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Lower #-cohomology of higher-dimensional quadrics

By

Bruno Kaun

Let F be a field of characteristic 2 and X a smooth variety over F. For all ,j 20,
we denote by H'(X, #”) the i-th Zariski cohomology group of X with coefficients in the
Zariski sheaf associated to the presheafl U H! U, where for any scheme S we denote by
H?S the group H/(S,,,Z/2). By the Bloch-Ogus theorem [2], this is the i-th cohomology
group of the complex:

0 > HF(X) — xe@(”ﬂj’lF(X) - ... = xe@;ﬁ)Hﬂi_iF(X) - .
where X® denotes the set of points of codimension i in X. In particular, we have
H! (X, %) = 0 for i > j; moreover, the description of the differentials in the above com-
plex yields isomorphisms H' (X, #") = C H' X/2, where C H' X is the i-th Chow group of
X. The Bloch-Ogus spectral sequence [2]

H(X,#) = H'iX
yields cycle class maps cly: CH' X/2 — H* X. For i <j, define maps:
§i: O FQCH X2 — H(X,#)

by means of cup-product from the cases j = i {explained above) and i = 0 {induced by the
map H'F - H F(X)).

The case of interest for us is when X is the projective hypersurface with equation
q(x) = 0, where g is a nondegenerate quadratic form over F. We have dim X = dimg — 2,
where dim ¢ is the number of variables occurring in g.

We transpose to quadrics some definitions on quadratic forms which only depend on
the similarity class: for example, the discriminant d(X) of an even-dimensional quadric
X makes sense, as does the Clifford invariant ¢(X) if dim X is even and 4(X) =1,
Similarly, we say that a quadric is a Pfister quadric (vesp. an Albert quadric, a neighbour)
if a quadratic form defining it is a Pfister form (resp. an Albert form, a Pfister neighbour).
(Recall that an Albert form is a 6-dimensional quadratic form with trivial signed discrim-
inant.)

We want to investigate the kernel and cokernel of p™/. In fact, we are essentially
interested in the case i = 0 (unramified cohomology), but the proofs give information on
other cases as well. We quote this information when easily available without looking for
complete results when i # 0. By definition, ¢*! is an isomorphism for any i and it is easy
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to see that u®* is always an isomorphism. The aim of this paper is to prove Theorerms 1,
2 and 3 below. For a,,...,q,e F*, we write {a,,..., a,> for the n-fold Pfister form

L—ap® &<, —a,.
Theorem 1. If dim X > 2 or dim X = 2 and d(X) # 1, then p®? is an isomorphism.

Theerem 2. a) If dim X > 2, then p''? is injective and there are isomorphisms:

Coker u''? = Ker u®3
Coker %3 = KerclZ.

b) If X is a neighbour of the anisotropic 3-fold Pfister form {a,b,c, then Keru®? is
generated by {a,b,c), Cokeru®? = Z/2 and Cokeru®?=Z/2 or 0 according as
(—1,a,b,¢) is or is not 0 in H*F.

¢} If X is a 3-dimensional non-neighbour, then u** and ;> are isomorphisms.

d) If X is an anisotropic Albert quadric, then p*? is an isomorphism, u° 2 is injective and
Coker u%3 =~ Z/2.

e) If X is not a 3-fold neighbour and either dim X >4 or dimX =4 and d(X) # 1 (e.g.
dim X > 6), then u''? and u®> are isomorphisms.

Theorem 3. For a quadric X, the cycle class map cl}: C H* Xj2 — H* X is injective,
except in the following cases:
1) X is a neighbour of an anisotropic 3-fold Pfister form {a,b,c» and (—1,a,b,¢) =
OcH*F,
i) X is an anisotropic Albert quadric.
In these two cases, Kercl = Z/2.

Let W, (F(X)/F) = W, (F(X)) be the unramified part of the Witt ring of F (X} (relative-
Iy to F) [12]. For any n> 0, let I, F(X) = W, (F(X))nI"F(X). As an application of
Theorems 1 and 2, we have:

Corollary. a) Under the assumptions of Theorem 1, the map
W(F)/I’F — W, (F(X)/T,F(X)
is bijective.
b) In cases ¢} and ¢} of Theorem 2, the map
W(F)I*F — W, (F(X)/I,F(X)
is bijective.
Proof. For n £ 3, the isomorphism
e '"F(X)/I"*'F(X) - H"F(X)
of Arason, Merkurjev and Rost/Merkurjev-Suslin restricts to an injection

e ILF(X)/IN" F(X) o H F(X)
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{compare [12, § 1]). So we have a commutative diagram (n < 3):
I"F/I**F —~5 H"F

i i
INFXYINF(X) o HF(X).

nr

Under the assumptions of Theorem 1 (resp. in cases ¢} and e) of Theorem 2}, the right
vertical map is an isomorphism, so all maps are isomorphisms, in particular the left
vertical one. The corollary follows.

Remarks. 1. By [3, Prop. 1.2], unramified cohomology is rationally invariant. In
particular, if X is isotropic, then F(X)/F is a rational extension, so Keru%'=
Coker u* ' =0 for all i

2. Theorems 1, 2 and 3 generalise and amplify earlier results of J-L. Colliot-Théléne
and R. Sujatha on unramified H? of real anisotropic quadrics [4] and anisotropic 3-fold
Pfister quadrics [14]. In particular, the statement of Theorem 2b) on Coker 13 is due
to Sujatha [14]. The proof we give in this paper is slightly different from hers.

3. Similar results on unramified H* can be obtained by more sophisticated methods
[10].

4. The remaining cases for Theorem 1 are, respectively, dim X =1 and X is a guater-
nion surface. Since unramified cohomology is rationally invariant and any 3-dimensional
quadratic form is a Pfister neighbour, these two cases are equivalent {compare {4, Lemma
1.3]). If X is a conic curve with invariant [D] (= ¢(@), where ¢ s the quaternion form of
which a representing form for X is a neighbour), it is known that Ker u% ? is generated
by [D] and that Coker u%? = Z/2 or 0 according as (—1)-[D] is or is not 0 in H* F
(compare [13, Prop. 2.2}).

5. The remaining cases for Theorem 2 are dim X < 2. In the case of a conic X with
invariant [D], it follows from [13, Prop. 2.2] that we have isomorphisms:

Kerp®® = F*/Nrd D*,

Coker u*3 = Ker (F*/Nrd D* — 2221, g3 gy,
Kerpd? = NrdD¥/+F*?2,

Coker pu!+? = Nrd D¥/F*2,

The answer is the same for a quaternion surface, at least for u% 3.

In the case dim X = 2, d(X) # 1, it is known that Ker 1 * consists of those symbols
{a,b,¢) such that g is similar to a subform of ¢a,b, ¢ (Arason [1]), and it is shown in [10]
that Coker 4 3 is isomorphic to the subgroup of Ker u® * formed of those « such that
(—1)-a=0eH*F.

Together with the Bloch-Ogus spectral sequence, we shall use the Hochschild-Serre
spectral sequence for the extension to a separable closure of F. We shall use freely the fact
that both spectral sequences are compatible with products. For the Hochschild-Serre one,
as well as for spectral sequences associated to change of sites in general, this is classical; for
the Bloch-Ogus spectral sequence, it follows from Deligne’s result that the latter coincides
from E, on with the change-of-sites spectral sequence associated to the morphism
X, = X, 2, footnote p. 195] (we are indebted to Henri Gillet for pointing this out).
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1. Preliminaries.

1.1 The Bloch-Ogus spectral sequence. From it we get the following exact sequences:
(1) 0 - CH'X/2 » H*X - H°(X,#% - 0
2) 0 - HYX,#% —» H*X —» H°(X,#% —» CH*X/2 - H*X.

(Here again, X may be any smooth variety over F.)

1.2 Chow groups of quadrics.

Lemma 1. Let X = X xF,, where F, is a separable closure of F.

a) IfdimX >2ordimX =2 and d(X)#1, then CH* X/2-> H*(FECH' X/2).

b} If X is not a 3-fold neighbour and either dimX >4 or dimX =4 and d(X) # 1 {e.g.
dim X > 6), then C H* X/2~ H°(F,C H? X/2) and the cycle map CH* X/2 — H*X is
injective.

Proof. Recall that for any smooth projective quadric X, C H" X/torsion is generated
by " for n < dim X/2, where he CH' X is the class of a hyperplane section, and CH* X
is torsion-free. Moreover, C H* X has no torsion and (C H? X),,;0, 1S isomorphic to Z/2
if X is a neighbour of an anisotropic 3-fold Pfister form and 0 otherwise [9]. If dim X = 2
and d(X)# 1, CH*' X =7, CH*X = Z ® Z, where the Galois action permutes the two
factors, and the natural map CH* X > CH! X maps 1 to (1, 1). HdimX =4and d(X} # 1
the description is similar for C H* X (op. cit.). Finally, the cycle maps are isomorphisms
over a separable closure of F, which proves the last claim of b).

Lemma 2. Let X be an anisotropic quaternion surface, with Clifford invariant ce H* F.
Then the image of a generator of C H? X under the cycle map equals ¢ - cl4(C), where C is
a hyperplane section of X.

Proof. We follow Szyjewski [15, §5.3]. First clo(pt)e Ker(H>*C —» H2C) = H?F,
and then clc(pt)e Ker (H* F — H* F (C)) = {0,c}. Since the cycle map CH* C/2— H*>C is
injective, it follows that cl;(pt) = ce H* F. Now the Gysin map i,: H*C - H* X maps
cle(pt) to cly(p1). But

i) =ci,(1)=c-dy(C).

Proposition 1. a) For any gquadric surface X, the cycle map cl3: CH2X/2 - H*X is
injective.
b} If X is a 3-dimensional non-neighbour, the same conclusion holds.

Proof. We first prove a). The case where X is isotropic is clear, since then X has a
rational point and the map CH?>X - CH?X is bijective. Assume now X anisotropic.
Extending scalars if necessary to F (\/d_), where d = d (X ), we may assume that 4 (X) = 1,
i.e. X is a quaternion quadric (observe that CH? X — C H? Xy, /3, Is bijective). In this case,
Proposition 1 follows from Lemma 2 vig the multiplicativity of the Hochschild-Serre
spectral sequence by observing that ¢l (C) # 0 [15, Lemma 5.3.2¢)]. Finally, b) follows
from a) by taking any hyperplane section Z of X and observing that the generator #* of
C H? X restricts to the generator of CH?Z.
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1.3 The Hochschild-Serre spectral sequence. This is the spectral sequence
HY(EH'X) = HYX

where as in Lemma 1 X = X x  F, for a separable closure F, of F.
If F is separably closed, H' X = 0 for i odd and the cycle maps CH'X/2 — H* X are
isomorphisms. In general, define maps:

Vit HIF@CHIX/2 —» HYX

by cup-product from the cases j = i {cycle map} and i = 0 (functoriality). From Lemma 1
and the Hochschild-Serre spectral sequence, we deduce:

Lemma 3 (compare [15, Lemma 5.2.1]). If dim X > 2 or dim X = 2 and d(X) +# 1, then
the map v*' induces an isomorphism

3) H’F®CH'X/)2 =~ H?X.
If dim X > 2, the map v*? induces an isomorphism

4) H*FOH'FRCH'X =~ H*X.

2. Proofs, excluding Albert gquadrics.
Proof of Theorem 1. It follows immediately from {1} and (3).

Proof of Theorem 2a). By multiplicativity of the Bloch-Ogus and Hochschild-
Serre spectral sequences, the map v!'? factors through y'-? and the map u°®? factors
through v° 3. Hence (2) and (4) translate into an exact sequence:

©) 0 > HIF® CH'X — HYX,#?% — HF — H°(X,#?
~ CH?X)2 — H*X.

The claims of a) follow.

Proof of Theorem 2e). By Lemma 1b), ¢l is injective; by Arason’s theorem
[1, Satz 5.6], u°3 is injective. The claims of ¢) follow from these remarks and a).

Proof of Theorem 2b) and c). The statements on Kerpu®? and Coker p*?
follow from Arason’s main theorem [1, Satz 5.6] and a). It remains to deal with Coker x>
In case ¢), surjectivity of u®? follows from a) and Proposition 1. To prove the last
statement of b), we may assume X to be 3-dimensional {compare [4, Lemma 1.3]). By [15,
Prop. 5.4.6], the image of the torsion element of CH2X in H*X by the cycle map is
{—1,a,b,¢), which proves the statement by a) again.

Proofof Theorem 3, excludingii). It follows from Lemma 1b), Proposition 1
and (for 3-fold neighbours) Theorem 2a) and b) (it is trivial for conics).

3. Proofs: the case of an Albert quadric. In this section, we prove Theorem 2d) and
Theorem 3 in case ii). Let X be an anisotropic Albert quadric.
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The injectivity of u® 3 follows once again from Arason’s theorem [1, Satz 5.6], since an
anisotropic Albert form is not contained in a 3-fold Pfister form. By [9], CH* X and
CH?*X are isomorphic to Z @ Z, extension of scalars corresponding to (x, y)— (x,4y).
It follows that Ker cl2 is 0 or Z/2. We shall exhibit an explicit element of H°(X, #3)\H* F,
which, with the help of Theorem 2a), will conclude the proof that Cokerp® =
Kercl} = Z)2.

Let g be an Albert form defining X and g, the anisotropic part of g, y,. Then g, is
similar to a quaternion form 7, and 1 L — g, e P F(X). Let &°(g,) = ¢*(t L — g )e H F(X)
(compare {7, Prop. 3.2]). As g, and t are unramified, it is clear that &(g,)e H°(X, #°%).

Lemma 4. 2°(q,) # 0.

Proof. If&%(g,) =0, then t L — ¢, ~ 0 and g, represents 1. Consider ¢ =g .L {—1).
Two cases may occur:

® ¢ is isotropic. Then g = ¢” L {1} with dimq” = 5. By assumption, one sees that gy,
is isotropic. But this is impossible by a result of Hoffmann [6, Main theorem]. Indeed,
this result implies that ¢” is a neighbour of a 3-fold Pfister form. Then ¢ represents its
own discriminant —1 and g is isotropic.

® g is anisotropic. Let E = F(¢'). By the former case, g5 is isotropic. But this is impossible,
this time by a result of Leep [6, Theorem 2], which would imply that ¢ is similar to a
subformofg. [

We now claim that &°(g,) is not defined over F. Assume it is. Let & H* F be such that
Brx, = & (gy)- By [8, Prop. 3], fis a sum of at most two symbols (although this fact is not
strictly necessary for the proof). If it is equal to one symbol € (¢) (¢ a 3-fold Pfister form
over F), then by the Hauptsatz 7 L. — g is defined over F by ¢. Passing to the function
field K = F(g), we get that & ((q,)x x)) = 0, hence g is isotropic by Lemma 4, which is
impossible by Merkurjev’s index reduction theorem [11]. Assume f§ =y + 8, where y, &
are symbols. Let ¢ be the Pfister form with e’-invariant y and K = F(gp). Over K, ¢
remains anisotropic by [11] again and Sy is one symbol, which is impossible as we have
Just seen.

Remarks. 1. The exact sequence (5) shows that 2*(g,) does not map to 0 in CH? X2,
so that KerclZ x Z/2. In fact, we see from [9] that the image of &*(g,) in CH?X/2 is the
class of 41, where ! is the class of one of the rulings over X. Also, it follows from (2} that
&3(g,) does not come from H>X.

2. Let w, be the 4-th Delzant Stiefel-Whitney class [5]. One checks easily that
wa @pry = Walgy L1, =1D) =(—1) - &(g,). So (—1) - &(g,) is defined over F.

3. This proof of Theorem 2 d) also implies that 7 is an unramified Witt class which does
not come from W (F), so that W(F)-» W, (F(X)/F) is not surjective. To our knowledge,
this is the first example of a genuine unramified Witt class over the function field of a
quadric to appear in the literature.
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helped improve the presentation of this paper.
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Added in proof.*) Colliot-Théiéne pointed out that the present proof of Theo-
rem 2b) is very sketchy. Here is a more general agreement. By {9, (2.7)], CH? X/torsion
is generated by h? if the quadratic X is anisotropic and p % dim X/2. Applying this to
p =2 and our 3-dimensional neighbour X, we get by the same argument as in the proof
of Proposition 1b that Ker cl% € Im ((CH? X), ,qion = CH? X/2). By [15, Cor. 3.3.2 and
Prop. 5.4.6), cl3 maps the nonzero torsion element of CH? X to(—1,a, b, ¢)ye H* X, and
the Hochschild-Serre spectral sequence of 1.3 shows that H*F — H* X is injective.
Theorem 2a) now concludes the proof. '
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