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Abstract. We reformulate part of the arguments of T. Geisser and M. Levine relating motivic
cohomology with finite coefficients to truncated étale cohomology with finite coefficients [9,10].
This reformulation amounts to a uniqueness theorem for motivic cohomology, and shows that
the Geisser-Levine method can be applied generally to compare motivic cohomology with other
types of cohomology theories. We apply this to prove an equivalence between conjectures of
Tate and Beilinson on cycles in characteristic p and a vanishing conjecture for continuous étale
cohomology.
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In this paper, we provide a rather simpler proof of the results of Suslin-
Voevodsky [26] and Geisser-Levine [9,10] relating motivic cohomology with
finite coefficients to truncated étale cohomology with finite coefficients. Our
interest in doing so is twofold. First, to try and clarify the strategy of the proofs.
Second, to make it clear to what extent this strategy can be applied in other
situations, allowing one to compare motivic cohomology with other cohomology
theories. Indeed, Theorem 2.34 below gives necessary and sufficient conditions
for a “cohomology theory” in a suitable sense to be isomorphic to a version of
motivic cohomology.

Our main application is to a comparison between motivic cohomology and
l-adic cohomology over finite fields (cf. Theorem 3.4). Since this comparison is
in characteristic p, we have to choose the methods of [9,10] which don’t assume
resolution of singularities, while those of [26] do. However, the paper takes its
inspiration both from [9,10] and [26].

This article is divided into three sections. The first one is technical and could
be skipped at first reading: after recalling the main properties of motivic co-
homology and adding a few complements in Sect. 1.1, it “straightens out” the
functoriality of Bloch’s cycle complexes [1] in Sect. 1.2, transforming them into
presheaves of abelian groups on the category of essentially smooth schemes
over a given base field: the original Bloch complexes are only contravariant
up to homotopy. See Theorem 1.17. Such a straightening is needed in the next
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section. We could have relied on Suslin’s moving lemma in [25, th. 2.1], as
suggested to the author by Suslin. Rather, we prefer to apply a more universal
construction, and replace the Bloch complex by the homotopy inverse limit of its
(quasi-isomorphic) subcomplexes with good position conditions for increasing
collections of locally closed subsets. In Sect. 1.3, we similarly “straighten-out”
the Geisser-Levine cycle class map of [10], and in Sect. 1.4 we extend it to a
motivic-l-adic cycle class map.

The second section is where we “revisit” the Geisser-Levine method.A useful
device is the introduction of a new topology, well-adapted to the handling of
multirelative cohomology groups: the open-closed topology, which plays a rôle
rather similar to that of the cdh topology in [26] without forcing one to assume
resolution of singularities. We also use some techniques from [6].

In Definition 2.14 we introduce the important notion of type at infinity of a
complex of Zariski sheaves on Sm/k, and in Definition 2.16 the related notion
of malleability (roughly: the type at infinity is 0). The fundamental result of
Geisser-Levine ([9, cor. 4.4], see also [26, Cor. 9.7]) may then be reformulated
as follows: motivic cohomology is malleable in weights > 0 (Theorem 2.28).

The main result of Sect. 2 is Theorem 2.34: a map from a version of motivic
cohomology to a “cohomology theory” in a suitable sense is an isomorphism
if and only if it is an isomorphism in weight 0 and the cohomology theory is
malleable in weights > 0. This can be viewed as a “uniqueness theorem” for
motivic cohomology. In Corollary 2.38, we show how one can use it to recover
the results of [9,10].

In the third section, we apply the previous results to prove the equivalence
between three conjectures (Theorem 3.4). The first one, Conjecture 3.1, is the
conjunction of conjectures of Tate and Beilinson on algebraic cycles over a finite
field. The second one, Conjecture 3.2, is an isomorphism between a version of
motivic cohomology and continuous étale cohomology (in the sense of Jannsen).
The third one, Conjecture 3.3, is that continuous étale cohomology with coeffi-
cients in Ql(n) over Sm/Fp is malleable for n > 0. So we get an equivalence
between a purely cycle-theoretic conjecture with rational coefficients (Conjecture
3.1) and a purely cohomological conjecture with rational coefficients (Conjec-
ture 3.3), via a mixed conjecture with integral coefficients (Conjecture 3.2). The
equivalence between Conjectures 3.1 and 3.2 had been given in the preprint [15]
under resolution of singularities; here this assumption is dropped. It is our hope
that Conjecture 3.1 will eventually be proven through this approach.

Consequences of the equivalence between Conjectures 3.1, 3.2 and 3.3 will
be given elsewhere [17].

We fix a base field k. We denote by

• Sch/k the category of separated k-schemes of finite type;
• Sm/k the full subcategory of Sch/k consisting of smooth schemes.
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We shall occasionally use the notations S̃ch/k and S̃m/k to denote the cat-
egories of schemes (resp. smooth schemes) essentially of finite type over k.

1. Functoriality of motivic cohomology

1.1. Review of motivic cohomology

We shall define motivic cohomology groups (resp. Borel-Moore motivic homol-
ogy groups) for a smooth quasi-projective k-variety (resp. for a quasi-projective
k-variety) as Bloch’s higher Chow groups [1] renumbered. (Later, we remove
the quasiprojectiveness assumption.) Let us recall their definition:

Definition 1.1. Let k be a field; denote by ∆• the standard cosimplicial scheme
over k (with ∆p = Spec k[t0, . . . , tp]/(∑ ti − 1)).
a) For X a scheme essentially of finite type over k, the homological cycle complex
of dimension n of X is the chain complex zn(X, ∗) associated to the simplicial
abelian group zn(X, •), where, for all p, zn(X, p) is the group of cycles of
dimension n+p on X×∆p meeting all faces properly; the faces and degeneracies
are induced by those of ∆•. The weight n Borel-Moore motivic complex of X is
the complex

L(X, n) = zn(X, ∗)[2n].
We denote by L(X, n) its class in D−(Ab), the derived category of bounded
below chain complexes of abelian groups.
b) Suppose X of pure dimension d. The cohomological cycle complex of codi-
mension n of X is the cochain complex zn(X, ∗) deduced from the chain complex
zd−n(X, ∗) (i.e. zn(X, p) = zd−n(X, p)). The weight n motivic complex of X is
the complex

Z(X, n) = zn(X, ∗)[−2n].
We denote by Z(X, n) its class in D−(Ab). Therefore,

L(X, n) = Z(X, d − n)[2d].
If X is a disjoint union of pure dimensional schemes Xi , we set Z(X, n) =
⊕Z(Xi, n).
(We shall use b) mostly when X is essentially smooth).

We shall usually consider L(X, n) as a chain complex and Z(X, n) as a
cochain complex. Of course this is just a matter of notation, as one can pass from
a chain complex (Ci) to a cochain complex (Di) by setting Di = C−i .

Let us list the main properties of the complexes L(X, n) and Z(X, n) [1,2,
21,10]. Property c) will be strengthened in Sect. 1.2.
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Theorem 1.2 a) [1, prop. 1.3] Elementary fonctoriality. The Borel-Moore mo-
tivic complexes are covariant for proper maps and contravariant for flat, equidi-
mensional maps.
b) [1, th. 4.1], [21, Part I, th. II.3.5.14] Smooth contravariance. The cohomology
groups of Z(X, n) are contravariant for arbitrary maps between quasi-projective
smooth schemes.
c) [1, th. 2.1] [21, Part I, prop. II.3.6.2] Homotopy invariance. Let X ∈ Sm/k.
Then, for all n, q,

Hq(Z(X, n))
f ∗−−→ Hq(Z(X × A1, n))

is an isomorphism, where f : X×A1 → X is the first projection. For X ∈ Sch/k,
the maps

Hq(L(X, n))→ Hq+2(L(X × A1, n+ 1))

are isomorphisms as well.
d) [1, §5], [10, §8] Products. For any smooth X, there are homotopy commutative
and associative products

Z(X, m)
L⊗Z(X, n)→ Z(X, m+ n).

e) [1, th. 3.1], [2] Localisation. Let i : Z → X be a closed immersion of
k-schemes of finite type, with X quasi-projective, and let j : U → X be the
corresponding open immersion. Then, for all n, the sequence of complexes

L(Z, n)
i∗−−→ L(X, n)

j∗−−→ L(U, n)

defines an exact triangle in D−(Ab). In particular, if X = U ∪ V , with U, V

open, then the sequence of complexes

L(X, n)
(jU

jV
)−−→ L(U, n)⊕ L(V , n)

(j ′U ,−j ′V )−−−−−→ L(U ∩ V, n)

defines an exact triangle (Mayer-Vietoris), where jU , jV , j ′U, j ′V are the relevant
open immersions.

By a), for any X ∈ Sch/k, U 	→ L(U, n) determines in particular a (cochain)
complex of presheaves over the small Zariski site of X: we denote the associated
complex of sheaves by L(n)X, and its class in the derived category by L(n)X.
For X smooth, we denote similarly by Z(n)X the complex of Zariski sheaves
associated to U 	→ Z(U, n), and by Z(n)X its class in the derived category. We
then have the following supplementary properties.
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Theorem 1.3 f) [1, th. 3.2] Local-global principle. For all quasi-projective X ∈
Sch/k and all n ∈ Z, the augmentation

L(X, n)→ H·Zar(X, L(n)X)

is a quasi-isomorphism, where the right hand side denotes the total complex
associated to the Godement resolution of L(n)X. In particular, if X is smooth
quasi-projective, the augmentation

Z(X, n)→ H·Zar(X, Z(n)X)

is an isomorphism for all n ≥ 0.
g) [1, th. 10.1] Gersten’s conjecture. Let X ∈ Sm/k. For all n, q, denote by
Hq(Z(n)) the Zariski sheaf on X associated to U 	→ Hq(Z(U, n)). Then there
are Gersten resolutions:

0→ Hq(Z(n))→
∐

x∈X(0)

(ix)∗Hq(Z(k(x), n))

→
∐

x∈X(1)

(ix)∗Hq−1(Z(k(x), n− 1))→ . . .

where X(p) denotes the set of points of X of codimension p.
h) [1, th. 9.1], [20, th. 3.1] Relationship with algebraic K-theory. There are
isomorphisms for X smooth quasi-projective over a field

Hp(Z(X, n))⊗Q � grnK2n−p(X)Q

where K∗(X) denotes Quillen’s K-theory of X and grn refers to the gamma-
filtration [24].

Theorem 1.3 f) implies that, for X quasi-projective, there are isomorphisms
for all n, q

Hq(L(X, n))
∼−−→ H

q

Zar(X, L(n)X)

Hq(Z(X, n))
∼−−→ H

q

Zar(X, Z(n)X) (X smooth).

For X arbitrary, we shall denote the right hand side of these isomorphisms
respectively by Hc−q(X, Z(n)) and Hq(X, Z(n)).

Remarks 1.4.

(1) In fact, Theorem 1.3 g) follows formally from Theorem 1.2 c) and e),
by results of [6]. Indeed, one checks easily by Noetherian induction that
localisation implies étale excision for closed subsets of smooth schemes
(compare proof of Theorem 2.24).
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(2) If (Xi)i∈I is a projective system of locally equidimensional schemes with flat
transition morphisms, and if X = lim←−Xi , then for all n one has zn(X, ∗) =
lim−→ zn(Xi, ∗). In particular, if X is integral with function field K , then
lim−→ Uzn(U, ∗) = zn(K, ∗), where the limit is over nonempty open subsets
of X. This is used implicitely in Theorem 1.3 g) and also below in the
proof of Proposition 1.7, (1.2) and (1.3). The similar statement is obviously
wrong with homological cycles, even if the relative dimensions are 0, as
Krull dimension is not continuous.

Here is a reformulation of Theorem 1.2 c) and e) in derived terms:

Proposition 1.5 a) For all X ∈ Sm/k and all n ≥ 0, the morphism Z(n)X →
Rf∗Z(n)A1×X is an isomorphism, where f : A1×X→ X is the first projection.
For X ∈ Sch/k, the similar map

L(n)X → Rf∗L(n+ 1)A1×X[−2]
is an isomorphism.
b) In the situation of Theorem 1.2 e), the direct image map i∗ induces an isomor-
phism

L(n)Z
∼−−→ Ri !L(n)X

for all n ∈ Z. In particular, if i : Z → X is a smooth k-pair of codimension c,
then i∗ induces for all n ≥ 0 an isomorphism

Z(n)Z
∼−−→ Ri !Z(n+ c)X[2c].

Proof. a) follows from Theorem 1.2 c) and Theorem 1.3 f), and b) follows from
Theorem 1.2 e) and Theorem 1.3 f). ��

The following proposition gives a computation of some motivic cohomology
groups:

Proposition 1.6 Let X be an essentially smooth scheme over k. Then,

(i) Hp(X, Z(n)) = 0 for p > 2n.
(ii) H 2n(X, Z(n)) is canonically isomorphic to the n-th Chow group CHn(X).

Moreover
(iii) Hp(Z(n)X) = 0 for p > n.
(iv) Hn(Z(n)X) � K̃M

n , where K̃M
n (X) is the n-th unramified Milnor K-sheaf

of X, i.e.

K̃M
n = Ker




⊕

x∈X(0)

(ix)∗KM
n (k(x))→

⊕

x∈X(1)

(ix)∗KM
n−1(k(x))





where X(p) denotes the set of points of codimension p in X and ix is the
inclusion of a point x in X.
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Proof. (i) and (ii) are obvious from the definition of the motivic complex. For
(iii) and (iv), we reduce to the case of a field by Theorem 1.3 g). In this case, (iii)
is obvious and (iv) is the Nesterenko-Suslin theorem [23]. ��

The next proposition generalises the previous one to the case of singular
schemes. For a chain complex C· and an integer n, we denote by τ≤nC· the
truncation of C· such that

Hq(τ
≤nC·) =

{

Hq(C·) for q ≤ n

0 else

so that τ≤nC· = τ≥−nC
·, where C · is the associated cochain complex.

Proposition 1.7 Let X ∈ Sch/k, and d = dim X. Then

τ≤n+dL(n)X � M(−n)X[n]
where M(n)X denotes the (homological) Gersten complex of sheaves of Kato
[18]

· · · →
⊕

x∈X(1)

(ix)∗KM
n+1(k(x))→

⊕

x∈X(0)

(ix)∗KM
n (k(x))→ 0

in which X(p) denotes the set of points of dimension p in X and the last term of
the complex is in homological degree 0.

Proof. Generally, let C(0) → C(1) → · · · → C(d) = C be a sequence of (chain)
complexes in some abelian category. Define C(p/p−1) as the cone of the morphism
C(p−1)→ C(p). We have a double complex

C·· : C(d/d−1)→ C(d−1/d−2)[1] → · · · → C(1/0)[d − 1] → C(0)[d] → 0

and the map C → C(d/d−1) defines a homotopy equivalence C
∼−−→ T ot (C··).

In our case, consider the niveau filtration on Borel-Moore motivic homology:

Fpzn(X, ∗) = lim−→ dim Z≤pzn(Z, ∗)
where the direct limit runs through reduced closed subschemes of X (note that
this does not obviously coincide with the definition in [1, §10] when X is smooth).

Sheafifying this for the Zariski topology gives a quasi-isomorphism

L(n)X
∼−−→ T ot (L(d/d−1)(n)X → L(d−1/d−2)(n)X[1] → · · · → L(0)(n)X[d])

(1.1)

where L(p/p−1)(n)X denotes the cone of the sheafification of Fp−1zn(−, ∗) →
Fpzn(−, ∗).

By Theorem 1.2 e), L(p/p−1)(n)X is quasi-isomorphic to
⊕

x∈X(p)

(ix)∗Z(k(x), p − n)[2p]
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so that (1.1) reads

L(n)X
∼−−→ T ot




⊕

x∈X(d)

(ix)∗Z(k(x), d − n)[2d] → · · · →

⊕

x∈X(p)

(ix)∗Z(k(x), p − n)[p + d] → · · · →
⊕

x∈X(0)

(ix)∗Z(k(x),−n)[d]


 .

Noting that Z(k(x), p − n) is acyclic in (homological) degrees < n − p, it
follows that τ≤n+dL(n)X is quasi-isomorphic to the Gersten complex

⊕

x∈X(d)

(ix)∗Hd−n(k(x), Z(d − n))→ · · · →
⊕

x∈X(0)

(ix)∗H−n(k(x), Z(−n)).

As seen above, the p-th term of this complex is isomorphic to
⊕

x∈X(p)
(ix)∗KM

p−n(k(x)); moreover, by (the proof of) [9, lemma 3.2], the differ-
entials coincide with those from [18]. ��

For any X ∈ Sch/k, the niveau filtration used in the proof of Proposition 1.7
determines by Theorem 1.2 e) the niveau spectral sequence

E1
p,q =

∐

x∈X(p)

Hp−q(k(x), Z(p − n))⇒ Hc
p+q(X, Z(n)). (1.2)

Similarly, when X is smooth, we have the coniveau filtration on motivic
cohomology, yielding the coniveau spectral sequence:

E
p,q

1 =
∐

x∈X(p)

Hq−p(k(x), Z(n− p))⇒ Hp+q(X, Z(n)). (1.3)

Theorem 1.3 g) implies that the E2-terms of (1.3) are given by E
p,q

2 =
H

p

Zar(X, Hq(Z(n)).

1.2. A global motivic complex

We want to strengthen Theorem 1.2 b) to make X 	→ Z(X, n) an object of
D−(Ab((Sm/k)Zar)), the derived category of Zariski sheaves over the big smooth
Zariski site of Spec k. This is not straightforward, as the motivic complexes are
not contravariant on the nose.

Definition 1.8. Let E be a subcategory of Sch/k stable under open immersions.
Let C be a contravariant functor from E to C(Ab), the category of complexes of
abelian groups. We say that C satisfies Mayer-Vietoris if, for any triple (X, U, V )

where X = U ∪ V , U, V are open in X and X ∈ E, the sequence

C(X)→ C(U)⊕ C(V )→ C(U ∩ V )
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defines an exact triangle in D(Ab), the derived category of the category of abelian
groups.

With notation as in Definition 1.8, let C(Ab)Eo = C(AbEo

) be the category of
contravariant functors from E to C(Ab), and let C(Ab)Eo

MV be the full subcategory
of functors satisfying Mayer-Vietoris. Let Eaff be the full subcategory of E

consisting of affine schemes in E. We have a naturally commutative diagram of
categories and functors:

C(Ab)Eo O−−−→ C(Ab)(Eaff )
o

ι

�

 ιaff

�



C(Ab)Eo

MV

OMV−−−→ C(Ab)
(Eaff )

o

MV .

Proposition 1.9 There exists a functor Ȟ·aff : C(Ab)(Eaff )
o → C(Ab)Eo

MV and a
natural transformation ε : Id → ιaffOMV Ȟ·aff such that:

(i) Ȟ·aff transforms quasi-isomorphisms into quasi-isomorphisms.
(ii) For C ∈ C(Ab)(Eaff )

o

, C ∈ C(Ab)
(Eaff )

o

MV if and only if εC is a quasi-
isomorphism.

Proof. Let C : (Eaff)
o → C(Ab) be a functor. Let X ∈ E and let U = (Ui)i∈I be

a finite open cover of X by affine schemes. Since X is separated, all intersections
of Ui are affine. This allows us to consider the Čech double complex:

⊕

i∈I
C(Ui)→

⊕

(i,j)∈I×I

C(Ui ∩ Uj)→ . . .

Let Ȟ·(U, C) be the total complex of this double complex. We define

Ȟ·aff(X, C) = lim−→ U Ȟ·(U, C).

Let f : Y → X be a morphism in E, and let U = (Ui)i∈I be a finite open
cover of X by affine schemes. Then (f −1(Ui))i∈I is a finite open cover of Y by
not necessarily affine schemes. Choosing for all i a finite open cover (Vij )j∈Ji

of
f −1(Ui) by affine schemes, and letting V = (Vij ), we get a morphism

Ȟ·(U, C)→ Ȟ·(V, C).

Passing to the limit, we get a morphism f ∗ : Ȟ·aff(X, C) → Ȟ·aff(Y, C).
Hence Ȟ·aff(X, C) is contravariant in X (check that this construction respects
composition). We denote this functor by Ȟ·aff(C). Clearly, C 	→ Ȟ·aff(C) defines
a functor

Ȟ·aff : C(Ab)(Eaff )
o → C(Ab)Eo

.
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Lemma 1.10 a) For all C, Ȟ·aff(C) satisfies Mayer-Vietoris in E.
b) Let C, D ∈ C(Ab)(Eaff )

o

and ϕ : C → D be a morphism such that, for all X,
ϕX is a quasi-isomorphism (briefly: ϕ is a quasi-isomorphism). Then Ȟ·aff(ϕ) is
also a quasi-isomorphism.

Indeed, let X = U ∪ V , where U, V are open. Let U = (Ui)i∈I be a finite
open affine cover of U and V = (Vj )j∈J a finite open affine cover of V . Then
U ∪ V is a finite open affine cover of X, while U · V = (Ui ∩ Vj)(i,j)∈I×J is a
finite open affine cover of U ∩ V . One sees easily, by induction on |I | and |J |,
that the sequence

Ȟ·(U ∪ V, C)→ Ȟ·(U, C)⊕ Ȟ·(V, C)→ Ȟ·(U · V, C)

defines an exact triangle in the derived category. Since covers of the form U ∪V
are cofinal among finite open affine covers of X and covers of the form U ·V are
cofinal among finite open affine covers of U ∩ V , this proves a), and b) follows
readily from the Čech spectral sequence for a finite affine cover and a passage
to the limit. ��

We have checked condition (i) of Proposition 1.9. Let X ∈ Eaff . There is an
obvious augmentation map:

C(X)→ Ȟ·aff(X, C)

which defines the natural transformation ε of Proposition 1.9. The Mayer-Vietoris
condition being invariant under quasi-isomorphisms, sufficiency in condition (ii)
is clear, and necessity is proved by passage to the limit from the case of a finite
covering, the latter being easily proved by induction on the number of terms of
the covering. ��
Proposition 1.11 Let Smaff/k be the full subcategory of Sm/k consisting of
smooth, affine varieties, and let C : (Smaff/k)o → C(Ab) be a functor as
in Definition 1.8, satisfying Mayer-Vietoris. Then there exists an object C ∈
D(Ab((Sm/k)Zar)) such that, for all X ∈ Smaff/k, the class of C(X) in D(Ab)

is isomorphic to RΓ (X, C).

Proof. Let D = Ȟ·aff(C), where Ȟ·aff is as in Proposition 1.9. For X ∈ Sm/k,
let H·Zar(X, D) be the total complex of the Godement resolution of the sheaf of
complexes associated to D. Since D satisfies Mayer-Vietoris, the argument of
[29, ex. 2.5] shows that the augmentation

D(X)→ H·Zar(X, D)

is a quasi-isomorphism. Therefore, when X is affine, the composition

C(X)→ D(X)→ H·Zar(X, D)
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is a quasi-isomorphism. We may therefore take for C the class of the complex
of sheaves associated to D. ��

We are now going to produce out of the zn(X, ∗) a functor ẑn verifying the
hypotheses of Proposition 1.11. The following lemma is obviously not in its most
general form, but it will suffice for our purpose.

Lemma 1.12 LetC be a category and I a covariant functor fromC to the category
of ordered sets. For each X ∈ C, let (Ci(X))i∈I (X) be an inverse system of chain
complexes of abelian groups. Assume given, for any morphism f : Y → X in C
and any i ∈ I (Y ), a chain homomorphism f ∗i : Cf (i)(X) → Ci(Y ) (of degree
0) with the following properties:

1. If i ≤ j ∈ I (Y ), then the diagram

Cj(Y ) −−−→ Ci(Y )
�

f ∗j

�

f ∗i

Cf (j)(X) −−−→ Cf (i)(X)

commutes.
2. If g : Z→ Y is another morphism and i ∈ I (Z), then the diagram

Cfg(i)(X)
f ∗

g(i)−−−→ Cg(i)(Y )

�
(fg)∗i



�g∗i

Ci(Z)

commutes.

Then the above assignment defines a functor Ĉ : Co → C(Ab) such that

Ĉ(X) = holimi∈I (X) Ci(X)

for any X ∈ C.

(See [3, ch. XI] for a definition of the homotopy limit functor.)

Proof. For f : Y → X a morphism in C, define f ∗ : Ĉ(X) → Ĉ(Y ) as the
composition

holimi∈I (X) Ci(X)→ holimj∈I (Y ) Cf (i)(X)→ holimj∈I (Y ) Ci(Y )

where the first map is given by restriction of the inverse system and the second
one is induced by the f ∗i , thanks to Condition (1). Then Condition (2) ensures
that, given a second map g : Z→ Y , one has (fg)∗ = g∗f ∗. ��
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Definition 1.13. Let X ∈ Smaff/k and n > 0. We denote by I n(X) the set
of finite collections (Zα, nα)α∈A, where the Zα are locally closed irreducible
subsets of X and the nα are integers ≤ n. We put on I n(X) the following order:
(Zα, nα)α∈A ≤ (Tβ, mβ)β∈B if there exists an injection ϕ : A ↪→ B such that
Tϕ(α) = Zα and mϕ(α) ≥ nα.

Remark 1.14. The ordered set I n(X) is actually filtering (any two elements have
an upper bound).

For i = (Zα, nα)α∈A ∈ I n(X), recall from [21, Part I, Lemma II.3.5.1]
the subcomplex zn

i (X, ∗) of zn(X, ∗): its p-th term is the free abelian group
on integral subschemes Z of codimension n in X × ∆p such that Z meets all
subschemes of the form Zα × F in codimension ≥ nα, where F is a face of ∆p.

More generally, let Xq

fq−−→ . . .
f1−−→ X0 be a chain of morphisms in Smaff/k

and i ∈ I n(Xq). We define recursively zn
f1,...,fq ,i(X0, ∗) as the subcomplex of

zn(X, ∗) freely generated by those closed integral subschemes Z of codimension
n such that f ∗1 Z is defined and, with obvious notation, f ∗1 Z ∈ zn

f2,...,fq ,i(X1, ∗)
(for q = 0, zn

f1,...,fq ,i(X0, ∗) := zn
i (X0, ∗)). We have the following trivial obser-

vation:

zn
f1,...,fq ,i(X0, ∗) = zn

f1◦···◦fq ,i(X0, ∗). (1.4)

We shall need the following slight generalisation of [21, Part I, Lemma
II.3.5.2]:

Lemma 1.15 Let f : Y → X a morphism in Smaff/k, n ≥ 1 and i ∈ I n(Y ).
Then there exists j ∈ I n(X) such that zn

f,i(X, ∗) = zn
j (X, ∗).

Proof. We proceed as in the proof of the quoted lemma. For simplicity, we’ll
assume that Y is connected (the general case is similar but notationally more
painful). Let i = (Zα, nα)α∈A, d = dim Y and dα = dim Zα. For t ≤ d, let (as
in loc. cit. ) Ct be the subset of X defined as the set of points x such that each
irreducible component of f −1({x}) of maximal dimension has dimension t over
k(x). Moreover, for each α ∈ A, let Ct,α be the subset of Ct consisting of those
x such that f −1(x) ⊆ Zα. Then the Ct and Ct,α are constructible subsets of X

and form filtrations respectively of f (Y ) and f (Zα).
Write each Ct (resp. Ct,α as a finite union of irreducible subsets Cl

t (resp. Cl
t,α,

each of which is locally closed in X, and let dl
t = dim Cl

t (resp. dl
t,α = dim Cl

t,α),
so that we have

dl
t + t ≤ d

dl
t,α + t ≤ dα

for all l, α.
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If we now define

nl
t = t + dl

t − d + n

nl
t,α = t + dl

t,α − dα + n,

the same dimension computation as in loc. cit. shows that j = (Cl
t , n

l
t ;Cl

t,α, n
l
t,α)

verifies the conclusion of Lemma 1.15. ��
Definition 1.16. We denote by Ī n(X) the set of those subcomplexes of zn(X)

of the form zn
i (X, ∗), with i ∈ I n(X); we put on Ī n(X) the opposite order to

inclusion.

Clearly the natural map I n(X) → Ī n(X) is surjective and nondecreasing;
the set Ī n(X) is still filtering. For f : Y → X a morphism in Smaff/k and
n ≥ 1, Lemma 1.15 defines a map f : Ī n(Y ) → Ī n(X), which is clearly non-
decreasing. Formula (1.4) shows in one gulp that this makes Ī n(X) a covariant
functor in X and that, setting Ci(X) = zn

i (X, ∗), the conditions of Lemma 1.12
are satisfied with I (X) = Ī n(X).

Theorem 1.17 Let n ≥ 0. There exists an object Z(n) in D−(Ab((Sm/k)Zar))

such that, for all quasi-projective X ∈ Sm/k, one has Z(X, n) �
RΓ (XZar, Z(n)) in D(Ab).

Proof. Define, for X ∈ Smaff/k

ẑn(X, ∗) = holimi∈In(X) z
n
i (X, ∗) = holimi∈Ī n(X) z

n
i (X, ∗).

Lemmas 1.12 and 1.15 show that X 	→ ẑn(X, ∗) defines a contravariant
functor on smooth affine schemes. We now use the following moving lemma of
Bloch and Levine [21, th. II.3.5.14]: for all X ∈ Smaff/k and all i ∈ I n(X),
the inclusion

zn
i (X, ∗)→ zn(X, ∗)

is a quasi-isomorphism. By Remark 1.14, the natural map ẑn(X, ∗)→ zn(X, ∗)
is also a quasi-isomorphism; moreover, by Theorem 1.2 e), the functor ẑn verifies
Mayer-Vietoris. Applying Proposition 1.11, we find that there exists an object
Z(n) of D(Ab((Sm/k)Zar)) satisfying the condition of Theorem 1.17 for X affine.
But this extends to X ∈ Sm/k quasi-projective, by covering it by affine open
sets and applying Theorem 1.2 e) again. ��
Proposition 1.18 The natural map Q(n)→ Rα∗α∗Q(n) is an isomorphism in
D(Ab(Sm/k)ét) for all n ≥ 0.

Proof. It is enough to prove this on the small Zariski site of any X ∈ Sm/k. In
case X = Spec k, we look at the hypercohomology spectral sequence

E
p,q

2 = H
p

ét(k, Hq(k̄, Q(n)))⇒ H
p+q

ét (k, Q(n)).
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We have E
p,q

2 = 0 for p > 0, because higher Galois cohomology groups are
torsion. It remains to show that the map

Hp(k, Q(n))→ Hp(k̄, Q(n))Gk

is an isomorphism for all p, where Gk is the absolute Galois group of k. But this
follows from the existence of transfers for étale morphisms in motivic cohomol-
ogy [1, cor. 1.4].

The case where X is local Artinian with residue field k follows from the
previous one, since obviously zn(X, ∗) = zn(k, ∗). This extends to local Artinian
k-algebras with another residue field. Finally, the general case follows from
this one and Theorem 1.2 e) by [29, prop. 2.8] (to apply loc. cit., either adapt
the proof to the case of presheaves of complexes, or apply it directly to the
presheaf of spectra associated to the presheaf of cycle complexes by the Dold-
Kan construction). ��

We shall authorise ourselves of Proposition 1.18 to drop in Sect. 3 the index
ét from the groups Hi

ét(X, Q(n)), as they coincide with their Zariski couterparts.

Corollary 1.19 Proposition 1.5 holds after replacing Z(n) by α∗Z(n)[1/p],
where p is the exponential characteristic of k.

Proof. It is enough to check this after tensoring with Q and with Z/l for all
l �= p. The first case follows from Proposition 1.18; the second one follows from
Theorem 1.22 and the corresponding properties of étale cohomology with finite
coefficients [SGA4], [SGA41/2]. ��
Remark 1.20. This corollary is already wrong for n = 0 if one does not in-
vert p (étale cohomology with coefficients Z/p is not homotopy invariant in
characteristic p).

1.3. The (mod m) cycle map

For any abelian group A, we denote the object Z(n)
L⊗A by A(n). Let α denote

the projection of the big étale site of Spec k onto its big Zariski site, and for all
X ∈ Sm/k, let αX denote the restriction of α to the small étale site of X. We
denote the group Hq(Xét, α

∗
XZ(n)X)byH

q

ét(X, Z(n)) (similarly with coefficients
in A).

Let m be an integer prime to char k. We are going to define morphisms

α∗Z/m(n)→ µ⊗n
m (n ≥ 0)

in D((Sm/k)ét). The issue is to globalise the construction of Geisser-Levine ([10,
§3.7], esp. Remark 3.9); this will strengthen loc. cit. , Prop. 4.2. As the method
is exactly the same as in Sect. 1.2, we’ll only sketch the details.
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Let X ∈ Sm/k. For i ∈ I n(X), let Zn
i (X, ∗) = zn

i (X, ∗)[−2n]. In loc. cit. ,
Geisser and Levine construct the following chain of morphisms of complexes

Zn
i (X, ∗)⊗ Z/m −−−→ H 2n(G∗(n)(X ×∆∗, µ⊗n

m )i)[−2n]
�
�



G∗(X ×∆∗, µ⊗n
m ) ←−−− τ≤2nG

∗
(n)(X ×∆∗, µ⊗n

m )i

�
�



G∗(X, µ⊗n
m )

(1.5)

where G∗(−, µ⊗n
m ) denotes the complex of global sections of the Godement

resolution of the étale sheaf µ⊗n
m , G∗(n)(−, µ⊗n

m )i its subcomplex of classes with
support in closed subsets of codimension ≥ n in good position (see loc. cit. for
details) and X ×∆∗ is the standard cosimplicial scheme constructed out of the
∆q . Actually (1.5) is constructed in loc. cit. only for i = (Zα, nα) of a certain
type (the Zα closed and nα = n for all α), but the general case is the same.

The vertical maps in (1.5) are quasi-isomorphisms by purity and homotopy
invariance of the étale cohomology of µ⊗n

m . The result is a collection of compat-
ible maps in D(Ab) (loc. cit. , (3.9)):

clni : Zi(X, ∗)⊗ Z/m→ G∗(X, µ⊗q
m ).

The construction shows:

Lemma 1.21 a) The maps in diagram (1.5) commute with change of coefficients.
b) For X, Y, f, i, j as in Lemma 1.15, the diagram of zigzags (1.5)

Zn
i (Y, ∗)⊗ Z/m

∼←−−− −−−→ G∗(Y, µ⊗n
m )

f ∗
�

 f ∗

�



Zn
j (X, ∗)⊗ Z/m

∼←−−− −−−→ G∗(X, µ⊗n
m )

commutes.
c) (1.5) commutes with Gysin morphisms.

(Part c) of the lemma is [10, Lemma 4.4].) ��
The technique in the proof of Theorem 1.17 now defines a morphism in

D((Sm/k)ét)

α∗Z/m(n)→ µ⊗n
m . (1.6)

Using Proposition 1.6, we see that the adjunction of this map yields a refined
morphism

Z/m(n)→ τ≤nRα∗µ⊗n
m (1.7)

which is studied in the next section.

Theorem 1.22 The morphism (1.6) is an isomorphism.

Proof. This is just a reformulation of [10, th. 1.5]. ��
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1.4. The l-adic cycle map

We fix a prime l �= char k and introduce the objects

Zl(n)c := R lim←−µ⊗n
lν ∈ D+((Sm/k)ét).

For any n ∈ Z, Zl(n)c is a complex of ordinary étale sheaves; the reader
should take care not to confuse it with the l-adic sheaf Zl(n) of SGA 5. In fact,
it is the image of Zl(n) in D+((Sm/k)ét) by a suitable triangulated functor.

From Lemma 1.21, we deduce a morphism in the derived category, just as
(1.6):

α∗Z(n)
L⊗Zl → Zl(n)c (n ≥ 0). (1.8)

Let us examine an instance of this morphism. For any X ∈ Sm/k, it induces
homomorphisms

H
p

ét(X, Z(n))→ H
p
cont(X, Zl(n)).

For p = 2n, by restriction to Zariski cohomology, we get a homomorphism

CHn(X) = H 2n(X, Z(n))→ H 2n
cont(X, Zl(n)).

Lemma 1.23 This homomorphism is the l-adic cycle class map of [13, (6.14)].
In particular, the composition

CHn(X)→ H 2n
cont(X, Zl(n))→ H 2n

cont(X, Zl(n))G

is the classical l-adic cycle class map of Grothendieck et al. Here G = Gal(k̄/k)

and X = X ⊗k k̄, where k̄ is a separable closure of k.

Proof. This follows easily from the fact that the isomorphism of Theorem 1.22
is induced by a cycle class map for higher Chow groups extending the classical
cycle map (cf. [10, 3.7], [13, (3.23)]). ��

2. The Geisser-Levine method revisited

2.1. The open-closed topology

Definition 2.1. Let S be a scheme.
a) The big open-closed site on S is the site SOc given by the following
Grothendieck pretopology:

• The objects of the underlying category are S-schemes; morphisms are all
morphisms.
• Covers are generated by finite closed covers and finite open covers.
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b) The small open-closed site on S is the full subcategory Soc ⊂ SOc formed of
reduced locally closed subschemes of S, provided with the open-closed covers.

Note that an open-closed cover is in particular a cover by locally closed sub-
sets, but the converse is not true in general. The open-closed topology is the
coarsest topology which is finer than both the Zariski topology and the “irre-
ducible” topology (given by finite closed covers).

By the usual yoga, there are adjoint morphisms α∗ : Shv(Soc)→ Shv(SOc)

and α∗ : Shv(SOc) → Shv(Soc) between the categories of big and small oc-
sheaves, which induce inverse isomorphisms on sheaf cohomology: we shall
call the latter open-closed cohomology and simply write it with an index oc. By
definition, open-closed cohomology satisfies Mayer-Vietoris for open and for
closed covers.

The following proposition gives some rules for computing in the open-closed
topology (we refer for example to [9,10] for multirelative cohomology groups.)

Proposition 2.2 a) Let X be a scheme and (Zi)1≤i≤k a finite family of closed
subsets of X. Then, for any complex of oc sheaves C, the natural map

H ∗oc(X, Z1, . . . , Zk, C)→ H ∗oc(X, Z1 ∪ · · · ∪ Zk, C)

on relative cohomology groups is an isomorphism.
b) (Closed excision). Let X = Z1 ∪ Z2, with Z1, Z2 closed. Then for any coeffi-
cients C, the restriction map

H ∗oc(X, Z1, C)→ H ∗oc(Z2, Z1 ∩ Z2, C)

is an isomorphism.
c) Let Z′ ⊂ Z ⊂ X be a chain of closed subsets of X. Then for any coefficients
C, there is a long exact sequence

· · · → Hi
oc(X, Z, C)→ Hi

oc(X, Z′, C)→ Hi
oc(Z, Z′, C)

→ Hi+1
oc (X, Z, C)→ . . .

d) Let Z1, Z2, Z ⊂ X be closed, with Z1 ∪ Z2 ⊇ Z ⊇ Z1 ∩ Z2. Then, for any
coefficients C, the restriction map

H ∗oc(Z1 ∪ Z2, Z, C)→ H ∗oc(Z1, Z ∩ Z1, C)⊕H ∗oc(Z2, Z ∩ Z2, C)

is an isomorphism.

Proof. a) and b) are clear by closed Mayer-Vietoris; c) has nothing to do with the
oc topology and is valid for any cohomology theory. The nicest way to prove d)
is via a diagram chase in the derived category, which is left to the reader. ��
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Lemma 2.3 Let X be a scheme, A a Zariski sheaf on X and let π denote the
projection Xoc → XZar of the oc site of X onto its Zariski site. Then, for Y ∈ Xoc,
the group of sections of π∗A on Y may be computed as

H 0
oc(Y, π∗A) = lim−→ Ȟ 0

Zar({Zi}, π�A)

where {Zi} runs through the finite closed covers of Y and π�A is the inverse image
of A as a presheaf. If X, hence Y , is Noetherian, we may replace the right hand
side by Ȟ 0

Zar({Zi}, A), where {Zi} is the collection of irreducible components of
Y .

Proof. This amounts to checking that the presheaf defined by the right hand side
is indeed a sheaf in the oc topology. It suffices to check that it satisfies the sheaf
condition for closed covers, which is true by construction, and for open covers,
which is a simple computation left to the reader. The last claim simply follows
from the fact that the irreducible components of Y form a maximal closed cover
of Y . ��
Lemma 2.4 Let X be a locally irreducible scheme (all local rings of X are
irreducible). Then
a) Any open-closed cover of X contains a Zariski open cover.
b) For any Zariski sheaf A on X, the map H 0

Zar(X, A) → H 0
oc(X, π∗A) is an

isomorphism.
c) The functor π∗ is exact.
d) The open-closed cohomology of X coincides with its Zariski cohomology.

Proof. We may assume X connected, hence irreducible. a) Any open subset U of
X is also irreducible, hence any closed cover of U is trivial. b) Follows from a)
and Lemma 2.3. c) We may assume X local. Then X has no nontrivial oc covers
and the exactness of π∗ follows. d) follows from a), b) and c). ��

Examples of locally irreducible schemes are normal schemes, and in partic-
ular regular schemes.

Lemma 2.5 Let X be a locally irreducible scheme and Z1, . . . , Zn a collection
of closed subsets of X such that the Zi and all their multiple intersections are
locally irreducible. Then, for any complex of Zariski sheaves C over X and any
q ∈ Z, the natural map

H
q

Zar(X, Z1, . . . , Zn, C)→ Hq
oc(X, Z1, . . . , Zn, C)

is an isomorphism.

Proof. This immediately follows from Lemma 2.4. ��
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2.2. Normal crossing schemes

Definition 2.6. Let T be a category of Noetherian locally irreducible S-schemes.
A normal crossing S-scheme modelled on T is a reduced Noetherian scheme X

with the following property: the intersection of any set of irreducible components
of X belongs to T (or is empty).

This definition is related to that of [10, 2.8] and to Thomason’s definition of
a “bon assemblage” in [28, def. 3.1].

2.2.1. Two spectral sequences . Let X be a normal crossing scheme modelled
on T , and let (Xi)i∈I be the set of its irreducible components. For J ⊂ I , we write
XJ for

⋂

i∈J Xi . To compute the oc cohomology of X, we enjoy two spectral
sequences; given a complex of oc sheaves C:

• The Mayer-Vietoris spectral sequence (of cohomological type).

E
p,q

1 =
⊕

|J |=p+1

Hq
oc(XJ , C)⇒ Hp+q

oc (X, C).

• The skeletal spectral sequence (of homological type). For n ≥ 0, let

SknX =
⋃

|J |=n+1

XJ .

This is the n-th coskeleton of X. Using Proposition 2.2 c), we get an exact
couple, hence a spectral sequence

E1
p,q = H−p−q

oc (SkpX, Skp+1X, C)⇒ H−p−q
oc (X, C).

Using Proposition 2.2 d), we get the final form of the E1-terms:

E1
p,q =

⊕

|J |=p+1

H−p−q
oc (XJ ,

|K|=p+2⋃

K⊃J

XK, C).

If τ is a site with underlying category S, S ′ another category and u : S ′ → S

a functor, we have the induced topology on S ′ [SGA4, III.3.1]. We shall only
be interested in the case where u is an inclusion, and will denote by S ′τ the
corresponding site with underlying category S ′. Let T be as in Definition 2.6:
the content of Lemma 2.4 is that the “change of topology” morphism

π : TOc → TZar

is an isomorphism of sites. On the other hand:
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Proposition 2.7 Let Nc(T ) be the category of normal crossing S-schemes mod-
elled on T . Denote by r : Nc(T )Oc → TOc the corresponding morphism of sites.
Then the restriction functor

Rr∗ : D(Ab(Nc(T )Oc))→ D(Ab(TOc))

has a right adjoint Rr !, given on the level of complexes by the formula

CX = T ot

(
⊕

i∈I
(ιi)∗Ci →

|J |=2⊕

J⊆I

(ιJ )∗CJ → . . .

)

for X ∈ Nc(T ), using the same notation as in 2.2.1 and writing ιJ for the
inclusion XJ → X and CJ for the restriction of C to XJ .
Moreover, Rr∗ and Rr ! are inverse equivalences of categories.

Proof. Clearly, (C, X) 	→ CX defines a triangulated functor D(Ab(TOc)) →
D(Ab(Nc(T )Oc)), which is right inverse toRr∗. Mayer-Vietoris for closed covers
shows that it is also a left inverse. The fact that it is right adjoint to Rr∗ will not
be used here and is left to the reader. ��
Definition 2.8. For C ∈ D(Ab(TZar)), we shall denote Rr !π∗C simply by Coc

and call it the canonical extension of C to normal crossing schemes.

2.3. Rationally constant complexes

From now on, S = Spec k for k a field.

Definition 2.9. Let S̃m/k be the category of essentially smooth k-schemes. A
normal crossing k-scheme modeled on S̃m/k will just be called a normal crossing
k-scheme. The category of normal crossing k-schemes is denoted by Nc/k.

If C is a complex of sheaves of abelian groups on (Sm/k)Zar, we shall still
denote by C its canonical extension to (S̃m/k)Zar, obtained by pull-back. As
before, we shall write Coc, and sometimes C, for the (tautological) extension of
the latter to (S̃m/k)Oc and the canonical extension of the latter to (Nc/k)Oc as
in Proposition 2.7.

Definition 2.10. A complex of Zariski sheaves C on Sm/k is rationally constant
if it has the following two properties:
a) For any connected X ∈ Sm/k, CX → Rj∗j ∗Ck(X) is an isomorphism, where
j : Spec k(X)→ X is the inclusion of the generic point.
b) For any extension K/k of finite type and any rational extension L/K ,
CK → Rp∗CL is an isomorphism, where p : Spec L→ Spec K is the structural
morphism.
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The following lemma is clear.

Lemma 2.11 Let C be a rationally constant complex of sheaves.
a) Let X ∈ Nc/k, and let (Zi)i∈I be the set of its irreducible components. Assume
that for any J ⊂ I , the intersection ZJ of the corresponding components is a k-
rational variety or is empty. Let S.(X) be the simplicial complex corresponding
to the J ⊂ I such that ZJ �= ∅. Then

H ∗oc(X, C) � H ∗oc(k, C ⊗ C∗(S.(X)) = H ∗Zar(k, C ⊗ C∗(S.(X))

where C∗(S.(X)) is the chain complex associated to S.(X).
b) Suppose X is embedded as a closed subscheme in an essentially smooth
rational k-scheme Y . Then

H ∗oc(Y ;X, C) � H ∗oc(k, C ⊗ C̃∗(S.(X)) = H ∗Zar(k, C ⊗ C̃∗(S.(X))

where C̃∗(S.(X)) is the reduced chain complex associated to S.(X).

2.4. Local spheres and malleable complexes

We now introduce the objects �n, �̂n, ∂�̂n, Sn, Tn of [9] and [10]. For more
details on their combinatorics, the reader should consult [10, §5]. Recall their
definitions:

• �n denotes the affine space An
k (the n-cube).

• �̂n denotes the semi-localisation of �n at the points (ε1, . . . , εn), εj ∈ {0, 1}
(the vertices of the n-cube): this is the semi-local n-cube.
• For 1 ≤ i ≤ n and ε ∈ {0, 1}, �i,ε

n denotes the (n− 1)-face defined by the
equation ti = ε; �̂i,ε

n = �i,ε
n ∩ �̂n.

• Tn = {�̂i,ε
n | 1 ≤ i ≤ n, ε ∈ {0, 1}}.

• ∂�̂n =⋃Tn
�̂i,ε

n , the boundary of the semi-local n-cube.
• T s

n = the collection of the “first” s members of Tn for an appropriate order.
• Sn = T 2n−1

n , the collection of all members of Tn, but one.

We also denote byuT s
n the union of all faces ofT s

n (for example,uT 2n
n = ∂�̂n).

When it is necessary to specify the ground field k, we put it as an index. One
may think of ∂�̂n as a local (n− 1)-sphere.

Proposition 2.12 Let C be a complex of Zariski sheaves on Sm/k. Let us just
write C for Coc. Then, for all p ≥ 0 and q ∈ Z,
a) If H

q
oc(∂�̂p+1, C) = 0, then H

q
oc(�̂p; ∂�̂p, C) = 0.

b) If H
q
oc(�̂m; ∂�̂m, C) = 0 for all m ≤ p, then H

q
oc(∂�̂p+1, C) = 0.

c) Suppose that C is bounded above, and let d = sup{i | Hi(C) �= 0}. Moreover,
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suppose that Hq(�̂p, C) = 0 for p ≥ 0 and q > d1. Then, for any s < 2p and
any q > d, H

q
oc(uT s

p , C) = 0.
d) For all q ∈ Z and all p ≥ 0, there is a canonical map

Hq
oc(∂�̂p, C)→ Hq+1

oc (∂�̂p+1, C).

Under the assumptions of c), this map is surjective for q = d and bijective for
q > d.
e) Under the assumptions of c), H

q
oc(∂�̂p, C) = 0 for q > d and p ≤ q − d.

Proof. a) By Proposition 2.22 b), the restriction map H
q
oc(∂�̂p+1, uSp+1, C)→

H
q
oc(�̂p, ∂�̂p, C) is an isomorphism. Since Sp+1 contains all faces but one,

H
q
oc(∂�̂p+1, uSp+1, C) is a functorial direct summand of H

q
oc(∂�̂p+1, C) (com-

pare [10, Prop. 5.7]) and the claim follows.
b) follows from the skeletal spectral sequence of 2.2.1 applied to

∂�̂p+1, by observing that a typical summand of a E1-term is of the form
H
−p−q
oc (�̂m; ∂�̂m, C).

c) Applying [10, Prop. 5.7] with F a Cartan-Eilenberg resolution of C, we
get that the map H

q
oc(�̂p, uT s

p , C)→ H
q
oc(�̂p, C) is split injective for all q ∈ Z,

hence short exact sequences

0→ Hq
oc(�̂p, uT s

p , C)→ Hq
oc(�̂p, C)→ Hq

oc(uT s
p , C)→ 0.

The map of d) comes from the Mayer-Vietoris exact sequence

Hq
oc(uSp, C)⊕Hq

oc(�̂p, C)→ Hq
oc(∂�̂p, C)

→ Hq+1
oc (∂�̂p+1, C)→ Hq+1

oc (uSp, C)⊕Hq+1
oc (�̂p, C)

and its claimed surjectivity for q = d and bijectivity for q > d follow from c).
Finally, e) follows from d) by remarking that ∂�̂1 is a disjoint union of 4

copies of Spec k. ��
Corollary 2.13 Let C, d be as in Proposition 2.12 c). Then the following con-
ditions are equivalent:

(i) There exists N > d such that HN
oc(∂�̂p, C) = 0 for all p > 0.

(ii) Same as (i), with N = d + 1.
(iii) For all q > d and all p > 0, H

q
oc(∂�̂p, C) = 0.

Proof. (iii) ⇒ (ii) ⇒ (i) is clear. Let us show that (i) ⇒ (iii). If q ≤ N , the
conclusion follows from Proposition 2.12 d). Suppose q > N . By Proposition
2.12 e), there is nothing to prove for p ≤ q − d, and for p > q − d, we reapply
Proposition 2.12 d). ��

1 This assumption is superfluous if C verifies Gersten’s conjecture: this will be the case for the
cohomology theories we consider below, cf. Lemma 2.21 b).
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We now refine Proposition 2.12 d) and Corollary 2.13 as follows. Consider
an arbitrary complex C of Zariski sheaves on Sm/k. Choose a Cartan-Eilenberg
resolution Coc → F of Coc. For any p > 0, the total complex associated to the
sequence of chain complexes

0→ F(∂�̂p+1)
αp−−→ F(�̂p)⊕ F(uSp)→ F(∂�̂p)→ 0

is acyclic. In other words, the map

Cone(αp)→ F(∂�̂p)

is a quasi-isomorphism. Consider now the infinite diagram

Cone(α1)
≈−−−→ F(∂�̂1)



�

Cone(α2)[1] ≈−−−→ F(∂�̂2)[1]


�

Cone(α3)[2] ≈−−−→ F(∂�̂3)[2]


�

. . .

where the vertical maps are the obvious ones.

Definition 2.14. a) With notation as above, we denote by C∞(k) the class in
D(Ab) of the complex

Cone

(
⊕

p

Cone(αp)[p − 1] →
⊕

F(∂�̂p+1)[p]
)

.

This is the type at infinity of C evaluated on k.
b) We define a map in D(Ab)

RΓ (k, C)→ C∞(k) (2.1)

using the inclusion Spec k→ ∂�̂1 given by the point (0, 0).

(The construction in a) is a mapping telescope, e.g. [4].)

Lemma 2.15 a) We have

Hi(C∞(k)) = lim−→Hi+p
oc (∂�̂p+1, C)

where the limit is taken according to the maps of Proposition 2.12 d).
b) The assignment C 	→ C∞(k) defines a triangulated functor from D ((Sm/
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k)Zar) to D (Ab), and (2.1) is natural in C.
c) If C is rationally constant (Definition 2.10), then (2.1) is an isomorphism.
d) Let K/k be an extension, and define C∞(K) in the same way as in Definition
2.14 after extension of scalars to K . Then the assignment K 	→ C∞(K) is natural

in K , and so are the natural transformations (2.1). Moreover, (C
L⊗A)∞(k) =

C∞(k)
L⊗A for any constant complex of Zariski sheaves A.

e) For C, d as in Proposition 2.12 c), the three conditions of Corollary 2.13 are
also equivalent to the following:

(iv) C∞(k) = 0.

Proof. The only nonobvious thing is c). Applying Lemma 2.11 a) to X = ∂�̂p+1,
we get for p > 0

Hi+p
oc (∂�̂p+1, C) � Hi(k, C)⊕Hi+p(k, C)

(notice that S·(X) has the homotopy type of a p-sphere for p > 0). The con-
struction of the maps in Proposition 2.12 shows that the summands Hi+p(k, C)

go away in the limit. ��
Definition 2.16. Let K/k be a finitely generated extension.A complex of Zariski
sheaves is K-malleable if it verifies the assumptions of Proposition 2.12 c) and
the equivalent conditions of Corollary 2.13 (also equivalent to condition (iv) in
Lemma 2.15 e)) with the ground field k replaced by K . It is malleable if it is
K-malleable for any K .

Remark 2.17. This is an unpleasant definition in that it is not intrinsic to C,
which is defined as a complex of Zariski sheaves over smooth k-schemes. It
would be very interesting to have a characterization of malleable complexes that
only involves smooth schemes and not local spheres, or more generally to be able
to compute C∞ out of a complex C by using only smooth schemes. All that can
be said from the outset is that malleable complexes form a thick (triangulated)
subcategory of D−(Ab(S̃m/k)), which is stable under derived tensor product
by bounded above complexes of constant sheaves : this is obvious from Lemma
2.15 d).

We shall later see nontrivial examples of malleable complexes.

Lemma 2.18 A malleable rationally constant complex of Zariski sheaves is
quasi-isomorphic to 0.

Proof. This is clear from the definition of malleability and Lemma 2.15 c). ��

2.5. Homotopy invariant pure graded cohomology theories of
complex-theoretic type

From now on, the field k is perfect.
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Definition 2.19. A homotopy invariant pure graded cohomology theory of
complex-theoretic type over k is a collection (C(n))n∈Z of objects of
D−(Ab((Sm/k)Zar)) (the bounded above derived category of the category of
abelian sheaves on the big smooth Zariski site of Spec k), satisfying the follow-
ing axioms:

(i) Homotopy invariance. For any n, C(n) → Rf∗f ∗C(n) is an isomor-
phism, where f is the structural map A1

k → Spec k.
(ii) Purity. Let i : Z→ X be a smooth pair of pure codimension c. Then there

exists for all n an isomorphism

α(i) : C(n− c)Z[−2c] ∼−−→ Ri !C(n)X

which is contravariant for étale morphisms of smooth pairs of pure codi-
mension c.

The integer n in C(n) is called the weight.
C is said to admit étale transfers if, for any finite étale morphism f : Y → X of
degree d, one is given a map

T rf : f∗C(n)Y → C(n)X

such that the composition

C(n)X −−→ f∗C(n)Y

T rf−−→ C(n)X

is multiplication by d.

In the sequel, we abbreviate homotopy invariant pure graded cohomology
theory of complex-theoretic type into cohomology theory.

Cohomology theories over k form a category for morphisms respecting the
purity structures. This category is not quite a triangulated category; however,
if A(n) → B(n) is a morphism of cohomology theories and (C(n))n∈Z is a
collection of corresponding cones, then C(∗) can be provided with a structure of
a cohomology theory. Indeed, let i : Z→ X be a smooth pair of codimension c.
Consider the restriction of C(n) to the small étale site Xét of X. By one axiom
of triangulated categories, there exists a morphism on Xét

β(i) : i∗C(n− c)Z[−2c] → C(n)X

commuting with the corresponding morphisms for A and B, and the adjoint
morphism α(i) : C(n− c)Z[−2c] → Ri !C(n)X is an isomorphism.

Examples 2.20.

1. For all n ≥ 0, let Z(n) be the object of D−(Ab((Sm/k)Zar)) defined in
Theorem 1.17. By Theorem 1.2, (Z(n))n∈Z defines a cohomology theory,
called motivic cohomology.
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2. If C(∗) is a cohomology theory and A is a complex of abelian groups, then

C(∗) L⊗A is another cohomology theory.
3. Truncated étale cohomology with finite coefficients defines a cohomology

theory. First, let m be prime to char k and let B/m(n) = τ≤nRα∗µ⊗n
m . Then

homotopy invariance and purity follow from Gersten’s conjecture applied
to the cohomology sheaves of B/m(n) and the same properties for étale
cohomology [6, item (5) of 7.3]. Using Lemma 1.21 and Gersten’s conjecture
again applied to motivic cohomology, one sees that (1.7) defines a morphism
of cohomology theories.

4. The situation is similar for truncated Hodge-Witt cohomology. If char k =
p > 0 and r > 0, let B/pr(n) = τ≤nRα∗(νr(n)[−n]) = α∗νr(n)[−n],
where νr(n) is the étale logarithmic Hodge-Witt sheaf of length r and weight
n. Then purity follows from [11, th. 3.5.8] and homotopy invariance may be
deduced from [12, cor. 1.6] and [6, item (5) of 7.3]. In this case, the definition
of the cycle class map from motivic cohomology to truncated Hodge-Witt
cohomology is particularly simple and is given once again via Gersten’s
conjecture, see [9, proof of th. 8.3].

5. l-adic cohomology defines a cohomology theory, and the l-adic cycle map
(1.8) is a morphism of cohomology theories (use Lemma 1.21 again). This
morphism will be studied in the next section in the case where k is a finite
field.

Here are a few results on cohomology theories.

Lemma 2.21 Let C(∗) be a cohomology theory. Then:
a) C(∗) verifies Nisnevich excision for closed immersions in ambient smooth
k-schemes.
b) C(∗) verifies Gersten’s conjecture: for any finitely generated extension K/k,
any semi-local smooth K-scheme X and any (i, n) ∈ Z × Z, we have a long
exact sequence of abelian groups:

0→ Hi(X, C(n))→
⊕

x∈X(0)

H i(K(x), C(n))

→
⊕

x∈X(1)

H i−1(K(x), C(n− 1))→ . . .

Proof. a) This is obvious in the case of a smooth pair of pure codimension, then
for an arbitrary smooth pair, and then in general by Noetherian induction (use
the singular locus of the closed subset).

b) We may reduce to K = k by Quillen’s trick: X is a semi-localisation
of some smooth k-scheme. It now follows from [6, Cor. 5.1.11] that the Cousin
complexes give resolutions of the groups Hi(X, C(n)) (axioms COH1 and COH3
of loc. cit. are satisfied). Using the perfectness of k, we may finally use property
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(ii) in Definition 2.19 to replace the terms of the Cousin resolution by terms as
they appear in Lemma 2.21. ��
Proposition 2.22 Let C(∗) be a cohomology theory over k. Assume that C(m) =
0 for m < n. Then C(n) is rationally constant.

Proof. In the first case, property a) of Definition 2.10 follows immediately from
Lemma 2.21, and property b) follows from a) and homotopy invariance. ��

Finally, the following proposition shows how to “toggle” between function
fields and smooth projective varieties.

Proposition 2.23 Assume k perfect, and let f : A → B be a morphism of
cohomology theories over k. Assume that A(n) = B(n) = 0 for n small enough.
Consider the following conditions:

(i) f is an isomorphism.
(ii) For any finitely generated extension K/k, any n ∈ Z and any i ∈ Z,

f∗ : Hi(K, A(n))→ Hi(K, B(n)) is an isomorphism.
(iii) For any smooth projective k-variety X, any n ∈ Z and any i ∈ Z, f∗ :

Hi(X, A(n))→ Hi(X, B(n)) is an isomorphism.

Then (i) ⇐⇒ (ii)⇒ (iii). If char k = 0, then (iii)⇒ (i). This conclusion also
holds in characteristic p > 0 if

a) the cohomology sheaves of the cone of f are sheaves of Q-vector spaces,
and

b) A and B have étale transfers and f commutes with these transfers.

Proof. For (i) ⇐⇒ (ii), we immediately reduce to A = 0 by considering the
cone of f . Then the equivalence follows from Proposition 2.22 a) by induction
on the weight.

The implication (i)⇒ (iii) is trivial. The converse is an application of resolu-
tion of singularities in characteristic 0, and of de Jong’s alteration theorem [14]
in characteristic p: let us just give the latter (the characteristic 0 case is similar
and simpler).

We argue by induction on the weight n, hence may assume that A(m)
∼−−→

B(m) for m < n. Let C(n) be the cone of fn. Since k is perfect, a Whitney
stratification argument shows that, for U an open subset of a smooth k-scheme
X, the map Hi(X, C(n))→ Hi(U, C(n)) is an isomorphism for all i (if X−U

is smooth, this follows by purity). Moreover, if Ũ → U is an étale covering,
conditions a) and b) show that the maps Hi(U, A(n)) → Hi(Ũ , A(n)) and
Hi(U, B(n)) → Hi(Ũ , B(n)) are compatible split injections. It follows that,
if Hi(Ũ , A(n))

∼−−→ Hi(Ũ , B(n)), then Hi(U, A(n))
∼−−→ Hi(U, B(n)). The

conclusion now follows from [14]. ��
(The reason why we cannot directly argue with C(n) in the proof of (iii)⇒ (i)

is that, while it is clear that C(n) can be provided with “transfers", it is not clear
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that we may choose these “transfers” to verify the last condition in Definition
2.19.)

Theorem 2.24 Let C(n) be a cohomology theory over k. Assume that C(m) = 0
for m < n. Assume that C(n) is bounded above. Then C(n) = 0 if and only if
C(n) is malleable.

Proof. Necessity is obvious. For sufficiency, note that C(n) is rationally constant
by Proposition 2.22. The conclusion now follows from Lemma 2.18. ��
Remark 2.25. By Lemma 2.21 b), C(n) satisfies the unpleasant assumption of
Proposition 2.12 c) whether or not it is malleable.

Corollary 2.26 Let fn : A(n)→ B(n) be a morphism of cohomology theories.
Assume that fm is an isomorphism for m < n. Suppose that A(n) and B(n)

are both bounded above. Then fn is an isomorphism if and only if its cone is
malleable. ��

2.6. The case of motivic cohomology

In [9, cor. 4.4], Geisser and Levine prove the following fundamental theorem:

Theorem 2.27 Let n > 0. For any q > n and any p ≥ 0, one has

H
q

Zar(�̂p, Tp, Z(n)) = 0.

Applying Lemmas 2.5 and 2.12 b), we get the following variant:

Theorem 2.28 For any n > 0, Z(n) is malleable. ��
Note that Theorems 2.27 and 2.28 are wrong for n = 0, since Z(0) = Z[0]

is rationally constant and nonzero (cf. Lemma 2.18).

Corollary 2.29 For any bounded above complex A of abelian groups, Z(n)
L⊗A

is malleable (compare Remark 2.17). ��
From Corollaries 2.26 and 2.29, we deduce:

Proposition 2.30 Let (B(n))n∈Z be a cohomology theory such that all B(n) are
bounded above and B(n) = 0 for n < 0, and let A a bounded above complex

of abelian groups, acyclic in degree > d, and let fn : Z(n)
L⊗A → B(n) be a

morphism of cohomology theories. Suppose that f0 is an isomorphism. Then the
following conditions are equivalent.

(i) For all n > 0, fn is an isomorphism.
(ii) For all n > 0, B(n) is malleable.
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(iii) For any finitely generated extension K/k, any n > 0 and any p > 0, the
map

Hn+d
oc ((∂�̂p)K, Z(n)

L⊗A)
fn−−→ Hn+d

oc ((∂�̂p)K, B(n))

is surjective.

Proof. Let C(n) be the cone of fn. The malleability of Z(n)
L⊗A shows that

conditions (ii) and (iii) are both equivalent to C(n) being malleable. This in turn
is equivalent to (i) by Corollary 2.26. ��

2.7. Smoothable complexes

Definition 2.31. Let C be bounded above complex of sheaves on Sm/k, and let
d = sup{i | Hi(C) �= 0}. We say that C is smoothable if the following holds:
For any finitely generated extension K/k, any p > 0 and any x ∈
Hd

oc((∂�̂p)K, C), there exists an essentially smooth semi-local K-scheme U and
a map g : (∂ �̂p)K → U such that x ∈ Im g∗.

Lemma 2.32 a) If C is malleable, it is smoothable.

b) Z(n)
L⊗A is smoothable for any n > 0 and any bounded above complex of

abelian groups A.

Proof. a) The definition of malleability and Proposition 2.12 a) imply that the
restriction map Hd

oc((�̂p)K, C)→ Hd
oc((∂�̂p)K, C) is surjective.

b) This follows from a) and Corollary 2.29. ��
Remark 2.33. It is obvious that Z(0) = Z is also smoothable. In view of Lemma
2.18, this shows that malleability is strictly stronger than smoothability. On the
other hand, C = Z[0]⊕Z[−1] is clearly not smoothable: indeed, H 1(∂�̂2, C) =
H 1(k, C)⊕ Z while H 1(U, C) = H 1(k, C) for any smooth U . This shows that
the notion of a smoothable complex is much more ad hoc than that of a malleable
complex.

Theorem 2.34 Let (B(n))n∈Z be a cohomology theory such that all B(n) are
bounded above and B(n) = 0 for n < 0, let A a bounded above complex of

abelian groups acyclic in degree > d and let fn : Z(n)
L⊗A → B(n) be a

morphism of cohomology theories. Assume that f0 is an isomorphism. Then the
following conditions are equivalent:

(i) For all n > 0, fn is an isomorphism.
(ii) For all n > 0, B(n) is malleable.
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(iii) For all n > 0, B(n) is smoothable and the map

Hn+d(K, Z(n)
L⊗A)→ Hn+d(K, B(n))

is surjective for any finitely generated extension K/k.

Proof. The equivalence between (i) and (ii) has been seen in Proposition 2.30.
In view of Lemma 2.32, it is clear that (i)⇒ (iii). For the converse, let us show
that condition (iii) of Theorem 2.34 implies condition (iii) of Proposition 2.30.

Let x ∈ Hn+d
oc ((∂�̂p)K, B(n)). By assumption, there exists an essentially

smooth semi-local K-scheme U and a map g : (∂�̂p)K → U such that x ∈
Im g∗.

Let E be the function field of U and C(n) the cone of fn. By (iii), we have

Hn+d(E, C(n)) = 0 (use the fact that Hn+d+1(E, Z(n)
L⊗A) = 0). Now Lemma

2.21 b) implies that Hn+d(U, C(n)) = 0, hence the map

Hn+d(U, Z(n)
L⊗A)→ Hn+d(U, B(n))

is surjective. Therefore x comes from an element of

Hn+d
oc ((∂�̂p)K, Z(n)

L⊗A) ,

as desired. ��
Scholium of small enlightenment 2.35. In [28], Thomason proves a theorem
having a formal analogy with Theorem 2.34, for algebraic K-theory instead of
motivic cohomology. Let us point out the similarities and differences (of course,
these are in essence the similarities and differences between what he does and
what Suslin-Voevodsky and Geisser-Levine do):

1. In both cases, the proof relies on a suspension argument using normal cross-
ing schemes (called bons assemblages in Thomason). This includes extend-
ing the theories at hand, defined on smooth varieties, to normal crossing
schemes. In this respect, [28, Prop. 3.5] is analogous to our Definition 2.8
(resting on Proposition 2.7).

2. The reduction to K0 in [28, 4.4] is related to condition (iii) in Proposition
2.30 or Theorem 2.34.

3. Here we have to resort to “local spheres", while Thomason merely uses
“global spheres".

4. Here, the key property of a cohomology theory is the mysterious malleability
condition; in [28] there is no analogue of this property. Instead, the coho-
mology theory to be compared to K-theory is supposed to receive units in a
way compatible to the way in which K-theory does: this allows Thomason to
prove his Lemme critique 4.1. Maybe the counterpart here is the appearance
of units in the proofs of malleability in Corollary 2.38 below?
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5. To prove his Lemma 4.1, Thomason uses the fact that algebraic K-theory
is a priori defined on normal crossing schemes X, and uses the comparison
map K0(X)→ KH0(X) where KH is the canonical extension of K-theory
to normal crossing schemes. Here, I have no idea what should be motivic
cohomology of normal crossing schemes (not extended), supposing it exists.

6. The main difference between [28] and this paper is, of course, that the
comparison maps go in opposite directions: from motivic cohomology to
another cohomology theory in our case, from another cohomology theory to
algebraic K-theory in Thomason’s case. So the two results are completely
different. A more minor difference is that, here, we conclude to an isomor-
phism while Thomason merely concludes to a surjectivity result.

7. Finally, at the moment one does not know any nontrivial example of a co-
homology theory verifying Thomason’s hypotheses.

2.8. Motivic cohomology with finite coefficients

Lemma 2.36 Let m be an integer prime to char k, and let n ≥ 0.
a) For any normal crossing scheme X, there exist canonical maps

Hq
oc(X, B/m(n)oc)→ H

q

ét(X, µ⊗n
m ).

Here B/m(n) = τ≤nRα∗µ⊗n
m is truncated étale cohomology (α is the projection

from the big smooth étale site to the big smooth Zariski site), and B/m(n)oc is
its canonical extension to normal crossing schemes given by Proposition 2.7.
b) These maps are isomorphisms for q ≤ n.
c) For all n ≥ 0, B/m(n) is smoothable.

Proof. a) Since the map clearly exists for X smooth (see Lemma 2.4), the claim
amounts to the fact that étale cohomology with finite coefficients satisfies Mayer-
Vietoris for closed covers. This follows easily from the proper base change the-
orem (for a closed immersion!).

b) When X is essentially smooth, the statement follows from a comparison
of the hypercohomology spectral sequence yielding the left hand side with the
Leray spectral sequence for α yielding the right hand side. In general, it follows
from the smooth case by a comparison of two Mayer-Vietoris spectral sequences
(for the closed cover given by the irreducible components of X).

c) This follows from b) and Gabber’s rigidity theorem [7]. ��
Lemma 2.37 Let p = char k, n ≥ 0, s ≥ 1 and let

B/ps(n) = τ≤n

(
Rα∗νs(n)[−n]) = (α∗νs(n)

)[−n]
be truncated logarithmic de Rham-Witt cohomology. Then B/ps(n) is smooth-
able.
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Proof. The smoothability condition holds for the global sections of νs(n) for the
Zariski topology by [9, prop. 7.3]. Now, by [9, cor. 6.2], the map

H 0
Zar(∂�̂m+1, Sm+1, ν

n)→ H 0
Zar(�̂m, Tm, νn)

is surjective for any m ≥ 0. By Proposition 2.2, Lemma 2.5 and Proposition 2.22
b), this translates into the surjectivity of the map

H 0
Zar(∂�̂m+1, Sm+1, ν

n)→ H 0
oc(∂�̂m+1, Sm+1, ν

n).

But [10, prop. 5.7 1.] applied with F = νn implies that the sequence

νn(∂�̂m+1)→
⊕

(i,ε) �=(n,1)

νn(�̂i,ε
m+1)→

⊕

(i,ε) �=(i′,ε′)
νn(�̂i,ε

m+1 ∩ �̂i′,ε′
m+1)

is exact. From this, one easily deduces that the map

H 0
Zar(∂�̂m+1, νs(n))→ H 0

oc(∂�̂m+1, νs(n))

is surjective. ��
Corollary 2.38 Let k be a field.
a) [26], [10] Let l be a prime number �= char k. Then the following conditions
are equivalent:

(i) (Beilinson-Lichtenbaum conjecture) The map (1.7)

Z/ls(n)→ B/ls(n)

is an isomorphism for all n ≥ 0 and all s ≥ 1.
(ii) For all s ≥ 1 and n > 0, B/ls(n) is malleable.

(iii) (Weak Bloch-Kato conjecture) For any finitely generated extension K/k

and any n > 0, the Galois symbol KM
n (K)/l→ Hn(K, µ⊗n

l ) is surjective.

b) [9] For p = char k and s ≥ 1, the map

Z/ps(n)→ B/ps(n)

is an isomorphism for all n ≥ 0. The complex B/ps(n) is malleable for all s ≥ 1
and all n > 0.

Proof. Both theories a) and b) are cohomology theories and the maps are maps
of cohomology theories (Example 2.20). Since everything commutes with direct
limits, we may assume that k is the prime field, and in particular is perfect. The
maps of a) and b) are clearly isomorphisms for n = 0.

In view of Lemma 2.36 c), a) follows from Theorem 2.34 for s = 1, hence
for all s by a well-known inductive argument due to Tate.

In b), it is enough to check that condition (iii) of Theorem 2.34 is verified.
Smoothability is Lemma 2.37 and the surjectivity condition is a theorem of Kato
[19, prop. 1]. The fact that B/ps(n) is malleable now follows from Theorem
2.34. ��
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3. Application to algebraic cycles over Fp

We fix two prime numbers p, l, with l �= p. In this section, k = Fp.

3.1. The modified l-adic motivic cycle class map

We want to study how close the map (1.8)

α∗Z(n)
L⊗Zl → Zl(n)c (n ≥ 0)

is to being an isomorphism. At the outset, we see that it is not one for n = 0 (see
Proposition 3.7 below). The cheapest way to correct this problem is to modify
(1.8) as follows: we take the composition

α∗Z(n)
L⊗Zl(0)c → Zl(n)c

L⊗Zl(0)c → Zl(n)c

where the last map is given by cup-product in l-adic cohomology. We call this
composition Φn: this is the modified l-adic motivic cycle class map. At the very
least, Φ0 is now an isomorphism.

3.2. The conjectures

They are the following:

Conjecture 3.1 For any smooth, projective variety X over Fp and any n ≥ 0,
a) (Tate conjecture) The order of the pole of the zeta function ζ(X, s) at s = n is
equal to the rank of An

num(X), the group of cycles of codimension n on X modulo
numerical equivalence.
b) (Beilinson conjecture) Rational and numerical equivalences agree on cycles
of codimension n on X (after tensoring with Q).

Conjecture 3.2 For all n ≥ 0, the modified l-adic motivic cycle class map

Φn : α∗Z(n)
L⊗Zl(0)c → Zl(n)c

is an isomorphism in D((Sm/Fp)ét).

Conjecture 3.3 For all n > 0, the complex Ql(n)c is malleable (cf. Definition
2.16).

Our main result is:

Theorem 3.4 Conjecture 3.1 ⇐⇒ Conjecture 3.2 ⇐⇒ Conjecture 3.3.

We remark:
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Corollary 3.5 Conjectures 3.2 and 3.3 are independent of l.

Indeed, l does not appear in the formulation of Conjecture 3.1. ��
The proof of Theorem 3.4 will be given in the next two subsections. Before,

we prove two useful results.

Lemma 3.6 Conjecture 3.2 is true if and only if it is true after tensoring with Q.

Indeed, Theorem 1.22 shows that Conjecture 3.2 is true after tensoring with
Z/l (in the derived sense). The claim now follows from a classical five lemma
argument. ��
Proposition 3.7 On Sm/Fp, Ql(n)c is acyclic in degrees /∈ [n, 2n+ 1]. In par-
ticular, Ql(n)c = 0 for n < 0. Moreover, Ql(0)c � Ql[0] ⊕ Ql[−1], and
cup-product by e: H0(Ql(0)c) → H1(Ql(0)c) is an isomorphism, where e is
the generator of H 1

cont(Fp, Zl) � Homcont(Gal(F̄p/Fp), Zl) which maps the
arithmetical Frobenius to 1.

Proof. This follows from [16, Th. 1 and Remark 8]. ��
In view of the last statement of Proposition 3.7, for any smooth Fp-variety

X, Φn defines homomorphisms

Hq(X, Q(n))⊗Ql ⊕Hq−1(X, Q(n))⊗Ql → H
q
cont(X, Ql(n)) (3.1)

which are such that the diagram

Hq(X, Q(n))⊗Ql ⊕Hq−1(X, Q(n))⊗Ql −−−→ H
q
cont(X, Ql(n))

(
0 0
1 0

)


� ·e



�

Hq+1(X, Q(n))⊗Ql ⊕Hq(X, Q(n))⊗Ql −−−→ H
q+1
cont (X, Ql(n))

(3.2)

commutes for all q ∈ Z.

3.3. Equivalence between Conjecture 3.2 and Conjecture 3.3

By Lemma 3.6, it suffices to check that the assumptions of Theorem 2.34 hold for
A = Rα∗Ql(0)c and B(n) = Rα∗Ql(n)c. We have already seen that the Rα∗Φn,
and hence the Rα∗Φn ⊗ Q, define a morphism of cohomology theories. Then,
Proposition 3.7 shows that B(n) is bounded above for all n and is 0 for n < 0.
Finally, Φ0 is tautologically an isomorphism.

3.4. Equivalence between Conjecture 3.1 and Conjecture 3.2

Let X ∈ Sm/Fp and n ≥ 0. To evaluate Conjecture 3.2 on X in weight n is
to consider whether the induced morphism H

q
cont(X, Φn) is an isomorphism for

any q ∈ Z. By Lemma 3.6, Conjecture 3.2 holds if and only if it holds when
evaluated on X, for any X ∈ Sm/Fp, after tensoring with Q.



The Geisser-Levine method revisited 615

Lemma 3.8 Conjecture 3.2 holds if and only if it holds when evaluated on X in
weight n, for any projective X ∈ Sm/Fp and any n ≥ 0, after tensoring with Q.

Proof. This follows from Proposition 2.23 and the remarks preceding the Lemma.
��

Proposition 3.9 Let X/Fp be a smooth, projective variety. Then Conjecture 3.2
holds when evaluated on X in weight n (after tensoring with Q) if and only if

(i) Hi(X, Q(n)) = 0 for i �= 2n.
(ii) The cohomological Tate conjecture holds for X in codimension n and

rational equivalence equals homological equivalence in codimension n

over X (for Ql coeffients).
(iii) Condition Sn(X) of [27] holds.

Proof. Recall that Hq(X, Z(n)) = 0 for q > 2n and that H 2n(X, Z(n)) �
CHn(X) (Proposition 1.6 (i) and (ii)), and also that the map Hq(X, Q(n)) →
H

q

ét(X, Q(n)) is an isomorphism for all q (Proposition 1.18). We first show that
Conjecture 3.2 implies conditions (i)–(iii). Since X is smooth projective, the
right hand side of (3.1) is 0 for q �= 2n, 2n + 1 [5, th. 2]: this implies (i). For
q = 2n, 2n+ 1, we then get as a special case of (3.2) a commutative diagram

H 2n(X, Q(n))⊗Ql
∼−−−→ H 2n

cont(X, Ql(n))

||


� ·e



�

H 2n(X, Q(n))⊗Ql
∼−−−→ H 2n+1

cont (X, Ql(n))

and by Lemma 1.23, the top horizontal map is the l-adic cycle map. On the other
hand, by [22, prop. 6.5], we have a commutative diagram

H 2n
cont(X, Ql(n))

∼−−−→ H 2n
cont(X, Ql(n))G

·e


�



�

H 2n+1
cont (X, Ql(n))

∼←−−− H 2n
cont(X, Ql(n))G

where the right vertical map is the natural one and the horizontal maps come from
the (degenerating) Hochschild-Serre spectral sequence. Here, G = Gal(F̄p/Fp)

and X = X ⊗Fp
F̄p.

So, Conjecture 3.2 implies that the maps

CHn(X)⊗Ql → H 2n
cont(X, Ql(n))G

H 2n
cont(X, Ql(n))G→ H 2n

cont(X, Ql(n))G
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are isomorphisms. The surjectivity of the first map is the cohomological Tate
conjecture; its injectivity means that homological equivalence agrees with ra-
tional equivalence, and the bijectivity of the second map is condition Sn(X) of
[27].

Conversely, arguing backwards, it is easy to check that (i), (ii) and (iii) together
imply that (3.1) is an isomorphism for all q. ��
Proof that Conjecture 3.1 ⇐⇒ Conjecture 3.2. By Lemma 3.8 and Proposition
3.9, it is sufficient to prove that Conjecture 3.1 is equivalent to the conditions
(i)–(iii) of Proposition 3.9 for all smooth projective X and all n ≥ 0. Consider
the following conditions, for all smooth, projective X:

(1) The cohomological Tate conjecture;
(2) Condition Sn(X) for all n ≥ 0;
(3) Equality of homological and numerical equivalences.
(4) The zeta-theoretic Tate conjecture (part b) of Conjecture 3.1).

By [27, th. 2.9], one has (1) + (2) ⇐⇒ (1) + (3) ⇐⇒ (4). Therefore,
conditions (ii) and (iii) of Proposition 3.7 are equivalent to Conjecture 3.1. On
the other hand, by [8, Th. 3.3], Conjecture 3.1 implies the Beilinson-Parshin
conjecture: Ki(X)⊗ Q = 0 for all smooth projective X and all i > 0. But this
condition is equivalent to condition (i) of Proposition 3.7, cf. Theorem 1.3 h).
The proof is complete. ��
Remark 3.10. One would like to use Gabber’s rigidity theorem [7] to prove
Conjecture 3.3 by proving that Ql(n)c is smoothable (compare Definition 2.31
and Theorem 2.34). The obstruction is that continuous étale cohomology does
not commute with direct limits.
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(1985), 437–552

[SGA4] Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des
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