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Introduction

Let F be a field and X be a smooth, geometrically integral variety over F . In [6,
prop. 3.6], Colliot-Thélène and Raskind produced an exact sequence:

(1) H1
Zar(X,K2)→ H1

Zar(X,K2)
GF

→ H1(F, K2(F (X))/H0
Zar(X,K2))→ Ker(CH2X → CH2X)

→ H1(F, H1
Zar(X,K2))→ H2(F, K2(F (X))/H0

Zar(X,K2)).

Here, X denotes the variety X viewed over the separable closure F of F , K2 is
the Zariski sheaf associated to the presheaf U 7→ K2(U) and GF is the absolute Galois
group of F . On the other hand, in [17, th. 3.1], we produced an isomorphism

H1(F, K2(F (X))/K2(F )) ' Ker(H3(F,Q/Z(2))→ H3(F (X),Q/Z(2))).(2)
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396 Bruno Kahn

In (2), the coefficients Q/Z(2) are

lim−→µ⊗2
n if charF = 0 and lim−→

(n,char F )=1

µ⊗2
n ⊕ lim−→

r

WrΩ
2
log[−2] if charF > 0,

where WrΩ
2
log is the weight-two logarithmic part of the de Rham-Witt complex over

the big étale site of Spec F [13] (see comments at the end of the introduction).

When X is a complete rational variety, i.e. the extension F (X)/F is
purely transcendental, the group H0

Zar(X,K2) coincides with K2(F ). One

may therefore replace the group H1(F , K2(F (X))/H0
Zar(X,K2)) in (1) by

Ker(H3(F,Q/Z(2)) → H3(F (X),Q/Z(2))) in this case. The resulting exact se-
quence has been used in [29] and [30].

Moreover, the left map in (1) is injective when X is a complete rational variety
([6, prop. 4.3] in characteristic 0, [24, prop. 1.5] in general). Putting all this together,
one therefore gets an exact sequence:

0→ H1
Zar(X,K2)→ H1

Zar(X,K2)
GF

→ Ker(H3(F,Q/Z(2))→ H3(F (X),Q/Z(2)))

→ Ker(CH2X → CH2X)→ H1(F, H1
Zar(X,K2))

for any complete rational variety X .

In this paper, we use the Lichtenbaum complex Γ(2) of [22], [23] to recover this
exact sequence directly, and extend it to the right. Our main result is:

Theorem 1. Let X be a smooth variety over F .
a) Assume that K2(F )

∼
−→ H0

Zar(X,K2). Let us denote by

η : H3(F,Q/Z(2)) −→ H0
Zar(X,H3(Q/Z(2)))

ξ : CH2X −→ (CH2X)GF

cl2X : CH2X ⊗Q/Z −→ H4(X,Q/Z(2))

the natural maps and the divisible cycle class map. Then there is an exact sequence

0→H1
Zar(X,K2)→H1

Zar(X,K2)
GF→Ker η→Ker ξ→H1(F, H1

Zar(X,K2)).(3)

b) Assume moreover that H0
Zar(X,H3(Q/Z(2))) is p-primary torsion, where p is the

characteristic exponent of F and H3(Q/Z(2)) is the Zariski sheaf associated to the
presheaf U 7→ H3

ét(U,Q/Z(2)) (if charF = 0, this means H0
Zar(X,H3(Q/Z(2))) = 0).

Then the exact sequence (3) extends to a complex

Ker ξ → H1(F, H1
Zar(X,K2))→ H4(F,Q/Z(2))→ Coker cl2X .(4)

Let A (resp. B) denote the homology of (4) at H1(F, H1
Zar(X,K2)) (resp. at

H4(F,Q/Z(2))). Then there is another complex

0→Coker η ⊗ Z[1/p]→Coker ξ ⊗ Z[1/p]→H2(F, H1
Zar(X,K2))⊗ Z[1/p](5)

whose homology at Coker η ⊗ Z[1/p] (resp. at Coker ξ ⊗ Z[1/p]) is A⊗ Z[1/p] (resp.
B ⊗ Z[1/p]).
If H0

Zar(X,H3(Q/Z(2))) = 0, we can remove ⊗Z[1/p] everywhere.
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Remark. The assumptions are satisfied if X is a complete rational variety,
but also if it is a torsor under a semi-simple, simply connected algebraic group
[7]. If chark = p > 0, in the second case the group H0

Zar(X,H3(Q/Z(2)) is in
general nonzero, as higher logarithmic Hodge-Witt cohomology is not homotopy
invariant; hence the complicated statement of theorem 1. However, we do have
H0

Zar(X,H3(Q/Z(2)) = 0 in the first case (compare corollaries 5.3 and 6.2 c)).

Corollary. Let X be as in theorem 1 b).
1) Suppose cd F ≤ 3. Then there is an exact sequence

0→ H1
Zar(X,K2)→ H1

Zar(X,K2)
GF → Ker η → Ker ξ → H1(F, H1

Zar(X,K2))

→ Coker η → Coker ξ → H2(F, H1
Zar(X,K2))

after tensorisation by Z[1/p]. The part of this sequence up to H1(F, H1
Zar(X,K2))

exists and is exact without tensoring by Z[1/p].
2) Suppose cd F ≤ 2. Then there is an isomorphism

H1
Zar(X,K2)

∼
−→ H1

Zar(X,K2)
GF

and an exact sequence

0→ Ker ξ → H1(F, H1
Zar(X,K2))

→ H0
Zar(X,H3(Q/Z(2)))→ Coker ξ → H2(F, H1

Zar(X,K2))

after tensorisation by Z[1/p]. The injection Ker ξ ↪→ H1(F, H1
Zar(X,K2)) holds

without tensoring by Z[1/p].
If H0

Zar(X,H3(Q/Z(2))) = 0, the results hold without tensoring by Z[1/p].

To try and get a relationship between theorem 1 and the last term in (1), we
observe that a closer examination of the spectral sequence used in [17, proof of th.
3.1] yields an exact sequence:

(6) H3(F,Q/Z(2))→ Ker(H3(F (X),Q/Z(2))→ H3(F (X),Q/Z(2)))

→ H2(F, K2(F (X))/K2(F ))→ H4(F,Q/Z(2))→ H4(F (X),Q/Z(2)).

How to derive theorem 1 from sequence (6) does not seem obvious, however.

This paper is organized as follows. In section 1, we compute the étale hy-
percohomology of X with coefficients in Γ(2): this is done in theorem 1.1, which
is of independent interest. In sections 2 and 3, we introduce two relative com-
plexes Γ(F (X)/X, 2) (over Xét) and Γ(X/F, 2) (over (Spec F )ét). Considering the
Hochschild-Serre spectral sequence for the hypercohomology of Γ(F (X)/X, 2), we
get back the Colliot-Thélène-Raskind exact sequence (1) in a straightforward manner
(see proposition 2.2). To prove theorem 1, we similarly examine the Hochschild-Serre
spectral sequence for the hypercohomology of X with coefficients Γ(X/F, 2) (see
section 3). In sections 4, 5 and 6, we respectively prove a purity theorem, compute
the motivic cohomology of a projective bundle and prove a Bloch-Ogus type theorem.
Finally, in section 7, we look at projective homogeneous varieties.

The proof of the isomorphism (2) in [17] consisted of considering the Hochschild-
Serre spectral sequence for the hypercohomology of F with coefficients in a relative
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398 Bruno Kahn

Lichtenbaum complex Γ(F (X)/F, 2), relative to the extension F/F . What we do
here can be considered as a refinement of this method, by factoring the morphism
Spec F (X)→ Spec F into

Spec F (X) −→ X −→ Spec F.

Remarks on characteristic p. We have to be a little careful if charF > 0 when
defining the coefficients Q/Z(2). In characteristic 0, they are defined as lim

−→
µ⊗2

n . If

charF = p > 0, we set Z/pr(2) = WrΩ
2
log[−2], where WrΩ

2
log is the sheaf of loga-

rithmic de Rham-Witt differentials over the big étale site of Spec F , defined as the
subsheaf of the de Rham-Witt sheaf WrΩ

2 generated locally for the étale topology
by sections of the form d log x1 ∧ d log x2 [13, I.5.7]. So Z/pr(2) is a complex of étale
sheaves concentrated in degree 2. The Verlagerung maps V : WnΩ2 → Wn+1Ω

2 pre-
serve logarithmic differentials, hence can be used to define Qp/Zp(2) as lim

−→
r

Z/pr(2).

Corollaires I.3.5 and I.5.7.5 of [13] yield exact sequences of étale sheaves

0→ Z/pr(2)
V s

−−→ Z/pr+s(2)→ Z/ps(2)→ 0(7)

hence exact sequences

0→ Z/pr(2)→ Qp/Zp(2)
pr

−→ Qp/Zp(2)→ 0.(8)

We now define Q/Z(2) as lim
−→

(n,charF )=1

µ⊗2
n ⊕Qp/Z2(2). We sometimes abbreviate

Q/Z(2) by ‘2’.

Notation. We denote by ΓZar(2) (resp. Γét(2)) the complex of sheaves over the big
Zariski (resp. étale) site of Spec F associated to the presheaf U 7→ Γ(U, 2) of [22].
When necessary, we denote by ΓZar(X, 2) (resp. Γét(X, 2)) the restriction of ΓZar(2)
(resp. Γét(2)) to the small Zariski (resp. étale) site of a scheme X . We drop indices
when the context makes it clear what site we are in.

1. Motivic cohomology of smooth varieties

Let X be a smooth, connected variety over a field F . We compute the étale hyperco-
homology groups H∗

ét(X, Γ(2)) = H∗
ét(X, Γét(2)):

1.1. Theorem. H
i
ét(X, Γ(2)) is

(i) 0 for i ≤ 0.
(ii) K3(F (X))ind for i = 1.
(iii) H0

Zar(X,K2) for i = 2.
(iv) H1

Zar(X,K2) for i = 3

(v) Coker cl2X for i = 5
(vi) Hi−1

ét (X,Q/Z(2)) for i ≥ 6

where cl2X is defined in theorem 1. Moreover, for i = 4 there is a short exact sequence:

0→ CH2X → H
4
ét(X, Γ(2))→ H0

Zar(X,H3(Q/Z(2)))→ 0.(9)

As an immediate application, we get:

1.2. Corollary. In characteristic 0, weight-two étale motivic cohomology is homo-
topy invariant. In characteristic >0, this is still true up to (cohomological) degree 3.
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To prove theorem 1.1, we shall use the Leray spectral sequence

Ep,q
2 = Hp

Zar(X, Rqα∗Γ(2)) =⇒ H
p+q
ét (X, Γ(2))(10)

associated to the change-of-sites map α : Xét → XZar. For the convenience of the
reader, we prove a well-known general lemma:

1.3. Lemma. Let η
j
−→ X be the generic point of the irreducible normal scheme X,

and let A be an étale sheaf over η. Then the cohomology groups Hq
ét(X, j∗A) are

torsion for all q > 0.

Proof. Let η = Spec K. Consider the Leray spectral sequence for j

Ep,q
2 = Hp

ét(X, Rqj∗A) =⇒ Hp+q
ét (K, A).

Since the abutment is Galois cohomology, it is torsion for p + q > 0 and we have to
prove that Rqj∗A is torsion for all q > 0. But since X is normal, it is geometrically
unibranch and the stalks of Rqj∗A are Galois cohomology of the strict Henselizations
of K relatively to the points of X , hence the claim. 2

1.4. Lemma. The Zariski sheaves Rqα∗Γ(2) are as follows:

(i) 0 for q ≤ 0.
(ii) The constant sheaf K3(F (X))ind for q = 1.
(iii) K2 for q = 2.
(iv) 0 for q = 3.
(v) Hq−1(Q/Z(2)) for q ≥ 4.

Proof. (i) is obvious, (iii) is proved in [23, th. 2.10]) and (ii) (resp. (iv)) is proved
in [23, prop. 2.11] (resp. in [23, prop. 2.12]) but only up to 2-torsion. This partially
comes from the insistence to deal with gr2

γK3 rather than with K3,ind. We give proofs
of (ii), (iv) and (v).

Denote by K3,ind (resp. H1(Γ(2))) the étale sheaf associated to the presheaf
R 7→ K3(R)ind (resp. R 7→ H1(Γ(R, 2))) for étale Spec R→ X . Let x ∈ X . We claim
that there is a chain of isomorphisms

(11) H1
ét(OX,x, Γ(2))

∼
−→ H0

ét(OX,x,H1(Γ(2)))
∼
←− H0

ét(OX,x,K3,ind)
∼
−→ H0

ét(K,K3,ind)
∼
←− K3(K)ind.

The first isomorphism (from the left) simply comes from the fact that Hi(Γ(2)) =
0 for i ≤ 0. The last one is proven in [26, prop. 11.4] (see also [21, th. 4.13]). By
[16, theorem], if A is a local ring of a smooth variety, then K3(A)ind → K3(K)ind

is bijective, where K is the field of fractions of A. Letting j : Spec K ↪→ X be the
inclusion of the generic point, this shows that the map K3,ind → j∗j

∗K3,ind is an
isomorphism, hence the third isomorphism in (11). Finally, by [22, prop. 1.8], for any
local ring A whose residue field contains more than 2 elements, there is a surjection

K3(A)ind −→→ H1(Γ(A, 2))

which is bijective if A is a field. Therefore, the commutative diagram

K3(O
sh
X,x)ind −→→ H1(Γ(Osh

X,x, 2))

o





y





y

K3(K
sh
x )ind

∼
−−−−→ H1(Γ(Ksh

x , 2))
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where Osh
X,x is the strict Henselisationes of OX,x and Ksh

x is its field of fractions,

shows that K3(O
sh
X,x)ind → H1(Γ(Osh

X,x, 2)) is an isomorphism (we used [16] again for

the left vertical isomorphism). This proves the second isomorphism in (11), which
proves lemma 1.4 (ii).

We note that (iv) follows from (iii), the Merkurjev-Suslin theorem for the local
rings of X [22, th. 9.1], the fact that R3α∗Γ(2) is torsion [22, th. 9.2] and the triangles

Γ(2)
n

−−−−→ Γ(2)

↖ ↙

µ⊗2
n

Γ(2)
pr

−−−−→ Γ(2)

↖ ↙

Z/pr(2)

(12)

in the derived category (the second triangle in the case charF = p > 0). The first
triangle is proven exact in [22] and [23] only for n odd, relying on the computation of
torsion and cotorsion in K3,ind [22, lemma 8.2]. However, the proof goes through just
as well for n even by using the isomorphism from [16] already mentioned. The second
triangle is proven exact in [23, lemma 2.7] only for r = 1 and p > 2 (this fact was
overlooked in [17]). However, the proof of [23, lemma 2.7] carries over in the same

way, using (ii) and the Bloch-Gabber-Kato isomorphism K2(E)/pr ∼
−→ WrΩ

2
E,log for

any field E of characteristic p [2, cor. 2.8].

Finally, let us prove (v). By the triangle (12), we have a long exact sequence of
Zariski sheaves

· · · → Ri−1α∗Γ(2)⊗Q→ Ri−1α∗Q/Z(2)→ Riα∗Γ(2)→ Riα∗Γ(2)⊗Q→ . . .

so that it is enough to see that Riα∗Γ(2) is torsion for i ≥ 3. For i = 3, this is (iv).
For i > 3, we have a long exact sequence of sheaves

· · · → Ri−1α∗K3,ind → Riα∗Γ(2)→ Ri−2α∗K2 → . . .

so it is enough to see that Riα∗K3,ind and Riα∗K2 are torsion for i > 0. In view of
the isomorphism (see above)

K3,ind
∼
−→ j∗j

∗K3,ind

the first one follows from lemma 1.3. We are left with proving that Riα∗K2 is torsion
for i > 0. As in [23, proof of lemma 2.2], we have a “Gersten resolution”

0→ K2 → j∗K2,K →
∐

x∈X(1)

i∗xGm →
∐

x∈X(2)

i∗xZ→ 0.

This complex of étale sheaves is not exact, but up to torsion it is. Therefore, up
to torsion, there is a spectral sequence of Zariski sheaves

Ep,q
1 = Rqα∗C

p =⇒ Rp+qα∗K2

where Cp is the p-th term of the above “resolution” of K2. Since C0 is of the form
j∗F , the same argument as above shows that E0,q

1 is torsion for q > 0. The stalks of

E1,q
1 and E2,q

1 are sums of Galois cohomology groups, so are torsion for q > 0. This
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shows that Ep,q
2 is torsion for p + q > 0, except perhaps when q = 0. But, for x ∈ X ,

the stalks of E1,0
2 and E2,0

2 at x are the cohomology groups of the complex

H0(K, K2(K))→
∐

y∈Y (1)

F (y)∗ →
∐

y∈Y (2)

Z→ 0(13)

where Y = SpecOX,x. Comparing with the exact sequence (Gersten’s conjecture)

K2(K)→
∐

y∈Y (1)

F (y)∗ →
∐

y∈Y (2)

Z→ 0

and using the fact that the map K2(K) → H0(K, K2(K)) has torsion kernel and
cokernel, we get that (13) has torsion cohomology groups, which concludes the proof
of lemma 1.4 (v). 2

Proof of theorem 1.1. As indicated above, we use the spectral sequence (10).
(i) is obvious in view of lemma 1.4 (i) and so is (ii) in view of the isomorphism

H
1
ét(X, Γ(2))

∼
−→ H0

Zar(X, R1α∗Γ(2))

and lemma 1.4 (ii). To get further, we observe that Ep,1
2 = 0 for p > 0 since R1α∗Γ(2)

is constant, and Ep,3
2 = 0 for all p in view of lemma 1.4 (iv). This and lemma 1.4 (iii)

immediately imply (iii) and (iv). Still by lemma 1.4 (iii) and Gersten’s conjecture,

Ep,2
2 = 0 for p > 2 and E2,2

2 ' CH2X ; this and lemma 1.4 (v) (for q = 4) gives
the exact sequence (9). We now note that the above information and lemma 1.4 (v)
imply that Hi

ét(X, Γ(2)) is torsion for i ≥ 5. (v) and (vi) now follow from (9) and the
long exact sequence

· · ·→H
i−1
ét (X, Γ(2))⊗Q→Hi−1

ét (X,Q/Z(2))→H
i
ét(X, Γ(2))→H

i
ét(X, Γ(2))⊗Q→· · ·

2

1.5. Remark. The same computation gives the cohomology sheaves of ΓZar(X, 2):

H1(ΓZar(X, 2)) = K3(K)ind

H2(ΓZar(X, 2)) = K2

Hi(ΓZar(X, 2)) = 0 for i 6= 1, 2.

From this, we deduce a triangle, precising [23, prop. 3.1]:

ΓZar(2) −−−−→ Rα∗Γét(2)

↖ ↙

τ≥3(Rα∗Q/Z(2))[−1]

In particular,

ΓZar(2)⊗Q
∼
−→ Rα∗Γét(2)⊗Q.(14)

We also get the following analogue of theorem 1.1:

1.6. Theorem. Hi
Zar(X, ΓZar(2)) =











K3(K)ind if i = 1

Hi−2
Zar (X,K2) if 2 ≤ i ≤ 4

0 otherwise.2
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2. Relative motivic cohomology, I

Let j : Spec F (X) ↪→ X be the inclusion of the generic point and Γ(F (X)/X, 2) be
the homotopy fibre of the morphism

Γét(X, 2)→ Rj∗Γét(F (X), 2).

Denote the hypercohomology group H
i
ét(X, Γ(F (X)/X, 2)) by H

i(F (X)/X, Γ(2)), so
that we have a long exact sequence

→ H
i(F (X)/X, Γ(2))→ H

i
ét(X, Γ(2))→ H

i
ét(F (X), Γ(2))→ H

i+1(F (X)/X, Γ(2))→

This gives:

2.1. Lemma. The groups Hi(F (X)/X, Γ(2)) are 0 for i ≤ 2; there are exact sequences:

0→ K2(F (X))/H0
Zar(X,K2)→ H

3(F (X)/X, Γ(2))→ H1
Zar(X,K2)→ 0

H
4(F (X)/X, Γ(2))

∼
−→ CH2X

(15) 0→ H0
Zar(X,H3(2))→ H3

ét(F (X), 2)

→ H
5(F (X)/X, Γ(2))→ Coker cl2X → H4

ét(F (X), 2).

Proof. The first claim is clear for i ≤ 0; for i = 1 and 2 it follows from theorem 1.1
and the injectivity of H0

Zar(X,H2) → K2(F (X)). For i = 3, it follows from theorem
1.1 again, plus the vanishing of H3(F (X), Γ(2)). For i = 4, 5, we have a cross of exact
sequences:

0




y

H4(F (X)/X, Γ(2))




y

0 −−−−→ CH2X −−−−→ H4
ét(X, Γ(2)) −−−−→ H0

Zar(X,H3(2)) −−−−→ 0




y

H3
ét(F (X), 2)





y

H5(F (X)/X, Γ(2))




y

Coker cl2X




y

H4
ét(F (X), 2)

The map H4
ét(X, Γ(2)) → H3

ét(F (X), 2) factors through H0
Zar(X,H3(2)) →

H3
ét(F (X), 2), which is injective. A diagram chase concludes the proof. 2
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For simplicity, let us denote by K2(F (X)) the group K2(F (X))/H0
Zar(X,K2).

Using the “Hochschild-Serre” (hypercohomology) spectral sequence

Hp
ét(F, Hq(F (X)/X, Γ(2)))⇒ H

p+q(F (X)/X, Γ(2))

and the vanishing of Hi(F (X)/X, Γ(2)) for i ≤ 2, we get an isomorphism

H
3(F (X)/X, Γ(2))

∼
−→ H0(F, H3(F (X)/X, Γ(2)))

and an 5-terms exact sequence

0→ H1(F, H3(F (X)/X, Γ(2)))→ H
4(F (X)/X, Γ(2))

→ H0(F, H4(F (X)/X, Γ(2)))→ H2(F, H3(F (X)/X, Γ(2)))→ H
5(F (X)/X, Γ(2))

hence, using lemma 2.1:

2.2. Proposition. There are exact sequences:

0→ K2(F (X))→ K2(F (X))GF → H1
Zar(X,K2)→ H1

Zar(X,K2)
GF

→ H1(F, K2(F (X)))→ H1(F, H3(F (X)/X, Γ(2))

→ H1(F, H1
Zar(X,K2))→ H2(F, K2(F (X)))

0→ H1(F, H3(F (X)/X, Γ(2))→ CH2X → (CH2X)GF

→ H2(F, H3(F (X)/X, Γ(2))→ H
5(F (X)/X, Γ(2)).

2

The exact sequence (1) follows immediately. Moreover, we also get [6, lemma 4.1].

3. Relative motivic cohomology, II

We recall some notation:

• As above, Hi(X, j) (resp. Hi(j)) is shorthand for Hi
ét(X,Q/Z(j)) (resp. for

Hi(Q/Z(j))).
• η is the map H3(F, 2)→ H0(X,H3(2)).
• ξ is the map CH2X → (CH2X)GF .

We also denote by H
0
(X,K2) the group H0(X,K2)/K2(F ).

Let π : X → Spec F be the structural morphism and Γ(X/F, 2) be the homotopy
fibre (in the derived category) of the morphism

Γét(F, 2)→ Rπ∗Γét(X, 2).

Denote the hypercohomology group Hi
ét(F, Γ(X/F, 2)) by Hi(X/F, Γ(2)), so that

we have a long exact sequence

· · · → H
i(X/F, Γ(2))→ H

i
ét(F, Γ(2))→ H

i
ét(X, Γ(2))→ H

i+1(X/F, Γ(2))→ · · ·

(16)

This gives:

3.1. Lemma. The groups Hi(X/F, Γ(2)) are:

(i) 0 for i ≤ 1.
(ii) K3(F (X))ind/K3(F )ind for i = 2.
(iii) H0

Zar(X,K2)/K2(F ) for i = 3.
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Moreover, there is a complex

(17) 0→ H1
Zar(X,K2)→ H

4(X/F, Γ(2))→ Ker η

→ CH2X → H
5(X/F, Γ(2))→ H4(F,Q/Z(2))→ Coker cl2X .

This complex is exact, except perhaps at H5(X/F, Γ(2)), where its homology is
Coker η. In particular, we have an isomorphism

H1
Zar(X,K2)

∼
−→ H

4(X/F , Γ(2))

and a short exact sequence

0→ CH2X → H
5(X/F, Γ(2))→ H0

Zar(X,H3(2))→ 0.(18)

Proof. (i), (ii) and (iii) immediately follow from theorem 1.1 and the exact sequence
(16). The complex (17) and the value of its homology follow from the cross of exact
sequences ((9) and (16))

0




y

H1
Zar(X,K2)





y

H4(X/F, Γ(2))




y

H3
ét(F, 2)







y

η ↘

0 −−−−→ CH2X −−−−→ H4
ét(X, Γ(2)) −−−−→ H0

Zar(X,H3(2)) −−−−→ 0




y

H5(X/F, Γ(2))




y

H4
ét(F, 2)





y

Coker cl2X

and the “lemma of the 700th” [27]. 2

We now consider the hypercohomology spectral sequence

Hp(F, Hq(X/F, Γ(2))) =⇒ H
p+q(X/F, Γ(2)).(19)

Note that Ep,2
2 = 0 for p > 0, since the group K3(F (X))ind/K3(F )ind is uniquely

divisible by [26, prop. 11.6]. Hence we get an isomorphism

H
0

Zar(X,K2)
∼
−→ H

0

Zar(X,K2)
GF
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and an exact sequence

0→ H1(F, H
0

Zar(X,K2))→ H
4(X/F, Γ(2))

→ H1
Zar(X,K2)

GF → H2(F, H
0

Zar(X,K2))

(noting that H4(X/F, Γ(2)) = H1
Zar(X,K2) by lemma 3.1). The isomorphism is

Suslin’s [32, cor. 5.9], but we get it here by a formal argument, in the vein of [17, th.
3.1 (a)]. The cross of complexes (the above exact sequence and (17)):

0




y

H1
Zar(X,K2)





y

0→ H1(F, H
0

Zar(X,K2))→H4(X/F, Γ(2))→H1
Zar(X,K2)

GF → H2(F, H
0

Zar(X,K2))




y

Ker η




y

CH2X




y

H5(X/F, Γ(2))




y

H4
ét(F, 2)





y

Coker cl2X

contains, via the lemma of the 700th, all the information one can easily get in this
generality.

Assume now that H
0

Zar(X,K2) = 0. Then the exact row in the above diagram

reduces to an isomorphism H4(X/F, Γ(2))
∼
−→ H1

Zar(X,K2)
GF , hence we get a com-

plex:

(20) 0→ H1
Zar(X,K2)→ H1

Zar(X,K2)
GF → Ker η → CH2X

→ H
5(X/F, Γ(2))→ H4

ét(F, 2)→ Coker cl2X

with homology Coker η at H5(X/F, Γ(2)) and 0 elsewhere.

Moreover the spectral sequence (19) and lemma 3.1 give an exact sequence

0→ H1(F, H1
Zar(X,K2))→ H

5(X/F, Γ(2))

→ (H5(X/F , Γ(2)))GF → H2(F, H1
Zar(X,K2)).

Putting (20) and () together, we get a cross of complexes (the horizontal one
exact, the vertical one exact except perhaps at the crossing point):
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0




y

H1
Zar(X,K2)





y

H1
Zar(X,K2)

GF





y

Ker η




y

CH2X




y
ξ′ ↘

0→H1(F, H1
Zar(X,K2))→H5(X/F, Γ(2))→ (H5(X/F, Γ(2)))GF→H2(F, H1

Zar(X,K2))




y

H4
ét(F, 2)





y

Coker cl2X .

Note that Ker ξ = Ker ξ′ by (18). We get theorem 1 a) from this cross and the latter
remark, by a diagram chase analogous to the lemma of the 700th. The same diagram
chase gives us the complex (4), and shows that its cohomology coincides with that of
a complex

0→ Coker η → Coker ξ′ → H2(F, H1
Zar(X,K2)).

Notice the short exact sequence from (18)

0→ Coker ξ → Coker ξ′ → H0
Zar(X,H3(2))GF .

Using this exact sequence, we easily conclude the proof of theorem 1. 2

4. Purity

In this section, we establish a purity theorem for Zariski and étale weight-two motivic
cohomology, generalizing results of [23]. Recall that Γ(1) is defined as Gm[−1] and
Γ(0) as Z[0] (in both the Zariski and étale topologies). We also need such complexes
for i < 0:

4.1. Definition. For i < 0, we define:

ΓZar(i) = 0;

Γét(i) = Q/Z(i)[−1] (no p-primary part in characteristic p).

The following theorem extends and precises [23, th. 4.5]; the method of proof is
different.

4.2. Theorem. Let X be a smooth variety over a field and let Z
i
−→ X be a closed

immersion, with Z smooth of codimension c.
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a) There is an isomorphism (in the derived category of complexes of sheaves over
ZZar)

ΓZar(Z, 2− c)[−2c]
∼
−→ Ri!ZarΓZar(X, 2).

b) There is a map (in the derived category of complexes of sheaves over Zét)

Γét(Z, 2− c)[−2c]→ Ri!étΓét(X, 2)

whose homotopy cofibre is concentrated in degree c + 4 and has p-primary torsion
cohomology, where p is the characteristic exponent of F . In particular, if charF = 0,
this map is an isomorphism.

4.3. Lemma. Let Z
i

↪−→ X be a smooth subvariety of X of codimension c. Then:
a) For any constant sheaf A over XZar, Rpi!ZarA = 0 for all p.

b) For any n, Rpi!ZarKn =

{

0 for p 6= c

Kn−c for p = c,
where Kn−c := 0 if n < c.

Proof. a) is trivial and b) follows in a well-known way from Gersten’s conjecture
(e.g. [9, § 7]). 2

Proof of theorem 4.2 a). Apply Ri! to the triangle

(K3)ind[−1] −−−−→ ΓZar(2)

↖ ↙

K2[−2]

and apply lemma 4.3, noting that the Zariski sheaf (K3)ind is constant.

For the proof of theorem 4.2 b), we need some facts on étale cohomological purity.
For all m ≥ 1, there is a morphism

Z/m(2− c)[−2c]→ Ri!étZ/m(2).(21)

For m prime to the characteristic exponent of F , this morphism is the classical
purity isomorphism of SGA4, e.g. [28, th. 6.1]. For charF = p > 0 and m a power
of p, it is comes from Gros’ thesis [10, II.3.5]: its homotopy cofibre is concentrated
in degree c + 3. In the general case, we define the morphism component-wise, on the
prime-to-p and p-primary parts.

The following rather trivial lemma is very useful:

4.4. Lemma. a) Let f : S → T be a morphism of sites and Rf∗ : D+(S)→ D+(T ) the
functor induced from the bounded below derived category of Abelian S-sheaves to that
of Abelian T -sheaves. Let C be a bounded below complex of Abelian groups, that we
view as a complex of constant sheaves over S. Then there is a natural isomorphism
of functors

Rf∗ ◦ (C
L
⊗?) ≈ C

L
⊗(Rf∗?)

and a natural morphism of functors

f∗ ◦ (C
L
⊗?)→ C

L
⊗(f∗?).
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b) Denote by iλ (λ = Zar or ét) the map corresponding to i from Zλ to Xλ (small
sites). Then, with C as in a), there is a natural isomorphism of functors

Ri!λ ◦ (C
L
⊗?) ≈ C

L
⊗(Ri!λ?).

Proof. a) For A, B two Abelian groups, let A *B denote TorZ

1 (A, B). We note that

* is left exact and its unique nonzero higher derived functor is R1
* = ⊗. Hence there

is a natural isomorphism

C
L
⊗D ≈ C

R

* D[1]

for all C, D ∈ D(Ab).

Therefore the natural isomorphism of the lemma is equivalent to a natural iso-
morphism of functors

Rf∗ ◦ (C
R

*?) ≈ C
R

*(Rf∗?)

which in turn will follow from a natural isomorphism

f∗(A *F) ≈ A * f∗F(22)

for any Abelian group A and any sheaf F over S. Note that, since * is left exact,
the presheaf U 7→ A *G(U) is a sheaf for any sheaf G over any site. Therefore, given
U ∈ S, both sides of (22) evaluated on U are A *F(f−1(U)). Finally, the second
natural transformation, say, follows from the first one by adjunction.

b) Follows from a), considering the triangle of functors (with j : X−Z ↪→ X the
complementary open immersion)

i∗Ri! → IdXλ
→ Rj∗j

∗ → i∗Ri![1](23)

and the fact that i∗ is fully faithful. Here we dropped the index λ for notational
simplicity. 2

Note that the triangle (12) and its analogues for i = 0, 1 can be reformulated as
quasi-isomorphisms

Γét(i)
L
⊗Z/m

∼
−→ Z/m(i) (0 ≤ i ≤ 2)(24)

over the big étale site of Spec F . Note also the obvious quasi-isomorphisms

α∗ΓZar(i)
∼
−→ Γét(i) (0 ≤ i ≤ 2).(25)

Using (24) and lemma 4.4, they give by adjunction morphisms

ΓZar(i)
L
⊗Z/m→ Rα∗Z/m(i) (o ≤ i ≤ 2)(26)

over the big Zariski site of Spec F .

Let finally αX : Xét → XZar and αZ : Zét → ZZar be the natural morphisms of
(small) sites. Note the natural isomorphism of functors

Ri!ZarR(αX)∗
∼
−→ R(αZ)∗Ri!ét(27)

over the small Zariski site of Z. (It can be obtained for example with the help of
(23); compare [14, II.6.14].)
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There is a diagram

ΓZar(Z, 2− c)[−2c]
L
⊗Z/m −−−−→ Ri!ZarΓZar(X, 2)

L
⊗Z/m





y





y

R(αZ)∗Z/m(2− c)[−2c] −−−−→ Ri!ZarR(αX)∗Z/m(2)

(28)

where the vertical maps are given by (26), the top horizontal map by theorem 4.2 a)
and the bottom horizontal map is defined by applying R(αZ)∗ to (21) and using (27).
The notation in the top right corner is unambiguous, thanks to lemma 4.4.

4.5. Lemma. Diagram (28) commutes up to sign.

Proof. As in the proof of lemma 4.3, this boils down to the fact that the Gersten
complex for K-theory is compatible with the Gersten complex for étale cohomology
via the Galois symbol (m prime to charF ) or the differential symbol (m a power of
charF ). The first case is well-known; see [11, cor. 1.6 and proof of lemma 4.11] for
the second one. 2

Proof of theorem 4.2 b). We first construct the map. There is a tautological
natural transformation (stemming from (27))

α∗
ZRi!Zar → Ri!étα

∗
X(29)

hence a morphism (in the derived category of étale sheaves over Z)

α∗
ZΓZar(Z, 2− c)[−2c]→ Ri!étΓét(X, 2)(30)

where we used a) and (25). On the other hand, the triangle

Γ(2) −−−−→ Γ(2)⊗Q

↖ ↙

Q/Z(2)

(31)

deduced from (12) yields a map

Ri!étQ/Z(2)[−1]→ Ri!étΓét(X, 2).(32)

Passing to the colimit in (21), we get a morphism

Q/Z(2− c)[−2c]→ Ri!étQ/Z(2)(33)

whose homotopy cofibre is concentrated in degree c + 3 and has p-primary torsion
cohomology. Shifting and composing with (32), we get a morphism

Q/Z(2− c)[−1− 2c]→ Ri!étΓét(X, 2).(34)

For c ≤ 2, we use (30) to define the map of b), noting that it becomes then

Γét(Z, 2− c)[−2c]→ Ri!étΓét(X, 2)

via (25). For c > 2, we use (34) to define this map.

We now prove the property of the map of b) as claimed in the statement of
theorem 4.2. It is enough to do this after tensoring (30) and (34) by Q and Z/m for
all m (in the derived sense). Since R(αZ)∗ is fully faithful, we may even apply this
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functor to the situation.

Suppose first that c ≤ 2. Using (27), (14) and a), we see that the morphism

R(αZ)∗Γét(Z, 2− c)[−2c]⊗Q→ R(αZ)∗Ri!étΓét(X, 2)⊗Q

is a quasi-isomorphism. On the other hand, there is a ±-commutative diagram

Γét(Z, 2− c)
L
⊗Z/m[−2c] → α∗

ZRi!ZarΓZar(X, 2)
L
⊗Z/m → Ri!étΓét(X, 2)

L
⊗Z/m





y

o





y
≈↙

Z/m(2− c)[−2c] → Ri!étZ/m(2).

In this diagram, the left square is obtained via (25) and (27) by applying adjunction
to (28) and using lemma 4.5; the right triangle is obtained via (25) and (29). The
left vertical map and the southwest map come from the triangle (12).

The bottom horizontal map is none else than (21): its homotopy cofibre is
p-primary torsion and concentrated in degree c + 3. The left vertical map and the
south-west map are quasi-isomorphisms by (24), hence the top composite has the
same cofibre as the bottom map. This proves theorem 4.2 b) in the case c ≤ 2.

Suppose now that c > 2. We first have

R(αZ)∗Ri!étΓét(X, 2)⊗Q ≈ Ri!ZarR(αX)∗Γét(X, 2)⊗Q ≈ Ri!ZarΓZar(X, 2)⊗Q = 0

by (14) and a). On the other hand, tensoring (34) by Z/m and using (31) yields

Z/m(2− c)[−2c]→ Ri!étΓét(X, 2)
L
⊗Z/m.

Using (24), we get a composition

Z/m(2− c)[−2c]→ Ri!étΓét(X, 2)
L
⊗Z/m

∼
−→ Ri!étZ/m(2)

which is clearly (33). This concludes the proof of theorem 4.2 b). 2

5. Cohomology of projective bundles

Let E → X be a vector bundle of rank n, and P
π
−→ X the associated projective

bundle. Our aim in this section is to compute Rπ∗ΓZar(P, 2) and Rπ∗Γét(P, 2).

In order to state the theorem, we remark that there are pairings (i ≤ 2):

ΓZar(i− 1)
L
⊗ΓZar(1)→ ΓZar(i)(35)

over the big Zariski site of Spec F , if F has more than two elements, and

Γét(i− 1)
L
⊗Γét(1)→ Γét(i)(36)

over the big étale site of Spec F .

For i = 2, (35) and (36) are the pairings of [22, prop. 2.5]; for i = 1 they are
tautological. For i < 0 (and in the étale case), the triangle analogous to (31) for Γ(1)
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shows that, for all i, the morphism Q/Z(i− 1)
L
⊗Q/Z(1)[−1]→ Q/Z(i− 1)

L
⊗Γét(1)

is a quasi-isomorphism. Therefore it suffices to define morphisms

Q/Z(i− 1)
L
⊗Q/Z(1)→ Q/Z(i)[1]

for all i ∈ Z. This is nothing else than Tate twists of the natural isomorphisms (in
D(Ab))

Ql/Zl

L
⊗Ql/Zl ≈ Ql/Zl[1]

for l 6= charF . Finally, for i = 0, the pairing is defined similarly, using the natural
map

Q/Z[−1]→ Z[0] = Γét(0).

Let L be a line bundle over an F -scheme S. Let λ = Zar or ét. Via (36), its class
[L] ∈ H1

λ(S, Gm) = H2
λ(S, Γ(1)) defines morphisms of complexes

Γλ(i− j)|S [−2j]
[L]j

−−→ Γλ(i)|S

where |S means “restriction to the big λ site of S”. In particular, for S = P and
L = O(1), we get maps

Γλ(2 − j)|P [−2j]
[O(1)]j

−−−−→ Γλ(2)|P (j ≥ 0)

hence, by adjunction, a morphism

n
∐

j=0

Γλ(2− j)|X [−2j]
ρλ
−→ Rπ∗(Γλ(2)|P ).(37)

We are now ready to state the result:

5.1. Theorem. The morphism ρλ is a quasi-isomorphism for λ = Zar or ét (for
λ = Zar, assume F has more than two elements).

Proof. We proceed as in the last section, first proving the Zariski case. Let A be
a local ring of X , and K be its field of fractions. The restriction of E to Spec A is
trivial, hence P| SpecA ' Pn

A. Looking at the maps induced by ρZar on cohomology
sheaves and using theorem 1.6, we can identify them to:

K3(K)ind → K3(K(T1, . . . , Tn))ind

K2(A)→ H0
Zar(P

n
A,K2)

A∗ → H1
Zar(P

n
A,K2)

Z→ H2
Zar(P

n
A,K2).

We have to show that all these maps are isomorphisms. The first one is an
isomorphism because K3,ind is invariant under rational extensions. The other ones
follow from [9, lemma 8.11].

In the étale case, it is enough to check that ρ is a quasi-isomorphism after
tensoring by Q and by Z/l for all prime l. In the case of Q, we reduce to the Zariski
case as above, by applying Rα∗ and using (14).
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For Z/l, we first need a lemma. Note that there are products:

Z/l(i− 1)
L
⊗Z/l(1) −→ Z/l(i).(38)

For l 6= charF , they are nothing else than Tate twists of the natural product in
D(Ab). For l = charF (and i > 0), they come from the products

Ωi−1
log ⊗ Ω1

log → Ωi
log.

5.2. Lemma. For any prime l and any i ≤ 2, the diagram

Γét(i− 1)
L
⊗Γét(1)

L
⊗Z/l −−−−→ Γét(i)

L
⊗Z/l





y





y

Z/l(i− 1)
L
⊗Z/l(1) −−−−→ Z/l(i)

commutes, where the top horizontal map is (36)
L
⊗Z/l, the bottom horizontal map is

(38) and the vertical maps are deduced from (24).

Proof. For l 6= charF , this follows from [22]. For l = charF , it follows from
the definition of the logarithmic symbol, since (for i = 1) the étale sheaf K3,ind is
uniquely l-divisible. 2

If l 6= charF , using lemma 5.2, ρ
L
⊗Z/l becomes the map γ of [15, th. 2.2.1],

which is a quasi-isomorphism, Tate-twisted twice. If p = charF , still using lemma

5.2, ρ
L
⊗Z/p becomes the map

Z/p[−2]⊕ (Ω1
log)|X [−1]⊕ (Ω2

log)|X −→ Rπ∗(Ω
2
log)|P

shifted, which is an isomorphism by [10, cor. I.2.1.12]. 2

5.3. Corollary. H0
Zar(X,H3(2))

∼
−→ H0

Zar(P,H3(2)).

Proof. (We don’t really need Γ(2) for this.) Consider the commutative diagram
with exact rows

0 −−−−→ CH2X −−−−→ H4
ét(X, Γ(2)) −−−−→ H0

Zar(X,H3(2)) −−−−→ 0




y





y





y

0 −−−−→ CH2P −−−−→ H4
ét(P, Γ(2)) −−−−→ H0

Zar(P,H3(2)) −−−−→ 0

where the rows come from (9). Using theorem 5.1 and the analogous result for Chow
groups, the bottom left horizontal map can be rewritten

CH0(X)⊕ CH1(X)⊕ CH2(X)→ H
0
ét(X, Γ(0))⊕H

2
ét(X, Γ(1))⊕ H

4
ét(X, Γ(2)).

The result now comes from the fact that CHi(X) → H2i
ét(X, Γ(i)) is an isomor-

phism for i = 0, 1. 2
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6. The coniveau spectral sequence and Gersten’s conjecture

By the standard procedure, we can construct a coniveau spectral sequence ([3], [5])

Ep,q
1 =

∐

x∈X(p)

H
q+p
x (Xét, Γ(2)) =⇒ H

p+q
ét (X, Γ(2))

where Hq+p
x (Xét, Γ(2)) = lim

−→
U3x

H
q+p

{x}∩U
(Uét, Γ(2)).

Applying theorem 4.2, we get, for x ∈ X(p):

H
q+p
x (Xét, Γ(2)) =



















H
q(F (X), Γ(2)) for p = 0

Hq−2(F (x), Gm) for p = 1 and q 6= 4, 5

Hq−2(F (x),Z) for p = 2 and q 6= 4, 5

Hq−p−1(F (x),Q/Z(−p)) for p > 2 and q 6= 4, 5.

Moreover, we have exact sequences:

0→ H3−p(F (x),Q/Z(2− p))→ H
p+4
x (Xét, Γ(2))→ H0(F (x),F)

→ H4−p(F (x),Q/Z(2 − p))→ H
p+5
x (Xét, Γ(2))→ 0

where F is an l-primary torsion sheaf if charF = l > 0 (and is 0 if charF = 0). For
p > 2, the map H0(F (x),F)→ H4−p(F (x),Q/Z(2− p)) has to be 0, so the sequence
splits into

0→ H3−p(F (x),Q/Z(2 − p))→ H
p+4
x (Xét, Γ(2))→ H0(F (x),F)→ 0

H4−p(F (x),Q/Z(2 − p))
∼
−→ H

p+5
x (Xét, Γ(2)).

This shows that Ep,5
1 = 0 for p ≥ 5 and Ep,4

1 is l-primary torsion for p ≥ 4. For

q 6= 4, 5, Ep,q
1 = 0 for p ≥ q, except for E2,2

1 = Z2(X) (codimension 2 cycles). Note
also that

Ep,3
1 = 0 for all p.

Using theorem 5.1 for P = P1
X , the arguments of [8], [5] show that Gersten’s

conjecture holds for étale weight-two motivic cohomology. Therefore we get a Bloch-
Ogus-type theorem:

6.1. Theorem. The Ep,q
2 term of the coniveau spectral sequence for weight-two mo-

tivic cohomology coincides with Hp(XZar, R
qα∗Γ(2)) =: Hp

Zar(X,Hq(Γ(2))). 2

6.2. Corollary. For any i ≥ 0,
a) The functor X 7→ Hi

ét(X, Γ(2)) satisfies “codimension 1 purity” for regular local
rings of a smooth variety in the sense of [4, def. 2.1.4 (b)].
b) H0

Zar(X,Hi(Γ(2))) is a birational invariant of smooth, proper varieties X/F .

c) For any proper morphism P
f
−→ X of smooth, integral F -varieties such that the

generic fibre of f is F (X)-rational,

H0
Zar(X,Hi(Γ(2)))

∼
−→ H0

Zar(P,Hi(Γ(2))).

Proof. a) follows from theorem 6.1. b) follows from theorem 6.1 and [4, prop.
2.1.8]. Finally, c) follows from b) and corollary 5.3. (In [5, §8], we give a general
proof of these properties for suitable “cohomology theories with supports”.) 2
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Remark. As for corollary 5.3, we could prove this without having recourse to Γ(2),
in view of lemma 1.4. More precisely, we could “merely” use Gersten’s conjecture for
K-theory (Quillen [31]), étale cohomology with coefficients in twisted roots of unity
(Bloch-Ogus [3]) and logarithmic Hodge-Witt cohomology (Gros-Suwa [11]).

7. Projective homogeneous varieties

Let X be a projective homogeneous variety in the sense of [25] and [30]. In
particular X is rational, so the assumptions of theorem 1 are satisfied, including
H0

Zar(X,H3(2)) = 0 by corollary 6.2 c). Moreover, we have Kj−i(F ) ⊗ CHiX
∼
−→

Hi
Zar(X,Kj) for all i ≤ j (loc. cit.). Finally, the GF -modules CHiX are permutation

modules, hence torsion-free [30]. In particular:

H1(F, H1
Zar(X,K2)) = 0

Ker ξ = (CH2X)torsion.

Let E be the étale F -algebra associated to X as in [25]. We get the following
corollary of theorem 1, containing [25, Theorem] and [30, th. 1]:

7.1. Corollary. If X is projective homogeneous, there is an exact sequence:

0→ H1
Zar(X,K2)→ E∗ ρ

−→ Ker η → (CH2X)torsion → 0

and a complex
0→ Coker η → Coker ξ → Br(E)

which is exact, except perhaps at Coker ξ, where its homology is Ker(H4(F, 2) →

Coker cl2X).

The map ρ in corollary 7.1 is described by Merkurjev [25]: there is an Azumaya
E-algebra A associated to X , and ρ is cup-product by [A] followed by transfer.

7.2. Corollary. Coker η is finite.

Indeed, Coker ξ is finite, as a torsion quotient of the finitely generated group
(CH2X)GF . 2

In [19] we show that Coker η is isomorphic to Ker cl2X .
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