = 5 A (extension by)), wherej : n — X’ is the inclusion of the generic
point andA is a constant sheaf. Then we have:

H(Y, f.F) = 0fori > 0 (sinceY is local);
H'(Y', F) = A.

The latter is easily seen byGech cohomology computation.

The proof of Theorem 2.2.1 is given in sections 3 and 4. Wd ghé&ct prove some-
thing slightly stronger (and simpler to state):

Theorem 2.2.7(Effacement theorem)Let X be a smooth, affine variety overty, ..., t, €
X a finite number of pointg; > 0 an integer andZ a closed subvariety of codimension
> p+ 1. Let A be a sheaf of torsion abelian groups over the (smét8le site ofX.
Assume thatl = p* Ay, wherep : X — Spec k is the structural morphism and, is a
Gal(ks/k)-module. Ifk is infinite, then there exist an open subedf X containing all

t; and a closed subvariety’ C X containingZ such that

(1) codimx(Z") > p;

(2) the mapHy., (U, A) — H}, (U, A)is0forall n > 0.

If & is finite, then there existd/, Z’) as above such that (at least) the composite

HL(X,A) - H} (U A) — Hyny (U, A) (2.2)
isOforall n > 0.

Remark 2.2.8. We would like to point out that (contrary to the definition dfiaeeability)

the statement in Theorem 2.2.7 is not local: the proof by nameemplies that the map
of Theorem 2.2.7 (2) remairtswhenU is replaced by a smaller open set. Therefore, if
in Theorem 2.2.7 one replacéS by Y as in Proposition 2.1.2, it is not at all clear that
the conclusion still holds. In other words, given a closeldsst” C Y of codimension

> p+1, although the map& (Y, A) — HY.,, (Y, A) are all0 by the proof of prop. 2.1.2,
itis not clear whether one can find a singleC Y as in Theorem 2.2.7 such that the maps
HJ(Y,A) — HZ,(Y, A) are0. This shows the subtlety of the situation and probably why
Gersten’s conjecture is so difficult for general regulaalatgs of dimension> 2.

3. SOME GEOMETRY

3.1. The geometric presentation theorem.

The key to the proof of Theorem 2.2.7 is a geometric presenttéheorem which fol-
lows from lemmas of Gabber [14] supplemented with some rksnaf Gros and Suwa
[22]. This section is devoted to a detailed proof of this tleea. For simplicity, we write
Ar for AR andS x S’ rather thanS x, S’ for the product of twdk-schemesS andS’.
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Theorem 3.1.1(Geometric Presentation Theorenbet X be a smooth, affine, irreducible
variety of dimensiom over an infinite field; let ¢,,...,t, € X be a finite set of points
and Z a closed subvariety of codimension(. Then there exists a map = (¢, v) :

X — Ad71 x Al anopenset/ ¢ Ad-1, and an open sel/ C ¢~1(V) containing
t1,...,t. such that

Q) ZnU=Zny Y(V),

(2) |z is finite;

(3) |y is étale and defines a closed immersiom U — A}

(4) o(ti) Ep(Z)ifti¢ Z(1<i<r)

B) v He(ZnNnU)NU=2ZnNU.

(If not; liesonZ, itis quite possible that N U is empty in Theorem 3.1.1. See remark
after the proof of Lemma 3.5.1.)

Corollary 3.1.2. With notation as in Theorem 3.1.%|,~y : ZNU — V is a finite
morphism and one has a cartesian square:

ZNU — U
?l ‘P‘Ul
p(ZNU)—Ay}
where the horizontal arrows are closed immersions, thevktical one is an isomorphism

and the right vertical one igétale. (One could say that defines aretale neighbourhood
of ZNU C A}, thatis, itinduces an analytic isomorphism alodg U.)

This theorem and its corollary can be summarized by the dradrelow:

X 2 Ad 1y Al

U U
voo— Al
N /
wml ZnU pll
/ N
1% = V c Ad?

We shall see that the pai#Z’, U) of Theorem 2.2.7 may be taken @s~!(v/(Z)),U)
wherey andU are as in Theorem 3.1.1.

The proof of Theorem 3.1.1 is essentially a (quite involvestjes of exercises of com-
mutative algebra and elementary algebraic geometry; liioeédes on those of [143]
and [22,52]. We briefly outline it:

(1) Reduction to the case where thare closed points and a principal divisor.
(2) Securingp).
(3) Securingp.
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(4) Constructing’.
(5) Constructing’.

3.2. Reduction to closed points.

Lemma 3.2.1. a) With notation as in Theorem 3.1.1, there exist closedtpein. . ., s, €
X such that

(1) s; € {t;} forall i;

b) Let thet; be closed. Then there is a non-z¢ie I'( X, Ox) such thatZ C V(f) and
g V(f)ift; ¢ Z.

Proof. a) follows from [34, p. 34, th. 5.5] and b) follows from [6,.clh, §1, prop. 2]0

Reduction. Thanks to Lemma 3.2.1, we may assume thatttiseare closed points
in Theorem 3.1.1 (note that singe is finite, |, is also finite, hence(7) is closed:;
moreover, any/ containing thes;’s also contains the¢’s) and also tha¥ is a principal
divisor. Therefore:

Hypothesis From now on, we assume that

e thet;’s are closed inX;
e 7 is a principal divisor inX.

Let A = I'(X, Ox), so thatX = Spec A. Write A as a quotient ok[X, ..., Xy]
(for N large enough), henc& as a closed subvariety &~N. Any u € k[X,..., Xy]
defines a morphismA™N — A!. This is the case in particular far € E, where E/
is the sub-vector space &fX;, ..., Xy] spanned byX;, ..., Xy. Hence any-tuple
¢ = (uy,...,u,) € E" defines a morphiseAN — Ar. Composing it with the closed
immersionX — AN, we get a morphisnX — AT that we still denote by.

Let £ be the affine variety associatedb(so thatE = £(k)). We may viewé as the
dual space oA". We shall in fact prove the following more precise statement

Theorem 3.2.2.Let X, Z, ¢, ...,t, be as in Theorem 3.1.1. We assume thatttreae

closed and thatZ is a principal divisor. Then there exists a non-empty Zarggken

subset) of £471 x &, such that for any = (¢, v) € Q(k):

Q) Y|z : Z — Ad1isfinite;

(2) pisetaleatallt; (1 < i <r)andatall points of the finite s&t = (U, ., ¥ (¢(¢:)))N
Z; o

() ¢ls: S — p(S)isradicial;

4) Pori<i<nrt,¢Z= o) ¢ p2).

Moreover, for anyp € E< satisfying 1)—4), there exists a pdil/, V) such that(p, U, V)

satisfies the remaining conditions of the Geometric Predemt Theorem.

(Note that(k) # () sincek is infinite.)
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Condition 3) means that|s separates the points #and that forP € S, the residue
field extensionk(P)/k(¢(P)) is purely inseparable. This theorem slightly improves on
the lemmas of Gabber and Gros-Suwa: it says that the sesafisfying 1)—4) contains a
Zariski open set, while the former only say that this set is-empty.

Remark 3.2.3. It can be shown that Theorem 3.2.2 holds even without asguthet;’s
to be closed and to be a principal divisor. We don’t need this refinement here.

3.3. Securing.

Lemma 3.3.1. (compare [18, prop. 1.1]Jhere exists a non-empty open €gtC £¢!
such that, for) € Q;(k), |z : Z — Ad~1is finite.

Proof. Let B = k[Z] be the affine algebra of, andx; the image ofX; in B. For
Y = (u1,...,uq_1) € EL 9|y, is finite if and only if, for alli, z; is integral over
k[, ... uq_1], whereu, is the image oty; in B.

Let K = k(E%!) be the function field oE€?~! and# the generic point of?~!. We
view 7 as a rational point of?~! over K, so thaty = (11,... ,nq_1) With n; € £(K).
For simplicity, we still writen; for the image ofy; in K ®; B. SincedimZ < d — 1,
there is for alli a non-zero algebraic relation id ®;, B:

film, ooy na—1,2:) =0
with f; € KI[T3,...,T,]. We claim thatf; can be chosen so that it gives an integral
dependence relation or). To see this, we argue as in [34, p. 262, proof of Lemma 2]:
letn = deg f; and fi(") be the homogeneous part of degreef f;. Sincek is infinite,
we can find(¢y,... ,t4_1) € k%! such thatfi(")(tl, .., tg-1,1) # 0in K. Letting
gi = fi(+t1Ty, ..., Ty_1+tq 1Ty, Ty), the coefficient of ; in g; is fl.(")(tl, ooy tgo, 1)
and we get
i, - g1, i) =0
with 7, = n; — t;z;. Substituting back); instead ofy; gives the desired integral de-
pendence relation. Therefore there exists a polynopiia k[£4!]|[T1,...,Ty] such
that
® gi(m,.. yna1,2;) =0 € k[E] @4 B;
o the coefficients; of TS%% in g/ is # 0.
Then, we may tak®; = {(u1,... ,u4_1) € €47 | ai(ur, ... ,ug_1) #0for1 <i < N},
O

3.4. Securingp.

Lemma 3.4.1. Assume is algebraically closed. With notation as in Theorem 3.thére
exists a non-empty open gt C £¢ such that, forp = (v,v) € Qy(k), ¢ is étale at
t;,1 <1 < pand all points ofs.

Proof. Recall that the Jacobian criterion says that (ui, ..., u,) is étale atr € X if
and only if (duy A ... A dug) |7 01in Qg(/k ® k(x). Throughout this proof, for @ € £¢,
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we writep = (¢, v) With o = (uy,... ,us1) € E 1 andv = uy € €.

Fori=1,...,p, define
T = {(p,y) €E*x Z | ¥(y) = ¢(t;) and(duy A ... A dug) |,= 0},
i.e., for anyk-algebrarR,
T'(R) = {(p,y) € (E® R)* x Z(R) | ¥(y) = ¢(t;) € R*" and(duy A ... A dug) |,= 0},

and also
T = {gp c & (duy A ... Ndug) |, = O}.
It is clear that" is a closed subset & x Z. By Chevalley’s theorem, its projection
on&:

F'={pe&?| forsomey € Z,¢(y) = ¢(t;) and(duy A ... A duy) |,= 0}

is constructible. On the other haril! is closed infe. Let Qi = £4 — (F' U T"). By
definition,p € Q% implies thaty is étale at; and all points of)—! (¢ (;)) N Z.

We shall show thatlim 7% < dim&? hence thatlimF' < dim&?, and also that
dim 7" < dim £%, hence thaf} is non-empty. Foy € X, let

F ={o=(u1,....,uq) € E [ (y) = ¥(t;) and(duy A ... A dug) |,= 0} C EV % k(y).

Fory = t;, this is justT”’. Fory € Z this is the fibre ay of the projectionl” — Z.
To prove thatlim 7% < dim £, it is enough to show that for all € Z, codimgg( )F; >

dim {y}. (It would be enough to lej run through the projections of the generic points of
T%)

Let y be such a point. First assurge# ¢;. Then the linear spack = {u € &) |
u(y) = u(t;)} is of codimension one i, and sagH* ! is of codimension/— 1 in S,f@;.
Since the differentialgu, u € &, generaté)ﬁ(/,‘C at each point of{, the subspace spanned
by du,u € H, is of codimensior< 1 in Qﬁ(/k ® k(y). In particular we can findi; €
H(k(y)) C k(y)[ X1, . Xn] (i =1,... ,d—1) such thatlui, ..., dug—1 € QU @ k(y)
are independent at Complete this system byw@, € £(k(y)) such thatlu,, ..., du, are
linearly independent at. Theny = (uy, ..., uq) € £(k(y))?¢ is such that:

o Y(y) =p(t);

o (duy A ... Ndug) |,# 0.

ThusFyi is of codimension> 0 in H*™! x &, and so is of codimension d > dim Z
in &, Asdim Z > dim {y}, we are done.

The caseg = t, is easier, since thetim {y} = 0: we need only use the fact that, ,

is generated byl€ att;. This also shows thatim 7" < dim £9~! for all 4, which we
wanted. ThusY, # (.
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LetQ, = N7_, Q4. Fory € Qy(k), ¢ is étale at alk; and all points ofp~! (¢ (¢;)) N Z
(1 <i < p). This completes the proof of Lemma 3.4.1. O
Lemma 3.4.2. Assume is algebraically closed. There exist non-empty open@et8, C
&% such that:

(1) Foro = (v,v) € Q3(k), ¢|s is injective.

Proof. Fors, s' € X (k), consider

¥(t)
M(s,8") = {(,v,1,1') € ETI X EX(Z x Z\ Ag) | § ¥(') =(s)},
v(t) =v(t)
whereA is the diagonal of/ x Z. Letp be the projection o/ (s, s') on&? = €91 x &.

Let us fixs, s’ € X (k) and for simplicity writeM instead ofM (s, s'). Letp be the pro-
jection of M on &4 = £4-1 x £; we are going to show thatis not dominant.

I
<
w

)

Let ¢ be the composite gf with the projection€?~! x £ — £%1, n = Spec K the
generic point of€¢~! and M,, the generic fibre of. Thenp induces a map, — Ex
which is dominant ifp is dominant.

Let K be an algebraic closure &f. This gives rise to the geometric poipt Spec ?_e
Spec K — £471, and we have an induced morphidify — & (WhereM; = M, @k K),
which is still dominant ifp is dominant.

Now the pointsj defines al-morphismy, : Z — A%‘l which is finite as a conse-
quence of 3.3.1. View € X (k) as a point ofX (K). Lety, (a = 1,... ,n) be the finitely
many (K -rational) points ofZ; such that)y(y,) = ¥o(s). Letzz (3=1,... ,m) be the
finitely many (K-rational) points o7 such that),(z5) = ¥ (s’). We have:

Yo(t) = tho(s
My ={(v,t,t') € (E X (Z x Z\ Az)) x, K |  Yo(t') = o(s)}
v(t) = v(t))

= U Vs

YaF2g
where

Vas ={v e &g |v(ya) = v(zs)} X {(yas 28)}-
Thus the projectiop(M7) C £ decomposes as

p(My) = | {v € & | v(ya) = v(zp)}.

YaF2zp
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This is a finite union of proper linear subspaceségf. Hence the projection map
M; — Exis not dominant, sp : M — £971 x £ is not dominant and the Zariski closure
of the constructible set( M) is a proper closed subset &f.

Let now(2; be the complement &f], ; p(M (t;,t;)) in E® this is a proper open set that
satisfies condition 1) of Lemma 3.4.2.

The proof of condition 2) is entirely similar, using the sets

N(s) ={(p,t) € E'x Z | p(t) = p(s)} (s ¢ 2),
fors=1t;t; ¢ Z. O

Lemma 3.4.3. There exists a non-empty open sub@edf £ such that allp € Q(k)
satisfy conditions 1)—-4) of Theorem 3.2.2.

Proof. Letk be an algebraic closure bfQ); C Eg” asinLemma3.3.1and,, 3, C
ElasinlLemmas 3.4.1and 3.4.2. Ket= (4 x £) N QN Q3N Q. There exists a finite
normal extensionk /k such that) is defined overk. Let ) be the intersection of its
conjugates under Auk(/k). This is a non-empty open subset&, which is defined
over the radicial closuré of k£ in K. But(2 is even defined ovek, since we can raise
the equations of its complement to an appropriéteh power, where = chark. Then
O C Q.

Let o € Q(k). By construction satisfies conditions 1)-4) of Theorem 3.2.2 after
extending scalars tb. We conclude the proof of Lemma 3.4.3 by observing that e&ch o
these conditions descendskto O

3.5. Constructing V.

Lemma3.5.1. Let o = (,v) € E< satisfy conditions 1)-4) of Theorem 3.2.2. Then
there existd” C A9-1 such that

(1) ¢ isétale atall points oz Ny~ (V);

(2) ¢|znp-1v) — Ay is a closed immersion;
(3) (t;) € V forall i.

Proof. Let Z, be the intersection of with the (closed) locus whergis not étale. By
condition 2) of Theorem 3.2.2, Ny (¢ (¢;)) = 0 for all i. By condition 1),i| is
finite andy(Z,) is closed inA9~1. Its complement; C A9 is such thaty is étale at
all points of ZNy~1(1}), and that)(t;) € V; for all i. Consider the commutative diagram

kiU, ..., U)] —— B
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whereB = k[Z] as above, antl, ‘1) are the homomorphisms correspondingtand)
on coordinate rings. Lat,, ... , p. be the maximal ideals d@f{Uy, ... , U;_1] correspond-

ingtoy(ty),...,¥(t.). Leta = p..

Sinceyp is étale at all points of andy|s : S — ¢(9) is radicial,
k[Uy, ..., Ul /at[idy, ... U] — B/aB

is anisomorphism. Sinck is afinitely generated[U, ... , U;_;]-module, by Nakayama’s
lemmathereis aif € k[Uy,... ,Us1] — (pLU---Up,) such thak[Uy, ... ,Uy[1l/f] —
B[1/f] is surjective. Lel, = {f # 0} C A91: thenV, containsy(t;) for all i and has
the property thap induces a closed immersighn ¢ (V) — Aj,.

LetV =V, NV,. Theny is étale at all points of Ny ~1(V), induces a closed immer-
sionZ Ny ~1(V) — A}, and containg)(¢;) for all 7. HenceV satisfies conditions 1), 2),
3) of Lemma 3.5.1. O

Remark 3.5.2.1f S =0, Z Ny~ (V) may well be empty.
3.6. Constructing U.

Lemma 3.6.1. With notation as in Lemma 3.5.1, let

®==¢1(¢(Zer%V3>)-—ZFW¢%V)

Then:
(1) ®isclosediny=(V);
(2) U, =4 1(V)—® contains all the;, satisfiesZ Ny~ (V) = ZNU, andp™! (cp(Zﬂ

mﬁmm:zam.

Proof. For simplicity, letl’ = Zny~' (V). By Lemma 3.5.1p| -1 (o1 : ¢ (¢((T)) —
o(T) is étale and” — ¢(T) is an isomorphism. Therefof®is open inp~'(p((T)) and
® = o' (o(T)) — T is closed inp~' (p(T)). Sincey|z is finite, 1|7 is finite overV’
and |7 is finite overAy.. So(T) is closed inAy, hence inA . It follows that
¢~ (p(T)) is closed inp™' (A, 1) = ¥~ (¥(T)). Thus® is closed iny~" ((T)). Still
by finiteness of) |z, v~ (¥(T)) is closed iny~! (V). This proves 1).

If t; € Z, thent; ¢ ®, hencet; € Uy; if t; ¢ Z, t; ¢ ® by condition 4) of
Theorem 3.2.2. In both casel; is a Zariski neighborhood of;. It is obvious that
ZNU, = ZnNy~1(V); the last condition of Lemma 3.6.1 holds by construction. O

End of proof of Theorem 3.2.2 LetU; C X be the (open) locus whetgeis étale. By
Lemma3.5.1¢y,... ,t, € Uy andZ Ny ~1(V) C Us. It follows thatU = U, N Us, with
U; as in Lemma 3.6.1, also satisfies condition 2) of this lemmareaver,p|; is étale.
So the triple(yp, V, U) satisfies all conditions of Theorem 3.1.1. O
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4. PROOF OF THE EFFACEMENT THEOREM

For the convenience of the reader, we state the effacemsoreim once again:

Effacement theorem. Let X be a smooth, affine variety over a figldt,... ¢, € X
a finite number of pointgy > 0 an integer andZ a closed subvariety of codimension
> p+ 1. Let A be a sheaf of torsion abelian groups over #tale site ofX. Assume that
A = p*Ay, wherep : X — Speck is the structural morphism and, is a Gal(k,/k)-
module. If% is infinite, then there exists an open subSedf X containing allZ; and a
closed subvariety’ C X containingZ such that

(1) codimx(Z") > p;

(2) the mapHy., (U, A) — H%, -, (U, A)is0forall n > 0.
If & is finite, then there existd/, Z’) as above such that (at least) the composite

Hg<X7 A) - HEOU<U7 A) - Hg/ﬂU(Uv A)

isOforall n > 0.

4.1. A key lemma.

Key lemma (compare [13, Lemma 2], [22, p. 621kt V' be k-scheme ani! be as
above. Letr : A, — V, 7 : P{, — V be the natural projections; : A{, — Pj, the
inclusion ands., : V' — Pj, the section at infinity of. Finally, let F C V' be a closed
subset ol/. Assume that’ andV — F' are quasi-compact and quasi-separated. Then the
diagram

is commutative.

Proof. We may clearly limit ourselves to the cases where

(1) Aistorsion prime to the characteristic lofor
(2) Aisp-primary torsion, where > 0 is the characteristic df.

In case (1), we use the following computation@f (P,, A). Fori € Z, let A(i) =
lim Hom(y5 ", A). Recall the étale first Chern class@{1) modim:

™ = c1(O(1))m € H*(Py, )

defined as the boundary of the canonical c[@3d)] € Pic(P},) = H'(P},,G) in the
long exact sequence associated to the Kummer exact sequence

1—>um—>G>i>G>—>H4.
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e(m)

AsV is quasi-compact and quasi-separated, the cup-profiticts ,,, A) =, H(P, ,A) —
H™2(PY,,,,A(1)) for variousm fit together and give a map

Hi(V, A) 2O, gapl A1),
We then have:

Proposition 4.1.1. (compare [SGA5, exposé VI, cor. 2.2.4f)case(1), the natural map

H"(V, A) @ H"2(V, A(—1)) 7200 opy, 4)

is an isomorphism for ath > 0. O
In case (2), things are even simpler:
Proposition 4.1.2. (compare [13, Lemma 3]h case(2), the natural map
H"(V, A) — H"(P}, A)
is an isomorphism for ath > 0. O

Using the exact sequence for cohomology with supports aptyiag Propositions
4.1.1 and 4.1.2 t& andV — F, we get canonical decompositions:

I _JHR(V, Ay e HE*(V, A(-1)) incase (1)
p (Pv, 4) = {H;E(V, A) in case (2).

The key lemma now follows from

(4.1)

Lemma 4.1.3. Suppose is torsion prime to the characteristic & In the diagram of
the key lemma, the restrictions €if and;* to the factori/.*(V, A(—1)) of (4.1)are0.

Indeed, the magi i 2(V, A(—1)) — Hg%(P%,, A) is given by cup-product by the first
Chern class 0O (1). Buts: O(1) is trivial, and so igi*O(1). O

Remark 4.1.4. If A is torsion invertible orl/, the key lemma has a much simpler proof:
in this caser™ is an isomorphism by homotopy invariance [36, ch. VI, p. 2d6r.
4.20] (for the definition of acyclicity, see [36, ch. VI, p. 23section 4]). Applying this
homotopy invariance to the projectioR' — {1}),, — V, we see that, ands,, as right
inverses of this projection, induce the same map on cohaggolow replaces’_ by s

in the diagram of the key lemma and add a map on the top

Hy(V, 4)
szg
1y, (AL, A)
A
[ Hp(V, A)
/s
Hy, (P, A)
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to make its commutativity obvious.

So Gabber’s argument going via the cohnomologi?btan be thought of as a substitute
for homotopy invariance when the latter does not hold.

See [7,5 5] for more on the homotopy invariant point of view, notaliyrion-abelian
situations.

4.2. The proof.

Theorem 4.2.1.LetV be ak-scheme[' a closed subset df and F’ a closed subset of
Al such that the projectiorf : F/ — F is finite.

-/
’ 1.t 1
FlesALAlL

f \ J{TFF J{T(
Felv
Then, for any torsiotale sheafd of abelian groups on the smadtale site ofl’, the map
H (A, A) — Hy, (Al A)
is identicallyO.

Caution. When we writeH?,(A{,, A) and so on, we really meali?, (A}, 7*A) and
so on, wherer* denotes the pull-back morphism from sheaves over the sta# Site
of V to that of A}, via 7. Being this fastidious would quickly become cumbersome no-
tationally; hence we allow ourselves to abbreviatel to A, and similarly for the other
morphisms toV/; this should cause no confusion. Another way to presengghis to
consider the morphism from the big étale site to the small étale sitelaf What we do
is consider* A and restrict it to the small étale site ©ffor any V' -schemél” (and then
we sneakily change the notatiar A back toA).

Proof. Note thats.. (V) N F’ = (). Therefore we can factot,, into
S0 =kos

wheref is the open immersioP{, — ' — P{,, and insert the diagram above into the
bigger commutative diagram:

HPQ’(A%N A) L) HK}: (A%/a A)

excisionTB J'*T Hp(V, A)
/5 N

k*

n ’B n n
HF’<P%/7A) - HP}:(P%/,A) - Hp}rfp/

(P%/ - F/7A>

where the bottom row is part of an exact sequence for cohaygalath supports. Since
k* o B = 0, it obviously follows thaty = 0. O
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Proof of Theorem 2.2.7.We may assumg irreducible. Suppose firgt infinite. Let
¥, ,V,U be as in Theorem 3.1.1, and s&t= ¢ ~'(¢/(Z)). We apply Theorem 4.2.1
withV =V, F =¢(Z)andF’ = ¢(Z N U). In the commutative diagram

HgﬂU<U7 A) - Hg’ﬁU(Uv A)

o ol

HI?’(A%/7A> - Hzl (A%/7A>
F

the left vertical map is an isomorphism by Corollary 3.1.8 &tale excision ([36, ch. I,
p. 92, prop. 1.27] and [8, prop. 4.4]), and the bottom horiabmap isO by Theorem
4.2.1. So the top horizontal map(sas well.

Suppose now: finite. We reduce to the infinite case by the following staddaigu-
ment. Letp, ¢ be two distinct prime numbers and |&Y, K, denote respectively tha,
andZ-extensions of.. Let (¢, 1, Vi, Ur), (Y2, @2, Vo, Us) be as in Theorem 3.1.1 and
Z1, Z be as above forXk, , Zk,) and(Xk,, Zk,) respectively. There are finite subexten-
sionsk C ki C K1,k Cky C Ky such thal(lpl,@l, ‘/1, Ul, Zi) and(iﬂg, ©Va, ‘/2, UQ, Zé)
are respectively defined ovir andk,. Note that the effacement theorem holds respec-
tively overk; andk, with these choices, by the above. Define

U=X —(p1(Xp, = U1) Ups(X, = U2)), Z' = p1(Z7) Upa(Zy)

wherep, : X, — X, po : Xj, — X are the two projections. In other words, and
X — 7' are those parts 4/, )z N (Us)z and Xz \ ((Z;)z U (Z2)z) which are rational over
k. Note thatl/ contains alk;s. We have

U, CU;, Z; C Zy, (1 =1,2).
Considering the commutative diagrams<1, 2)
H(nZﬁU)ki (U/ﬂv A) - H?Z’HU),C. (Ukm A)

7

0 I

HgﬂUi<Ui7A) - Hg’ﬁUi<Ui7A>

T

HZ(X, A)
shows thatthe composité} (X, A) — Hy (X, A) = H{ynp), (Ur, A) = Hiyiny), (Us, A)

7

isOfori = 1,2. Equivalently, the composit€7 (X, A) — H}~, (U, A) — H}y (U, A) —
Hlyer, Uk A) is 0 for i = 1,2. But the composite

Hyopy (U, A) — H(nZ’ﬁU)ki(Ukw A) — Hynp (U, A)

equals multiplication byk; : k], where the second map is transfer. Since these two de-
grees are coprime, this shows that the compdsiteX, A) — H% (U, A) — H%,~,; (U, A)
is 0 indeed. O
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Part 2. Other cohomology theories
5. AXIOMATIZING GABBER’S PROOF

5.1. Basic axioms.

In [2], Bloch and Ogus prove their main theorem not only ftal&€ cohomology with
coefficients twisted roots of unity, but also for other “cammogy theories with supports”.
Counterexample 2.2.3 (3) and the method of proof in the pitgsgper show that this point
of view should be taken seriously. On the other hand, thetBlogus axioms are very
complicated, and the present proof shows that many of therararecessary. In this sec-
tion, we want to indulge in the exercise of finding a convensd simpler set of axioms
which is enough to make the proof of the effacement theorerk.wo

Let S, be a full subcategory of the category of algebraischemes, stable under étale
extensions. In practicey, will be either the category ar/k of all separated algebraic
k-schemes or the categom/k of smoothk-schemes. LeP, the category of pairs
(X,Z7), whereX € S, and Z is a closed subset ok. By definition, a morphism
(X', 72" ER (X, Z) of Py is any k-morphismf : X’ — X such thatf~(Z) C 7’
(example:X’ = X, f the identity,Z C 7).

The most naive is to ask for a “cohomology theory with supgior
(X, Z) — hy(X)
a contravariant functor fror®P, to Z-graded abelian groups, satisfying conditions ab-

stracted from the proof of Theorem 2.2.7. Itis more natumalyever, and more powerful,
as we shall see in section 6, to give such a theory a cohonualogjipport

(X,Z) — Cz(X)
whereC(X) is, for example, a complex of abelian groups. It may be usefalllow
Cz(X) to be a complex of objects in more general abelian categotiéisan abelian

groups, for example if we want to have some ring action onit@tson. So we give the
following general definitions:

Definition 5.1.1. Let A be an abelian category.

a) A cohomology theory with suppoiisa contravariant functarX, 7Z) — h%(X) from

P, to A satisfying

Forany tripleZ C Y C X, whereY, Z are closed inX, there is a long exact sequence
= h(X) = BY(X) = b (X = Z) = hGH(X) — ...

which is natural in(X, Y, Z) in an obvious sense.
b) A substratumis a contravariant functak — C(X) from S, to complexes of objects
of A.

In b), defineC'z(X') as the homotopy fibre @f (X ) — C(X — %), i.e. C[—1], whereC
is the mapping cone of this morphism. This definition is natur (X, Z). For all triples
(X,Y, Z) as in a), the sequence of complexes

0— Cz(X) — Cy(X) — CY_Z(X — Z) — 0
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is exact up to homotopy ([20, p. 47, prop. 5.12], [29, p. 3222]). Hence, defining
h%(X) = HY(Cz(X)) (5.2)

yields a cohomology theory with supports in the sense of a).

Recall that a contravariant functérto an additive category iadditiveif it commutes
with finite coproducts, i.eT'(X [[Y) — T(X) x T(Y) is an isomorphism for alX, Y.

We now introduce a first axiom for a cohomology theory with gos 2* (resp. a
substratunC) in the sense of definition 5.1.1.

COHL1 (Etale excision).h* is additive and for any diagram
X/
il
Z— X
wheref is étale andf~!(2) I, Zisan isomorphism, the induced map
M (X) £ b (X)

is an isomorphism for al.

SUBLI (Etale Mayer-Vietoris). C'is additive and foiZ, X', X, f asin a), the commutative
square

C(X") —2 C(X' - 2)

is homotopy cartesian.

Recall that a commutative square of complexes
A—— B

[

C —— D

is homotopy cartesiaif the natural map from the mapping cone[6f — A @ D] to B is
a homotopy equivalence.

Lemma 5.1.2. The square of axiom SUBL1 is homotopy cartesian if and ortigiiitduced
map

is a homotopy equivalence.
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Proof. This follows from the triangulated category version of thiee diagram. More
precisely, consider the map of exact triangles

C(X" @ O(X — 2) 29D o x' — 2y O(X - Z) —— Cp(X)[1]

(fvfu)T (fvfld)T fT
C(X) — C(X -2) — Cz(X)[1]
in the homotopy categori (A). By [29, Proposition 5.6 of chapter XI], we can complete
this diagram, up to isomorphism, into

D SN D/ SN D//

T T I

C(X @ COX — 2) 29D o x' — 2ye O(X - Z) —— Cr(X)[1]

(fvfu)T (fvfld)T f
C(X) e C(X - 2) —— (X))
in which all rows and columns are exact triangles. It is ctbat:

e the middle top vertical map induces an isomorphS(X’ — 7) = D'.

o D'~ 0 < Cz(X) > Cz(X).

e SUBlholds < D = D' <= D" ~0.

The claim follows. O

Remarks 5.1.3.

(1) We say that a cohomology theory (resp. a substratunmgfieatizariski excision
(resp. Zariski Mayer-Vietori} if axiom COHL1 (resp. SUBJ) holds when we let
f run through open immersions. The obvious analogue of Lemmh& %ordinary
excision) holds.

(2) Note that inSUB1 one can replace the conditiod'“is additive” by “C'()) = 0"
(take the cas&’ = Z in the commutative square).

(3) Definition 5.1.1 allows us to set up a coniveau exact a@apld spectral sequence
as in section 1. Zariski excision allows us to recognizeffheerms of the coniveau
spectral sequence in the form of equation (1.1), produ€iogsin complexes the
sense of [24] by Zariski sheafification. In particularhifsatisfies Zariski excision,
we get a convergempniveau spectral sequender all X € S,

Ep = ] m2r(X) = hi(X)
$EX(P)

analogous to (1.2), wherg;(X) = lim Az, (U) (note thatEP? = 0 for p ¢
Usx

[0, dim X7).

As we shall see in section 7, if is defined by a substratum, Zariski excision
gives rise to an (a priori unrelateByown-Gersterspectral sequence as well.
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Lemma 5.1.4. For a substratunt” and the associated cohomology theory with supports
h*,

a) Axiom SUB1 implies axiom COHL1.

b) The converse is true if, for alt, C'(X) is fibrant in the sense of definition C.1.1 b) of
Appendix C.

Proof. Part a) follows trivially from Lemma 5.1.2. Part b) alsoléms from this
lemma, Lemma C.1.4 b) and Corollary C.2.7. O

Remarks 5.1.5.

(1) Obviously, Lemma 5.1.4 holds when étale Mayer-Vietas replaced by Zariski
Mayer-Vietoris.

(2) By Theorem C.3.1, if4 verifies axiom AB5 and has a generator in the sense of [23,
1.5 and 1.6] and if moreover countable products are exagt {ffior example,A
satisfies AR*), then there exists another substratirand a natural transformation

¢ % Fsuch that, for allX,

(@) F(X)isfibrant;

(b) x is a monomorphism and a quasi-isomorphism.
This applies to the case wherkis the category of lefR-modules over some ring
[23, §1].

Let us now introduce our second axiom. To do this, we need sumgstion onS;,.

Assumption 5.1.6.

(i) Speck € S;.
(i) If X € S, thenPl € S;.

Lemmab5.1.7. If S, satisfies assumption 5.1.6, then
X €S = AL eSS,
b) For anyn > 1, the open subsets &} are inS. O

In axiomsCOH2 andSUB2, we assume tha,, satisfies assumption 5.1.6.

COH2 (“Key lemma” for conomology) Let V' be an open subset &f; (for somen) and

™\, ﬁl =/
v
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be the diagram representing the inclusiomAdf and the section at infinity int®;.. Let
F be a closed subset &f. Then the diagram of the key lemma of subsection 4.1

i, (A})

] B (V)

iS commutative.

SUB2 (“Key lemma” for substrata) Let V, F be as in axionCOH2. Then the diagram
CA;(A%/)

is homotopy commutative.

We give a last definition.

Definition 5.1.8. Let X € S, be affine and let, ..., t, € X be afinite set of points. A
cohomology theory with supporis (resp. a substratuii) overk is strictly effaceable at
(t1,...,t,)if, givenp > 0, for any open neighbourhoddf C X of ¢,,...,t,. and for any
closed subset C W of codimensior> p+1, there exist an open neighbourhddd= W
of t1,...,t. and a closed subsgt C W containingZ such thatodimy (Z’) > p and the
maph%-,;(U) — h%,;(U)is0forall ¢ € Z (resp. the mag';ny(U) — Crnu(U) is
nullhomotopic). It isstrictly effaceabléf this condition is satisfied for angX, ¢4, ..., t,)
as above, withX' smooth.

Example 5.1.9. Supposé: infinite and letA be a sheaf of torsion abelian groups over the
small étale site ofpec k. By Theorem 2.2.7, the cohomology theory with supports

(X, Z) — Hy(Xg,a"A)
is strictly effaceable, where is the projection of the big étale site on the small étake. si
The following theorem is immediate from the arguments ofisacl.

Theorem 5.1.10.Letk be infinite andS;, satisfy assumption 5.1.6. A cohomology theory
with supportsh* (resp. a substratund’) satisfyingétale excision COH1 (respétale
Mayer-Vietoris SUB1) and the key lemma for cohomology CQOERp( the key lemma
for substrata SUB2) is strictly effaceable.
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The point here is that, in diagrams where there is an excisiap as in subsection
4.2, one can use a homotopy inverse of this map to show thah#peone wishes to be
nullhomotopic is indeed nullhomotopic.

Corollary 5.1.11. Letk be infinite, andS;, verify assumption 5.1.6 and let the cohomol-
ogy theory with supportg* satisfy axioms COH1 and COH2. Then, for any smooth
X € &y, the Cousin complexes are flasque resolutions of the Zasteaved{? associ-
ated to the presheavés — h4(U), and theFE,-terms of the spectral sequence of remark
5.1.3(3) are

EPY = HP

Zar(X7 Hq)
There is a need for something extra, like transfer maps, & wih finite fields: see

Theorem 6.2.5.
Remarks 5.1.12.

(1) The axioms above are much more economical than thoseoschEind Ogus in [2,
§ 1]. Definition 5.1.1 corresponds to axioms (1.1.1) and @).bf Bloch-Ogus.
Axiom COH1 corresponds to axiom (1.1.3). Axio®@OH2 has no counterpart in
[2], but might be compared with [2, (1.5)]. On the other hawe, do not need to
introduce any twists, nor a corresponding homology thediys means that purity,
let alone Poincaré duality, is irrelevant for strict e#ability.

(2) However, the “key lemma” we axiomatized @OH2 and SUB2 is unsatisfactory,
because it is not obvious how to check it in practice. Moreo€®H2 need not
imply SUB2 even for fibrant substrata. In subsections 5.3 and 5.4, weduate
stronger axioms that do not have this defect.

5.2. Spectra.

In order to include algebraik&’-theory in the formalism of this section, it is necessary to
consider substrata with values not only in complexes, lsat ial the category of spectra
in the sense of algebraic topology. We refer tog2] for the definition of a suitable such
category€, provided with an appropriate closed model structure (fibng, cofibrations,
weak equivalences). Recall (e.g. [50, 5.32]) that the DGdah-correspondence gives rise
to an embeddin@ K of the category of complexes of abelian groups into the cayegf
spectra such that, (DK (C")) = H"(C") for any complexC" of abelian groups.

The preceding subsection “extends” to substrata with aluspectra by

e replacing “complexes of objects of” by “objects of £” in definition 5.1.1 b);

e definingh%(X) = 7_,(Cz(X)) in (5.1);

e replacing the cases in Lemma 5.1.4 b) by “For.élle S, the spectrunC(X) is
fibrant and cofibrant.”

e replacing “Lemma C.1.4 b)” in the proof of Lemma 5.1.4 b) blge‘tfollowing fact:
a weak equivalence between two fibrant and cofibrant specrdomotopy equiv-
alence”.

e replacing remark 5.1.5 (2) by “For any substratam: S, — &, there exist two

substrata®’, ¢ and natural transformatiors = C” Z_ " such that for allx,
(@) C'(X) is fibrant;
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(b) C”(X) is fibrant and cofibrant;

(©) ¢x, ¢’y are weak equivalences.
This follows from the folklore result, for which we have nderence, that any map
between objects & can be factoreth a functorial wayinto a cofibration followed
by a trivial fibration, and also into a trivial cofibration folved by a fibration (small
object argument).”

In the next sections, we shall allow substrétao take their values in spectra, and
comment on this only when necessary.

5.3. Homotopy invariance.

In this subsection we discuss two new axio@QH3/SUB3andCOH4/SUBA4for co-
homology theories/substrata. As we shall see in sectidre/atiomCOH3/SUB3below
is satisfied by many theories. Axio@0OH4/SUB4is auxiliary and merely serves to give
a smooth proof thaCOH3 = COH2 (resp.SUB3=- SUB2).

We assume thag, satisfies assumption 5.1.6.

COH3 (Homotopy invariance for cohomology) Let V., = be as in axiomCOH2. Then
hL(V) T hiIF(A%/) is an isomorphism for a.
COH4 (Rigidity for cohomology). Let V., 7, F' be as in axionCOH2, and lets, s, be
the sections &t andoo of 7. Thensg, s%, : bl (Py,) — h%(V) coincide for allg.

F

o

SUBS3 (Homotopy invariance for substrata) Let V, 7 be as in axiomCOH2. Then
c(V) -, C(A}) is a homotopy equivalence.

SUBA4 (Rigidity for substrata). LetV, 7, F’ be as in axionCOH2, and lets, s, be the
sections ab andoo of 7. Thensg, s, : CP}T(P%/) — Cr(V) are homotopic.

Lemma 5.3.1. Let h* be the cohomology theory with supports associated to thetsaib
tumC'.

a) AxiomSUB3implies axiomCOH3.

b) If C(X) is fibrant and cofibrant for allX, then axiomCOH3 implies axionSUB3

Proof. Part a) : AxiomSUB3implies the same property for substrata with support, by
the same argument as in the proof of Lemma 5.1.2. Part b):rte [ the same as for
Lemma 5.1.4. O

Proposition 5.3.2. a) AxiomCOH3 implies axiomCOH2 and axiomCOH2 implies ax-
iom COH4.
b) AxiomSUB3implies axiomSUB2and axiomSUB2implies axionSUB4.

Proof. Part a): compare remark 4.1.4. Part b) is analogous butweeagiletailed proof
for the convenience of the reader. First we show 81aB2impliesSUB4. Generally, for
z € Pl(k) (resp.z € A'(k)), let us denote by, (resp.s) the section ofr (resp. ofr)
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determined by:. We can complete the diagram®UB2as
Cr(V)
CA;(A%/)
\W* (52)

CP}, (P%/)

It is then clear that the vertical compositionsjswhile the right composition is?_.

We now show thaBUB3implies SUB4. Axiom SUB3implies thats”’ is a homotopy
inverse ofr* for all z € A'(k). Consider now the inclusion : AL — P given by
t—t/(t—1). We havej;(0) = 0 andj;(1) = oo, or in other words:

. / - /
J1 © 89 = So, J1085] = So-

Sinces’; ands’] are homotopic, it follows that; ands’_ are homotopic.

Finally, we show thaBUB3impliesSUB2 UsingSUB3=- SUB4, we may replace, up
to homotopys?, by s in diagram 5.2, which then becomes obviously commutative. B
SUB3implies thats'; is a homotopy equivalence, hence the triangl8dB2is homotopy
commutative as desired. O

5.4. Cohomology of P!,

In order to express our axiom on the cohomologyPdf we need to introduce more
material. We still assums,, to satisfy assumption 5.1.6.

a) Cohomology theoriesWe suppose given a cohomology theary a cohomology
theorye* and, for any(X, 7) € P, a map

Pic X — Hom(eZ(X), h% (X))

which is natural i X, Z) (we do not require this map to be additive). Takikig= P1,,
Z = PL, we get a homomorphism

* [(’)(1)}—[(’)] *
epy (Py) ——— hpy (Py)
hence, composing with*, a homomorphism
* A(V,F) *
er(V) S hP}:(P%/)

natural in(V, F).
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COHS5 (cohomology ofP!, conomological version)Let V, F, 7 be as in axionCOH2.
Then the natural map

(7* v, F)

We(V) ® e(V)

is an isomorphism for al.

)
L, (PL)

b) Substrata We suppose given a substratdima substratund and, for anyX € Sy,
amap

Pic X — Homg(D(X),C(X)) (5.3)

natural inX', wheref is either the category of complexes of objects of our abelate-
gory A or the category of spectra of subsection 5.2. Taking- P{, we get a map (for
spectra, in the stable homotopy category)

C(Py)

hence, composing with*, a map (for spectra, in the stable homotopy category)
D(V) =% C(Py)

natural inV/.

SUB5 (cohomology ofP!, substratum version)Let V, 7 be as in axiomCOH2. Then

the natural map (for spectra, in the stable homotopy cayggor

C(V) e D) T,

is a homotopy equivalence.

C(Py)

(To be correct, we should use wedgeather than direct sum in SUB5whenC and
D are given by spectra.)

Remarks 5.4.1.
(1) The map (5.3) induces, by functoriality, a map on cones
Pic X — HOIl’lg(Dz(X), Cz(X))

for any (X, 7) € P,. Hence we get a map (for spectra, in the stable homotopy
category)

Cr(V) ® Dp(V) 2 oy (PY)

generalizing that of axior8UBS5, and the latter implies by the usual argument (cf

proof of Lemma 5.1.2) that this generalized map is a homogapyvalence as well.
(2) Axiom COHS5 implies that the cohomology theo#y is uniquely determined bi*

up to isomorphism. For example, verifies Zariski (resp. étale) excisiorvif does.

Similarly, axiomSUB5implies thatD is uniquely determined bg' up to homotopy.

But the action ofPic is not determined by these axioms in an obvious way.
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Lemma 5.4.2. Let h* be the cohomology theory with supports associated to thetsab
tumC ande* the cohomology theory with supports associated to the sathst D.

a) AxiomSUB5implies axiomCOHS5.

b) If C(X) is fibrant and cofibrant for allX, then axiomCOHS5 implies axionSUBS

Proof. a) follows from remark 5.4.1 (1); b) is proven as in Lemma41). O

Proposition 5.4.3. a) AxiomCOHS5 implies axiomCOH2.
b) AxiomSUBS5implies axionSUB2

Proof. For a), compare proof of Lemma 4.1.3. Part b) is similar beiigive a detailed
proof, as in subsection 5.3. By remark 5.4.1, we are redugethécking that in the
diagram

CA},<A%/>

N
jﬁ Cr(V)
/st
Cr(V)® Dp(V) 2 Cpy (PY)

the two paths fronCr(V') @ Dp(V) to Cy1 (Ay,) are homotopic. It is enough to check

this on both componentsy (V') and D (V). OnCr(V) this is trivial (the two paths are
actually equal). ODg(V), the two paths are nullhomotopic, because the pull-backs of
O(1) by s« andj are both trivial. O

5.5. Generating new theories out of old.

The following remarks show how to construct some strictliaaéable cohomology
theories and substrata. Here substrata take their valtlesy én C'(.4), where A is a
suitable abelian category, or in the category of spetiwasubsection 5.2.

(1) LetS, = Var/k, let h* (resp. C) be a cohomology theory with supports (resp. a
substratum) oves;, and letT € Var/k. Define a new cohomology theory with
supportsh” (resp. substratur@”) by

(W")2(X) = higy,r(X %, T)
(resp.
CT(X)=C(X x; T)).
Assume that* (resp.C) satisfies axionCOH1 (resp.SUBJ) (for all k-schemes).
Thenh? (resp.C7) also does. This is obvious.

Suppose now that* (resp. C) satisfies axiomCOHi (resp. SUBI) for some
i € {2,3,5}, not only for open subsets &} but for anylV € Var/k. Then the
same holds fok” (resp.C7). This is equally obvious.

(2) LetC ENGA Y morphism of substrata, and &t be the homotopy fibre of. Then,
fori =1, 3, iftwo amongC, C’, C" verify axiomSUBI, so does the third. This ot
clear (and probably wrong) for axions8JB2andSUBA4, or for “strictly effaceable”.
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As for axiomSUBS, the following holds:
Let D, D' be the substrata attached respectivelg'tand C’ in COH5. Assume
given a morphismf : D — D’ such that, for anyX € S, anda € Pic X, the
diagram

D(X) X C(X)

W s

D'(X) = C'(X)

commutes. LeD” be the homotopy fibre ab L. D', From the assumption above,
we get a natural transformation

Pic X — Hom(D"(X), C"(X)).

Then, if two among the pairf&”, D), (C’, D’), (C", D") (together with the actions
of Pic) verify axiom COH5, so does the third.

(3) Let(ha)aca (resp. (C.)aca) be afiltered direct system of cohomology theories with
supports (resp. substrata) ahd= lim i, (resp.C = lim C,). If all A, (resp. all
C,) verify axiom COHi for some; (resp.SUBiI for ¢ = 1, 3), then so does* (resp.
C). The same claim foBUB2 andSUB4 in the case of substrata is not clear. As
for COH5, we must request that thB,, attached to th&’, form a direct system
compatible with that of th€’,, via the actions oPic.

(4) LetC be a substratum, and suppose given a direct system of siabstra

Y AN o (n>0)

with a homotopy equivalendem C™ = C. Suppose thaf'”’ and, for alln, the
homotopy fibre oC ™ — C(*+1) satisfies axionBUBi for i = 1,3 or 5 (for SUB5,
we request analogous conditions on ih& as above). Then so do@s This follows
by induction from remarks 2 and 3.

6. UNIVERSAL EXACTNESS

In this section, we want to show how strict effaceability afudbstratum (rather than a
cohomology theory) implies not only exactness, but aueinersal exactness the asso-
ciated Cousin complexes. Recall that a complexs contractibleif there is a homotopy
from the identity ta) on A'.

6.1. Generalities.

We take from [19] the definition of universal exactness, altyuin slightly greater
generality:

Definition 6.1.1. Let A be an abelian category. A complék of objects ofA is univer-
sally exactf the following condition is satisfied:

For any abelian categors and any additive functdf’ : A — B commuting with filtering
direct limits, the compleX'(C") is exact.
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(In the caseA is the category of left modules over a ring, one should complais
notion with Lazard’s pure sequences [32, Ch2, esp. Th. 2.3].)

Note that the exactness 61 () is automatic ifI" is exact, but we only require it to be
additive Here are some examples:

Examples 6.1.2.

(1) A contractible complex is universally exact. Indeedy additive functor will trans-
form a homotopy into a homotopy.

(2) If A satisfies AB5, a filtering direct limit of universally exaaraplexes is univer-
sally exact.

3) LetC': 0—C°— ... - (C"! — C" — 0 be abounded exact complex, so
that BY(C") = Z{(C") for all i. Suppose all the exact sequenfes: Z/(C") —
C* — B™1(C) — 0 are filtering direct limits of split exact sequences. Tli&ris
universally exact. This follows from the previous two exdesp

Conversely:

Proposition 6.1.3. Supposea satisfies AB5 and any object dfis a filtering direct limit

of finitely presented objects (e.( is the category of left modules over a ring). Then
any bounded universally exact compléxof objects ofA can be described as in example
6.1.2(3).

Recall that an objeck of A is of finite presentation if the functdr — Hom(X,Y')
commutes with direct limits.

Proof. Applying definition 6.1.1 withl" = identity, we see that" is exact. LetX be a
finitely presented object ofl. Applying the functor

T(M) =Hom(X, M)

to C", we see in particular thafom (X, C"!) — Hom(X, C") is surjective. It follows
that, for anyf : X — C", the pull-back of the exact sequence

0— 2" C)—=C"!'=C"—0 (D)

by f is split. By the assumption in Proposition 6.1.3, (D) is afilhg direct limit of split
exact sequences, and in particular is universally exags idw implies that the sequence

0—-C"—...>C" 2= B"1C)—0
is universally exact. We get the conclusion by inductiomon O
6.2. Universal exactness of Cousin complexes.

Theorem 6.2.1.Let S satisfy assumption 5.1.6. Leéf € S, be an affine variety,
ti,...,t, € X afinite set of points and* a cohomology theory with supports @.
Suppose that* is given by a substratud which is strictly effaceable dt, . . ., ¢,.. Then
the Cousin complexes

0,q 1,9
0—n(y) S T nev) S I ret(v) 2

:I,‘EY(O) $EY(1)
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.....

The proof uses the following well-known lemma:

Lemma 6.2.2. Let 7 be a triangulated category and — B — C — A[l] an exact
triangle in7. Suppose that the map — A[1] is 0. Then the maB — C has a section.
(“Every epimorphism is split”.)

Proof. Apply the functorHom(C), 7) to the triangle and get an exact sequence
Hom(C, B) — Hom(C, C) 5 Hom(C, A[1]).

which shows thaHom(C, B) — Hom(C, C') is surjective. Lets : C' — B be an element
that maps td'd-. Then by definitions is a section, as wanted. O

To prove Theorem 6.2.1, we go a little more carefully tharhm proof of Proposition
2.1.2. We note that the Cousin complex of Theorem 6.2.1 iginét by pasting together
complexes

0— hlo, () — [T m) = rn(¥) =0 (6.1)

y (p+1)
yey (@)

which in turn are obtained as direct limits of the complexes
0 = hnw (W) — h((lz/—z)mW(W \Z) — thJrrwlw(W) — 0 (6.2)

coming from the long exact cohomology sequence of definlidnl. Herell/ varies
among the open neighbourhoods(ef, . ..,t,) andZ C Z’ C W vary among closed
subsets of codimensions respectively and> p + 1.

Lemma6.2.3.Lettq,..., ¢, andY be as in Theorem 6.2.1. Suppose the substratum
is strictly effaceable aty, ..., t.. Then for anyp > 0 andq € Z, the compleX6.1)is a
direct limit of split exact sequences, whéreis the cohomology theory associatedto
In particular, it is universally exact.

Proof. Let W C X be an open neighbourhood 6f;,...,t.), Z C W a closed
subset of codimension p and take/, Z’ as given by definition 5.1.8. In the triangulated
categoryK (A) of complexes of objects aft up to homotopy ([26, chap. 1] and [20,
5]), or in the homotopy category &fif C' is given by spectra [4], consider the triangle or
fibre sequence

CZ/mU(U) - C’(Z’fZ)ﬂU(U \ Z) - szu(U)[l] i>CZ’mU(U)[1]-

HereCyzny(U)[1] meanstCyny (U) if C'is given by spectra. Lemma 6.2.2 shows that
the mapCz_z)w (U \ Z) — Czp(U)[1] has a homotopy section. Correspondingly, the
sequence

0 — hny(U) — h((lzf—z)mU(U \Z) — thJrrwlU(U) — 0

is split exact for ally. And such sequences are cofinal in the direct system of coeple
(6.2). O
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Corollary 6.2.4. Supposé is infinite andS;, verifies assumption 5.1.6. L&t be a co-
homology theory with supports d?,, with values in an abelian categopy satisfying
axiom AB5 and having a generator./if satisfies axiom€OH1 (étale excision) and ei-
ther COH3 (homotopy invariance) oEOH5 (cohomology oP!), and can be defined by
a substratum of complexes or spectra (the latter assumding {abelian group$), then
the Cousin complexes of Theorem 6.2.1 are universally éaadf smooth.

Proof. If h* can be defined by a substratum of complexes, it can be definadiltmant
substratunt’ by remark 5.1.5 (2). Similarly, for a substratum of speatrean be defined
by a fibrant and cofibrant substratum by subsection 5.2. Byras5.1.4 b), 5.3.1 b)
and 5.4.2 b)(”' satisfies axiom§SUB1and eitheiSUB3 or SUB5, hence axionsUB2by
Propositions 5.3.2 and 5.4.3. By Theorem 5.1.10, it istbjrieffacable. The corollary
now follows from Theorem 6.2.1.

Note that Theorem 6.2.1 does not cover the case of finite fi€losthis, we introduce
another axiom, which was already used in section 4:

COH6 For any finite field extensiofyk and any(X, Z) € Py, there is given a map
COI‘@/;C . h*Zg<Xf> — h*Z(X)

such thatCor,/, o Resy/, = [¢ : k|, whereRes,, corresponds to extension of scalars.
This map is natural ifX, Z) € P;.

Theorem 6.2.5. Let k£ be a finite field andh* a cohomology theory with supports &h,
with values in an abelian category satisfying axiom AB5 aaniiig a generator. Suppose
S;. verifies assumption 5.1.6 arid satisfies axiom€OH1, COH6 and eitherCOH3
or COH5, and can be defined by a substratum of complexes or specten, Tdor any

connected smooth affiné € S, and any finite set of points, ..., t, € X, the Cousin
complexes
0,q 1,9
0— n(Y) Snay) o [T wetv) S
zey (@)

are universally exact, wherg = Spec Ox ...,

Proof. ExtendC to Sk for infinite algebraic extension&’/k by settingC(X) =
lim C'(Xo ®x, ), Wherek is a suitable finite subextension &fsuch thatX' = X, @y, K
for someX,, and/ runs through the finite subextensionsifk,. This extendg:* to a
cohomology theory with supports dp,, admitting a substratum and satisfying axioms
COH1, COH6 and eithetCOH3 or COH5. By Corollary 6.2.4, the Cousin complexes
of Theorem 6.2.1 are universally exact fgrvarieties.

Let 7" be an additive functor (with values in some abelian categatisfying AB5)
which commutes with filtering direct limits. We have to prdtat the complex
0,q 1,9
0— T(h(Y)) SThe(Y)) 2o [T Thet(v)) 45 (6.3)

xeY(l)
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is acyclic, forX a smoothk-variety andY” as in Theorem 6.2.1. We use the same trick
as in section 4. Let;, p, be two different primes andl;, K, theZ,, andZ,,-extensions

of k respectively. Letd be some homology group of the sequence (6.3). For an algebrai
extensionk /k, let (6.3); denote (6.3) “pushed ovét”. By assumption oif’, we have

AK :1_IILIAZ

where/ runs through finite subextensions&f k. On the other hand, the transfer condi-
tion shows that, if K : k] = N < +o0, then

NKer(A— Ag) =0.

It follows thatKer(A — Ag,) is p;-primary torsion and thereforer(A — Ak, &
Ak,) = 0. Finally, sinceK; and K are infinite, we havely, = Ak, = 0 as observed
above. SaA = 0, as was to be proven. O

7. EXAMPLES

7.1. Hypercohomology of sheaves.

In this subsection as in subsection 7.5, the catedhryeed not satisfy assumption
5.1.6.

7.1.1. Letv be a Grothendieck topology a$i.. To a complex of sheaves of abelian
groupsC overr one can associate a conomology theory with supportgiven by the
v-hypercohomology of with supports:

hz(X) = Hz(X,, C).

7.1.2. Letf : C — C’' be a morphism. Therf induces a morphisnf, of associated
cohomology theories. If is a quasi-isomorphisny, is an isomorphism in the following
two cases:

e C and(’ are bounded below;
e for all X € S, thev-cohomological dimension oX is finite.

Indeed, we have a morphism of hypercohomology spectralesems:

"By I=HY(X,, H(C) =Y (X, C)

f*T f*T
B} =H}(X,, HY(C)) = H} (X, C)

which is an isomorphism ofts-terms by assumption. Heré{?(C) andH¢(C’) are the
cohomology sheaves @fandC’ respectively. In both cases, the two spectral sequences
converge, hence the map on abutments is an isomorphism.

7.1.3. A cohomology theory given by a complex wsheaves can always be de-
fined by a substratund’ of complexes of abelian groups (this is in fact the way
hypercohomology is defined!) There are several well-knoamstructions foC":
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e Suppose is bounded below. Choose a Cartan-Eilenberg injectivduea Z of C
and define”(X) = Tot(Z)(X), whereT'ot(Z) is the total complex associated to the
bicomplexZ. Note that the terms af'(X) are injective abelian groups aldd X)
is bounded below. Hend&(X) is fibrant in the sense of definition C.1.1 (compare
Proposition C.1.2).

e ReplaceC by a fibrant complex of sheaves. By Theorem C.3.1, we can do this
functorially in C. Define nowC(X) asF(X); note thatC(X) is fibrant for all X
as a complex of abelian groups. This construction does oineC to be bounded
below.

e The Godement resolution. Suppose the topos associatdmt®enough points (this
is the case for Zariski, Nisnevich, étale, complex topaeyy ToC one associates a
new complex of sheaves

c: U~ ] ] ¢
FEl f=(U)
wherell is the set of points of (compare [50, 1.31], especially for set-theoretic
problems). The terms of this complex are flabby in the send8&fex. 111.1.9
(c)]. IteratingT yields a cosimplicial complex of flabby sheavEg’, which in turn
yields a bicomplex of flabby sheav&sC in the usual way. One defin€s(X) =
Tot(T*C)(X). This is essentially the object denotedlfiy X, C) in [50].
By the usual arguments, there is a commutative diagranC(lmunded below)

Tot(Z)
/

c ]
N\
Tot(T*C)
in which the vertical map induces a quasi-isomorphism obagjlsections.

The last two constructions are naturatlinAll constructions have the following virtue:
if C’ — C — (C” defines an exact triangle in the derived category-sheaves, then so
doesC’(X) — C(X) — C”"(X), for all X, in the derived category of abelian groups,
whereC’, C, C” are the associated substrata.

7.1.4. LetC be associated t0as in 7.1.3, and suppose we sheafify it for thimpology.

In the first constructiord is already the complex of sheavést(Z). In the second one,
the stalk of7"C at a pointx is homotopy equivalent to the constant cosimplicial comple
of abelian groups defined [g};. In both cases, the resulting complex of sheaves is quasi-
isomorphic taC.

7.1.5. Instead of taking complexes of sheaves of abeliampg@mne can take complexes
of sheaves with values in an abelian category with enougltinges, oisheaves of spectra
[50] in the line of 5.2. All the above holds in these contexisjtatis mutandis. In the
case of spectra, for 7.1.2 use the spectral sequence of &0, f.36]. For the second
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construction in 7.1.3, use [50, def. 1.33]. Nisnevich répélaese constructions in [38],
because he uses a different notion of point of a topos for theeNich topology.

7.1.6. Let/ be another Grothendieck topology 6 which is finer thanv. Then the
identity functor ofS,, defines a morphism of siteg = v. If C is a complex of sheaves
for thev' topology, there is an isomorphism

H, (X,/,C) = H(X,, Ra.C)

where Ra,C is the total direct image af (in the derived category). In the caSes a
sheaf of spectra, one should use the objeetC of [50, def. 1.55] instead oRc..C, cf
[50, th. 1.56]. So we can view/-hypercohomology as-hypercohomology.

7.1.7. Suppose thatis the big Zariski site oBpec k. Thenv-hypercohomology of
verifies Zariski excision. Similarly, suppose thas the big Nisnevich sit&is onSpec k.
Thenv-hypercohomology verifies étale excision, i.e. axiG@H1. This is known when
C is reduced to a single sheaf (for the Nisnevich case, cf [&.p4.4], which applies to
Nisnevich cohomology; recall that the proofs of [36, prof.1127] and [38, th. 1.27]
have a gap). In general, the proof follows from a comparisboonvergent hyperco-
homology spectral sequences, as in 7.1.2. The two speetyakaces converge without
boundedness conditions @h) because the Zariski or Nisnevich cohomological dimen-
sions ofk-schemes of finite type are finite [38]. See [50, ex. 1.49] farigki excision in
the case of a sheaf of spectra (in [38] Nisnevich does nottg&veorresponding statement
for &étale excision explicitly).

7.1.8. By 7.1.6 and 7.1.7-hypercohomology satisfies Zariski (resp. étale) exoisi®
soon ag is finer than the Zariski (resp. the Nisnevich) topology.

7.2. Generating new theories out of old, continued.
LetC be asin 7.1.1, letl be a bounded below complex of abelian groups, viewed as

L
a complex of constant Nisnevich sheaves, andlet C ® A (in the derived category).
Then, if the cohomology theory associated teerifies axiomCOH3 or COH5, the same
is true forC’. In the case of axionl€OHD5, if D is a complex of sheaves associated to

we associate t¢’ the complexD’ = DQL@A and take for the action dpic the original
action tensored byl. The claim can be justified in a few steps:
(a) A = Z]0]. This s trivial.
(b) A = Z/n. Follows from the previous case, item (2) of subsection 3.8.3 and
the exact sequen¢e— Z — Z — Z/n — 0.
(c) A consists of a single finitely generated abelian group placel#gree). Fol-
lows from the previous cases.
(d) A consists of a single abelian group placed in de@rdeollows from the previ-
ous case and item (3) of subsection 5.5 by a passage to the limi
(e) The general case. Follows from the previous case and#eaf subsection 5.5.

In caseC is a sheaf of spectra as in 7.1.5, one has the same by takifiyttoe sheaf of
spectraC A A, whereA is an arbitrary spectrum, viewed as a constant sheaf ofrgpect
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The method is the same, reducing to the case wheésean Eilenberg-Mac Lane spectrum
by dévissage from its Postnikov tower, cf [50, proof of tt4l.

7.3. Homotopy invariant examples.
In all examples of this subsectio§, = Var/k.

(1) Etale cohomology with coefficients in a sheaf defined évand torsion prime to the
characteristic ofc. Etale excision follows from 7.1.8 and homotopy invariafroen
[36, cor. VI.4.20]. More generally, by 7.1.8 and item (4) oabsection 5.5, one
may take étale hypercohomology of a bounded below compiesheaves whose
cohomology is torsion prime to the characteristid:of

(2) (overC:) Classical hypercohomology with coefficients in a boundddvbeomplex
of abelian groups Here, étale excision again comes from 7.1.8 and the fadt th
for X a C-variety, the topological spac¥(C) essentially maps to the small étale
site of X (cf [SGA4-IIl, exposé Xl, 4.0]). Homotopy invariance isdwn for Z as
coefficients, and the general case follows from remark 7.2.

(3) (chark = 0:) De Rham cohomologyRecall that, for a-variety X, H;,(X/k) =
H,, (X, Q). whereQy , is the de Rham complex. To check étale excision,

Zar
we note that, since th@),, are coherent sheaves, the mapg, (X, Q) —

Hi (X, Q'X/k) are isomorphisms [36, remark 111.3.8], so we can apply 7.A&u-
ally, sincechar k£ = 0, we even have purity [25]. Homotopy invariance is proven in
[25, remark p. 54].

(4) Motivic cohomologyLetk admit resolution of singularities in the sense of [12, de4] 3
(for examplechar £ = 0), and let; > 0. In [49, section 2], motivic cohomology
of weighti is defined byH (X, Z(7)) = H}, (Xcan, Z(?)can) for (X, Z) € Py, where
cdh is the Grothendieck topology introduced in [12, def],322:) is a certain com-
plex of presheaves with transfers with homotopy invariaftamology presheaves
in the sence of [52] anl(i)qn is its sheafification for the cdh topology. Therefore
motivic cohomology is given by a substratum, is homotopyaimant and satisfies
étale excision since the cdh topology is stronger than ikaéVich topology. It also
satisfies purity by [49, prop. 2.4].

(5) Cycle modulesLet M, be a cycle module in the sense of [44]. Bore Var/k and
j € Z,denote byC'(Z, M;) the (homological) Gersten complex associated #nd
ending WithHmeX(O) M;(k(z)). For X of pure dimensiow, define

C(X) = C(X, My) = C.(X. M, )

viewed as a cohomological complex. BorC X a closed subset, there is an obvious
short exact sequence of complexes

SoC.(Z, M;.4) is homotopy equivalent to the homotopy filirg (X). In partic-
ular, the substratur@’ verifies étale excision (axiol@UB 1), and even purity. By a
result of Rost [44, prop. 8.6], it is also homotopy invariahherefore, the Gersten
complexes on a smooth semi-local scheme are universalty §44, th. 6.1] for the
exactness). Universal exactness actually follows diyeeatim replacing the cycle
module M, by T o M,, whereT is a given additive functor which commutes with
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filtering direct limits.
This example includes as a special case Milnargroups, Milnor'sk’-groups mod
m, m-torsion in Milnor’s K-groups. . .

(6) AlgebraicG- (= K’'-)theory This is the only case in this list of examples where the
substratum is given by spectra, not complexes. Etale exci®DH1 is implied by
the much strongdocalization theorenof Quillen, akin to purity [43, prop. 7.3.2].
Homotopy invarianc€OH3 also follows from Quillen [43, prop. 7.4.1]. By smash-
ing the algebraidy-theory spectrum by the Moore spectrum(Z/n), we get the
case of algebrai&'-theory with coefficient& /n (compare subsection 7.2).

7.4. Non homotopy invariant examples.

In all examples of this subsectiofi, = Var/k, except in examples (4) and (5) where
(1) Etale (hyper-)cohomology with bounded below coefficieatsiog fromk. As above,
étale excision follows from 7.1.8. Axior@OHS5 is proven in Appendix A. More
precisely, in subsection A.2, we define an étale slagéZ(—1) (over the big étale
site of Spec Z) and a map

Pic X — I'(X, RHomg(Q/Z(—1)[-3], Z)) (7.1)

for any schemeX. Let now(C, be a bounded below complex of sheaves over the
smallétale site ofSpec k, andC its inverse image to thieig étale site. Leb* be the
cohomology theory with supports defined ®ynde* the cohomology theory with

supports defined bﬂé@Q/Z(—l)[—S]. The map (7.1) induces a majic X —
Hom(e, h), and we show in subsection A.3 that this map satisfies axi@Hi5.

(2) Hodge and de Rham cohomology in any characterigitale excision is seen as above.
Axiom COHS5 is due to lllusie: ifh* is the cohomology theory associated to the

Zariski sheaf2’ , , then axiomCOHS5 holds forh* with e* associated t@@;/lk[—l]

(i-e. €4(X) = Hy ' (Xzar, Q5),))- Here the mapic X — Hom(e, h) is given by
dlog

cup product with the first Chern class, defined through the Figp( X, O% ) —
Hyz,. (X, Q). Using item (4) of subsection 5.5, one can then extend ax@hi5

to the de Rham-Witt complex itself, or truncations of it. Guare [21, p. 22, proof
of (4.2.7)]. Note thatX need not be smooth since, in [SGA7, exposé XI, th. 1.1],
X is arbitrary. Note also that, even in characteristiciodge cohomology is not
homotopy invariant. In characteristiocone can then “escalate the ladder” to get the
same result for Deligne-Illusie’s Hodge-Witt and de Rhanit\ébhomology ([28],
compare [21]).

(3) (char k£ = p) Logarithmic Hodge-Witt and de Rham-Witt cohomol{®#B]. Etale exci-
sion is proven as above. Axio@OHS5 follows from [21, th. .2.1.11] and is proven
there in the spirit of item (2) of subsection 5.5, using theatligtion of the loga-
rithmic de Rham-Witt pro-complex as Frobenius fixed poirftthe de Rham-Witt
pro-complex [21, I. (1.3.2)] .

(4) Cohomology of a torud_et T be ak-torus. Consider the cohomology theory with sup-
portsh* given by the sheaf associatedltan the big étale site &fpec k. As above,

h* satisfies étale excision. L&t = Hom(G,,, T) be the group of cocharacters of
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T, also viewed as a big étale sheaf. kebe the cohomology theory with supports
given by
e (X) = Hy ' (Xa, M).
Cup-product defines a map
Pic X — Homx (e, h)

for all X. It can be shown that axiol@OHS5 is verified for h, e and this natural
transformation.

(5) Etale weight-two motivic cohomologyror an affine schem&, let I'( X, 2) be the
weight-two motivic complex introduced by Lichtenbaum ir8]3 For X smooth,
its Zariski sheafificatiol’(2)z., is quasi-isomorphic ta~°Z(2)z.,, whereZ(2)z.,
is the Zariski sheafification of the complex of 7.3 (4). Themsteps in the proof
of this are [1, th. 7.2], [48] and [53, proof of prop. 4.9 andbsection 4.3]. (Con-
jecturally I'(2) ., andZ(2)z., coincide). It is proven in [31] that the cohomology
theory (X, Z) — H} (X4, T'(2)s) satisfies axionCOH5, wherel'(2), is the étale
sheafification ofX — I'(X, 2).

(6) Algebraic K2-theory. Here K denotes the Bass extension of Quillen’s algebfgic
theory, which coincides with the latter for regular Noetherschemes, see [51,
66]. Axiom COH1 is one of the main results of Thomason-Trobaugh: it applies
generally toX, X’ quasi-compact and quasi-separated such Xhat 7 is quasi-
compact as well [51, Th. 7.1 and 7.4]. It would be wrong forivagdy K -theory in
general. AxionTCOHS5 follows from [51, Th. 7.3]. Just as in example 7.3 (6), we get
algebraicK B-theory with finite coefficients by smashing with a Moore gpam.

7.5. More on hypercohomology and excision.
This subsection can be considered as a sequel to subsedtion 7

7.5.1. Letr be a Grothendieck topology &).. Suppose that we now start with a sub-
stratum of complexe§'. SheafifyingC for thev-topology, we get a complex ofsheaves
C. Choosing an injective right Cartan-Eilenberg resolutibiof C, the augmentation
C — Tot(Z) yields an augmentation

C(X) = T(X,C) — (X, Tot(ZT)).

Similarly, if » has enough points, the Godement resolution constructi@nlod gives
a natural transformation

C(X)—-H(X,,C). (7.2)
By analogy with 7.1.4, we may ask the question:

Question When is (7.2) a quasi-isomorphism?

This problem has no simple solution in general; however vadl gxplain that it has
one wherv is either the Zariski or the Nisnevich topology.
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In both cases, an obvious necessary condition is that thencology theoryh* asso-
ciated toC' satisfies Zariski (resp. étale) excision, siit€€.X,,C) does by 7.1.7. The
remarkable fact is that this condition is sufficient:

Theorem 7.5.1. Suppose that = Zar (resp.v = Nis). Then(7.2)is a quasi-isomorphism
if and only if the cohomology theofy associated t@' satisfies Zariski (respétale) ex-
cision. In other terms, a cohomology theory with support&ctviadmits a substratum
made of complexes satisfies Zariski (regtale) excision if and only if it can be defined
by Zariski (resp. Nisnevich) hypercohomology of a complesheaves.

This theorem is either a consequence or an easy analogue of

Theorem 7.5.2(Brown-Gersten—Thomason—Nisnevicluppose that = Zar (resp.

v = Nis) and letC be a substratum of spectra ou8. Then(7.2)is a quasi-isomorphism
if and only if the cohomology theofy associated t@”' satisfies Zariski (resgetale) exci-
sion. In other terms, a cohomology theory with supports Wwhmits a substratum made
of spectra satisfies Zariski (resptale) excision if and only if it can be defined by Zariski
(resp. Nisnevich) hypercohomology of a sheaf of spectra.

Proof. See [5] and [50, 2.5] for the Zariski case, [38] for the Nignk case. O

By 7.1.4, a complex of sheavé€sdefining~* can be chosen as the sheaf associated to
the presheall/ — C(U), whereC' is a substratum definink".

Corollary 7.5.3. Under the conditions of Theorem 7.5.2, there is for anye S, a
spectral sequence

By = HP(X,, HY) = BPT9(X).
whererv = Zar or Nis andH? is ther sheaf associated to the preshéai— h?(U).

Proof. This is just the hypercohomology spectral sequence forcti®mology of
H (qu C) O

Example 7.5.4.Let i, be a Grothendieck topology a$}. which is finer tharv, and let
a : o — v be the corresponding morphism of sites. Zebe a complex of sheaves (or
sheaf of spectra) for the-topology, and tak€ = Ra.,D (or R'aD). There is a canonical
guasi-isomorphism (or weak equivalence)

H(X,,C) ~ H(X,,D)
and we recover the Leray spectral sequence for the morphism

Note that, just as the spectral sequence of example 5.1,.3h{8)spectral sequence
is defined for arbitrary, not necessarily smoath, e S,. The two spectral sequences
have a priori nothing to do with each other. In other words, ¢cbmment in [50, las}
of p. 467] misses the point. The Bloch-Ogus—Gabber theormepties that, whenX is
smooth, they have isomorphig-terms. Moreover, they actually coincide in this case for
many theories (Deligne, unpublished, cf [2, footnote p.]1Silet-Soulé, [17]). See also
Paranjape [41].
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7.5.2. Leth* be the cohomology theory with supports associated to sommplex of
Nisnevich sheaveS. As seen above)* satisfies axionCOH1. By 7.1.2,h* only de-
pends, up to isomorphism, on the clasdh the derived categoryD(Nis) of the cate-
gory of Nisnevich sheaves. Indeed, the Nisnevich cohomeodddimension of a scheme
of finite Krull dimension is finite [38]. For the conveniencktbe reader, we reformulate
axiomsCOH3 andCOHS5 purely in terms of® (viewed inD(Nis)):

D3Letr : A} — Speck be the structural map. Theéh— R, (Cja1).

To formulate axionD5, note that, ifh* satisfies étale excision and axidd®©H5, the
associated cohomology thearysatisfies étale excision as well by remark 5.4.1 (2).*If

is given by a substratuiy, thene* is given by the substratum(X) = Ker(C(PY,) S,
C(X)). By Theorem 7.5.2, both* ande* are given by Nisnevich hypercohomology of
complexes of sheaveésandD.

D5 a) There exists an obje®t € D(Nis) and, for allX € S;, a map
Pic X — Hom'D(Nis‘X) (D‘X, C|X)

natural in.X.
b) For X = P}, the map of a) induces a morphism

COEC

Consider the adjoint map
D = Ri.Crpr.
Then the map
caD Y RiCp

is a (quasi-)isomorphism, whetas the unit (adjunction) map.

If C is a sheaf of spectra, one should replae and R7, by R'm andR 7 in axioms
D3 andD5.

8. A SELECTION OF COROLLARIES

8.1. Multiplying by a fixed variety.

Let 7" be a (not necessarily smootkjvariety. The following theorem gives concrete
illustrations of item (1) in subsection 5.5.

Theorem 8.1.1.Let Y be the spectrum of a semi-local ring of a smooth, connekted
variety, as in Proposition 2.1.2. Letbe prime tochar £ and: € Z. Then, with notation
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as in Proposition 2.1.2, there are universally exact segesn

0 — HUY x4 Typuy") = Hy (Y x5 T, ! H HEL (Y <y T, ) —— R
zeY (1) (8 1)
e d?,q 1q
0= Go(Y x4 T) SG(k(Y) @, T) == [ Gerlk(z) @ T) = ...
zeYy (@) (82)

1,9

0 — KB(Y 5 T) S KPmT(v 5, ) 25 T KB4 (v < T) 25
zey (1) (8.3)

where(8.1) is étale cohomology. If, moreovéf, is smooth, there are universally exact
sequences:

0 — HIUY x; T, 1) S HO(k(Y) @, T, u&) 2 H HO™ (k(z) @4 T, n200) 25 .
zey (@) (8.4)
0,q 1q
0 — K (Y %, T) K, (k(Y) @, T) 2 2)@p T) 25 .
zeY () (85)

Proof. After item (1) of subsection 5.5, the exactness of (8.1) @n8)), as well as the
same sequence as (8.3) withinstead ofkK, follows from examples 7.3 (1), 7.3 (6) and
7.4 (6). Universal exactness follows from section 6. We H&v2) by purity ofG-theory
[43, prop. 7.3.2]. Whefl" is smooth we have purity for étale cohomology, hence (8.4),
and theK -groups with support identify witldz-groups with support, hence (8.3) yields
(8.5). O

Remarks 8.1.2.

(1) We could of course state (8.3) and (8.5) fortheory with finite coefficients.

(2) The reader is invited to apply this principle to othermeydes (e.g C-cohomology,
compare [7, th. 5.2.5]).

(3) Inthe étale case, the use of item (1) of subsection ;¥beaeplaced by the isomor-
phisms

HZ (Y % T, ) = HE (Y, RE((1)ir))

where f : T' — Spec k is the structural map, noting that the complex of sheaves
R ((p2")r) is defined overk. In Appendix B, we shall prove an analogue of
Theorem 8.1.1, replacing the projectitnx, 7" — Y by a not necessarily constant
mapX =Y, provided
e 7 is proper and smooth;
o dimY =1.
One may ask whether the conditidim Y = 1 is necessary. This issue is being
investigated by Panin.

8.2. Galois action.

Proposition 8.2.1. LetS;, satisfy assumption 5.1.6. L&tbe a ring andh* a cohomology
theory with supports 08;, with values in the category dt-modules. Lei, ¢4, ...,¢,., Y
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be asin Theorem 6.2.1. Suppdses given by a substratui which is strictly effaceable
atty,...,t.. Finally, let M be a leftR-module. Then, for and for any s, the complex

0 — Tor(M,hi(Y —>HT07’ (M, hL(Y))

zeY (0)
DT Torf(m, ety 45
zey ()
is exact.
Proof. This is an immediate consequence of Theorem 6.2.1. O

Theorem 8.2.2.Let //k be a finite Galois extension ar@ = Gal({/k). AssumeS;
satisfies assumption 5.1.6. Ligtbe a cohomology theory with supports satisfying axioms
COH1 and either COH3 or COH5, plus COHG6/#fis finite. Supposé* is given by a
substratunC'. Let X, tq,...,t., Y be asin Theorem 6.2.1, witk smooth; denote by,

the pull-back of” over/. Then, at least i” is given by complexes of abelian groups, the
complex

0 — Ho(G 1Y) — [ Ha(G,h(Y2) — [ HalG, R (V) — ...

mer) xer
is exact for allg, n > 0.

Proof. Consider the new cohomology theory with support and satstrh;, C, given
by

h(X)e = h7,(X0)
C(X)e = C(Xy).

Thenh; naturally takes its values in the categoryZi€z]-modules, and clearly satisfies
the same set of axioms &s. If C'is given by complexes of abelian groups, thiénakes
its values in the category of complexesZjiz]-modules. The claim then follows from
Corollary 6.2.4 and Theorem 6.2.5, applying the fundiQfG, 7) to a universally exact
sequence just as for Proposition 8.2.1. O

If C'is given by spectra, thef, takes its values in the categafy’ of G-spectra. We
can then get away similarly if functorial factorizationsndar to those in€ (see subesc-
tion 5.2) are available i€, provided with a suitable closed model category structure.
This is closely related to Thomason’s unfinished approachddel structures on functor
categories, as outlined in Weibel [54].

Theorem 8.2.2 applies in particular to étale cohomologgisio applies to algebraig -
theory provided one fixes the remark of the last paragraptielformer case, specializing
to coefficients twisted roots of unity and using purity, we tree following, which was
needed in [30] (precisely for a finite base field!):
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Corollary 8.2.3. Let X, ty,...,t,, Y be asin Theorem 8.2.2, witk irreducible; denote
by Y, the pull-back oft” over/. Then, for allg, n > 0, the complex

0 — H, (G, HY(Y,, p&)) — H, (G, HUU(Y), ph)
— T HalG B ) 5 —

meY( )
is exact. O
Remark 8.2.4. One might be tempted to extend this result to the case of atpisEdale
covering (not only those coming from the base field) by usirgpBsition 2.2.4, but this

fails. The point is that Proposition 2.2.4 will give homoiteg but not necessaril-
equivariant homotopies.

8.3. Zariski cohomology and Nisnevich cohomology.

Theorem 8.3.1. (Nisnevich [39, th. 0.12]p) Leth* be a cohomology theory with sup-
ports satisfying axioms COH1, COH2 and also axiom COHG6 ifttase fieldk is finite.
Fori € Z, let’H;,  (resp. H,) be the sheaf associated to the preshéaf 1i(U) on
the big Zariski (resp. Nisnevich) site ®fec k. Then, for all smoothX € S, andn > 0,
the natural map '
Zar(X HZar) - Hgis(X7 Hf\lis)

is bijective.

This theorem applies notably to algebrdictheory, étale cohomology and all exam-
ples listed in subsections 7.3 and 7.4.

Proof. We need a lemma:

Lemma 8.3.2. Let X € S, and M be the category oétale morphismg/ 1. X. For
r € X andi € Z, leth!. denote the presheaf ol

f= 11 ww@
yef~Hz)
Thenh! is a sheaf for the Nisnevich topology 8#1.
Proof. For simplicity, let us writeh! (U) instead ofh’ (f). It is enough to show that,

if f coversX atu, i.e. if there exists’ € f~!(z) such thatk(z) — k(z’), then the
sequence

0— hi(X ]_[ hi (U [T nruxxv)
yef~1(x) zE(fxx f)~1(x)
is exact. Writef ~(z) = {2’} U T. From étale excision it is easy to deduce that the map

hy(X) — hy (U)
is bijective. This shows that is split injective. It is now enough to show that the quotient

complex
0—0— [[riU) = [T Aw=xv)
yeT z€(fxx f)~1(z)

/
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is exact, i.e. that” is injective. But we can decompose the §et< x f)~!(z) into
{(z, 2"} u{2} x TUT x {2/YUT.

Here we note that, for any e f~!(x), the schemes’ x x y andy x x z’ are spectra of
fields, becausg(z’) = k(x); we abbreviate these schemegby y) and(y, z’). By étale
excision again, the maps

hy(U) = iy (U xx U)
hy(U) = hiy (U xx U)

given respectively by the first and the second projectiorbgeetive. The injectivity of
' follows. O

Proof of theorem 8.3.1. a) Let XZar be the restriction of the big Zariski site df to
the category of schemes étale ovéranda : Xy;s — X,.. be the natural projection. It
is obvious thatv*H}, = HL,. Therefore, applying* to the resolution (analogous to)
(2.1) of H;,,_ yields a resolution oti,.. Forx € X, one has clearly an isomorphism of
functors

* Zar ~ -Nis %
a1, Ty O

hencen*(2.1) can be identified to the complex of Nisnevich sheaves

0 — H ’lleh,q H ZlehlJrq RN H Zlethrq

2eX () zex zeX®) (8.6)

It is clear thati)'s is an exact functor for alt € X. Therefore, the:-th Nisnevich
cohomology of the-th term of this complex is

I Hile mpre(x)).

But the Nisnevich cohomological dimension of a field)jshence this group i8 for
n > 0. It follows that the terms of (8.6) are acyclic. Finally, Lema 8.3.2 shows that the
global sections of (8.6) are (the analogue of) (2.1). O

Corollary 8.3.3. Under the assumptions of Theorem 8.3.1, the Zariski andeNish
Brown-Gersten spectral sequences of Corollary 7.5.3 ¢dec

Indeed, they are compatible and thel-terms coincide. O

8.4. Shapiro’s lemma.

Theorem 8.4.1.Let h* be a strictly effaceable cohomology theory with supports leh
i € Z. let’H* denote the Zariski sheaf associated to the preshedfet f : Y — X be a
finite morphism, with smooth. Thek? f, H* = 0 for ¢ > 0.

Proof. We can computé?? f,H* by using the (flasque) Cousin resoluti6lous of H*
overY. But the stalk off.Cous at a pointr € X is none other than the “stalk” @f'ous
atf~(z), i.e.T(Oy -1, Cous), which is exact. 0
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8.5. Birational invariance.

Theorem 8.5.1. Let h* be a cohomology theory with supports satisfying axioms COH1
COH2 and also axiom COHE6 if the base fiélds finite. LetX € S, be smooth and let
H*(X,H') denote either of the groupd:;, (X, H%..), Hy:. (X, Hi;,) of Theorem 8.3.1
(they coincide by this theorem). Then, foralt Z, H°(X, H') is a birational invariant

of smooth proper varietiex” € S,.

Proof. a) By Corollary 5.1.11, the functof — hi(X) satisfies “codimensiohpurity”
for regular local rings of a smooth variety in the sense oflgf, 2.1.4 (b)] (a cohomology
class which is unramified at points of codimensiois unramified everywhere locally).
The claim now follows from [7, prop. 2.1.8]. O

8.6. Rational invariance.

Let S, = Sm/k, and leth* be a cohomology theory with supports . Assume
h* satisfies axiom€OH1 (étale excision) andCOH2 (key lemma), the latter for all
V e Sm/k. If kis finite, assumé* also satisfies axionCOH6. We then have the
following theorem:

Theorem 8.6.1.Let X, Y be two smooth integrat-varieties, with respective function
fieldsk(X), k(Y), and letp : X — Y be a proper morphism. Assume that the generic
fibre X, of p is k(Y")-birational to d-dimensional projective spadég(y). Then, for any
1 € Z,the map

H(Y, 1Y) 25 HO(X, 1)
is an isomorphism.

Proof. For any smooth integratvariety Z, with generic point), we have by definition
h(Z) = lim hi(U)
UCZ
whereU runs through the nonempty open subsetg oiVe denote this group by (k(2)).
Corollary 5.1.11 yields an exact sequence
0— HYZ,H) — W (k(Z) — [] n(2). (8.7)
$EZ(1)

We may replacePgm by thed-fold self-product(P}g(Y))d in the assumption of Theo-
rem 8.6.1. By hypothesis, there exists a birational map

overY. Since(Pi )% is regular ang is proper, this rational map extends t& anorphism
vLx

whereU is an open subset dfPi.)? containing all points of codimensioh (valuative
criterion of properness, cf [26, th. 1l. 4.7]). The exactsence (8.7) then shows that the
restriction map

H((Py)", H') — H*(U,H)
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is an isomorphism.

Let ¢ (resp.£) be the generic point ok (resp.(Pi.)? andU). We have a commutative
diagram

Rk(X) —L— BEPLY) ——  K(k(P}))
I I |
hi(X) L hiU) ——  h(PL)Y
U U U
HO(X,Hi) S HO(U,HZ') e HO((P%/)d,Hi)
N | s
HO(Y, HY)

in which the vertical inclusions follow from (8.7). Singeis birational,f* is an isomor-
phism. Itis thus enough to prove Theorem 8.6.1 in the ¢ase (P1.)¢. By induction on
d, we may assume = 1.

We first deal with the special ca3e= Spec k. To begin with, the natural map
h'(k) — h'(k(Py))

is injective. Ifk is infinite, this follows from the classical section argumemce any open
subset ofP; contains a rational point. I is finite, axiomCOH6 provides a variant of
this argument, since any open subsdPgfcontains two closed points of coprime degrees.

On the other hand, sind®; is of dimension one, we have an exact sequence

W (PL) — Ri(k - I @y

ze(PLHD)

hence, from (8.7):
H°(Py, H') = Im(h'(P}) — W' (k(P}))).

The maph(P}) — h'(k(P})) obviously factors through’(A}). By axiomCOH2, it
even factors through’(k), hence Theorem 8.6.1 in this case.

In the general case, let = Spec k(Y) denote the generic point df. Note that any
smoothk(Y)-variety is afiltering inverse limit of smoothvarieties, with affine transition
morphisms: we may therefore extehtto Py (corresponding t&y,y) := Sm/k(Y))
by direct limits. This conomology theory with supports aovsly satisfies axiof@OH1;
it also satisfie€OH2 because we assumed the origihalerified it for all smooth vari-
eties.
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We have a commutative diagram with exact rows
0 —— H(PY,H') —— H(Ply) M) — I1 B (P)
ye(P%/)(l)_(Pglg(y))(l)
I | I
0 — H'(YH) — NW(k(Y) — IT w).
$EY(1)

To conclude the proof, it is sufficient to show that the rigéttical map in this diagram
is injective. But this map factors through

IT o — I1 wltey)
zeY(®) zeY (D)
wherer, = Spec k(P1).
Letz € Y(U: we have to see that the map™ (Y') — hif'(Py) is injective. We may
replaceY by Y’ = Spec Oy .. By definition, we have

by (Py) = lim by, (Py, — Z)
Z

whereZ runs through proper closed subset$gf
Suppose first that(z) is infinite. ThenP. — Z contains a(x)-rational point; since
PL(Y") — PY(k(x)) is surjective, we may lift it to a sectionof P1,, — Y”, which does
not meetZ. Then the composite
YY) = b, Py = Z) 5 1Y)
is the identity andi™ (Y) — ki (P}, — Z) is splitinjective.
Suppose now that(x) is finite, hencek is finite. ThenP! — Z contains in any case

two closed points;, z, of coprime degrees, , d,. Extending scalars to the residue fields
k1, ko and using axion€COHG6, we get as above compositions

BEF(Y) = B, (PY, — 2) — Wit (PY, — Z),)

s* . Cory. /i .
=T (Ye) S YY) (i=1,2)

7

with valuesd;, d». Since these integers are coprime, we getihiat(y) — i  (PL, —
Z) is split injective once again. O

APPENDIXA. ETALE COHOMOLOGY. THE NON-TORSION CASE

The aim of this appendix is to extend Theorem 2.2.7 to all dergs of sheaves coming
from the small étale site df.
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A.1l. Proper base change.

The following is a version of the proper base change theoremlving non-torsion
coefficients:

Proposition A.1.1. Let V' be an excellent Noetherian scheme of finite Krull dimension
and7w : X — V be a proper normal morphisficGA4, (6.8.1)] Then, for any complex
of étale sheave§' overV and any geometric point of I/, there is a quasi-isomorphism

(R#.7°C )y =~ RT (X5, 7#°C).

Proof. Sincer is proper and’ is Noetherian R, has finitel-cohomological dimen-
sion for any primd, and the argument of [SGA4-11l, exposé X, proof of th. 4.thipws
that its rational cohomological dimension is boundediby V. Hence, by comparison of
hypercohomology spectral sequences, it is enough to prasevhenC' consists of one
sheafC' placed in degre®. We proceed as Deninger in [10], first reducing to the case
where(' is Z-constructible. Using the excellence 6f we can further reduce as ioc.
cit. to the case wher€' = 7, F, wherer : V' — V is finite, V' is normal andF' is a
constant sheaf given by a finitely genera#ednodule. Passing to the strict henselization
A of V at a geometric point, we get a commutative diagram of cartesian squares:

Spec K/ BN Spec A’ —— V'’

l TAl Tl
Speck —— SpecA —— V

Herex = k(T), Spec A’ = Spec A xy V' and Speck’ = Speck xy V', so that
K = r®y4 A. SinceA’ is finite overA, it is a product of strictly henselian local rings
andx’ is an Artin local ring with the same residue fields4ls SinceV’ is normal, so are
A’ and any of its connected components. Bebe such a component. Singés proper,
it is of finite type, hencerz and7, ;) are normal by [EGA4, (6.8.3)], where for any ring
R and morphisnbpec R — V, we denote byt : Xz — Spec R the pull-back ofr. In
particular, Xz and X, are normal, wherg is the closed point ofpec B. Hence, by
[10, (2.3)], we have:

(RI(7p) F)y ~ H (X y), F).

On the other hand, letting” be the product of the residue fields df, the morphism
X,.» — X, is radicial hence induces an isomorphism of étale cohogyol86, ch. II,
remark 3.17]. It follows that

(RY 7 ar ) F) =~ RY(7,,). F.

Sincer is finite, RY(74). = R(7.). = 0 for all ¢ > 0 [36, ch. Il, cor. 3.6] and the
latter isomorphism implies

L*RIU(Ta 0 Tar)uF =~ RY(7 0 T )u (V") F.
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"
Xfi” _— XK/ L—) XA’ _— XV’

ol el el

Spec k" —— Speck’ v, Spec A’ —— V'

Tﬂl TAl Tl
Speck —— SpecA —— V

But using now the finiteness ofy,» — X, and the induced maps and arguing as in
[10, proof of (2.4)], we get an isomorphism

U RI(T4) s (T F) = RY(7) (V) (T F),
as desired. (See diagram below.)

"

Xfi/ L—) XA’

finitel finitel

X, — X4

ﬁnl ﬁAl
Spec ks —— Spec A

Remark A.1.2. We can use Artin’s example in [SGA4-III, exposé Xi12] to show that,
in general, one cannot extend Proposition A.1.1 to more rgécemplexes of sheaves
over X than those of the fornb" = 7*C". To be specific, tak® = Spec R whereR is
an complete discrete valuation ring ad= P},. LetY be the projective curve ovet
with equationzy? = x(x — z)(z — 7z), wherer is a uniformizing parameter a®, that
we view as a two-fold coveringy’ — X via the functionz/z. Let D' = 7,Z[0]. Then
HYX,D) = H'(Y,Z) = 0 while H(X,, D') = H*(Y,Z) ~ Z where Xy, Y are the
special fibres ofX andY’.

A.2. Anintegral Chern class.

Definition A.2.1. (compare [13, proof of Lemma 2]) Lete Z.

a) For any prime number, we denote b¥Q,/Z,(i) the extension by of the étale sheaf
Q,/Z,(i) = lim pu: from Spec Z[1/p] to Spec Z. This defines a sheaf over the big étale
site of Spec Z.

b) We defineQ/Z(i) = P Q,/Z, (7).

Remark. Note that with this definitionQ/Z(0) does not in general coincide with

Q/2!

Let
Q/Z(0)[-1] — Z (A1)
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be the morphism in the derived category of big étale sheavesSpec Z defined as
follows: for a primep, we have an exact sequence of shedves Z — Z[1/p] —

Q,/Z, — 0 hence a morphism,/Z,|—1] — Z in the derived category. Letting be
the open immersiofpec Z[1/p] — Spec Z, we get a corresponding morphism

Q,/Zy(0)[-1] := (p) Qp/Zp[=1] — (Jp)hZ = (jp)1(Jp)"Z-

Composing with the adjunction map,):(j,)*Z — Z, we geta morphisr),,/Z,(0)[—1]
— Z overSpec Z. The desired morphism is the sum of these morphisms for iatigap.

Definition A.2.2. (compare [13, Appendix B]) LeX be a scheme and a line bundle
on X. To L we associate a morphism in(X)

Q/Z(-1)[-3]

as follows. The class df in H'!(X, G..) corresponds to a morphism in(X,)

Ci(L) Z

z 1 G,

On the other hand, for all primesthe sheafs.. is p-divisible away from the locus where
pis not invertible. This yields for alh > 1 an isomorphism:

Gy © Z/x(¥) 5 7/ (F) .

These fit together to give a “Kummer” isomorphism

L ~
G> @ Q/Z(¥) — Q/Z(F) ]
C4(L) is then the composition of the morphisms in the sequence

Q/Z(~1)[~3] =G, & Q/Z(—)[—H] > Q/Z(¥)|—¥] —Z

where the first morphism jd.] tensored byQ /Z(—1)[—3], the second one is the Kummer
isomorphism twisted and shifted and the last morphism ig)AFor two line bundleg.
andL’ on X, we haveC,(L® L") = Cy(L) + C1(L'); in particular, if L is trivial then
Cy(L) = 0.

The last claim of the definition is obvious from the constimecbf C'; and the additivity
of line bundle classes i (X, G+.).

A.3. Cohomology ofP!.

Theorem A.3.1. (compare [SGA5, exposé VII, th. 2.2.1] and [13, Lemmal3j) V' be
as in Proposition A.1.1 and let : P{, — V be the natural projection. Then, for any
complex of sheaves over the smalEtale site ofl/, there is a natural isomorphism in
D(Vg):
L ~
CadC®Q/ZL(-1)[-3] — Rm7*C.
This isomorphism is the adjunction of a morphism

FC @ FC G QJL(—1)[=3] — FC
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in which the first component is the identity and the secondi®gesen by tensoring (in
the derived sense) the Chern class ma@/Z(—1)[—3] OW), 77 of definition A.2.2
by 7*C".

Proof. By Proposition A.1.1, we have an isomorphism
(R7,7*C )z ~ RI(PL ., 72C)

K(T)»
for any geometric point of V. To prove Theorem A.3.1, we may therefore assume that
V' = Spec k, wherex is a separably closed field. We first remark:

Lemma A.3.2. LetC' be a complex of abelian groups aiidl be a bounded above com-
plex oféétale sheaves ovdP!. Then the natural morphism in the derived category of
abelian groups

L L
C ®RI'(PL,D) -RI'(PL,C®D)
is an isomorphism.
Proof. The argument of [36, ch. VI, Lemma 8.7], which consists diigng to the case
whereC' is a single finitely generated fréemodule placed in degrék applies (compare

loc. cit, remark 8.14). Note that it is not necessary to assume&Cthatbounded above,
since the Tor-dimension & is finite.

Applying Lemma A.3.2 taD" = Z[0] (Z placed in degre®), it now suffices to prove
Theorem A.3.1in the cagg = Z[0]. In this case, it follows from

Lemma A.3.3. a) We haveH'(P.,Z) = 0 and HY(P},Q,/Z,) = 0 for ¢ > 0 if
char(k) = p > 0.
b) There is an isomorphism iR (Ab):
K@ Z[—-1] = RI'(PL,G,)
whose first component is the adjunction of the miap* — G.. in D((Pl).) and the

second one is the adjunction ofZ Toal, =~ (compare definition A.2.2).

Proof. The vanishing ofH*(P!,Z) follows from the normality ofP.. Suppose
charfx) = p > 0. We have

k ifqg=0
0 ifg>0

[36, ch. Il, prop. 3.7 and remark 3.8] and [26, ch llI, th. 5.Wsing the Artin-Schreier

exact sequende— Z/p — Go LN Gy — W [36, ch. Il, example 2.18 (c)], this implies
that

Hq(Pilw GD) = H%D\(PJ:7 OPf) - {

HYPL Z/p) = 0if ¢ > 0
for p equal to the characteristic af Using the exact sequences
0—Z/p" — Z/p"" —Z/p—0
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it follows that H4(P},Z/p™) = 0 for all n, henceH(P},Q,/Z,) = 0 for ¢ > 0, as
claimed. Finally, we have

K* ifg=0
HIY(P.,Gs)={ PicP. =7 ifqg=1
0 ifg>1

[36, ch. lll, example 2.23 (b)], where the second isomonphis induced by the degree
map. Since)(1) generate®ic P, the mapZ — G [¥] defined by its class induces an
isomorphism

Z= HO<P/117 Z) _>H1(P/117 G>)
inverse to the former. The last claim of Lemma A.3.3 follows.

We now finish to prove Theorem A.3.1 f6r = Z[0] in the casé’ = Spec k. By e.g.
[10, (2.1)], HY(PL, Q) = 0 for ¢ > 0. From the exact sequente— Z — Q — Q/Z —
0 we derive

H™' (P, Q/Z) = HYP. Z) forq>1.
In view of Lemma A.3.3 a), this implies that (A.1) inducesnsarphisms
H™Y(PL, Q/Z(0)) = HYPL,Z) forq>1.

Using the Kummer exact sequente— y, — G» — G, — W [36, ch. II, example
2.18 (b)], Lemma A.3.3 b) implies thdf?(P., 11,,) = 0 for ¢ # 0,2 andn prime to the
characteristic of;; in particular, H4(PL, Q/Z(0)) = 0 for ¢ # 0,2. We therefore have
HY(PL,Z)=0forq+#0,3.

Clearly, Z — H°(P.,Z) is an isomorphism; it remains to see that the adjoint to
C1(O(1)) induces an isomorphis@/Z(—1) — H3*(P.,Z). To do this, we follow the
definition of C;. According to definition A.2.2 and Lemma A.3.2, the map

Q/Z(-1) —H*(P,,Z)

can be decomposed as follows:

Q/Z(—1) — H'(R[(P,G,) © Q/Z(—W)) = B (P¥ G, & Q/Z(—K))
= HQ(P},M, Q/Z(0)) = H3(P,£, Z).

By Lemma A.3.2, the second map is an isomorphism. Accordiragfinition A.2.2, the
third map is an isomorphism and as seen above the fourth areisomorphism too. It
remains to see that the first map is an isomorphism. But itiginéd by tensoring the
isomorphism of Lemma A.3.3 b) b®/Z(—1). O

APPENDIX B. THE ONE-DIMENSIONAL CASE

In this section, we prove a version of Gersten’s conjectaredgular one-dimensional
schemes, not necessarily in the presence of a base field. rob&rmimics Gillet’s in
[16]. As in section 5, we shall axiomatize the situation. Bx@ms necessary to make
the proof work turn out to be much more costly than those itices.
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B.1. Some axioms.

Let A be a semi-local principal domais, = Spec A andSs the category of regular
schemes separated ajabsifiniteoverS. By Zariski’'s main Theorem, a connected object
X — S of Sg is of the formSpec B, whereB is either a finite extension of one residue
field of S or a localization of a finite extension of at some maximal ideals. We give
ourselves a “cohomology theory”

h':Ss — A (i € Z),

a collection of contravariant functors to some abeliangate A, satisfying the following
axioms:

(i) Additivity. h* is additive.

(i) Transfers. For a finite morphismf : ¥ — X in Sg, there is given a may, :
h*=2(Y) — h*(X), wherec = codimy Y; this collection of maps makes* a
covariant functor. ‘

(i) Purity. For X € Sg of dimensionl, Z — X a (reduced) closed subset of dimensgion

andU % X the complementary open subset, there is an exact sequence
s BTAZ) S R D R SR Z)
Moreover, if f : X’ — X is a finite and flat map, the square

hz(U/) L) hifl(Z/)

f*l 1 l
WU) —— h(2)
commutes, where?’ = Y Z)eq, U = X' — Z' and f’ : Z' — Z is the map
induced byf (no multiplicities!)
(iv) Action of units. For anyX € Sg there is a pairing

['(X,0%) x h*(X) — K F(X)

which is contravariant inX’ and satisfies the projection formula for finite flat maps.
Moreover,
e for X, Z, U, 0 asin (iii), we have, fof f,«) € I'(U, O%) x h*(X):

of - ja) =" v.(fii(e)
z€Z
wherei, is the inclusior: — X (here we used the additivity &f).
¢ In the situation of (iii), givenf € I'(X, O%), the following diagram anticom-

mutes:

WUy —2 hi-l(2)

y |

R U) 2 hi(Z)
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(v) Rigidity. Let X € Ss of dimensionl, x € X a closed point and’” the henselization
of X atz. Leth*(X]) := lim *(U), whereU runs through all étale neighbourhoods

of x. Thenh*(X") — h*(z) is an isomorphism.
Examples B.1.1.

(1) Algebraic K-theory verifies all axioms except (v); algebrdictheory with coeffi-
cientsZ/n, wheren is invertible in A, satisfies all axioms including (v) [47].

(2) LetC be a complex of sheaves over the small étale sit€;@ssume that its coho-
mology sheaves are all locally constant constructiblesidorinvertible inA. Then
h*(X) = [1,ez H4(X,C(\)) satisfies all the axioms. Axiom (i) is a general prop-
erty of étale cohomology. Axioms (ii) and (iii) follow fromohomological purity in
dimensionl [SGAS, exposeé I, th. 5.1] and the existence of trace mapA¢BE,
exposé XVIII]. Axiom (iv) is folklore: see [42, Lemma 3] faa detailed proof.
Axiom (v) can be deduced from proper base change as in [SBAdxposé XIlI,
cor. 5.5]. Note that cohomological purity and proper basgnge for complexes
of sheaves follow from the same for sheaves plus comparisbypercohomology
spectral sequences.

B.2. The result.

Theorem B.2.1. Let R be a ring andh* a cohomology theory with values irmodules,
satisfying axioms (i)—(v). Let be the set of closed points Sfand its generic point.
Then, for alli € Z, the sequence

0 — ki (S) — Bi(n) ShY(Z) =0
is universally exact.

Proof. For convenience we use ring-theoretic notation. Rete the radical ofA and
F its field of fractions, so that = V(R) andn = Spec F' and the sequence of Theorem
B.2.1 can be rewritten

0 — hi(A) — h(F) L h=Y(4/R) — 0. (B.1)

Write 2i~1(A/R) as a direct limit of finitely presente®-modules. LetM be such a
module. We construct aR-linear mapfy; : M — h'(F) such thab o f); = , where.
is the mapM — hi=1(A/R). In view of the long cohomology exact sequence of which
(B.1) is part (axiom (iii)), this will show that the restrioh of (B.1) to M is a split exact
sequence ofz-modules.

Let A" be the henselization of alongR. ThenA” splits as a finite product of henselian
discrete valuation rings. By axioms (i) and (v), the natunalp

hz'fl(Ah) N hifl(Ah/RAh)

is an isomorphism.
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Consider the commutative diagram

Hompg(M, hi=1(A"))  —=— Hompg(M, hi=1(A"/RAM))

| I

lim Homp(M, h'~'(A")) —— lim Homp(M, h'"'(A'/RA’))

where A’ runs through the quasi-finitd-subalgebras ofi". Since M is finitely pre-
sented, the two vertical maps are isomorphisms, hence dsagtee bottom horizontal
one. Therefore there exists ahand anR-linear map

o: M — h YA

such that the diagram
hi—1<A/) hi—l(A//RA/)

d |
M  —— K Y A/R)
commutes.

Let A; be the integral closure of in the total ring of fractiong” of A’. ThenA; C A’
and A’ is a semi-localization ofi; at some of its maximal ideals. Sincg is étale over
A, F'/F is separable and, is finite overA [46, ]. Then the diagram

W(F) —2— hi=l(A/RA;)
Corl Corl (B.2)
W(F) —2—  R-YA4/R)

commutes (axiom (iii)). LeR; = RA;. Write R; = R'R”, whereR' + R" = A,
R'A' =R A andR"A’ = A'. ThenA, /R, = A1/R' x A1/R" = A'//RA' x A /R" =
A/R x A;/R" and the compositd /R — A, /R, = A/R x A/R" X5 A/R is the
identity. Accordingly, diagram (B.2) becomes:

(9",0")

hi(F’) AN hi_l(A/'R,) P hz‘—l(Al/R//)
CorJ/ (I?d)J( (BB)
W(F) —— WHA/R)

By the Chinese remainder theorem, chogse £’* such that:

e f=1 (mod R");

e f generate®R’.

For 3 € hi='(A’), write 3 for its image inh"~'(4’/RA") = hi"'(A/R). Applying
axiom (iv), we get:
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Lemma B.2.2. Forall 3 € h""!(A’), one has
98- (f) = 5;
&'(3-(f)) = 0.0

Corollary B.2.3. The mapfy; : M — h'(F) given byfy(«) = Corpr p(o(a) - (f)) has
the required properties.

Proof. This follows from diagram (B.3) and Lemma B.2.2. O

B.3. Corollaries.

Notation B.3.1. For any schem&, we denote byCC*(X) the category of bounded be-
low complexes of sheaves over the small étale sit& pfvhose cohomology sheaves are
locally constant constructible, torsion prime to the rasidharacteristics of .

Corollary B.3.2. With notation as in Theorem B.2.1, IBtbe a finite,étale, GaloisA-
algebra, with Galois grouf:. LetC" € LC*(B). Let E be the total ring of fractions of
B. Then the complex &|G]-modules

0 — hi(B) — h'(E) L Wi (B/RB) — 0
is universally exact for all € Z.

Proof. Apply th. B.2.1 toRx,.C" and R = Z|[G], wherer : Spec B — Spec A is the
natural map. O

Corollary B.3.3. With notation as in Theorem B.2.1, |&t be a proper and smootH-
schemeX - its generic fibre andX, its closed fibre. Le€" € £LC(X). Then the complex

0= H{(X4,C) = H(Xpa,C) S H (Xoq, C(—1)) = 0
is universally exact for all € Z.

Proof. Let7 : X — Spec A be the structure map. By [36, cor. VI.4.Rx.C" is in
LCT(A). ltis clear thatH’(F, Rm,C") = H°(Xp,C"), sinceSpec F' — Spec A is an
open immersion. Moreover, the proper base change theor@neg® VI1.2.3] shows that
H°(A/R, Rm,C(—1)) = H°(Xy,C(—1)). Therefore the complex of Corollary B.3.3
can be rewritten

0+ H\(A, Rr,C") — Hi\(F, Rr,C") % H™Y(A/R, Rm,C (1)) — 0
and we can apply th. B.2.1. O

Remark B.3.4. We can combine corollaries B.3.2 and B.3.3.

APPENDIX C. UNBOUNDED COMPLEXES

In this appendix, we extend the notion of injective resantirom bounded below to
unbounded complexes of objects of a suitable abelian categbese results are similar
to those of Spaltenstein [45] (see also [3]).
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C.1. Fibrant complexes.

Let .4 be an abelian category and [Ef.A) be the category of complexes of objects of
A. We set up the following definition:

Definition C.1.1. a) A morphism

C"—D
in C'(A) is atrivial cofibration if it is both a monomorphism and a quasi-isomorphism
(i.e. it induces an isomorphism on cohomology).
b) An objectF" € C'(A) is fibrantif it has the following property: given a trivial cofibra-
tion C" — D', any morphism fron" to F extends to a morphism frol to F".

Fibrant complexes are closely related with K-injective pbemes in the sense of J.
Bernstein. It can be shown that the latter are those complekech are homotopy equiv-
alent to the former (compare [45, prop. 1.5]).

Proposition C.1.2. a) If F" is fibrant, thenf™ is injective for anyn € Z.
b) If F" is bounded below, the converse is true.

Proof. a) Let A <, B be a monomorphism i4, and letf : A — F™ be a ho-
momorphism. LeCC", D' be the complexes such th@t = D' = 0 fori # n,n + 1,
Cn = Ot = A, D" = D" = B and the differential€™ — C"*! and D" — D!
are given by the identity. The monomorphismnduces an obvious monomorphism of
acyclic complexeg’ — D, andf induces a morphism of complex¢s: C* — F". Ap-
plying the defining propertyf’ extends to a morphistff : D" — F", whose restriction to
D" = B defines an extension gfto B.

b) It is convenient to give a lemma:

Lemma C.1.3. Let F" € C(A) be such thaf™ is injective for some € Z. LetC" — D
be a trivial cofibration, and letf : C© — " be a homomorphism. Assume thét! :
Cn! — Fr—1extends tgf"~! : D"! — F"~! such that:
@) B YD) C BrH(FY);
(i) frl(z (D)) C 2 N(F).
Then there exist§” : D" — F extendingf” such that
a) frd = df Y
b) f(2"(D) € 2"(F).
Proof. We definef™ first on B"(D’), then onZ" (D) and finally on all ofD".
e On B"(D), definef™ by f*(dy) = df"'(y) fory € D""'. By assumption (ii),
this does not depend on the choiceyof
e OnZ"(D), definef™ as the unique map whose restrictior26(D") is as above and
whose restriction ta&Z"(C") is f™. This is well-defined by the quasi-isomorphism
assumption.
e On D", choose forf™ any extension of the above, applying the injectiveness’of

One checks readily thag® indeed verifies conditions a) and b). O
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Proof of Proposition C.1.2 b).Lemma C.1.3 implies that if its conditions a) and b) are
satisfied for some € Z then they are satisfied for+ 1. In caseF" is bounded below,
conditions a) and b) are trivially satisfied for<< 0. O
LemmaC.1.4.a) LetC" € C(A) be acyclic andF” € C(A) be fibrant. Then any
morphismC" L Fis homotopic tad.

b) Let F" be fibrant andC" be arbitrary. Then, any quasi-isomorphisih L. ¢ has a
homotopy left inverse. & is itself fibrant,f is a homotopy equivalence.

Proof. a) Applying the defining property of "fibrant” to the monorpbism F* —
C(f), whereC(f) is the mapping cone of, we get that the identity” — F" extends
to a morphismC(f) — F" (note that, since&”" is acyclic, F* — C(f) is a quasi-

isomorphism). Since the composité L C(f) is homotopic to0, we get that
f itself is homotopic td.

b) (cf [24, proof of Lemma 4.5]) Note that the mapping ca@rigf) is acyclic. Applying
a), we see that the morphisi{f) — F"[1] is homotopic td), and the conclusions easily
follow. O

Lemma C.1.5. Consider a commutative square of object§0f4)
c 2 Fr
oLl
D 2 F

in which is a trivial cofibration andF" is fibrant. Let3 : D — I’ be a morphism
extendingy'. Then the two morphisms

a,pof3:D —F
are homotopic.

Proof. By assumptiong — ¢ o 3 factors through the acyclic compleéx /C". The
conclusion now follows from Lemma C.1.4 a). O

C.2. Homotopy limits.
Definition C.2.1. Let (F},, vn+1.n)n>0 D€ @ projective system of objects 6f.A). Its

n

homotopy limitholim £}, is the total complex associated to the double complex (with

vertical lengthl)
115 = 1]F

where([] F,,)? := [ F}4, the differential being defined componentwise, and whgyre
[[F¢ — [ FYis defined ag—1)/(Id — ¢}, ,,).

One readily checks thab anticommutes with the differentials ¢f 7,,, so that the
construction indeed defines a complex. It is clear thalim is a functor. By definition
and the two spectral sequences associated to the doubléecgrvp have:
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Proposition C.2.2. a) There is a short exact sequence of complexes
0 — lim F;, — holim F,, — limlFﬁ[l] —0
— —
hence a long exact sequence of cohomology groups
= Hi(lim F,) — H(holim ) — H*™'(lim ' F},) — H™(lim F},) —
b) Assume that countable products are exactliriThen there are short exact sequences
0 — lim'H?"'(F;) — Hholim F,) — lim HY(F;) — 0. O
— —

n

Corollary C.2.3. Assume that countable products are exactlinLet (C.,), (F),) be two
projective systems i(.A), and let( f,,) be a morphism froniC;,) to (F,). Suppose that
each f, is a quasi-isomorphism (resp. a trivial cofibration). Thieslim f,, is a quasi-
isomorphism (resp. a trivial cofibration).

LemmaC.2.4.For all n > 0, let ¢, : holim F, — F, be given on(holim F,)? =
[T1F!® [[F7 ! by (p,,0), wherep, is then-th projection. Then:

a) They,, are morphisms of complexes.

b) Foralln > 0, ¢, andy,, 1., © ¢,,+1 are homotopic.

Proof. a) is trivial. To see b), check that the map of degrde
S, : holim F,, — F,,
given byS? = (0, (—1)4p2') is a homotopy betweep,, andp,,, 1., © ¥n1 1. O
Lemma C.2.5. Let (F,, pn11.)n>0 b€ as in definition C.2.1, and Iét € C(A).

a)letf:C — holiyrln F, be a morphism. Thep, o f = 0 for all »n if and only if
f=1(0,(gn)), where, for alln, g, is a morphism fronC" to F [1].
b) Letf,, : C" — F be afamily of morphisms such that, foral> 0, f,, andy,, 1,0 fr i1
are homotopic. Then there exists a morphjsmC" — holim £}, such that, for any. > 0,
¥n © f = fn

Proof. a) is a simple computation. b) Choose for:ath homotopys,, betweenf,, and
Pn+1n © foir1. Definef by

JE= (1), (=1)%s5)))-

One checks easily thdtis a morphism of complexes, and that the identity f = f,
holds. O

Proposition C.2.6. Let (F},, v,+1.,) be an inverse system @i(.A). If each £}, is fibrant,

n

thenholim F, is fibrant.

Proof. LetC" % D' be a trivial cofibration, and let : C* — holim F,, be a morphism.
By the fibrancy ofF’,, we may exteng,, o f to a morphisny, for eachn. Lemma C.1.5
shows thatf,, and Prt1n © fns1 are homotopic for any; therefore, applying Lemma
C.2.5b), we can find é : D" — holim F; such thatp,, o f = f, for all n. We have

o(f—foa)=0 foralln

By Lemma C.2.5 a), we can write— f o a = (0, (g,)), where eacly, is a morphism
from C" to F[1]. Applying the fibrancy off}, again, we can extend eagh to a g, :
D — F;[1]. Thenf + (0, (g,)) : D" — holim F,, extendsf. O
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Corollary C.2.7. If f : C° — D is a morphism between fibrant complexes, then the
mapping cone of is fibrant. O

C.3. Resolutions.

Theorem C.3.1. Suppose tha# verifies axiom AB5 and has a generator in the sense
of [23, 1.5 and 1.6]and that countable products are exacti Then there exists a
functor ' : C'(A) — C(.A) and a natural transformation : /d — F such that, for any

C e C(A),

(i) F(C)isfibrant;

(ii) ec- is atrivial cofibration.

Proof. By [23, th. 1.10.1], the assumptions imply the existenca foinctor/ : A — A
and a natural transformation: /d — I such that, for ald € A
(i) I(A)isinjective
(i) n4is amonomorphism.
We first construct’ on bounded below complexes. df is such a complex, the con-
struction of [24, proof of Lemma 4.6 1)] embeds into a bounded below complex of

injectives by a trivial cofibration; by Proposition C.1.2 ke latter complex is fibrant.
We note that we can make this construction functorial bygithe functor/ above.

Suppose now" arbitrary. For any: € Z, letC" — C-,, be the canonical truncation of
C" atleveln. Recall thatC',,, is defined by

C1 ifg>n
(€)' =4 BUC) ifg=n—1
0 ifg<n-—1

with the same differentials as', except thatB"(C") — C™ is the canonical injection.

q : H >
We haveH(C,) = g[ () :; q § n
- q < n.

system(C%,,)? is stationary, hencgm 'C,, = 0 and

. Note also that, for each € Z, the inverse

C" = lim C%,, = holim C%,,
(isomorphisms) by Proposition C.2.2 a).

By the first part of the proof, we have a functorial trivial cwhtionCs, — F(C%,,)
for all n. This gives rise to a chain of morphisms

C" = lim C%,, = holim C%,, — holim F/(C%,,). (C.1)

We definel’(C") asholim F'(C%,,) ands¢- as the composition of this chain. By Propo-
sition C.2.6,F(C") is fibrant and, by Corollary C.2.3.- is a trivial cofibration, as de-
sired. O
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