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Lower ~-cohomology of higher-dimensional quadrics 

By 
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Let F be a field of characteristic # 2  and X a smooth variety over F. For ai1 i,j > O, 
we denote by H i(X, ~fJ) the i-th Zariski cohomology group of X with coefficients in the 
Zariski sheaf associated to the presheaf U ~-* H j U, where for any scheme S we denote by 
H~S the group H](S~t,2g/2). By the Bloch-Ogus theorem [2], this is the i-th cohomology 
group of the complex: 

0 ~ H]F(X)  ~ xfi)x,,,H i - t  F(x) ---r ... -~ x Ox,,H 3-iF(x) ~ ,.. 

where X (1) denotes the set of points of codimension i in X. In particular, we have 
H i (X, •J)  = 0 for i > j ;  moreover, the description of the differentials in the above com- 
plex yields isomorphisms H ~ (X, y.fi) .~ C H iX~2, where C Hi x is the i-th Chow group of 
X. The Bloch-Ogus spectral sequence [2] 

HI(X, J f  ~) ~ Hi+iX 

yields cycle class maps c l ] :CHIX/2 -~  H21X. For i < j ,  define maps: 

#i,j: H]-i F | C Hi X/2  _+ HI(X,~,~]) 

by means of cup-product from the cases j = i (explained above) and i = 0 (induced by the 
map HJF ~ H J F ( X ) ) .  

The case of interest for us is when X is the projective hypersurface with equation 
q(x) = 0, where q is a nondegenerate quadratic form over F. We have d imX = dimq - 2, 
where dim q is the number of variables occurring in q. 

We transpose to quadries some definitions on quadratic forms which only depend on 
the similarity class: for example, the discriminant d(X) of an even-dimensional quadric 
X makes sense, as does the Clifford invariant c(X)  if d imX is even and d ( X ) =  1. 
Similarly, we say that a quadric is a Pfister quadric (resp. an Albert quadric, a neighbour) 
i fa  quadratic form defining it is a Pfister form (resp. an Albert form, a Pfister neighbour). 
(Recall that an Albert form is a 6-dimensional quadratic form with trivial signed discrim- 
inant.) 

We want to investigate the kernel and cokernel of p5 J. In fact, we are essentially 
interested in the case i = 0 (unramified cohomology), but the proofs give information on 
other cases as well. We quote this information when easily available without looking for 
complete results when i r 0. By definition, #~'~ is an isomorphism for any i and it is easy 
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to see that /z  ~ ~ is always an isomorphism. The aim of this paper  is to prove Theorems 1, 
2 and 3 below. For  at , . . . ,a , ,~F* , we write ((aD ..., a,)) for the n-fold Pfister form 
(1, - a ~ ) | 1 7 4  

Theorem 1. I f  d i m X  > 2 or d i m X  = 2 and d(X) # i, then #0,2 is an isomorphism. 

Theorem 2, a) I f  d i m X  > 2, then #1,2 is injective and there are isomorphisms: 

Coker  pl,  2 ~ Ker  #o, 3 

Coker  #o, 3 ~ Ker  clx 2 . 

b) I f  X is a neighbour of the anisotropic 3-fold Pfister form ((a,b,c)), then Ker/z ~ is 
generated by (a,b,c), Coker# I ' 2  ~2~/2 and C o k e r # ~  or 0 according as 
( -1 ,a ,b ,e)  is or is not 0 in HnF. 

c) I f  X is a 3-dimensional non-neighbour, then #t, 2 and pO, 3 are isomorphisms. 
d) ! f  X is an anisotropic Albert quadric, then #1,2 is an isomorphism, #o, 3 is injective and 

Coker/~o, 3 ~ 2~/2. 
e) Ij" X is not a 3-foM neighbour and either d i m X  > 4 or d i m X  = 4 and d(X) r 1 (e.g. 

d i m X  > 6), then #~' 2 and #o, 3 are isomorphisms. 

Theorem 3. For a quadric X, the cycle class map cl~: CH2 X / 2 ~ H 4 X  & injective, 
except in the following cases: 
i) X is a neighbour of an anisotropic 3-foM Pfister form ((a, b, c)) and ( -  1, a, b, c) = 

0 ~ H 4 F ;  
ii) X is an anisotropic Albert quadric, 
In these two cases, Ker  cl~ ~ Z/2. 

Let 14~, (F(X)/F) = ~ (F (X)) be the unramified par t  of the Witt ring o f f  (X) (relative- 
ty to F) [12]. For  any n > 0, let I~ ,F(X)= W~(F(X))c~I"F(X). As an application of 
Theorems 1 and 2, we have: 

Corollary. a) Under the assumptions of Theorem 1, the map 

W (e)/13 e ~ W~, (e (X))/I3,~ F (X) 

is bijeetive. 
b) In cases c) and e) of Theorem 2, the map 

W (F)/I* F -~ W,r (F (X))/I4,~ F (X) 

is bijective. 

P r o o f. For  n __< 3, the isomorphism 

e': F F ( X ) / I ' + I F ( X )  ~ H ' F ( X )  

of Arason, Merkurjev and Rost/Merkurjev-Suslin restricts to an injection 

en: , .+1 H~F(X)  t ,rF(X)/I , ,  F(X) c~ 
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(compare [12, w 1]). So we have a commutative diagram (n < 3): 

I~ F/I,+ I F -~-~ Hn F 

I.~F(XI/I2/1F(X) ~ H~rF(X). 

Under the assumptions of Theorem 1 (resp. in cases c) and e) of Theorem 2), the right 
vertical map is an isomorphism, so all maps are isomorphisms, in part icular  the left 
vertical one. The corollary follows. 

R e m a r k s. 1. By [3, Prop. 1.2], unramified cohomology is rationally invariant. In 
particular, if X is isotropic, then F(X)/F is a rational extension, so K e r # ~  
Coker po, i = 0 for all i. 

2. Theorems 1, 2 and 3 generatise and amplify earlier results of J.-L. Colliet-Th616ne 
and R. Sujatha on uriramified H a of real anisotropic quadrics [4] and anisotropic 3-fold 
Pfister quadrics [1@ In particular, the statement of Theorem 2 b) on Coker/~o, 3 is due 
to Sujatha [14]. The proof  we give in this paper is slightly different from hers. 

3. Similar results on unramified H 4 can be obtained by more sophisticated methods 
[10]. 

4. The remaining cases for Theorem t are, respectively, dim X = 1 and X is a quater- 
nion surface, Since unramified cohomology is rationally invariant and any 3-dimensional 
quadratic form is a Pfister neighbour, these two cases are equivalent (compare [4, Lemma 
1.3]). If X is a conic curve with invariant [D] (=  c(cp), where ~o is the quaternion tbrm of 
which a representing form for X is a neighbour), it is known that Ker #0o z is generated 
by [D] and that Coker #o, 2 = ;g/2 or 0 according as ( -  1). [D] is or is not 0 in H 3 F 
(compare [13, Prop. 2.21). 

5. The remaining cases for Theorem 2 are dim X =< 2. In the case of a conic  X with 
invariant [D], it follows from [13, Prop. 2.2] that we have isomorphisms: 

Ker#~ ~ F* /Nrd  D*, 

Coker#  ~ ~ Ker(F*/NrdD* .(-t),tvl , H3F) ' 

K e r #  1,z ~NrdD*/+_F .2, 

Coker FL l" 2 ~ Nrd D*/F*2, 

The answer is the same for a quaternion surface, at least for #o. 3. 
In the case d imX = 2, d(X) r 1, it is known that Ke r#  ~ 3 consists of those symbols 

(a,b,c) such that q is similar to a subform of((a,b,c)) (Mason [1]), and it is shown in [10] 
that Coker po, 3 is isomorphic to the subgroup of Ker ~0.3 formed of those c~ such that 
( - 1 ) "  ~ = O~H4F. 

Together with the Bloch-Ogus spectral sequence, we shall use the Hochschild-Serre 
spectral sequence for the extension to a separable closure of F. We shall use freely the fact 
that both spectral sequences are compatible with products. For  the Hochschild-Serre one, 
as well as for spectral sequences associated to change of sites in general, this is classical; for 
the Bloch-Ogus spectral sequence, it follows from Deligne's result that the latter coincides 
from E 2 on with the change-of-sites spectral sequence associated to the morphism 
X~t ~ Xz,~ [2, footnote p. 195] (we are indebted to Henri Gitlet for pointing this out). 
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1. Preliminaries. 

1.1 The Bloch-Ogus spectral sequence. From it we get the following exact sequences: 

(1) 0 - ,  CH~X/2  - ,  t-IZX -~ H ~  ~) - ,  0 

(2) 0 ~ H ~ ( X , W  2) ~ H 3 X  -~ H~ Yf  3) ~ CH2X/2  ~ H 4 X .  

(Here again, X may  be any smooth  variety over F.) 

1.2 Chow groups of quadrics. 

Lemma 1. Let X = X • where F~ is a separable closure o f f  
a) I f  d i m X  > 2 mr d i m X  = 2 and d(X)  # 1, then C H! X / 2 - ~  H~ C H1X/2). 
b) I f  X is nat a 3-Jbld neighbour and either d i m X  > 4 mr d i m X  = 4 and d(X)  ~ 1 (e.g. 

dim X > 6), then C H z X/2 ~-~ H ~ (F,, C H z X/2) and the cycle map C H 2 X/2 -~ H 4 X is 
injective. 

P r o o f. Recall that  for any smooth projective quadric X, CH"X/torsion is generated 
by h" for n < dim X/2, where h ~ C H 1 X  is the class of a hyperplane section, and C H *  
is torsion-free. Moreover,  C H ~ X  has no torsion and (CH2X)torsion i s  isomorphic to g /2  
if X is a neighbour of an anisotropic 3-fold Pfister form and 0 otherwise [9]. If dim X = 2 
and d (X) 6 1, C H 1 X  ~ 2~, C H x ) f  - 2~ | 2~, where the Galois action permutes the two 
factors, and the natural  map  C H  ~ X ~ C H  ~ X maps I to (1,1). I f d i m X  = 4 and d(X)  r 1 
the description is similar for C H 2 X  (op. cit.). Finally, the cycle maps  are isomorphisms 
over a separable closure of F, which proves the last claim of b). 

Lemma  2, Let X be an anisotropic quaternion surface, with Clifford invar&nt e~ H 2 F. 
Then the image of a generator of C HZ X under the cycle map equals c . clx(C), where C is 
a hyperplane section of X. 

P r o o f .  We follow Szyjewski [15, w 5.3]. First c lc (p t )~Ker(H2C-*H2C)  = H2F, 
and then clc (p t) ~ Ker  (H z F -+ H 2 F (C)) = {0, c}. Since the cycle map  C H 1 C/2 ~ H z C is 
injective, it follows that  c l c ( p t ) =  c 6 H 2 F. Now the Gysin map  i,:  H2C ~ H 4 X  maps 
ct c (p t) to ct x (t9 t). But 

i,(c) = c ,  i ,(1) = c .  clx(C ).  

Proposition 1. a) For any quadric surface X ,  the cycle map cl~: C Hz X/2 ~ H4 X is 
injective. 
b) t f  X is a 3-dimensional non-neighbour, the same conclusion holds. 

P r o 0 f. We first prove a). The case where X is isotropic is clear, since then X has a 
rational point and the map  C H 2 X - ~  C H 2 v~ is bijective. Assume now X anisotropic. 
Extending scalars if necessary to F (x/d), where d = d (X), we may assume that d (X) = 1, 
i.e. X is a quaternion quadfic (observe that  C H 2 X --~ C H 2 X F (V~) iS bijective). In this case~ 
Proposi t ion 1 follows from Lemma 2 via the multiplicativity of the Hochschild-Serre 
spectral sequence by observing that  clx (C) # 0 [15, L e m m a  5.3.2 c)]. Finally, b) follows 
from a) by taking any hyperplane section Z of X and observing that  the generator  h 2 of  
C H 2 X  restricts to the generator  of  C H z Z. 



248 B. KAHN ~r~c~. MATH. 

1.3 The Hochschild-Serre spectral sequence. This is the spectral sequence 

HI(s  ~ Hi+iX 

where as in Lemma 1 Jf = X x r F~ for a separable closure F~ of F. 
If F is separably closed, H~X = 0 for i odd and the cycle maps CHiX/2  ~ H~ix  are 

isomorphisms. In general, define maps:  

v~,J: H J - I F |  ~ H i + i X  

by cup-product  from the cases j  = i (cycle map) and i = 0 (functoriatity). F rom Lemma 1 
and the Hochschild-Serre spectral sequence, we deduce: 

Lemma 3 (compare [15, Lemma 5.2.1]). I f  d i m X  > 2 or d i m X  = 2 and d(X)  r 1, then 
the map v 1" ~ induces an isomorphism 

(3) HZ F O C H1X/2  ~ ' H2  X .  

I f  dim X > 2, the map v 1" z induces an isomorphism 

(4) H 3 F O H I F |  ~ H 3 X .  

2. Proofs, excluding Albert quadrics. 

P r o o f  o f  T h e o r e m  1. It follows immediately from (1) and (3). 

P r o o f o f T h e o r e m 2 a), By multiplicativity of the Bloch-Ogus and Hochschild- 
Serre spectral sequences, the map  v 1' 2 factors through gl,  2 and the map  #o, 3 factors 
through v ~ 3. Hence (2) and (4) translate into an exact sequence: 

(5) 0 --, H * F |  ~ H~(X,3ff 2) ~ HaF ~ H ~  3) 

--, CHEX/2 ~ H 4 X .  

The claims of a) follow. 

P r o o f  o f  T h e o r e m  2e) .  By Lemma lb),  cl~ is injective; by Arason's theorem 
[1, Satz 5.6], #o, 3 is injective. The claims of e) follow from these remarks and a). 

P r o o f  o f  T h e o r e m  2 b )  a n d  c). The statements on K e r #  ~ and Coker/~ ~'z 
follow from Arason's main theorem [1, Satz 5.6] and a). It  remains to deal with Coker  # ~ 3 
In case c), surjectivity of #o, 3 follows from a) and Proposit ion 1. To prove the last 
statement orb), we may  assume X to be 3-dimensional (compare [4, Lemma  1.3]). By [15, 
Prop. 5.4.6], the image of the torsion element of C H 2 X  in H ~ X  by the cycle map  is 
( - 1 ,  a, b, c), which proves the statement by a) again. 

P r o o f o f T h e  o r e m 3, e x c 1 u d i n g i i). It follows from Lemma I b), Proposi t ion 1 
and (for 3-fold neighbours) Theorem 2a) and b) (it is trivial for conics). 

3. Proofs: the ease of an Albert quadrie. In this section, we prove Theorem 2d) and 
Theorem 3 in case ii). Let X be an anisotropic Albert quadric. 
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The injectivity of/~o, 3 follows once again from Arason's theorem [1, Satz 5.6], since an 
anisotropic Albert form is not contained in a 3-fold Pfister form. By [9], C H 2 X  and 
C H ~ X are isomorphic to Z @ ~,  extension of scalars corresponding to (x, y)~--~ (x, 4y). 
It follows that Ker  cl 2 is 0 or ~/2. We shall exhibit an explicit element of H ~ (X, XC3)\H 3 F, 
which, with the help of Theorem 2a), will conclude the proof  that C o k e r #  ~ 3___ 
Ker  cl~ -~ 2g/2. 

Let q be an Albert form defining X and q~ the anisotropic par t  of qE(x). Then qa is 
similar to a quaternion form r, and r i - ql e 13 F (X). Let ~3 (q ~) = e 3 (~ • _ q~) e H ~ F (X)  
(compare [7, Prop. 3.2]). As qj and v are unramified, it is clear that ~ 3 ( q O e H ~  ). 

Lemma 4. (3 (q~) # O. 

P r o o f. If  g3 (ql) = 0, then ~ 3_ - ql ~ 0 and ql represents t. Consider q' = q 3_ ( - 1 ). 
Two cases may  occur: 

| q' is isotropic. Then q = q" i <1> with d i m ( '  = 5. By assumption, one sees that  q~(x~ 
is isotropic. But this is impossible by a result of Hoffmann [6, Main theorem]. Indeed, 
this result implies that q" is a neighbour of a 3-fold Pfister form. Then q" represents its 
own discriminant - 1  and q is isotropic. 

e q' is anisotropic. Let E = F(q'). By the former case, q~ is isotropic. But this is impossible, 
this time by a result of  Leep [6, Theorem 2], which would imply that q' is similar to a 
subform of q. [ ]  

We now claim that F3(q0 is not defined over F. Assume it is. Let f ie  H 3 F  be such that  
,St ~:o = ~3 (ql). By [8, Prop. 3], f is a sum of at most  two symbols (although this fact is not 
strictly necessary for the proof). If  it is equal to one symbol  8 3 (r (cp a 3-fold Pfister form 
over F), then by the Hauptsa tz  ~ A. - ql is defined over F by cp. Passing to the function 
field K = F(~o), we get that g3((qO~(x) ) = 0, hence qK is isotropic by Lemma  4, which is 
impossible by Merkurjev's  index reduction theorem [11]. Assume f = y + 6, where y, 6 
are symbols. Let ~0 be the Pfister form with eZ-invariant 7 and K = F(q~). Over K, q 
remains anisotropic by [11] again and fix is one symbol, which is impossible as we have 
just seen. 

R e m a r k s. 1. The exact sequence (5) shows that  g3 (ql) does not map  to 0 in C H 2 X/2, 
so that Ker  cl:~ ~ •/2. In fact, we see from [9] that  the image of ~3(q0 in C H Z X / 2  is the 
class of 4 t, where I is the class of one of the rulings over .~. Also, it follows from (2) that  
~3(ql ) does not  come from H 3 X. 

2. Let w,~ be the 4-th Delzant Stiefel-Whitney class [5]. One checks easily that  
w,, (q)F ~.x) = w4 (q~ 3- <1, - 1 >) = ( -  1). ~3 (q0- So ( -  I ) .  gz (q0 is defined over F. 

3. This proof  of Theorem 2d) also implies that ~ is an unramified Witt class which does 
not come from W(F), so that  W ( F ) ~  VC,~(F(X)/F) is not surjective. To our knowledge, 
this is the first example of a genuine unramified Witt class over the function field of a 
quadric to appear  in the literature. 

A c k n o w l  e d g e  m e n  t s. I wish to thank H616ne Esnault  for interesting questions 
which p rompted  the former Remarks  1 and 2, and the referee for suggestions which 
helped improve the presentation of this paper.  
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A d d e d i n p r o o f.*) Colliot-Th616ne pointed out that the present proof of Theo- 
rem 2b) is very sketchy. Here is a more general agreement. By [9, (2.7)], CHvX/tors ion 
is generated by h p if the quadratic X is anisotropic and p 4= dim X/2. Applying this to 
p = 2 and our 3-dimensional neighbour X, we get by the same argument as in the proof 
of Proposit ion l b  that Ker cl z ~ Im ((CH z X)torsio n --* CH 2 X/2). By [15, Cor: 3.3.2 and 
Prop. 5.4.6], cl~ maps the nonzero torsion element of C H  z X to ( -  1, a, b, C)x ~ H4 X, and 
the Hochschild-Serre spectral sequence of 1.3 shows that H 4 F  ~ H 4 X  is injective. 
Theorem 2a) now concludes the proof" 
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