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In all this paper, p is a prime number and F is a field of characteristic
6= p. The invariants we are interested in are:

• The p-cohomological dimension cdp(F ) [16].
• The diophantine dimension dd(F ) := inf{i | F is Ci} [5].
• (For p = 2) The quadratic diophantine dimension ddq(F ) :=

inf{i | F is Cq
i }, where Cq

i is the condition introduced by Pfister
[13].
• (For p = 2) The u-invariant u(F ) [8, ch. 11].
• The λp-invariant [7]: for an element c ∈ pBr(F ) = H2(F, µp),
λp(c) = inf{n | c is a sum of n classes of algebras of degree p};
λp(F ) = sup{λp(c) | c ∈ pBr(F )}.
• The λ′p-invariant [7]: for c as above, λ′p(c) = logp ind c, where

ind c is the Schur index of any central simple algebra represent-
ing c; λ′p(F ) = sup{λ′p(c) | c ∈ pBr(F )}.

To muddy water a little more, we shall also consider the stable λp
and λ′p-invariants

λ̃p(F ) = sup{λp(E) | E/F finite separable, ([E : F ], p) = 1}
λ̃′p(F ) = sup{λ′p(E) | E/F finite separable, ([E : F ], p) = 1}

and (for p = 2) the stable u-invariant:

ũ(F ) = sup{u(E) | E/F finite separable, [E : F ] odd}.
Evidently, λp(F ) ≤ λ̃p(F ), λ′p(F ) ≤ λ̃′p(F ) and u(F ) ≤ ũ(F ).
In proposition 1 below, we get some relationships between these in-

variants. This is applied in theorem 1 to get a universal bound for the
length of the decomposition of a central simple algebra A of exponent
2 as a sum of symbols in the Brauer group of certain fields, purely in
terms of the index of A. (Such an explicit bound is not known for
algebras of odd prime exponent.) This boomerangs to provide a con-
verse to a bound in proposition 1 (corollary 1). We then give some
conjectures on what the sharp bound should be (conjecture 2) and on
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another relationship between the invariants of proposition 1 (conjec-
ture 1). In the appendix, we give a construction of divided powers in
certain quotients of Milnor K-theory, as these divided powers are used
in the course of the proof of proposition 1. This has been known for a
long time but has not appeared in print, to the best of our knowledge.

These results were found several years ago. At the time, the Milnor
conjecture was not yet proven [20], so some were conditional to it. For
the skeptical reader’s convenience, we stress the results which depend
on this conjecture with an asterisque (*).

1. The case p = 2

Proposition 1. We have

(1) ddq(F ) ≤ dd(F ).
(2) ũ(F ) ≤ 2ddq(F ).
(3) 2cd2(F ) ≤ ũ(F ). (*)
(4) λ′2(F ) ≤ λ2(F ), with equality if cd2(F ) = 2.

(5) λ̃′2(F ) ≤ λ̃2(F ), with equality if cd2(F ) = 2.
(6) 2λ2(F ) + 2 ≤ u(F ), with equality if cd2(F ) = 2.

(7) 2λ̃2(F ) + 2 ≤ ũ(F ), with equality if cd2(F ) = 2.

(8) cd2(F ) ≤ 2λ̃2(F ) + 2 if F is not formally real (≤ 2λ̃2(F ) + 1 if
−1 ∈ F ∗2). (*)

In summary:

cd2(F ) ≤ log2 ũ(F ) ≤ ddq(F ) ≤ dd(F )(∗)

cd2(F ) ≤ 2λ̃2(F ) + 2 ≤ ũ(F ) if F is not formally real.(∗)

Proof. 1) Ci ⇒ Cq
i . 2) u(F ) ≤ 2ddq(F ) is obvious; by [13], ddq(E) ≤

ddq(F ) for any E algebraic over F . 3) If 2i > u(F ), then I iF = 0,
hence H i(F,Z/2) = 0 by the Milnor conjecture. If this is true for
any finite extension of F of odd degree, then cd2(F ) < i [16]. 4) The
inequality is obvious, and the equality was proven in [7] (Merkurjev’s
theorem). 5) Follows from 4). 6) This was proven in [7]. 7) Follows
from 6).

For 8), we first assume
√
−1 ∈ F . Then reduced power operations

x 7→ x[i] exist in KM(F )/2 = H∗(F,Z/2) (see appendix). It suffices to
show that x = (a1, b1, . . . , ai, bi) = 0 in H2i(E,Z/2) for i = 2λ2(E) + 1
and [E : F ] odd. Consider c = (a1, b1) + · · · + (ai, bi) ∈ H2(F,Z/2).
Then x = c[i]. On the other hand, c is a sum of i − 1 symbols, hence
c[i] = 0.

If F is not formally real, then its absolute Galois group is torsion-
free, hence cd2(F (

√
−1)) = cd2(F ) [17]. On the other hand,
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Hq(F (
√
−1),Z/2) is generated for any q by symbols of the form

(a1, . . . , aq−1, b) where all ai are in F ∗. So Hq(F (
√
−1),Z/2) = 0 for

q > 2λ2(F ) + 2. Repeating this argument for all separable odd degree
extensions of F , we get what we want. 2

Proposition 2. The bounds in proposition 1 are optimal, except per-
haps 8) when

√
−1 /∈ F .

Proof. 1), 2) and 3): on F = C((t1)) . . . ((tn)), the Pfister form
� t1, . . . , tn � is anisotropic; cd2(F ) = n. 4), 5), 6), 7): take cd2(F ) =
2. 8) For

√
−1 ∈ F , take F = C((t1)) . . . ((t2n+1)): then cd2(F ) =

2n + 1. On the other hand, H2(F,Z/2) = Λ2(〈t1, . . . , t2n+1〉). The
theory of alternating forms shows that any element in this alternating
square is a sum of [2n+1

2
] = n decomposable tensors. 2

In the same vein:

Proposition 3. If F is a function field in n variables over an alge-
braically closed field k, then λ2(F ) ≥ [n

2
].

Proof. Complete F at a closed point x of a smooth model over k.
Then Fx ' k((t1) . . . ((tn)) and H2(F,Z/2) → H2(Fx,Z/2) is surjec-
tive. On the other hand, the argument above shows that λ2(Fv) = [n

2
].

2

This bound is not optimal (there are division algebras of exponent 2
and index 4 over C(t1, t2, t3)).

2. An application

Fix a ground field k. For any prime power d ≥ 1, let

λp(d) = sup{λp(A) | A is a simple algebra of degree d

and exponent p containing k}.

Theorem 1. a) If k is algebraically closed, then λ2(d) ≤ 2d
2+3d/2−2−1.

b) If k is finite, then λ2(d) ≤ 2d
2+3d/2−1 − 1.

Proof. Let A be a generic central simple algebra of exponent 2
and degree d. Then λ2(d) = λ2(A) [19]. If F is the centre of A, then

λ2(A) ≤ ũ(F )−2
2

and ũ(F ) ≤ 2dd(F ) by proposition 1. It remains to find
an explicit bound for dd(F ).

We may construct A and F as follows. First take the division ring of
left fractions A0 of k{M,D}, whereM is a generic square matrix of rank
d and D is a generic diagonal matrix of the same rank. Then A0 is a
division algebra of degree d over its centre F0, and trdeg(F0/k) = d2+d.
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Next, observe that indA⊗2 ≤ d/2 [1] (in fact there is equality here); let
D be the associated division algebra, X its Severi-Brauer variety and
F = F0(X). Then A = A0⊗F0 F is generic of degree d and exponent 2
[3]. Now trdeg(F/F0) = dimX = d/2− 1. This gives

trdeg(F/k) = d2 + 3d/2− 1.

In case a), we get dd(F ) ≤ d2 + 3d/2− 1; in case b) we get dd(F ) ≤
d2 + 3d/2. This gives what we claimed. 2

As a corollary, we obtain a converse to the bound of proposition 1
4):

Corollary 1. For k as in theorem 1 and F containing k,

λ2(F ) ≤ 222λ
′
2(F )+3·2λ

′
2(F )−1−2 − 1 in case a)

λ2(F ) ≤ 222λ
′
2(F )+3·2λ

′
2(F )−1−1 − 1 in case b).

2

These bounds look horrendous and are probably way too large, see
conjecture 2 below. It is also annoying not to have any explicit bound
for λ2(d) over Q or Q(i).

3. The case p > 2

In this case, much less is known. For example, even assuming the
Kato conjecture, I don’t know of an argument showing that cdp(F ) ≤
dd(F ). (For dd(F ) ≤ 2, this is true thanks to the reduced norm of
central simple algebras.) It is also unknown whether λ′p(F ) = λp(F )
when cdp(F ) = 2. Finally, while the generic argument does give that
λp(d) is finite for any d, I don’t know of any explicit bound for it. The
inequality cdp(F ) ≤ 2λp(F ) + 1 is true, however, assuming the Kato
conjecture (same proof).

Using index reduction methods, one can probably produce fields of
cohomological dimension 2 with prescribed λp-invariant, including λp =
∞. For p = 2, this follows from Merkurjev’s construction of fields with
given even u-invariant [10] and proposition 1 6).

4. Some conjectures for p = 2

Conjecture 1. If F is not formally real, ũ(F ) ≤ 22λ2(F )+2.

The evidence for this conjecture is meagre: it is true for λ2(F ) = 1
by Elman-Lam [4]. The first test would be to understand the case
λ2(F ) = 2. In this respect, Saltman has proven that λ2(F ) = 2 for
F a function field in one variable over Qp (p odd) [15]; Hoffmann-van
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Geel have used this result to prove that ũ(F ) ≤ 22 [6] and Parimala-
Suresh have refined this bound to ũ(F ) ≤ 10 [12]. These results at least
do not contradict the statement of conjecture 1. Maybe the bound is
not correct; in any case I conjecture that ũ(F ) is bounded in terms of
λ2(F ).

Conjecture 2. λ2(d) ≤ d/2.

This conjecture is at least true for d = 1, 2, 4, 8 by results of Wed-
derburn, Albert [1] and Tignol [18]. Here is a related conjecture:

Conjecture 3. Let A be a central simple algebra of exponent 2 over
F , and let E/F be a finite extension.
a) If [E : F ] is odd, then λ2(AE) = λ2(A).
b) If [E : F ] = 2, then λ2(AE) ≥ λ2(A)/2.

One can easily check that this conjecture is true for ind(A) ≤ 8 (by
using the same results as above).

Proposition 4. Conjecture 3 implies conjecture 2.

Proof. Let ind(A) = d. We may suppose that A is division. By a),
we may further assume that A contains a maximal subfield E which is
filtered by quadratic extensions. Let K/F be a quadratic subfield of
E/F : then ind(AK) = d/2 and the result follows by induction on d. 2

Remark 1. It might even be true that λ2(d) = d/2. In [19, cor. 2.10],
Tignol proves that λ2(d) ≥ log2 d+ 1 for d ≥ 8.

Appendix A. Divided powers in Milnor K-theory

Theorem 2 (Papy [11], Revoy [14]). Let M be a module over a com-
mutative ring R. Then there exists a unique collection of maps (divided
power operations)

Λ2p(M)→ Λ2ip(M)

x 7→ x[i]

with the following properties:

(1) s[0] = 1, s[1] = s.
(2) (st)[n] = snt[n].
(3) s[m]t[n] =

(
m+n
n

)
(st)[m+n].

(4) (s+ t)[n] =
∑

p+q=n

s[p]t[q].

(5) (s[p])[q] = (pq)!
p!q!p

s[pq].

(6) s[p] = 0 if s is a symbol (decomposable tensor) and p ≥ 2.



6 BRUNO KAHN

If 2M = 0, then the divided power operations are defined on the whole
of Λ∗(M), with the same properties. 2

Remark 2. The statement when 2M = 0 does not appear in [14], but
the proof is similar and actually simpler.

The following proposition was observed by Serre and Rost in the
early nineties.

Proposition 5. With notation as in theorem 2, let I be a graded ideal
of Λ(M) generated by symbols. Then the divided power operations of
theorem 2 induce operations on Λ(M)/I.

Proof. Let x ∈ Λi(M) (i even if 2M 6= 0), y ∈ I be a symbol of
degree i and n ≥ 2. By Theorem 2 (1), (4) and (6), we have

(x+ y)[n] = x[n] + yx[n−1] ≡ x[n] (mod I)

hence the result since I is generated by symbols. 2

If F is a field and p is an odd prime, proposition 5 applies to
KM
∗ (F )/p, since then it is the quotient of the exterior algebra on

F ∗/F ∗p by an ideal generated by symbols. This remains true for
KM
∗ (F ) and KM

∗ (F )/2 when F has characteristic 2, but not in gen-
eral as we have the identity {x, x} = {x,−1} in K2(F ). For KM

∗ (F )/2,
this will be true as soon as −1 ∈ F ∗2.

We get divided powers on the quotient of KM
∗ (F ) by the ideal gen-

erated by {−1} in all cases. This provides a hilarious proof of part of
a theorem of Bass-Tate on the Milnor K-theory of a global field F [2]:
by a theorem of Lenstra [9], K2(F ) consists of symbols. Hence, by the
same argument as in the proof of proposition 1 8), KM

4 (F ) is generated
by {−1} and KM

i (F ) is of exponent 2 for all i ≥ 4. (Bass and Tate’s
result is much sharper: they prove that KM

i (F ) ' (Z/2)r1 for i ≥ 3,
where r1 is the number of real embeddings of F .)
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deaux 2 (1990), 155–161; Erratum, 3 (1991), 247.

[8] T. Y. Lam The algebraic theory of quadratic forms (2nd edition), Benjamin,
1980.

[9] H. Lenstra, Jr K2 of a global field consists of symbols, Lect. Notes in Math.
551, Springer, 1976. 69–73.

[10] A.S. Merkurjev Simple algebras and quadratic forms (in Russian), Izv. Akad.
Nauk SSSR 55 (1991), 218–224. English translation: Math. USSR-Izv. 38
(1992), 215–221.
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année (1972/73), Exp. No. 8, 10 pp., Secrétariat Mathématique, Paris, 1973.
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